CMSC 427: Computer Graphics
Spring 2004
http://www.cs.umd.edu/~mount/427/

Instructor: Dave Mount. Office: AVW 3373. Email: mount©cs.umd.edu. Office phone: (301) 405-2704.
Office hours: Mon 2:30-3:30, Wed 2:30-3:30. I am also available immediately after class for questions.
Please send me email if you cannot make these times. If the question is short (a minute or so) drop by
my office any time. Please send me email if you cannot make these times. (Don’t be shy about doing
this. T always set aside at least one hour each week for “unscheduled” office hours.)

Teaching Assistant: Pooja Nath. Office: AVW 1112. (If you do not see her there, try her office, AVW
3444.) Email: pooja@cs.umd.edu. Office hours: (TBA, see the class web page). If you cannot make
these times, please feel free to contact her to set up another time.

Class Time: Tue, Thu 2:00-3:15 in CSI 3117.

Course Objectives: This course provides an introduction to the principles of computer graphics. In par-
ticular, the course will consider methods for modeling 3-dimensional objects and efficiently generating
photorealistic renderings on color raster graphics devices. The emphasis of the course will be placed
on understanding how the various elements that underlie computer graphics (algebra, geometry, al-
gorithms and data structures, optics, and photometry) interact in the design of graphics software
systems.

Texts: It is strongly recommended that you buy the required text. The reference book is a good source of
advanced information, if you intend to do advanced graphics programming,.

Required: Computer Graphics with OpenGL (3rd edition), D. Hearn and M. P. Baker, Prentice Hall,
2004.

Reference:

e OpenGL Programming Guide: The Official Guide to Learning OpenGL (Fourth Edition), by
OpenGL Architecture Review Board, et al., Addison-Wesley, 2003.

e OpenGL Reference Manual: The Official Reference Document to OpenGL (3rd Edition), by
Dave Shreiner, et al., Addison-Wesley, 1999.

Prerequisites: MATH 240 (Linear Algebra) and CMSC 420 (Data Structures). Knowledge of C, C++, or
Java programming. The course involves a considerable amount of mathematical reasoning involving
3-dimensional objects (points, lines, spheres, and polygons). Knowledge of and the ability to solve
problems in linear algebra and (primarily differential) calculus will be required. We will give an
overview of linear algebra in class, but if you are unfamiliar in your understanding of concepts from
linear algebra (such as vector spaces, linear independence, bases, linear transformations, determinants,
and inner products) and differential calculus (including partial derivatives), I recommend that you
review this material. The course involves some nontrivial programming projects. Although a specific
knowledge of data structures is not essential, I will assume that you are capable of writing and debugging
moderately sophisticated programs in either C, C+-+, or Java.

Course Work: Course work will consist of a combination of written homework assignments and three
programming projects. Homeworks are due at the start of class. Late homeworks are not allowed (so
just turn in whatever you have done by the due date). Programming assignments will typically be due
at midnight of the due date. They are subject to the following late penalties: up to six hours late: 5%
of the total; up to 24 hours late: 10%, and then 20% for every additional day late.

There will be two exams: a midterm and a comprehensive final. Tentative weights: Homeworks and
projects 35%, midterm 25%, final exam 40%. The final exam will be Mon, May 17, 10:30-12:30.

As a courtesy to the grader, homework assignments are to be written up neatly and clearly, and pro-
gramming assignments must be clear and well-documented. Although you may develop your program
on whatever system you like, for final grading your program must execute either on a workstation
(Microsoft Windows, Linux, or Sun Solaris) either in the WAM, Glue, or Linux labs. If you develop
your program on some other platform, it is your responsibility to see that it can be compiled and
executed on one of these machines by the due date. If not, you will be asked to make whatever changes
are needed and will be assessed a late penalty as a result.

Some homeworks and projects will have a special challenge problem. Points from the challenge problems
are extra credit. This means that I do not consider these points until after the final course cutoffs have
been set. Each semester extra credit points usually account for at least few students getting one higher
letter grade.

Academic Dishonesty: All class work is to be done independently. You are allowed to discuss class
material, homework problems, and general solution strategies with your classmates. When it comes
to formulating/writing/programming solutions you must work alone. If you make use of other sources
in coming up with your answers you must cite these sources clearly (papers or books in the literature,
friends or classmates, information downloaded from the web, whatever).

It is best to try to solve problems on your own, since problem solving is an important component of the
course. But I will not deduct points if you make use of outside help, provided that you cite your sources
clearly. Representing other people’s work as your own, however, is plagiarism and is in violation of
university policies. Instances of academic dishonesty will be dealt with harshly, and usually result in
a hearing in front of a student honor council, and a grade of XF.

Topics: The topics and order listed below are tentative and subject to change.

Introduction: Overview of graphics systems, graphics devices, graphics programming.

Graphics Programming: OpenGL, graphics primitives, color, viewing, event-driven I/O, GL toolkit,
frame buffers.

Geometric Programming: Review of linear algebra, affine geometry, (points, vectors, affine trans-
formations), homogeneous coordinates, change of coordinate systems.

3-d transformations and perspective: Scaling, rotation, translation, orthogonal and perspective
transformations, 3-d clipping.

Light and shading: Diffuse and specular reflection, Phong and Gouraud shading.
Using Images: Texture-, bump-, and reflection-mapping.
Implementation Issues: Rasterization, clipping.

Ray tracing: Ray-tracing model, reflective and transparent objects, shadows, light transport and
radiosity.

Hidden surface removal: Back-face culling, z-buffer method, depth-sort.
Color: Gamma-correction, halftoning, and color models.
Modeling: Hierarchical models, fractals and fractal dimension.

Curves and Surfaces: Representations of curves and surfaces, interpolation, Bezier, B-spline curves
and surfaces, NURBS, subdivision surfaces.

CMSC 427:Spring 2004 Dave Mount

Homework 1: OpenGL and Geometry

Handed out Tuesday, Feb 24. Due at the start of class Tuesday, Mar 2. Late homeworks are not accepted, so turn in
whatever you have done.

Problem 1. Suppose that you are given the vertices of a 4-sided polyd®n P, P, P3) in the plane. Recall that a
polygon isconvexf every internal angle is less than or equal to 180 degrees.

convex nonconvex

(a) Assuming that these vertices have been given in counterclockwise order, explain how to use orientation
tests to determine whether this polygon is convex.

(b) Repeat (a), but now the ordering of the vertices is unknown, but it will be either clockwise or counter-
clockwise.

Problem 2. Given a pointP = (p.,, p,, 1) in the plane and an angle derive a transformation that rotates the plane
by 6 degrees clockwise (not counterclockwise) about the pBirAs we did in class, express your answer as a
3 x 3 matrix, so that it can be applied to a column vector in homogeneous coordinates. Show how you derived
your answer.

Problem 3. For this problem you “might” need to use the following facts (depending on how you solve the problem).
An axis-aligned ellipse in the plane centered at a p6int (c,, ¢,;) and with horizontal and vertical radii
ry > 0 andr, > 0 satisfies the equation

(z—c)® | (y—cy)?
r2 7“5

=1

Define theaspect ratioof the ellipse to be, /.. In the case where, = r, = r (aspect ratio is 1) the ellipse is
a circle of radiug, in which the above equation is equivalentto— ¢,)* + (y — ¢,)? = r%. Answer each of
the following questions.

(a) You are given two circles in the plane of ragji andr, centered at point€y = (ci4,c1,) andCy =
(c2q, c2y), respectively. Derive an expression that tests whether these two circles overlap each other, but
one circle is not contained within the other. (See the figure below.)

@) (b)

(b) You are given two axis aligned ellipses, centered at péintandC-, with horizontal and vertical radii
andry, andrq, andry,, respectively. Further, assume that the two ellipses have the same aspect ratios.

Repeat part (a) in this case.

(Hint: The easy way to solve both problems does not involve the use of the above equations for the circle and
ellipse.)

Problem 4. On the distant planet of Omicron Persei 8 (OP8), graphics viewports are designed so that the viewport
origin is in the upper right corner. Theaxis points down and thg-axis points to the left. Letv andh denote
the height and width of the OP8 viewport. (See the figure below.) Consider a rectangular drawing region (using
the standard coordinate system) whose left and right sides,afeandx.,.. and whose bottom and top sides
aréymin andymax-

y=w w y=0

ymax — x=0
3 QA h
Ymin j[
> | x=h
Xmin Xmax

(a) Give the viewport transformation that maps a pdin& (p,, p,) in the rectangular drawing region to the
corresponding point” = (v,, v,) in an OP8 viewport. Express your transformation as two equations:

vy = some function op,, and/orp,
v, = some function op, and/orp,

Show how you derived your answer.
(b) Suppose that the poinfdandV” are expressed as homogeneous coordinates.

Px (%
P=1 py V= Uy
1 1

Express the transformation of part (a) & & 3 transformation matrix\/, so that

V=MP.

CMSC 427:Spring 2004 Dave Mount

(Optional) Homework 2: Perspective and Lighting

This is an optional homework. This means that the homework will not be considered as part of your total numerical
grade, but instead will be assigned to extra credit points. (See the syllabus for more information on extra credit.) The
homework also serves as a set of sample problems for the midterm exam.

Handed out Thursday, Mar 18. Due at the start of class Thursday, April 1. Late homeworks are not accepted, so
turn in whatever you have done.

Problem 1. Short answer questions. Explanations are optional, but may be provided for partial credit.

(a) Consider the hyperbolg — 22 = 1 in the projective plane. (Note this consists of two curves, one above
the z-axis and one below the-axis.) Consider the four extensions of the hyperbola out to infinity. What
are the homogeneous coordinates of these points at infinity?

(b) In some graphics systems (not OpenGL) a left-handed coordinate frame is used. Givelth@trix that
performs a rotation counterclockwise about thaxis by angle in a left-handed frame. Contrast your
result with the matrix for a right-handed frame.

(c) A user draws a triangle strip usit@._TRIANGLE_STRIP and givesn vertices. As a function of, how
many triangles are produced? (Assuming no three collinear vertices and no duplicate vertices.)

(d) You are given a vertical line = b and a pair of pointd® and@ in the plane. As a function df and the
coordinates of” and@, compute the affine combination #fand@ that lies on this vertical line. (See the
figure below.)

(e) Which of the following statements is true of perspective projections? (Select all that apply)

(@) Lines are mapped to lines (c) Midpoints are preserved
(b) Parallelism is preserved (d) Angles are preserved

() Given pointsP,, P1, P, in 3-space, and a viewer at poiWit, give a geometric test to determine whether,
from Vs location, the vertices of trianglé& P, P, P, appear in clockwise or counterclockwise order.

9 : (1.1)pc,
P (1-a)P+aQ F. G 91
= :F S Co C
Lo F.O €0 (0,0) (1,0)
Problem 1(d) Problem 2 Problem 3

Problem 2. Consider the two framek andG shown in the figure above.

(a) Express botl andw in homogeneous coordinates relative to frafhe
(b) Express bottP andw in homogeneous coordinates relative to frathe

(c) Give the3 x 3 matrix which transforms a point represented in homogeneous coordinates rel&tivetto
its homogeneous coordinates relativeito(If you wish, you may express your answer as the inverse of a
matrix, without actually computing the inverse.)

Problem 3. As mentioned in class, Gouraud shading is performed by linearly interpolating the colors of the vertices
of a polygon to the points in the interior of the polygon. Consider the triangle in the figure above, with vertices
at(0,0), (1,0) and(1,1). LetCy, C; andC; denote the corresponding RGB color vectors assigned to these
three vertices.

