
CMSC 427
Computer Graphics1

David M. Mount
Department of Computer Science

University of Maryland
Spring 2004

1Copyright, David M. Mount, 2004, Dept. of Computer Science, University of Maryland, College Park, MD, 20742. These lecture notes were
prepared by David Mount for the course CMSC 427, Computer Graphics, at the University of Maryland. Permission to use, copy, modify, and
distribute these notes for educational purposes and without fee is hereby granted, provided that this copyright notice appear in all copies.

Lecture Notes 1 CMSC 427

Lecture 1: Course Introduction

Reading: Chapter 1 in Hearn and Baker.

Computer Graphics: Computer graphics is concerned with producing images and animations (or sequences of im-
ages) using a computer. This includes the hardware and software systems used to make these images. The
task of producing photo-realistic images is an extremely complex one, but this is a field that is in great demand
because of the nearly limitless variety of applications. The field of computer graphics has grown enormously
over the past 10–20 years, and many software systems have been developed for generating computer graphics
of various sorts. This can include systems for producing 3-dimensional models of the scene to be drawn, the
rendering software for drawing the images, and the associated user-interface software and hardware.

Our focus in this course willnot be on how to use these systems to produce these images (you can take courses
in the art department for this), but rather in understanding how these systems are constructed, and the underlying
mathematics, physics, algorithms, and data structures needed in the construction of these systems.

The field of computer graphics dates back to the early 1960’s with Ivan Sutherland, one of the pioneers of
the field. This began with the development of the (by current standards) very simple software for performing
the necessary mathematical transformations to produce simple line-drawings of 2- and 3-dimensional scenes.
As time went on, and the capacity and speed of computer technology improved, successively greater degrees
of realism were achievable. Today it is possible to produce images that are practically indistinguishable from
photographic images (or at least that create a pretty convincing illusion of reality).

Course Overview: Given the state of current technology, it would be possible to design an entire university major
to cover everything (important) that is known about computer graphics. In this introductory course, we will
attempt to cover only the merestfundamentalsupon which the field is based. Nonetheless, with these funda-
mentals, you will have a remarkably good insight into how many of the modern video games and “Hollywood”
movie animations are produced. This is true since even very sophisticated graphics stem from the same basic
elements that simple graphics do. They just involve much more complex light and physical modeling, and more
sophisticated rendering techniques.

In this course we will deal primarily with the task of producing a single image from a 2- or 3-dimensional scene
model. This is really a very limited aspect of computer graphics. For example, it ignores the role of computer
graphics in tasks such as visualizing things that cannot be described as such scenes. This includes rendering
of technical drawings including engineering charts and architectural blueprints, and also scientific visualization
such as mathematical functions, ocean temperatures, wind velocities, and so on. We will also ignore many of
the issues in producing animations. We will produce simple animations (by producing lots of single images),
but issues that are particular to animation, such as motion blur, morphing and blending, temporal anti-aliasing,
will not be covered. They are the topic of a more advanced course in graphics.

Let us begin by considering the process of drawing (orrendering) a single image of a 3-dimensional scene. This
is crudely illustrated in the figure below. The process begins by producing a mathematical model of the object to
be rendered. Such a model should describe not only the shape of the object but its color, its surface finish (shiny,
matte, transparent, fuzzy, scaly, rocky). Producing realistic models is extremely complex, but luckily it is not our
main concern. We will leave this to the artists and modelers. The scene model should also include information
about the location and characteristics of the light sources (their color, brightness), and the atmospheric nature of
the medium through which the light travels (is it foggy or clear). In addition we will need to know the location
of the viewer. We can think of the viewer as holding a “synthetic camera”, through which the image is to be
photographed. We need to know the characteristics of this camera (its focal length, for example).

Based on all of this information, we need to perform a number of steps to produce our desired image.

Projection: Project the scene from 3-dimensional space onto the 2-dimensional image plane in our synthetic
camera.

Lecture Notes 2 CMSC 427

Light sources

Object model

Image plane

Viewer

Fig. 1: A typical rendering situation.

Color and shading: For each point in our image we need to determine its color, which is a function of the
object’s surface color, its texture, the relative positions of light sources, and (in more complex illumination
models) the indirect reflection of light off of other surfaces in the scene.

Hidden surface removal: Elements that are closer to the camera obscure more distant ones. We need to deter-
mine which surfaces are visible and which are not.

Rasterization: Once we know what colors to draw for each point in the image, the final step is that of mapping
these colors onto our display device.