Derive a linear interpolation functio@'(z,y) that maps a poin@ = (z,y) in the triangle to an RGB color

vector by blending these three colors together. You may express your answer either as a formula (using affine
geometry) or using pseudo-code. The final color should be a functieraofly andC,, Cy, andCy. Show

your work.

Problem 4. Suppose that you have a graphics window that must be a square. The user has just resized the window so
that it now has widthuw and heightwh. As a function ofww andwh, derive the arguments fgiviewport() so
that the new viewport is the largest square that fits within the window and is centered within the window. (See
the figure below. The outer rectangle is the graphics window and the shaded rectangle is the viewport.) Recall
that the calling sequence is:

glViewport(x, y, vw, vh);

where(z,y) are the coordinates of the lower left corner of the viewport (where the origin is in the lower left
corner of the window), andw andwvh are the width and height, respectively, of the viewport. (Hint: There are
two cases, depending on whether the window is wider than tall, or taller than wide.)

L

VW VW
P=(px,py,pz)
wh vh| wh "
(x.y)
(xy) z _
e .y Q=(gx,qy,qz)
Problem 4 Problem 5

Problem 5. OpenGL does not compute shadows. One way to produce the shadow of an object is to explicitly compute
them yourself and just draw the shadows. Let us consider how to do derive a function to do this.=Let
(€x,¢,,¢.)T be the coordinates of a light source andfet= (p,, p,, p-)T be a point.

(@) Give a function that determines the projection of the p&imnto a pointQ) = (¢, g,,¢.)” on thex, y-
coordinate plane, that is, the plane given by the equatien0. (Hint: Consider similar triangles as we
did in deriving perspective transformations.)

(b) Express your answer to part (a) a$ a 4 projection matrix transformation/. This matrix should have
the property that if)’ = M P, then after perspective normalization@6 (dividing by the last coordinate)
we obtain the projected poi}.

Challenge Problem. A viewer is looking at a spherical ball centered at a pairih 3-space that has both diffuse and
specular reflections. The ball is illuminated by a single point light sodirc@he viewer at locatiorEy takes
a picture of the scene. He observes two points on the ball in his imagethe point of the brightest diffuse
reflection andS is the point of the brightest specular reflection. Cétbe the location of the center point of the
ball from the viewer's perspective. (See the figure below.) You are not told the exact location of the viewer or
the light source, but you may assume that both are far away from the ball) tisadn the side of the ball that
is visible to the viewer, and thdt, C, andE are not collinear.

Prove that, from the viewer’s perspective the poibtsS, andC are collinear? In the figure we show thgt
lies betweenD andC. Explain why this is so. (Hint: Try to reduce this to a two dimensional problem, by
considering an appropriate plane.)
Sot
ball
E< ‘ ®\C

viewer's perspective

CMSC 427:Spring 2004 Dave Mount

Midterm Exam

This exam is closed-book and closed-notes. You may use 1 sheet of notes (front and back). Write answers in the
exam booklet. If you have a question, either raise your hand or come to the front of class. Total point value is 100
points. Good luck!

Problem 1. (30 points; 3—6 points each) Short answer questions. Explanations are not required, but may be given for
partial credit

(&) Inthe call
glutinitDisplayMode(GLUT_RGB | GLUT_.DOUBLE | GLUT_DEPTH);
explain in English (in a single sentence for each) the meaning of each of the capabilities that have been
enabled.

(b) Consider the groups of triangles shown below. For each one, indicate whether it can be drawn as (1) a
single triangle strip, (2) a single triangle fan, (3) could be drawn as either, or (4) cannot be drawn as a
single triangle strip or a single triangle fan. No further explanation required. (Note that each triangle must
be drawn as shown in the figure, and you cannot draw empty triangles.)

DA Dy PG M

@ (b)
(c) Name two different events or actions that could trigger a call to gmplay callbackfunction. (This is
the function passed tglutDisplayFunc()).

(d) Given two nonzero vectorg andv in 3-dimensional space, the operati@nx v will produce a nonzero
vector that is perpendicular to bo#xceptunder what circumstances? (Be as general as possible.)

(e) Inthe Phong shading model, the specular contribution to the reflected cplanist(0, 7 - E)‘XLS. Why
do we take the max in the formula? What would go wrong if we didn’t?

(f) In Phong specularity, what is the effect (visually) of increasingdhalue?
(g9) In Phong specularity, why did we not include the object’s surface c6lpm(the formula?

Problem 2. (20 points) On the extremely distant planet of Omicron Persei 9 (OP9), graphics viewports are designed
so that the viewport origin is in the center of the window, with thaxis directed to the right and theaxis
directed down. Letv andh denote the height and width of an OP9 viewport. (See the figure below right.)
Consider a rectangular drawing region whose left and right sides,afeandz,,., and whose bottom and top
sides ar@/y,i, andymax.-

x=0

A(px,py) ('vx.vy)
T T X 1y=0
ymin IT Y

o
Xmni Xmax w

ymax

Give the viewport transformation that maps a paitt= (p,,p,) in the rectangular drawing region to the
corresponding point’ = (v, vy) in the OP9 viewport. Express your transformation as two equations:

v, = some function op, and/orp,
vy = some function op,, and/orp,

Problem 3. (10 points) Consider a hyperboloid in 3-space defined by the following equation:

2 2
Z+$_2_y_:1
a

(for some nonzero constantandb). Given a pointP, = (¢, ¥, 20)” on the surface of this hyperboloid, derive
a normal vector for such a point. You do not need to normalize your vector to unit length. (If the coastants
andb confuse you, you may assume that b = 1 for partial credit.) Show how your derived your answer.

Problem 4. (25 points) Suppose that you are given a functieiwWing(), which draws the wing shape shown in the
figure below left. (This should be drawn on the= 0 plane. In the figure the-axis pointing up and out of the

page.)

(a) Use the procedurdrawWing() and other OpenGL functions (e.glPushMatrix(), glRotate*(), glScale*(),
glTranslate*(), etc.), to produce a procedudeawBird1() that draws the two wings shown in the center
figure.

(b) Explain how to modify your solution to part (a) to produce a procedwe@Bird2() that has exactly the
same wing shape and size as in part (a), but the two triangles are now rotated up around the bird’s central
axis, to simulate the flapping of a bird’s wings. The angle of rotatidgi®idegrees. (Hint: Just show how
to modify the solution to (a).)

Note: Your proceduresirawBird1() anddrawBird2() should be performed relative to the OpenGL matrix stack.
In particular, their action is transformed by whatever matrix is currently at the top of the matrix stack, and on
exit, the contents of the matrix stack should be restored to its original value.

- 4.5 h 60°
x (2,30
drawWing() drawBird1() drawBird2()
(view from above) (view from above) (side view)

Problem 5. (15 points)

Consider the image on the right of a picture taken at night of lights being
reflected off of water in a harbor. The light source at the top of the image

produces a reflection that is very long and thin. Water is a highly specular ®
reflector and poor diffuse reflector. Hight source /m
(a) Based on your knowledge of perspective projection, the Phong lightiagrs edge
model, and the nature of water, explain why the reflected light has this
elongated shape. (It may help to draw a picture to illustrate your point.)
(b) Had the water surface been perfectly flat, would the shape of the rBﬂfLﬂ‘Ett—ri]‘;”ngzgﬂr 0
tion differ, and if so how?

Problem 6. (0 points) On what television show would you hear about the distant planet of Omicron Persei 9?

CMSC 427:Spring 2004 Dave Mount

Homework 3: Ray Tracing and 3-d Textures

Handed out Tuesday, May 4. Due at the start of class Tuesday, May 11. Late homeworks are not accepted, so turn in
whatever you have done.

This is a “no-penalty” homework. Here is how it works. We compute your homework average with and without
this homework. If it improves your overall average, then it is included. If not, then it is ignored. These questions are
good practice for the final exam, so it is a good idea to attempt them, even if you do not intend to turn it in.

Problem 1. Your boss at Dyno-Graphics Corp. has been informed by marketing that consumers would prefer to spec-
ify the z-field of view, rather than theg-field of view. Unfortunately OpenGL does not support this feature. You
are given the task of writing a new perspective function, which is given the same argumglnBeespective(),
but with anz-field of view (in degrees), and you are generate a cajlutBerspective which generates the equiv-
alenty-field of view, based on the other arguments. Here are the function prototypes. Recall that the aspect ratio
is the window width over window height.

void gluPerspective(double fovy, double aspect, double near, double far)
void dynoPerspective(double fovx, double aspect, double near, double far)

(Hint: This is not as simple as sayifigyy = fovx/aspect).

aspect = w/h

far

Problem 2. Fog is a relatively easy enhancement to a ray tracer. Fog is defined by three pardoysters, fogEnd,
and the fog RGB coloF'. Let C be the color returned by the ray tracing procedure (ignoring fog)d lbet the
distance from the ray origin to the point of contactdlis less tharogStart thenC' is used, ifd is greater than
fogEnd thenF is returned. Otherwise, an appropriate mixture of the two colors is returned. Give pseudocode for
a function, which returns the fog color, given the following parameters: the ray dfigihe ray contact point
Q, the traced colort’, and the other fog parametetgStart, fogEnd, and F. You may use any of the utility
functions provided in the Color.h file.

Problem 3. This problem involves computing the ray intersection for a 2-dimensional axis-parallel ellipse. (This
is easy to extend to 3-space, but it is simpler in 2-space.)A.ettd be the ray, where® = (P,, P,) and
@ = (ug, uy) and letC be the center of the ellipse and tetandr, be the lengths of the two axes. For a point
Q to lie on the ellipse it must satisfy the following implicit equation:
(Qm - Cx) (Qy — Cy)2

2
+ =1

(a) Reduce the ray intersection problem to a quadratic equation, and derive the values of the two roots

(b) Explain how to determine which root leads to the first intersection point with the ray, and whether the ray
hits from the inside or the outside, or misses.

(c) Derive a formula for the 2-dimensional normal vector.

Problem 4. The objective of this problem is to develop a 3-dimensional texture for a cylindrical gradient texture. The
cylindrical gradient is defined by two colo€§ andC;. The geometrical structure is defined a base pBina
central vectord, which you may assume is a unit length vector, and a radi(See the figure below. Note that,
unlike the figure, the axis need not be parallel to the coordinate axis.) Consider the series of concentric cylinders
of radii O, r, 2r, 3r, ..., graving out from around the axis line passing througtin the directionw. At even
multiples ofr the color isCy, and at odd multiples it i€’;. In between, the color should vary smoothly from
Cy to C; and back again. Given a poixin the 3-space, write a function that mapgo the appropriate color.
(Hint: First map the poing) to a 1-dimensional quantity based on its distance from the cylinder axis, and then
follow the approach used for the 1-dimensional gradient given in class.)

S n
w :
_B/
Problem 4 Challenge Problem

Challenge Problem. One alternative to defining arbitrarily oriented objects in ray tracing (as we did in Programming
Assignment 4) is to instead define very simple shapes, and apply an affine transformation to scale and rotate them
into the desired position. One difficulty with this approach is that normal vectors are not generally preserved
under affine transformations. This problem investigates this issue.

Suppose that you have a solid geometric objeitt 3-space (e.g., l&f be a sphere or a convex polyhedron). Let
P be a point on the surface 6f. Let7i be the surface normal vector Bt Let A be any affine transformation in
3-space, and le¥ be the4 x 4 homogeneous matrix that represeAtyYou may assume that is nonsingular,
meaning thafl/ can be inverted.)

(@) LetS’ = A(S), P! = A(P), and’ = A(i7). Show thati’ is not necessarily normal to the surfageat
point P’? (Give an example. An example in 2-space is sufficient.)

(b) Among the basic transformations (translation, rotations, uniform scaling, nonuniform scaling, and shear-
ing), which preserve normals and which do not?

(c) Suppose thatl does not preserve normals. As a functionidf how could you transform any normal
vectorri to a vectori’ that is guaranteed normal to the surféeat pointP’? (Hint: The solution will be
of the form#’ = M'#, whereM' is some function ofi/.)

CMSC 427:Spring 2004 Dave Mount

Practice Problems for the Final Exam

The final will be on Mon, May 17, 10:30am-12:30pm. The exam will be closed-books, closed-notes, but you will be
allowed two sheets of notes, front and back to use for the exam. These problems have been assembled from old exams
and homeworks. They do not necessarily reflect the actual difficulty of problems on the exam or the total length of the
exam. (Also, be sure to review material from before the midterm as well.)

Problem 1. Short answer questions.

(a) Suppose that a triangle is clipped to a rectangular window. After being clipped against the window, what
is the maximum number of sides that the resulting clipped polygon might have? Draw an example to
illustrate the worst case.

(b) What is the difference between a left-handed and a right-handed 3-dimensional coordinate system?

(c) What is the reflection property that characterizes a pure diffuse reflector (also chetbartian reflec-
tor)? What isLambert’s lawof diffuse reflection?

(d) What is theinverse texture wrapping functipand why is it more relevant to the rendering process than
thetexture wrapping functigh

(e) What isback-face cullin@ For an average view, what fraction of the faces of a scene would be expected
to be eliminated by this method? Explain briefly.

(f) You want to know whether a poirf lies on a given surface. From which representation of the surface is
this question easier to answémplicit or parametric?

(g) Let P be a point on a Bzier curve of degree 3. True or false: The curve @iAparametric continuity at
this point.

(h) Fillin the blank: “The complex point = a + bi lies in the Mandelbrot set if and only if the Julia set
generated by is

(i) State clearly which properties of theéBier blending functions; 4(u), guarantee that the&ier curve
lies within the convex hull of the control points.

Problem 2. Consider a new type of light calledspot-light A spot-light is defined by giving a poin®, a vector
¥ (normalized to unit length), and an andle The spot light illuminates any point that lies within an infinite
3-dimensional cone whose apexfsand whose angular radius abauis 6. Write a function which, given a
point@ in 3-space, an@®, v, andd, determines whethé&p is illuminated by the spot-light.

P,

Problem 3. Your boss at Acme Graphics Corp. wants you to write a procedure to generate a rendering of a cylinder in
OpenGL. The cylinder is centered along theaxis, has a height df units, and has a radius ofunits. Because
OpenGL can only display polygons, you are to split the cylinderigteertical stacks (along the-axis) andr,
radial slices (around the-axis). (For example, in the figure below left, = 4 andr, = 8.) Draw each face as
aGL_POLYGON.

256

X

(a) Give a procedure (in pseudocode):

void cylinder(float h, float r, int vs, int rs);

to draw such a cylinder in OpenGL. (You may NOT use any GLUT procedures.) For full credit, you should
specify both the vertices and associated normals, so that the shading of the cylinder will be smooth. You
do not need to draw the top and bottom of the cylinder.

(b) Your boss also wants you to wrap a texture around your cylinder. The texture im2igexs256 pixels.
The texture should be mapped usiBg REPEAT, so that exactly four copies of the image go all the way
around the cylinder. Explain how to modify the above procedure to provide the proper texture coordinates
for each vertex. (You do not need to give any of the other OpenGL texture commands.)

Problem 4. One way to speed up ray tracing algorithms is to enclose each object in a simpler enclosing shape (e.g. a
sphere or a box) and first test intersection with the enclosing object. Its axis is aligned withxfee its height
is h, and its base is located on the-plane and has radius As a function ofh andr, compute the center and
radius of the smallest (minimum radius) sphere enclosing this shape. (Hint: There are two cases to consider,
one for fat cones and one for skinny cones.)

Problem 5. Suppose that you are given two sphefgsand.S,, with respective center points; andCs, both with
the same radius. Assume that the distance betwe@nandC- is less thar2r. Define objectX (Cy, Ca,)
to be the “lens-shaped” intersection of these two spheres. Considerra-rajyi. Write a procedure that, as a
function of Cy, Cy, r, P and, computes the parameter valuef the first intersection of the ray with object
X. You may assume that you already have access to a function that returns the parametéy aalligof the
intersection of the ray with a sphere, whege< ¢;.

Problem 6. Consider the cone shown in the figure below. Its axis is along:thgis, its apex is at the origin, its
height is 1, and its base has a radius of 1. Also consider a texture that consists of a quarter circle of radius 1.
The objective is to wrap this texture around the cone (like wrapping a cover around an ice cream cone) so that
the texture origin is mapped to the apex of the cone and the circular arc is mapped to the cone’s circular base.
The seam where the texture wraps around on itself lies in thglane.

_...-Cone base

S

\ " Texture space
Cone apex

(a) Give an implicit functionf(z,y,2) = 0 that describes the surface of the cone. (Don't worry about
trimming the cone at its base. The infinite surface is good enough.)

(b) Give theinverse wrapping functignwhich maps a poinz, y, z) on the surface of the cone to a corre-
sponding points, t) in texture space. (Hint: It may be easier to first derive the polar coordinates in texture
space, and then convert (e, t) coordinates.)

Problem 7. Write a procedure to test whether a Byt ¢, for ¢ > 0, intersects a rectangle lying on the= 0 plane,

whose corner coordinates afel,—1,0) and (+1,+1,0). If the ray does not intersect, then the procedure
should return special valugiSs to indicate this, and otherwise it should return thelue of the intersection
point.

Problem 8. Give pseudocode (or a mathematical formula) for the diagonal strip 2-d texture function shown in the
figure below. The dark color i€, and the white color i€’;. The horizontal and vertical width of each strip is
1 unit (and hence the diagonal widthlig\/2).

2

1

-1

2
-2 -1 0 1 2

Problem 9. We discussed procedural textures in class. It is also possible to defieeedural bump map(Recall

that a bump map does not actually change the shape of a surface. Rather, it generates a perturbed normal vector
for each surface point, so that the result of shading appears bumpy.)

Consider the zig-zag bump function shown in the figure below left. The bump ridges are paralleltaxise

The height of each bump is one unit, and the distance between the tops of two consecutive bumps is some
given valuew. (See the right part of the figure.) Derive a functigifz,y) = (n., ny, n.), which given the
(z,y)-coordinates of a point, returns corresponding the 3-dimensional normal vector for this point.

z&
X
bump function side view

Problem 10. Consider the sequence of shapes shown in the figure below. What is the fractal dimension of the final
(limiting) object? What is its area?

Problem 11. Consider three control pointsy, p1, p2 in the plane.

(a) Give the functiorp(u) for the Bezier curve of degree 2 defined by these control points, where: < 1.

(b) Show that the derivative of this curve, as a functiorupfs a Bezier curve of degree 1. In particular,
express the derivative as a linear combination of the degreezieBblending functions.

CMSC 427:Spring 2004 Dave Mount

Final Exam

This exam is closed-book and closed-notes. You may use 2 sheets of notes (front and back). Write answers in the
exam booklet. If you have a question, either raise your hand or come to the front of class. Total point value is 100
points. Good luck!

Problem 1. (30 points; 2-5 points each) Short answer questions. Explanations are not required, but may be given for
partial credit

(a) Give a4 x 4 matrix that performs the 3-dimensional affine transformation that translates a point by the
vectort = (t,,t,,t.), thatis, it maps any poin® to P + ¢.

(b) True or False: For all vectoisandv in 3-dimensional space, x v = ¢ x u. If you answered false, what
relationship (if any) is there between these two cross products?

(c) Giventhe homogeneous vectar y, z, w), what is the result of applyingerspective normalizatioio this
vector?

(d) Explain the difference in how smooth shading is performeélimng shadingand Gouraud shading
Which method does OpenGL use?

(e) The Phong lighting model, as implemented in OpenGL, models light as a combination of four different
effects. Name them. (No further explanation is needed.)

(f) Define theangle of incidencketween a ray and a surface to be the acute angle between the ray’s direction
and the surface normal at the point of contact. As a ray goes from a medium of higher index of refraction
to one of lower index of refraction does the angle of incidence tend to increase or decrease? Justify your
answer.

(g) Explain the meaning of @egularized boolean operation

(h) Among the following surfaces, which (if any) is the hardest to apply a 3-dimensional procedural texture:
plane, sphere, torus? Briefly explain. You may assume that the contact point and normal vector are given.

Problem 2. (10 points) On the distant planet of Omicron Persei 8, they prefer a different way of specifying the
perspective transformation. As with gluPerspective, they give the distances to the near and far clipping planes
and the window’s aspect ratia,= w/h. However, rather than giving thefield of view, they instead give the
distanced to a sphere of a given radiusthat is centered along the viewing direction. Tféield of view is
set so that the sphere exactly fills the window’s height. (See the figure below.) Write a procedure which, given
these parameters, produces an equivalent call to gluPerspective. You may assume that the window is wider than
tall, that is,a > 1. Here are the function prototypes.

void op8Perspective(double d, double r, double aspect, double near, double far)
void gluPerspective(double fovy, double aspect, double near, double far)

- d—
y W
== (5] [
far

near

side view viewer sees

Problem 3. (10 points) Consider the cone shown in the figure below. Its axis is along#lxes, its apex is at height
3 on thez-axis and its base has radiuat the origin. We wish to wrap a rectangular texture shown in the figure
below right around the central third of the cone. (Thus the bottom edge of the texture coincides=witland
the top edge coincides to= 2.) As s varies from 0 to 1, the texture should make one full revolution around the
cone, starting from directly above theaxis.

t=1 -

t=0 -
s=0 s=1

Give theinverse wrapping functigrwhich maps a pointz, y, z) on the central third of the cone the correspond-
ing point(s, t) in texture space.

Problem 4. (15 points) Consider a surface in 3-space defined by the following equation:
2422 —2y=1.

(a) Given arayR : P + tu, whereP = (P,, Py, P,) andd = (ug,uy,u,) derive thet value of the first
point of intersection between the surface and the ray. Express your answer by first deriving a quadratic
equation of the fornd = at? + bt + c and then explain how to compute the roots of this equation in order
to determine the first intersection point.

(b) Derive the value of the (normalized) normal vectobat this intersection point. There is no notion of
outside hit or inside hit, but the normal should be directed to the same side of the surface from which the
ray approaches.

Problem 5. (15 points) This problem considers the derivation gfracedural bump mapRecall that a bump map
does not actually change the shape of a surface. Rather, it generates a perturbed normal vector for each surface
point, so that the result of shading appears bumpy.

Consider the rippled bump function shown in the figure below lying omethecoordinate plane. The ridges
run parallel to they-axis. The height of the ripples alternates smoothly betweemand —1, and atz = 0 its
height is exactly 1, and the distance between the tops of two consecutive rippleéSse the right part of the
figure.)

Derive a functionp(x, y), which given thez, y)-coordinates of a point, returns corresponding the 3-dimensional
normal vectors for this point. The normal vector should be normalized and directed so it has a pasitive
coordinate.

Hint: It may be useful to remember that the following derivative formulas foreaapdb:

d(acos(bx)) . d(asin(br))]
B P —absin(bx) and = ab cos(bzx).
w
}‘\ﬂ Z
Y, w
Z N X —z=+1
X -z=-1
side view

bump function

Problem 6. (10 points) Consider three control poinig, p1, p2 in 3-dimensional space.