By the end of the semester, you should have a basic understanding of how each of the steps is performed. Of
course, a detailed understanding of most of the elements that are important to computer graphics will beyond
the scope of this one-semester course. But by combining what you have learned here with other resources (from
books or the Web) you will know enough to, say, write a simple video game, write a program to generate highly
realistic images, or produce a simple animation.

The Course in a Nutshell: The process that we have just described involves a number of steps, from modeling to
rasterization. The topics that we cover this semester will consider many of these issues.

Basics:

Graphics Programming: OpenGL, graphics primitives, color, viewing, event-driven I/O, GL toolkit,
frame buffers.

Geometric Programming: Review of linear algebra, affine geometry, (points, vectors, affine transforma-
tions), homogeneous coordinates, change of coordinate systems.

Implementation Issues: Rasterization, clipping.

Modeling:

Model types: Polyhedral models, hierarchical models, fractals and fractal dimension.

Curves and Surfaces:Representations of curves and surfaces, interpolation, Bezier, B-spline curves and
surfaces, NURBS, subdivision surfaces.

Surface finish: Texture-, bump-, and reflection-mapping.

Projection:

3-d transformations and perspective: Scaling, rotation, translation, orthogonal and perspective trans-
formations, 3-d clipping.

Hidden surface removal: Back-face culling,z-buffer method, depth-sort.

Issues in Realism:

Light and shading: Diffuse and specular reflection, the Phong and Gouraud shading models, light trans-
port and radiosity.

Lecture Notes 3 CMSC 427

Ray tracing: Ray-tracing model, reflective and transparent objects, shadows.

Color: Gamma-correction, halftoning, and color models.

Although this order represents a “reasonable” way in which to present the material. We will present the topics
in a different order, mostly to suit our need to get material covered before major programming assignments.

Lecture 2: Graphics Systems and Models

Reading: Today’s material is covered roughly in Chapters 2 and 4 of our text. We will discuss the drawing and filling
algorithms of Chapter 4, and OpenGL commands later in the semester.

Elements of Pictures: Computer graphics is all about producing pictures (realistic or stylistic) by computer. Before
discussing how to do this, let us first consider the elements that make up images and the devices that produce
them. How are graphical images represented? There are four basic types that make up virtually of computer
generated pictures:polylines, filled regions, text, andraster images.

Polylines: A polyline (or more properly apolygonal curveis a finite sequence of line segments joined end to
end. These line segments are callededges, and the endpoints of the line segments are calledvertices. A
single line segment is a special case. (An infinite line, which stretches to infinity on both sides, is not
usually considered to be a polyline.) A polyline isclosedif it ends where it starts. It issimpleif it does not
self-intersect. Self-intersections include such things as two edge crossing one another, a vertex intersecting
in the interior of an edge, or more than two edges sharing a common vertex. A simple, closed polyline is
also called asimple polygon. If all its internal angle are at most180◦, then it is aconvex polygon.

A polyline in the plane can be represented simply as a sequence of the(x, y) coordinates of its vertices.
This is sufficient to encode the geometry of a polyline. In contrast, the way in which the polyline is
rendered is determined by a set of properties callgraphical attributes. These include elements such as
color, line width, and line style(solid, dotted, dashed), how consecutive segments arejoined (rounded,
mitered or beveled; see the book for further explanation).

Closed polyline Simple polyline

No joint

Simple polygon Convex polygon

Mitered Rounded Beveled

Fig. 2: Polylines and joint styles.

Many graphics systems support common special cases of curves such as circles, ellipses, circular arcs, and
Bezier and B-splines. We should probably includecurvesas a generalization of polylines. Most graphics
drawing systems implement curves by breaking them up into a large number of very small polylines, so
this distinction is not very important.

Filled regions: Any simple, closed polyline in the plane defines a region consisting of an inside and outside.
(This is a typical example of an utterly obvious fact from topology that is notoriously hard to prove. It is
called theJordan curve theorem.) We can fill any such region with a color or repeating pattern. In some
instances the bounding polyline itself is also drawn and others the polyline is not drawn.

Lecture Notes 4 CMSC 427

A polyline with embedded “holes” also naturally defines a region that can be filled. In fact this can be
generalized by nesting holes within holes (alternating color with the background color). Even if a polyline
is not simple, it is possible to generalize the notion of interior. Given any point, shoot a ray to infinity. If it
crosses the boundary an odd number of times it is colored. If it crosses an even number of times, then it is
given the background color.

without boundary self intersectingwith holeswith boundary

Fig. 3: Filled regions.