(a) Give the functiomp(w) for the Bezier curve of degree 2 defined by these control points, wihere: < 1.

(b) Compute the derivative of this curve, as a functionuafnd evaluate this derivative at the point= 0.
Express your answer as a functionm®f, p1, p2.

(c) What do the results of (b) imply about the tangency properties of #zéeBcurve att = 0?

Problem 7. (10 points) Consider the three sequences of shapes shown in the figure below. In each case, (a), (b) and
(c), derive the fractal dimension of the final (limiting) object. Among the three final shapes, indicate which
one(s) are fractals (according to the definition given in class) and which are not. (You may express your answers
as a ratio of logarithms.)

- - " — ...(b)

CMSC 427:Spring 2004 Dave Mount

Programming Assignment 1: Getting Started

Handed out Tue, Feb 10. The program must be submitted to the grader by Tue, Feb 17 (any time up to
midnight). Submission instructions will be coming. Here is the late policy: up to six hours late: 5% of the
total; up to 24 hours late: 10%, and then 20% for every additional day late.

In this assignment you will be given a simple 2-dimensional OpenGL program, and will modify it to listen
to a number of simple user inputs. The initial program, called progl-start.cpp can be downloaded from the
class web page. This program creates a 400 x 400 window. It assumes that the idealized drawing area is a
2 x 2 square ranging from the lower left corner (—1,—1) to upper right corner (41, +1). The initial image
contains a blue rectangle on top of a red diamond, both centered in the middle of the window. The blue
rectangle has a side lengths of 1 and the red diamond has height and width 1.6. Every 10 seconds the colors
of these two shapes are swapped. Also, if the left mouse button is clicked, then the colors swap. The window
can be resized and covered and uncovered. Whenever it is resized, the shapes are resized in a corresponding
manner. (That is, if the window is made tall and skinny, then so are the two shapes.) When the ‘q’ key is
hit the program quits.

Your task is to modify this program so that it retains its current features, and adds the additional features
given below. These are broken into two groups. The basic enhancements are worth roughly 80% of the credit.
The additional enhancements are worth the remaining 20%.

Original Features:

e Colors swap every 10 seconds.

e Left-button click swaps the colors.

e Resize and redisplay callbacks are handled.
e ‘q’ quits the program.

Basic Enhancements:

e Draw a green equilateral triangle of side length 0.4 centered in the middle of the window.

1-
red
B — blue
0- — green
ra
1 T | \g 4 |
-1 0 1

e Pressing the right mouse button changes the triangle color to black and releasing the mouse button
changes it back to green.

e Pressing any arrow key moves the rectangle in the corresponding direction by 0.02 units. (Hint:
Check out the Glut function glutSpecialFunction() for further information on processing arrow and
function keys.)

e CONTROL + any arrow key move the diamond by 0.02 units. (Hint: Check out the Glut func-
tion glutGetModifiers() for further information on how to determine whether the Control key is de-
pressed. To test this condition, the function’s result is logically “anded” with GLUT_ACTIVE_CTRL
bit, and then tested for being nonzero.

Additional Enhancements: FEach of these additional enhancements is worth 5% of the grade.

e Hitting the ‘r’ and ‘R’ keys cause the rectangle to be rotated by 5 degrees counterclockwise and
clockwise about its center, respectively.

e Hitting the ‘d’ and ‘D’ keys cause the diamond to be rotated by 5 degrees counterclockwise and
clockwise about its center, respectively.

e Holding down the left mouse button and dragging the mouse translates the rectangle. Its center
should follow the cursor.

e Holding down the right mouse button and dragging the mouse translates the diamond. Its center
should follow the cursor.

I will leave the task of computing the vertex coordinates of the equilateral triangle as a geometric exercise.
(Remember from your high school geometry that the center of an equilateral triangle splits the triangle’s
altitude in the ratio 1/3:2/3.)

There are a couple of ways to move the rectangle and diamond. One is to use the OpenGL matrix
transformations discussed in class and the other way is to recompute the vertex coordinates with each
redrawing. You are allowed to choose whichever mechanism you prefer.

To perform the dragging operation check out the function glutMotionFunc(). Beware that Glut uses the
upper left corner as the window origin and OpenGL uses the idealized coordinates when drawing. It will be
up to you to make the necessary coordinate transformations.

You can extra credit points for adding additional enhancements. Recall that extra credit points are not
part of the basic grade, and only considered after the final cutoffs have been assigned. The number of credit
points are determined subjectively by Pooja, based on the degree of creativity and effort involved. You are
welcome to be creative and add whatever features you like. Some ideas include:

e A different behavior for window resizing, which preserves the relative object shapes better.
e Some interesting animation effect involving the shapes.
e Implementing your program in Java, using JOGL and the Java AWT.

CMSC 427:Spring 2004 Dave Mount

Programming Assignment 2: 2-Dimensional Flocking

Handed out Tue, Mar 2. The program must be submitted to the grader by Tue, Mar 16 (any time up to
midnight).

Overview. Many video games and physical simulation systems involve planning and coordinating the
motion of a groups of objects, such as birds in a flock or a school of fish. The purpose of this assignment is
to implement a simple 2-dimensional program that models the behavior of a group of moving objects in the
plane, called boids.

Flocking motion satisfies some basic elements:

Separation: The boids should attempt to maintain a certain minimum separation distance between each
other and with any obstacles that may be present.

Cohesion: Ideally the boids should remain together as a group. (When an obstacle is present, the boids
are allowed to split up to avoid the obstacle. Ideally they should regroup, once they have gone around
the obstacle, assuming that the obstacle is not too large.)

Alignment: Boids tend to move at roughly the same speed and in roughly the direction as nearby boids.

The above properties define the nature of the motion at local level, but does not constrain the groups
overall motion. The animator must be able to control the global motion of the boids as well. For example,
the boids should move towards some goal point or follow a leader whose motion is prespecified.

In this assignment, you are to write a program to simulate the motion of a group of two-dimensional
boids, subject to the above general requirements. Basic credit will be based on the set of capabilities that
you successfully implement. Extra credit will be based on the TA’s subjective judgment of how interesting
or complex your motion and rendering is.

Program Requirements. Your program must implement the following basic elements for 70% credit.

Local flocking behavior: The motion exhibited by your flock should satisfy the three elements: separa-
tion, cohesion, and alignment, described above.

Global trends: In order to implement global control of motion the boids will attempt to follow a leader
boid. This leader boid will be determined by the location of the mouse cursor in the graphics window.

Number of boids: The number of boids can be adjusted as the program is running. Hitting the ‘4’ key
creates a new boid at a random location in the window, and ‘-’ removes a random boid from the scene.

For full credit, add each of the following elements for the specified amount of credit.

Remaining in the window: (5 points) Boids should not be allowed to fly outside the window.

Pause/Resume: (10 points) By hitting the ‘P’ key the simulation can be paused and resumed. The ‘+’
and ‘-’ keys should work when the program is paused or running.

Obstacles: (10 points) Some number of disjoint circular obstacles are present in the scene. The locations
of the obstacles are specified in a reasonable way at run time (e.g. by giving their radii and center
coordinates in an input file). Boids should avoid obstacles. If the flock is split by flying around a small
obstacle, it should regroup in a natural way.

Object Rendering: (5 points) When drawing each boid, do so in a manner that indicates the direction of
flight. (E.g., each boid can be rendered as a thin triangle or thin parallelogram that is pointed in the
direction of flight.)

Some ideas for extra credit:

Flapping motion: Draw your boids so they look like birds flying, fish swimming, animals walking, or
whatever you like. In the best case the motion should be realistic (e.g., all birds do not flap at exactly
the same time).

Multiple Flocks: Have multiple flocks, which should avoid each other. (You may assign boids to flocks
randomly.)

Complex obstacles: Allow for more complex obstacles and/or overlapping obstacles.

Predator: Have a predator boid that flies around randomly (or under mouse control). The other boids
must avoid the predator at all costs, even if it means violating the flocking rules. Once the predator is
at some distance, the boids should resume their flocking behavior.

Program Hints. Let us consider the simplest case in which there are no obstacles. Each boid is specified
by its current location point P, its directional angle 6, and its current speed s. Instead of 6 and s, it may
be more convenient to use a velocity vector ¢. It is possible to convert one to the other using the following
formulas:

scosf
U= ssinf
0
and
s = ||7]] and 6 = arctan(vy/vg).

(The best way to compute the arc tangent is using the built-in function atan2(vy, vx), which returns an angle
from —m to +m.) Whether you choose to represent velocity using s and 6 or using ¥ is up to you. Whichever
you choose, you will probably need to be able to convert to the other.

In order to do the animation, you will need to set up a continuous event loop. This can either be done
using glutTimerFunc() (with a small time delay, say 1/30 of a second) or glutldleFunc(). Each time this callback
is invoked, your program will update the locations of the boids, by adding the current velocity vector to
their current location and calling glutPostRedisplay().

Rather than adjusting the location of the boid at each step, it is better to adjust the boid’s velocity
vector incrementally, and then move the boid according to this velocity vector. This results in a smoother
motion. Each step of the animation involves the following elements:

(a) For each boid, determine the other boids and obstacles that close by (within some fixed distance, and
perhaps giving higher priority to things that are in front).

(b) Update the velocity vector for each boid in order to satisfy the various flocking and obstacle/avoidance
constraints.

(¢) Move each boid by adding an appropriate scaled copy of its velocity vector.

(d) Redraw the scene.

The most challenging step is (b). Each of the various flocking properties has a certain “pull” on the
velocity vector. For example, if you are too close to another boid, this tends to push the velocity vector
away from this other boid. (See the figure below.) For cohesion, compute the locations of the boids within
some limited radius and compute the centroid (center of mass) of these locations. The boid’s velocity vector
will be set to move it towards this centroid. For alignment, compute the average of the velocity vectors of
the boids in some limited distance, and change your velocity vector so that it is closer to the average. To
avoid obstacles, check whether there is an nearby obstacle in front of the boid. If so, you want to turn the
boid in the direction that most easily avoids the obstacle. This turn has the effect of influencing the current
velocity vector.

Avoidance Cohesion Alignment Obstacle
Avoidance

In summary, there are a number of “corrections” to the current velocity. In order to determine the
updated velocity, assign weights to these corrections and then add the weighted sum to the current velocity
vector. The assignment of weights is a nontrivial task. Some forces (e.g., the desire to avoid obstacles or
predators) are much stronger than others (e.g., the desire to maintain cohesion). It is probably a good idea
to put some upper bound on how much the velocity can change, to avoid unreasonably fast velocity changes.

Further information on Boids and flocking behavior can be found on the web. I will post a link to a
tutorial from a course given at SIGGRAPH conference on the class web page. There are also demo programs
and animations on boids and flocking behavior to be found on the Web. These are useful for getting ideas,
you are required to do your own implementation for this programming assignment.

CMSC 427:Spring 2004 Dave Mount

Programming Assignment 3: 3-Dimensional Flocking

Handed out Thu, Apr 1 (updated Wed, Apr 7). The program must be submitted to the grader by Tue, Apr
20 (any time up to midnight).

For further information, see the sample executable of our program, and the ReadMe.txt file, which comes
with it for various program parameters and settings.

Overview. In the last programming assignment we considered the simulation of a flock of synthetic birds,
called boids. In this project we will consider a 3-dimensional flock of boids. These follow the same basic
behaviors as 2-dimensional boids: separation, cohesion, alignment, and tendency to pursue a goal point. In
this project, we will also add the following elements:

Steerable Goal: Rather than having the goal simply follow the mouse, the goal point will be a flying point.
Through keyboard inputs (or mouse, if you prefer) the user controls the flight path of the goal.
Multiple Views: The camera can be positioned in various locations, one at a fixed location, one behind
the boids, and one to the side.

3-dimensional Obstacles: Obstacles will consist of spheres and cones. Boids must avoid obstacles by
flying around them.

Graphics effects: The scene will be lighted. The program will also have options for activating other visual
effects, such as texture mapping, fog, and ground shadows.

Program Requirements. As usual, there will be basic elements, which must be implemented for partial
credit, and optional elements that can be added to this. Your program must implement the following basic
elements for 60% credit.

General setup: The ground lies along the x,y coordinate plane and the z axis points up to the sky. There
should be a large ground terrain, which will provide your boids ample area to fly over. There is no
requirement that the boids stay within this region, however. Near the center of the domain there
should be an observation tower. (See the figure below, left.)

Basic setup Trailing view Side view

For example, our ground was a large square on the z, y plane of side length 20, 000 units. It is rendered
as an alternating 50 x 50 checkerboard pattern of squares, and thus each square is 400 units on a side.
Our boids have a speed of around 40 units per second and are roughly 10 units in length.

Create an initial flock of boids. These can be placed randomly in a confined region of space. (We started
ours with 10 boids placed randomly in a roughly 50 x 50 x 50 box near the point (2400, 150, 1200).)

The initial goal should be placed at a moderate distance away from the initial flock and should be given
an initial velocity, so that the simulation starts in a reasonable state. (Ours was at (2000, 0, 1000) with
velocity (—40,0,0).)

Steerable Goal: The goal point is no longer tied directly to the mouse. Instead it flies through space under
the user’s control. If you do nothing, the goal flies at a constant velocity. You can slow it down and
speed it up and turn it left and right, up and down through some combination of keyboard and mouse
input. (We used ‘v’ and ‘b’, for slowing down and speeding up and used the arrow keys for steering
always, and in trailing view mode we used mouse input as well.) For testing purposes, it should be
possible to fly your goal anywhere: through obstacles, under the ground, outside the scene.

The goal point must be rendered on your image (although you may want an option that hides it) and
it should be drawn in a manner that it is clearly distinguished from the boids. (We drew ours as a sort
of 3-dimensional plus-sign, which is aligned with the coordinate axes.)

Implementation note: There are a few ways to handle the goal control. We implemented our goal
much like a boid, with a position P, and a velocity vector ¢y, but the goal does not observe any of
the boid behavior rules. Incremental speeding up and slowing down were handled by scaling ¥, vector
times an appropriate factor. To move the goal velocity up and down, we added (to ¥y) a vector that
is parallel to the z axis, and whose length depends on the length of ¥;. To turn left and right, we did
something similar, but rather than using the z unit vector, we used a vector p’ of unit length that is
perpendicular to both ¥, and the z unit vector. (This perpendicular vector can be computed using the
cross product.)

Multiple Views: Your program should support (at least) three different views. These views are based
on the relative position of the flock and the goal. The user can switch between these, say through
keyboard input.

In the descriptions below, let C' denote the centroid point of the flock. Let G denote the location of
the goal. (See the figure on the first page.) Let @ denote the vector directed from C to G and let d
denote the distance from C to G. Let M = (C' + G)/2 be the midpoint between the flock centroid and
goal. Let r be the maximum distance of any boid to C, that is, it is the radius of a sphere centered at
C that contains all the boids.

Default View: This view is taken from an observer (a bird watcher?) located at a fixed position.
(In our case this was from the top of an observation tower, centered over the origin.) The view
should be centered about M. You may adjust the field-of-view to simulate a telephoto lens, but
this is not required.

Trailing View: This view is taken from behind and above the flock, and should include the boids

and the goal position.
For example, our approach was to move backwards from C' along the direction of —u to a distance
of d+ 5r from C and then upwards (parallel to the z axis) by a distance of d 4 r. (See the above
figure.) We then took a view centered at M whose y field of view is 30 degrees. Your distances
may vary.

Side View: This view is taken from the right side of the vector from C to G and above.

For example, our approach was to consider a vector p that is simultaneously perpendicular to o
and to the z axis. (This can be computed using the cross product.) Starting from M we move in
the direction of p’ by a distance of d 4+ 2r. We then move up (parallel to the z axis) by a distance
of d+r. We took a view centered at M whose z field of view is 40 degrees.

Since these views are always perfect, we found it useful to have controls that would zoom in/out and
up/down through keyboard input by modifying the distances used above.

Lighting: Your program should use at least two light sources to illuminate your scene. (See our ReadMe.txt
file for information on how we set up our lights. You may put yours elsewhere.)

Additional Requirements. The following requirements should be added for full credit. The point values
are indicated with each one.

Obstacles: (10% total) In addition to the ground, there are two types of obstacles, spheres and cones,
around which your boids should fly. The exact locations of the obstacles will be provided by a file,
which we will provide. (See the file ReadMe.txt for explanation of the input file format.) You can use
GLUT procedures for drawing these shapes. (2% for smooth ground avoidance, 4% for cones and 4%
for spheres.)

3-dimensional Boids: (5%) Boids should be drawn as 3-dimensional polyhedra. As before, they should
face the direction in which they are flying.

Shadows: (3%) Draw a shadow of each boid on the ground. (You are not required to draw the shadows
that boids cast on each other or other objects.) This can simply be a vertical projection of the boid
on the ground, but more realistic shadows will be given extra credit.

Implementation Note: The shadows should be drawn slightly above the ground, because of errors
in depth computations.

Flapping: (5%) Animate your boids so they flap their wings. For the sake of realism, boids should not all
flap at the same time.

Texture mapping: (5%) Have an option (e.g. through keyboard input) that activates and deactivates
some form of texture mapping. Supply whatever texture image files you use as part of your submission.
Because texture mapping can slow down your program considerably (on our weak test machines), be
sure that it is possible disable this feature.

Fog: (3%) Have an option (e.g. through the keyboard input) that activates some sort of fog effect.

Pause/Single Step: (5%) The user should be able to pause the program, advance it by single step (e.g.
by hitting the space bar), and then resume it to continuous mode. This is important for debugging
and our testing.

Reshape: (4%) The user should be able to resize the window. When the window is redrawn the image
should not be distorted. (That is, scaling must be performed uniformly.)

Ideas for Extra Credit. Here are some ideas for extra credit. Feel free to be creative and invent those of
your own. Beware to avoid enhancements that involve OpenGL extensions, since we will likely not be able
to test them.

More interesting scene: Create a more interesting environment. This can be done by altering the shape
of the scene and/or by creating texture maps to simulate distant object. It is not required that you
implement obstacle avoidance for all the objects in your scene.

Banking: When a boid turns, it should bank in the direction of the turn. The angle at which the boid
banks should depend on the sharpness of the turn. (Achieving good looking banking is rather tricky.
We did this by considering the differences between the boid’s velocity vector and the goal’s velocity
vector, where both are projected onto the z, y-coordinate plane. This method has a problem when the
boid’s attempt to fly vertically, however.)

Better shadows: Have the shadows depend on the location of the light sources, or cast shadows onto
non-ground objects.

Game Mode: If you are using a PC, have an option to run in full screen mode. (See glutEnterGameMode().
Information on this can be found on the web. (Be sure that this option can be disabled, because it is
rather flaky from one machine to another.)

Split Views: Rather than switching between views, have an option that creates multiple viewports showing
the various views.

Perching: When the boids come close to the ground they should slow down, land momentarily, and then
after a little time fly off towards the goal again. (See http://www.vergenet.net/ conrad/boids/
pseudocode.html for further information.)

CMSC 427:Spring 2004 Dave Mount

Programming Project 4: Simple Ray Tracer

Handed out Tue, Apr 20. The program must be submitted to the grader by Tue, May 11 (any time up to
midnight). See the syllabus for the late policy.

Overview: The goal of this project is to implement a very simple ray tracer. As usual, you are allowed some
flexibility in designing your project input and output, but your project must support at least the following
basic elements for partial credit: sphere objects, solid colors, and the basic elements of the Phong model.
For full credit, you will also implement planes, cylinders and cones, checkerboard texture, and reflection and
refraction. For extra credit you may add other features, including other object types, other types of textures,
texture mapping, and antialiasing.

This program does not involve OpenGL or Glut. (It can be implemented equally easily in C++ or Java,
but note that there is a lot of affine geometry involved, and you may find our Geom3d package useful, which
is written in C++.)

Your program will read a viewing situation and 3-dimensional scene description from an input file and
will output an image file as a .bmp file. We will provide software for writing an 2-dimensional RGB array
to a .bmp file (see description below). You can view the result using any standard image viewing software,
such as xv or gimp (on Unix) or Paint, Windows Picture Viewer (on Windows PCs). The input and output
files and image width and height are specified on the command line. For example:

Prog4 infile.txt outfile.bmp 400 300

This will read input from file infile.txt and produce the output file outfile.bmp whose width and height are
400 and 300, respectively.

Input Format: The input to your program consists of five sections, which are described below. Each
geometric object in the scene is described not only by its geometric properties, but its surface properties
as well, consisting of its color, pattern, or texture (called is pigment) and surface finish, which describes its
light reflection properties.

The input format is designed to be friendly to the program (not the user). All points and vectors are
given in (z,y, z) coordinates with respect to the world coordinate frame. All colors are given as a vector of
RGB values in floating point (typically in the range 0 to 1).

The input format was designed for easy programming, not user friendliness. We will provide a test
program and file ReadMe.txt, which has an annotated example of an input file.

Viewing situation: The input file begins with four lines that contain the camera and perspective infor-
mation (similar to gluLookAt and gluPerspective). These are the coordinates of the eye, the center point
at which the camera is pointing, the up vector, the y field-of-view (in degrees). There is no near or
far clipping plane. You may assume that the viewing window is located one unit from the eye and
centered along the viewing direction. The aspect ratio of the window is determined by the image width
and height (from the command line arguments). An example is shown below. (Comments following
the ‘#” are not part of the file).

THESE COMMENTS ARE NOT PART OF THE INPUT
1 -10 5 # eye at (1, -10, 5)
1 10 -3 # looking at (1, 10, -3)
o o0 1 # z-axis points up
20 # y-field of view is 20 degrees

From the viewing situation you will create a camera frame (an origin and three unit vectors), which
will be used for generating rays.

Light sources: The next line contains the number of light sources n,. Each of the successive n, lines
contains three triples of floating point numbers: the (x,y, z) coordinates of the light source, the (r, g, b)
components of its intensity, and the (a, b, ¢) values of the distance attenuation formula: 1/(a+bd+cd?),
where d is the distance to the light source. Light sources are numbered from 0 to ny — 1. The Oth light
source in the list is always the ambient light. Its location and attenuation factors are given, but should
be ignored by the program.

2 # 2 lights
0 0 0 050505 0 0 O # white ambient light
0 1050 1.50.00.0 O 0.1 0 # red light at (0,10,50)

Pigments: The next line contains the number of pigments n,. This is followed by a list of n, pigment
specifications, numbered from 0 to n, — 1. Each pigment can be thought of as a function that maps
the (z,vy, z) coordinates of a point to an RGB value. The following pigments are to be supported:

Solid: The word “solid” followed by the associated RGB value.

Checker: This defines a 3-dimensional checkerboard. It is specified by the word “checker” followed
by two RGB triples Cy and C, followed by a scalar s, indicating the size of each square of the
checkerboard. (We will explain this in class.)

2 # 2 pigments
solid 0.0 0.4 0.0 # Pigment O0: solid dark green
checker 1 00 001 2.0 # Pigment 1: red-blue checker, size 2

There is a default color, which we defined to be gray (RGB = (0.5,0.5,0.5)). If no object is hit, then
the default color is used and no shading is applied.

Surface finishes: The next line contains the number of surface finishes n s, numbered from 0 to ny—1. Each
successive line contains seven surface finish parameters, (pq, pd, ps, @, pr, pt, Nt). These are the ambient
coefficient p,, the diffuse coefficient pg, the specular coefficient pg, the shininess «, the reflectivity
coefficient p,, and transmission coefficient p;, and finally the index of refraction of the object’s interior
7:. You may assume that the exterior of each object is air (that is, 7; = 1). If your program does not
support reflection or refraction, you may ignore the values of p,, p; and 7y, but you still have to input
them. (See Lecture 18 for more information.)

2 # 2 surface finishes
0.3 0.1 1.0500 0.9 0.0 O # 0: highly specular and reflective
0.0 0.7 0.0 50 0.0 0.5 1.5 # 1: diffuse, partially transparent

Objects: The next line contains the number of objects. Each line starts with two integers, which indicate
the pigment used for this object (from 0 to n, — 1) and the surface finish for this object (from 0 to
ny — 1). This is followed by a word giving the object type and description:

Sphere: The word “sphere” followed by the (z,y, z) center coordinates radius r.

Plane: The word “plane” followed by a tuple of floating-point values (a,b, ¢, d), which represent the
plane equation ax 4 by 4+ ¢z + d = 0. (For refractive planes, the “interior” of the plane is defined
to be the side where ax + by + ¢z + d < 0.) For example, the plane defined by the inequality
z < —2 would be given by the tuple (0,0, 1,2).

Cylinder: The word “cylinder” followed by the (z,y, z) of a base point B, the (z,y, z) coordinates of
the axis vector @, and the radius r. (The opposite base point is B + d.)

Cone: The word “cone” followed by the (z,y, z) of the apex point C, the (z,y, z) coordinates of the
axis vector d@, and the radius r at the base. The center of the base of the cone is located at C = d.

2 # 2 objects

0 O sphere 2 0 -5 2 # solid sphere at (2,0,-5) with radius 2
11plane 2 1 0 10 # checkered plane 2x + y + 10 = 0

Seacr

sphere plane cylinder cone

You may assume that there are at most 20 light sources, 50 pigments, 50 surface finishes, and 200 objects
in a scene.

Program Requirements: As usual, there will be basic elements, which must be implemented for partial
credit, and optional elements that can be added to this. Your program must implement the following basic
elements for 60% credit.

Shapes: Implement sphere objects. (Input but ignore other object types.)

Pigments: Solid color.

Surface finishes: Support all basic elements of the Phong model: ambient, diffuse, specular, and attenua-
tion. (Input but ignore the parameters for reflection and refraction.)

Additional Requirements: The following requirements should be added for full credit.

Shadows: (5%) Implement shadow casting by shooting a ray to each of the light sources and evaluating
their contribution only if the ray hits this source before any other object.

Checkerboards: (5%) Implement checkerboard pigments.

Shapes: Include plane objects (5%), infinite cylinders (5%), and infinite cones (5%). For an additional (5%)
trim the cylinders and cones to have only a finite extent. (Hint: This can be done by intersecting the
infinite shape with two planes.)

Reflection: (5%) Implement reflection. (After 5 levels of recursion depth, return the default color.)

Refraction: (5%) Implement refraction. (You may assume that transparent object cast shadows on other
objects. After 5 levels of recursion depth, return the default color.)

Ideas for Extra Credit:

More object types: You can implement convez polyhedra as the intersection of a number of planes. (The
process is similar to the Liang-Barsky line clipping algorithm. For each ray maintain the minimum
and maximum ¢ values.) Triangles and circular disks are also pretty easy to implement. A nice shape
to try is a torus, but you will probably need some help from the Web or other sources, since it involves
solving a polynomial equation of degree 4.

More Textures: The checkerboard texture is about the simplest one to implement. Another nice one is a
gradient is a texture that smoothly varies from one color value to another, and can be computed using
a simple dot product.

Fog: Simple fog can be implemented as in OpenGL by mixing some fog color with the ray color, according
to the length of the ray.

Some processing involves the computation of matrix inverses. I can make source code available for a
procedure that will invert a matrix.

Debugging Tips: While you are debugging your program, it is a good idea to start with very small images
(e.g. 40 by 30). Since you have to do all the lighting computations, it is notoriously difficult to locate bugs
in your program. For this reason, it is a very good idea to design your program to run in a special test mode.
In this mode the program shoots pixels only by request. It reads the column and row index of the pixel from
the input file, and then prints a detailed trace of the pixel. This would include the coordinates of the ray,
the object it hits, where it hits the object, the base pigment, the normal vector, the light rays, the reflection
and refraction rays, etc.

In our demo program, this is activated by adding the option -test on the command line. Many image
viewing programs allow you to query the value of a given pixel color (xv for example, by hitting the middle
mouse button). A good way to locate errors is to zoom in on a problem area, query a pixel’s exact RGB
color in your output image, and then run both your program and our demo program in test mode.

When shooting rays off of an object’s surface (for shadow computation, reflection and refraction) beware
of ray intersections occurring very close to the surface, since this typically is the ray intersecting the same
surface (due to small floating point errors). This can be avoided by discarding any intersection with a very
small ¢ value.

BMP Output: To simplify the process of producing an output file, I will be making available code for
producing and outputting .bmp files, based on the RGBpixmap object given in our book. This will come in
the form of an enhancement to two files, RGBpixmapV2.h, and RGBpixmapV2.cpp.

The first file defines two objects, the first is RGBpixel, which stores an RGB color stored as three unsigned
char’s. The second is RGBpixmap, which stores a pixel array, pixel, where each pixel is of type RGBpixel. The
constructor is given the number of rows and columns in the pixel map. There is a method setPixel(int col, int
row, RGBpixel C), which sets the pixel color in a particular row and column in the pixel map to the color C.
It also has a method writeBMPFile(const string& fileName), which outputs the pixel map as a .bmp file with the
given name. Sample usage is shown below.

#include "RGBpixmapV2.h"

string bmpFileName = "whatever.bmp"; // image file name
RGBpixmap* thePixmap = new RGBpixmap(nRows, nCols); // allocate pixel map

for (int row = 0; row < nRows; row++) { // generate all the rays
for (int col = 0; col < nCols; col++) {
...shoot ray for row and col and get pixel color...
RGBpixel pixColor = cast final pixel color to unsigned char;
thePixmap->setPixel(col, row, pixColor); // store in pixmap
}
}
thePixmap->writeBMPFile (bmpFileName) ; // output .bmp file

CMSC 427:Spring 2004 Dave Mount

Programming Assignment Submission

Your submission will consist of an encapsulation of files, which will be emailed directly to our TA, Pooja
Nath, pooja@cs.umd.edu. Please read the following instructions carefully, since significant deviations can
result in the loss of points. The encapsulation must include the following items:

Readme.txt: There must be a file called “Readme.txt”, which contains information to the grader on how to
compile and run your program. This includes:

Your name and email: (Very important.)

System/Compilation Information: What system should the program be run on (e.g. WAM, Linux
Lab, PC Visual Studio V.6 or Visual Studio.NET). Also explain how to compile your program
(very important). Ideally the grader should just have to enter “make” for Unix/Linux, or invoke
the “Build” menu item in Visual C++.

How to run it: Ideally your program should be self explaining. But if it is not, please explain the
inputs and how to control the various elements of the program.

Special Features: List special features or extensions, which you would like the grader to consider.

Known Bugs and Limitations: List any known bugs, deficiencies, or limitations with respect to
the project specifications. As a service to the grader, please be complete here. If she finds bugs
that were not listed here, she reserves the right to double the normal deduction.

File directory: If you have multiple source or data files, other than those created by the compiler,
please explain the purpose of each file.

Source Files: All the source files and header files. Just what we need for compilation. (Do not include
files that we already have, such as glut.h or jogl.jar.)

Makefile or .dsw/.dsp: On Unix you should have a Makefile, which compiles your program. For Visual
Studio, you should include the workspace/project/solution files, whatever is needed for compilation.
A sample can be found on the class OpenGL web page.

Input Files (if applicable): If the program requires input data, provide some test data files.

DO NOT INCLUDE: Because the grader’s disk quota is limited, please delete all executable and object
(.0) files prior to submission. For Visual C++, check that your Debug and Release directories are
empty. You can clean these by selecting “Build—Clean”.

Important Note: Irrespective of which platform you developed your system on, it must be executable
from a WAM, LinuxLab, or PC in the WAM lab (using Visual C++). Do not assume that all systems are
compatible. T would urge you to download your latest version of the program from your development system
to one of these systems every day or so, just to test for compatibility. If your program produces compilation
or execution errors, you will asked to resubmit, and suffer the resulting late penalties.

How to submit: First, store everything (Readme.txt, Makefile, source) in a directory whose name easily
identifies you e.g. “JoeSmith”. In particular, avoid names like “progl”, since it will make it harder for the
grader to keep track of submissions. Be sure to delete any unnecessary files (executable or “.0” files).

Then email everything to the TA. There are a couple of ways to do this.

Use the submit427 script: The following script is available on WAM Unix or LinuxLab machines:

“mount/submit427 JoeSmith

where “JoeSmith” is the name of the directory with your files. The script prints out messages as it
executes. Watch for any error messages as the script runs. (It is not very robust.)

Zip’d attachment: This is just a manual version of the previous.

(1) Encapsulate everything into one file, for example by using tar and gzip:

tar -cvf JoeSmith.tar JoeSmith
gzip JoeSmith.tar

or zip:
zip -r JoeSmith JoeSmith
or any standard PC bundling software, like WinZip.

(2) Send the resulting bundle as an email attachment to the grader (pooja@cs.umd.edu).

If you discover an error in an earlier submission, you may repeat your submission. But in consideration
to the grader’s time and disk quota, please keep the number of submissions to a minimum. She will grade
the last submission she receives. Server errors are rare but can occur. Be sure to save your final submission
somewhere safe (very important).

Check the Next Day: Please check your email the next day after submitting. If the grader has problems
unpacking your files or compiling your program, she will ask you to resubmit. The grader reserves the right
to deduct points if you did not follow the above procedures or if your program does not compile on one of
the approved platforms.

Late Submissions: Programs are due by midnight of the due date. Late programs will be subject to the
deductions given on the syllabus (up to six hours late: 5% of the total; up to 24 hours late: 10%, and then
20% for every additional day late.) The evenings of major project submissions are typically times of heavy
load on the systems. You are strongly urged to get the program running well in advance of the deadline,
and save the last days for cleaning up the code and writing documentation.

Documentation: As in all programming courses, you will be graded in part for clean structure and good
program documentation. Clean structure means designing a program that is elegant, efficient, and easily
understood to someone reading the source. Good documentation should provide a clear explanation for
someone who wants to understand what your project does and how it works. Some things to include are:

File Header: At the start of each file, there should be short comment that says what the file contains, who
wrote it, and what purpose it was written for.

General Structure: As an aid to the grader, there should be at least one large comment that provides a
general overview of your program, its major structures, and how it is organized.

Section Header: Each major procedure or segment of code (e.g. roughly once every page) should have
a comment explaining what this segment of code does. Major procedures should have information
describing argument lists and whether any global data is modified.

In-line comments: Every few lines of code, it is a good idea (unless the code is completely transparent)
to explain what is going on.

CMSC 427:Spring 2004 Dave Mount

Using OpenGL on Local Machines

Introduction: This document describes a bit about compiling and running OpenGL programs for C/C++
on the various platforms around campus. In particular we will consider the following platforms.

WAM Unix: The Sun Solaris workstations in the WAM labs located throughout campus. Virtually
all of this information applies to the machines in the Glue labs as well.

CSIC Linux Lab: The Dell machines running Redhat Linux in the CSIC Linux Lab on the third
floor of the CSIC building.

WAM PC/Windows: The PC’s running Microsoft Windows in the A.V. Williams WAM lab.
PC Windows: Your own PC running Microsoft Windows.

To understand this more concretely, while you are reading this you should also download the sample
program, which we have made available. From the class web page go to the “OpenGL” link at the top
of the page, and then follow the link to the “Sample OpenGL Program,” or go directly to the following
link.

http://www.cs.umd.edu/“mount/427/OpenGL/OpenGLSample

More detailed information can be found in the “Readme” files contained within the bundle.

OpenGL is the most widely used graphics library standard, that is, it is just a specification for a
graphics library, which has been implemented by a number of vendors. OpenGL consists of two
principal components: GL (basic OpenGL) and GLU (OpenGL utilities). GL is responsible for the
basic low-level rendering tasks, and GLU provides support for some higher-level operations, such as
drawing curved surfaces. (There are also other related components, GLX or WGL, which are used for
handling special extensions to basic OpenGL.)

In addition, it is necessary to use a toolkit for creating windows and handling user interaction. For
C/C++ programming, we will use GLUT (OpenGL utility toolkit). Java programmers will need to
use a different toolkit, for example, the Java AWT (Abstract Window Toolkit).

Sun Workstations in the WAM/Glue Labs: OpenGL and Glut are installed on the WAM and Glue.
(The version of OpenGL is Mesa, an open-source implementation of OpenGL.) These machines are
easy to use, very reliable, and convenient, but the graphics is not the best, and complex 3-d graphics
will tend to run slowly. Nonetheless, these can be used for your initial development. (In fact, it is often
easier to debug graphics on slow machines, because when something goes wrong, it happens slowly
enough that you can see it clearly!)

The library files libMesaGL, libMesaGLU, and libglut are located in /usr/local/Mesa/lib and the include
files gl.h, glu.h, and glut.h are located in /usr/local/Mesa/include/GL.

To compile a C/C++ program on these, copy the file Makefile-WAM-Sun to Makefile, and enter “make”.
Once compiled, you should be able to execute it by entering “samplel”. You will need to place the
cursor over the window for your keyboard input to be processed by the program.

Remote Execution: If you have an X-server on your PC at home (e.g. XFree86 or Reflection) you can
remotely log into the WAM or Glue labs, compile your program, and run it. The graphics should
appear on your PC display. Hint: before trying this with an untested OpenGL program, try a known
X11 application (for example, enter “xv”). If that works, then try running your program. If everything
is configured properly, the graphics should appear on your screen. Beware, it will be very, very slow.
But it is an option for your initial development.

CSIC Linux Lab: For machines in the Linux lab, the procedure is essentially the same as above. The only
significant difference is where the files are stored. Unfortunately, there is no widespread agreement on
how the various directories should be configured on Unix/Linux platforms, and each system adminis-
trator makes his/her own choices when installing things. Commands like “locate” and “whereis” can
often be used to help you locate where these files are on any particular Unix/Linux system.

In the CSIC Linux Labs, the library files libGL and libGLU are located in /usr/X11R6/lib and libglut
is located in /user/local/freeglut. The include files gl.h and glu.h are located in /usr/include/GL and
glut.h is located /usr/local/freeglut/include/GL. (Redhat dropped support for Glut because it was too
hard to configure and compile. Freeglut is essentially the same, and much easier to work with.) Also,
use Makefile-CSIC-Linux as your Makefile.

PC’s in the WAM Lab (A.V. Williams): There are three PC’s in the AVW Wam lab that have OpenGL
and Glut installed along with Microsoft Visual Studio 6 and Visual Studio.NET. (Warning: .NET is
quite slow to launch, and you may want to use Visual Studio just to keep from going crazy.) Instruc-
tions have been provided for creating OpenGL programs under both systems. These can be found in
the Readme files in the directories VisualCPP (for Visual Studio 6) and VisualStudioNET (for Visual
Studio.NET). Alternatively, after you download and unbundle the sample program, double-click on
the file VisualCPP /samplel.dsw (for Visual Studio 6) or the file VisualStudioNET /Samplel/Samplel.sin
(for Visual Studio.NET).

Installing OpenGL/Glut on your own PC: The following description assumes that you running on a
PC running Microsoft Windows (98, 2000, NT or XP) and have Microsoft Visual Studio 6. (The
process is similar for Visual Studio.NET.) This does not apply to Linux or Mac’s, however. You first
need to know the names of the following two directories on your system:

(WinDir) : This is your Windows system directory (e.g., C:\WINDOWS or C:\WINNT).

(VCpp) : Your visual C++ directory. For Visual Studio 6 this is something like:
C:\Program Files\MicroSoft Visual Studio\VC98
For Visual Studio.NET this might be:
C:\Program Files\Microsoft Visual Studio.NET 2003\Vc7\PlatformSDK

If you are not sure, search for the file opengl32.lib.

OpenGL should already be installed on your machine. To verify that OpenGL is installed on your
system, first do a search for the files opengl32.dll and glu32.dll. They should appear in your windows
system directory (with lots of other dll files). You need to install Glut, however. The easiest way to do
this is to visit the following web page. It contains precompiled glut libraries. (Download the “image
datafiles” not the “source code”.)

http://www.xmission.com/~nate/glut.html

After unbundling the file, copy the following files to the following directories:

glut32.dll = (WinDir)\SYSTEM32 (or wherever opengl32.dll is)
glut32.lib = (VCpp)\lib
glut.h = (VCpp)\include\GL.

By the way, the exact directory in which these files are installed is less important than the fact that
the system can locate them. As long as these files are stored in directories that lie on the appropriate
environment variables, e.g., PATH or INCLUDE, your system should be able to locate them.

Now, you should be ready to go. If you have Visual Studio 6, then the quickest way to proceed is
to go to the directory VisualCPP and double click the workspace file samplel.dsw. If you have Visual
Studio.NET, go to the directory VisualStudioNET and double click the solution file Samplel/samplel.sin.

Please read the Readme files carefully for more detailed instructions on how to construct your own
programs.

CMSC 427:Spring 2004 Dave Mount

Lighting in OpenGL

This handout briefly describes a number of OpenGL's commands for controlling lighting and shading. See the
reference documentation and tutorials on the web for more information.

Options: Many of the capabilities of OpenGL can either be turned on or turned off. This is handled through various
options, which can be either enabled or disabled. Here are a number of the options related to lighting.

glEnable(GLenum cap), glDisable(GLenum cap):
Enable/disable some option. The following options are useful for 3-dimensional hidden surface removal and
lighting. By default, all are initially disabled.

GL_DEPTH_TEST: Enables hidden surface removal (depth-buffering). In addition to setting this option, you
also need to enable the depth buffer in your initialization code, by adslityJ DEPTH to glutnitDisplay-
Mode, for example:

glutinitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH)

By disabling this option you can temporarily suspend hidden surface removal (e.g. for writing text onto
the window).

GL_LIGHTING: Enables lighting (but individual lights must be activated using the option below).
GL_LIGHT*: Turn on/off a light source, for examptgEnable(GL_LIGHT3) turns on light source 3.

GL_NORMALIZE: Normal vectors must be of unit length for correct lighting and shading. This automatic nor-
malizes the length of normal vectors to unit length prior to drawing.

Lighting: In OpenGL there may be up to 8 (officialsL_MAX_LIGHTS) light sourcesGL_LIGHTO throughGL _LIGHT7).

If lighting is enabled (seglEnable()) then the shading of each object depends on which light sources are turned on
(enabled) and the materials and surface normals of each of the objects in the scene. Note that when lighting is enabled,
it is important that each vertex be associated with a proper normal vector (by aaNimgnal*()) prior to generating

the vertex.

glShadeModel(GLenum mode):
Themode may be eitheGL_FLAT or GL_.SMOOTH. In flat shading every point on a polygon is shaded according
to its first vertex. In smooth shading the shading from each of the various vertices is interpolated.

glLightModelf(GLenum pname, GLfloat param):

glLightModelfv(GLenum pname, const GLfloat *params):
Defines general lighting model parameters. The first version is for defining scalar parameters, and the second
is for vector parameters. One important parameter is the global intensity of ambient light (independent of any
light sources). Itgname is GL_LIGHT_MODEL_AMBIENT andparams is a pointer to an RGBA vector.

glLightf(GLenum light, GLenum pname, GLfloat param):

glLightfv(GLenum light, GLenum pname, const GLfloat *params):
Defines parameters for a single light source. The first version is for defining scalar parameters, and the second
is for vector parameters. The first argument indicates which light source this applies to. The anguamnent
gives one of the properties to be assigned. These include the following:

GL_POSITION (vector)(z, y, z,w) of position of light

GL_AMBIENT (vector) RGBA of intensity of ambient light
GL_DIFFUSE (vector) RGBA of intensity of diffuse light
GL_SPECULAR (vector) RGBA of intensity of specular light

By default, illumination intensity does not decrease, or attenuate, with distance. In genéialitié distance
from the light source to the object, and the light source is not a point at infinity, then the intensity attenuation is
given by1/(a + bd + cd?) wherea, b, andc are specified by the following parameters:

GL_CONSTANT_ATTENUATION (scalar)a-coefficient
GL_LINEAR_ATTENUATION (scalar)b-coefficient
GL_QUADRATIC_ATTENUATION (scalar)c-coefficient.

Normally light sources send light uniformly in all directions. To define a spotlight, set the following parameters.

GL_SPOT_CUTOFF (scalar) maximum spread angle of spotlight
GL_SPOT_DIRECTION (vector)(z, y, z,w) direction of spotlight
GL_SPOT_EXPONENT (scalar) exponent of spotlight distribution

Note: In addition to defining these properties, each light source must also be enabletErgde().

Surface Properties: When lighting is used, surface properties are given through the comgtidatkrial*(), rather
thanglColor*().

glMaterialf(GLenum face, GLenum pname, GLfloat param):
gIMaterialfv(GLenum face, GLenum pname, const GLfloat *params):

Defines surface material parameters for subsequently defined objects. The first version is for defining scalar
parameters, and the second is for vector parameters. Polygonal objects in OpenGL have two sides. You can
assign properties either to the front, back, or both sides. (The front side is the one from which the vertices
appear in counterclockwise order.) The first argument indicates the side. The possible valeFRENT,
GL_BACK, andGL_FRONT_AND_BACK. The second argument is the specific property. Possibilities include:

GL_EMISSION (vector) RGBA of the emitted coefficients
GL_AMBIENT (vector) RGBA of the ambient coefficients
GL_DIFFUSE (vector) RGBA of the diffuse coefficients
GL_SPECULAR (vector) RGBA of the specular coefficients
GL_SHININESS (scalar) single number in the ranfge 128]

that indicates degree of shininess.

Shade Model: Because OpenGL only deals with flat objects, programmers need to use many small flat polyg-
onal faces to approximate smooth surfaces, such as spheres, say. But this raises the question of whether the user
wants the object to appear smoothly shaded or to clearly see the boundaries between adjoining faces. This is
done through the shading model, whose argument is ethe8MOOTH (the default) oiGL_FLAT.

glShadeModel(GL_SMOOTH);

The shading interplation can be handled in one of two ways. In the clagicmhud interpolatiorthe illumi-

nation is computed exactly at the vertices (using the above formula) and the values are interpolated across the
polygon. InPhong interpolationthe normal vectors are given at each vertex, and the system interpolates these
vectors in the interior of the polygon. Then this interpolated normal vector is used in the above lighting equa-
tion. This produces more realistic images, but takes considerably more time. OpenGL uses Gouraud shading.
Just before a vertex is given (witfivertex*()), you should specify its normal vertex (wigiNormal*()), which is
discussed below.

Normal Vectors: Normal vectors are needed for performing lighting computations. OpenGL does not com-
pute them, you need to compute them yourself. Normal vectors are specified, just prior to drawing the vertex
with the commentiNormal*(). Normal vectors are assumed to be of unit length. For example, suppose that we
wanted to draw a red triangle on the x,y-plane. Here is a code fragment that would do this.

GLfloat red[4] = {1.0, 0.0, 0.0, 1.0}; // RGB for red
/I set material color

gIMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, red);
glNormal3f(0, 0, 1); /I set normal vector (up)
glBegin(GL_POLYGON); /I draw triangle on Xx,y-plane

glvertex3f(0, 0, 0);

glVertex3f(1, 0, 0);

glVertex3f(0, 1, 0);
glEnd();

CMSC 427:Spring 2004 Dave Mount

Textures, Fog and Color Blending in OpenGL

This handout briefly describes a number of OpenGL's commands for controlling special effects, such as texture,
fog and color blending. See the reference documentation and tutorials on the web for more information.

Options: Many of the capabilities of OpenGL can either be turned on or turned off. This is handled through various
options, which can be either enabled or disabled.

glEnable(GLenum cap), glDisable(GLenum cap):
Enable/disable some option. The following options are useful for texture mapping and fog. More details on
controlling these effects are given below. By default, all are initially disabled.

GL_FOG: Enables fog.
GL_BLEND: Enables color blending (using the ‘A’ in RGBA) to achieve transparency and related effects.
GL_TEXTURE_2D: Enables texture mapping.

Note that options may be enabled and disabled throughout the execution of the program. For example, texture
mapping may be turned on before drawing one polygon, and then turned off for others.

Blending and Fog: Blending and fog are two OpenGL capabilities that allow you to produce interesting lighting
and coloring affects. When a pixel is to be drawn on the screen, it normally overwrites any existing pixel color.
When blending is enabled (by callingEnable(GL_BLEND)) then the new (source) pixel is blended with the existing
(destination) pixel in the frame buffer, depending on the ‘A’ value of the RGBA color. NoteshaT_RGBA should

be specified imylutinitDisplayMode().

glBlendFunc(GLenum sfactor, GLenum dfactor):

Determines how new pixel values are blended with existing values. Whenever you draw pixel with blending
enabled, OpenGL first determines whether the pixel is visible (through hidden surface removal, assuming that
GL_DEPTH_TEST is enabled), and it then sets the value of the pixel to be some function of the existing pixel color
(destination), the new pixel color (source), and the alpha (‘A) component of the new color. OpenGL provides
many different functions. See the reference manuals for complete information. For example, to achieve simple
transparency, the call would be

glBlendFunc(GL_SRC_ALPHA, GL_.ONE_MINUS_SRC_ALPHA);
Beware: The depth buffer treats transparent objects as if they were opaque. Thus, a totally transparent object
(A = 0) will effectively conceal an opaque object that lies farther away. As a result, it is best to draw transparent
objects last, or just disable the depth test. In this way, the farther opaque object will already exist in the frame
buffer, so that its color may be blended with the transparent object.

Fog produces an effect whereby more distant objects are blended increasinglyfagtit@or, typically some
shade of gray. It is enabled by calligtEnable(GL_FOG).

glFogf(GLenum pname, GLfloat param):
glFogfv(GLenum pname, const GLfloat *params):

Specifies the parameters that define how fog is computed. The first version is for defining scalar parameters,
and the second is for vector parameters. Here are some parameter names and their meanings. See the reference
manual for complete details.

GL_FOG_MODE (scalar) How rapidily does the fog grow with distance.
EitherGL_LINEAR, GL_EXP or GL_EXP2

GL_FOG_START (scalar) Distance where fog begins
GL_FOG_END (scalar) Distance at which fog is total
GL_FOG_COLOR (vector) RGBA of color of the fog

Texture Mapping: Texture mapping is the process of taking an image, presented typically as a 2-dimensional array
of RGB values and mapping it onto a polygon. Setting up texture mapping involves the following steps: define a
texture by specifying the image and its format (throwgjfeximage2d(), specify how object vertices correspond to
points in the texture, and finally enable texture mapping. First, the texture must be input or generated by the program.
OpenGL provides a wide variety of other features, but we will only summarize a few here, which are sufficient for
handling a single 2-dimensional texture.

glTeximage2D: (GLenum target, int level, int internalFormat, int width,
int height, int border, GLenum format, GLenum type, void *pixels):

This converts a texture stored in the argixels into an internal format for OpenGL’s use. The first argument

is typically GL_. TEXTURE_2D. (But 1-dimensional textures exist as well.) The next parameter is used to specify
the level, assuming multiple level texture mapsmpmapsare used. We will assume single-level textures,
solevel will be 0. TheinternalFormat parameter specifies how OpenGL will store the texture internally. It is
typically eitherGL_RGBA or GL_RGB. Thewidth andheightparameters give the width and height of the image.
These must be powers of 2We will assume no texture borders, so tweder parameter will be 0. Théarmat
parameter is the format of yopixels array. Thetype parameter is the type of each color component in your
pixel array. (If you are using theadBMPFile() function, for reading .bmp files, the last three parameters will be
GL_RGB, GL_UNSIGNED_BYTE, and thepixel member of youRGBpixmap object.) See the reference manual
for complete information.

glTexEnvf(GLenum target, GLenum pname, GLfloat param):
Specifies texture mapping environment parameters. The target mBst EXTURE_ENV. Thepname param-

eter must besL_TEXTURE_ENV_MODE. This determines how a color from the texture image is to be merged
with an existing color on the surface of the polygon. The param may be any of the following:

GL_MODULATE multiply color components together
GL_BLEND linearly blend color components
GL_DECAL use the texture color

GL_REPLACE use the texture color

There are subtle differences betwednDECAL andGL_REPLACE when different formats are used or when the
‘A component of the RGBA color is not 1. See the reference manual for details. The def@ulMODULATE,
which is a good choice for combining textures with light.

glTexParameterf(GLenum target, GLenum pname, GLfloat param):
glTexParameterfv(GLenum target, GLenum pname, const GLfloat *params):

Specify how texture interpolation is to be performed. The first version is for defining scalar parameters, and the
second is for vector parameters. Assuming 2-dimensional textures, the tabgetEBXTURE_2D, thepname is
either:

GL_TEXTURE_MAG_FILTER magnification filter
GL_TEXTURE_MIN_FILTER minification filter

Magpnification is used when a pixel of the texture is smaller than the corresponding pixel of the screen onto
which it is mapped and minification applies in the opposite case. Typical values are either

GL_NEAREST take the nearest texture pixel
GL_LINEAR take the weighted average of
the 4 surrounding texture pixels

This procedure may also be invoked to specify other properties of texture mapping.

glTexCoord*(...):
Specifies the texture coordinates of subsequently defined vertices for texture mapping. For a standard 2-
dimensional textures, the texture coordinates are & pgtiy in the interval[0, 1] x [0, 1]. The texture coordinate
specifies the point on the image that are to be mapped to this vertex. OpenGL interpolates the mapping of
intermediate points of the polygon.

Multiple Textures: The above material assumes that there is only one texture. Handling multiple textures involves
two steps. First, you have to generate riexture objectsThis is done with the commangiGenTextures(). It generates

an array consisting of the “names” (actually just integer identifiers) of the newly constructed texture objects. Next,
whenever working with a specific texture you need to specify which of the existing texturesglfeenTextures()) is
thecurrent texture objectThis is done withgIBindTexture(). Here is an example of how to use these.

static GLuint texName[5]; /I texture names for 5 textures
glGenTextures(5, texName); /I create 5 texture names

/I make texture O the current texture
gIBindTexture(GL_TEXTURE_2D, texName[0]);
/I ... operations/drawings involving texture O

/I make texture 2 the current texture
gIBindTexture(GL_TEXTURE_2D, texName[2]);
/I ... operations/drawing involving texture 2

Texture Mapping Utility: In order to use texture mapping, you must present a texture to OpenGL as an array.
Typically, textures are given as image files in some standard format (.jpg, .gif, .ppm, .bmp). There are many programs
that can convert from one to another (on the Linux cluster you cagioge for example). To help you with the task

of inputting images, | have adapted a utility program, which | found in Hill's Graphics book. It consists of a class
RGBpixmap that stores an image. Its main method reads in an image from a .bmp file:

bool readBMPFile(/I read a .bmp file
const string& fname, /I name of the file
bool glPad, /I pad size up to a power of 2
bool verbose); /I output summary

If the second parameter is true, then the image array is padded up to the next higher power of 2 in size. This is
done because OpenGL expects texture maps whose dimensions are exact powers of 2. These additional entries are not
initialized. Otherwise, the image size is not altered. If verbose argument is true, summary information is written to
cerr. See the associatBdadMe.txt file for information on how to compile it

A template of how to use this in an OpenGL program is shown in Figs. 1 and 2. This assumes that you are using a
single texture. It consists of two parts. The first part is the initialization of the texture, which is done only once, and is
shown in Fig. 1. The second part involves settings that are done with each redrawing, and is given in Fig. 2.

#include "RGBpixmap.h"

RGBpixmap myPixmap; /I declare RGBpixmap object
glPixelStorei(GL_UNPACK_ALIGNMENT, 1); Il store pixels by byte
/I modulated colors
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
/I read the image file
if (!ImyPixmap.readBMPFile("text0.bmp", true, true)) {
cerr << "File text0.bomp cannot be read or illegal format" << endl;

exit(1);

}

glTexlmage2D(/I initialize texture
GL_TEXTURE_2D, /I texture is 2-d
0, /I resolution level 0
GL_RGB, /I internal format
myPixmap.nCols, /I image width
myPixmap.nRows, /I image height
0, /I no border
GL_RGB, /I my format
GL_UNSIGNED_BYTE, /I my type
myPixmap.pixel); /I the pixels

/I set texture parameters
glTexParameteri(GL_TEXTURE_2D, /* assign parameters for the texture */);

Figure 1. One-time initialization of texture settings, and us#miBMPFile() to input the texture from a file named
teset0.bmp.

glEnable(GL_TEXTURE_2D); /I enable texture mapping
glMaterialfv(GL_FRONT_AND_BACK, /I white base color
GL_AMBIENT_AND_DIFFUSE,
glfv(white));
glBegin(GL_POLYGON); /I draw the object

gINormal3f (/*...specify normal coordinates for vertex O0...*/);
glTexCoord2f(/*...specify texture coordinates for vertex 0...*/);
glVertex3f (/*...specify vertex coordinates for vertex 0...*/);
Il ... (repeat for other vertices)
glEnd();
glDisable(GL_TEXTURE_2D); /I disable texture mapping

Figure 2: Displaying a texture-mapped object.