Text: Although we do not normally think of text as a graphical output, it occurs frequently within graphical
images such as engineering diagrams. Text can be thought of as a sequence of characters in somefont. As
with polylines there are numerous attributes which affect how the text appears. This includes the font’s
face (Times-Roman, Helvetica, Courier, for example), itsweight (normal, bold, light), itsstyleor slant
(normal, italic, oblique, for example), itssize, which is usually measured inpoints, a printer’s unit of
measure equal to1/72-inch), and itscolor.

12 point
10 point

8 point

SizeFace (family)

Courier

Times−Roman

Helvetica

Bold

Normal

Weight

Italic

Normal

Style (slant)

Fig. 4: Text font properties.

Raster Images: Raster images are what most of us think of when we think of a computer generated image.
Such an image is a 2-dimensional array of square (or generally rectangular) cells calledpixels(short for
“picture elements”). Such images are sometimes calledpixel maps.

The simplest example is an image made up of black and white pixels, each represented by a single bit (0
for black and 1 for white). This is called abitmap. For gray-scale (ormonochrome) raster images raster
images, each pixel is represented by assigning it a numerical value over some range (e.g., from 0 to 255,
ranging from black to white). There are many possible ways of encoding color images. We will discuss
these further below.

Graphics Devices: The standard interactive graphics device today is called araster display. As with a television, the
display consists of a two-dimensional array of pixels. There are two common types of raster displays.

Video displays: consist of a screen with a phosphor coating, that allows each pixel to be illuminated momen-
tarily when struck by an electron beam. A pixel is either illuminated (white) or not (black). The level of
intensity can be varied to achieve arbitrary gray values. Because the phosphor only holds its color briefly,
the image is repeatedly rescanned, at a rate of at least 30 times per second.

Liquid crystal displays (LCD’s): use an electronic field to alter polarization of crystalline molecules in each
pixel. The light shining through the pixel is already polarized in some direction. By changing the polar-
ization of the pixel, it is possible to vary the amount of light which shines through, thus controlling its
intensity.

Lecture Notes 5 CMSC 427

Irrespective of the display hardware, the computer program stores the image in a two-dimensional array in
RAM of pixel values (called aframe buffer). The display hardware produces the image line-by-line (called
raster lines). A hardware device called avideo controllerconstantly reads the frame buffer and produces the
image on the display. The frame buffer is not a device. It is simply a chunk of RAM memory that has been
allocated for this purpose. A program modifies the display by writing into the frame buffer, and thus instantly
altering the image that is displayed. An example of this type of configuration is shown below.

Controller

Video Monitor

Raster Graphics with Display Processor

I/O DevicesCPU

Memory
Buffer

Frame

Controller

Video

System bus

Monitor

Simple Raster Graphics System

System

System bus

I/O Devices

Memory

CPU

Display
Processor

Memory
Buffer

Frame

Fig. 5: Raster display architectures.

More sophisticated graphics systems, which are becoming increasingly common these days, achieve great speed
by providing separate hardware support, in the form of adisplay processor(more commonly known as agraph-
ics acceleratoror graphics cardto PC users). This relieves the computer’s main processor from much of the
mundane repetitive effort involved in maintaining the frame buffer. A typical display processor will provide
assistance for a number of operations including the following:

Transformations: Rotations and scalings used for moving objects and the viewer’s location.
Clipping: Removing elements that lie outside the viewing window.
Projection: Applying the appropriate perspective transformations.
Shading and Coloring: The color of a pixel may be altered by increasing its brightness. Simple shading in-

volves smooth blending between some given values. Modern graphics cards support more complex proce-
dural shading.

Texturing: Coloring objects by “painting” textures onto their surface. Textures may be generated by images or
by procedures.

Hidden-surface elimination: Determines which of the various objects that project to the same pixel is closest
to the viewer and hence is displayed.

An example of this architecture is shown in Fig. 5. These operations are oftenpipelined, where each processor
on the pipeline performs its task and passes the results to the next phase. Given the increasing demands on
a top quality graphics accelerator, they have become quite complex. Fig. 6 shows the architecture of existing
accelerator. (Don’t worry about understanding the various elements just now.)

Lecture Notes 6 CMSC 427

transmitter
TMDS

monitor

cursor

port
input

Analog

Video stream

Video

monitor
Digital

Graphics port

Video I/O interface

RendererRenderer

2−d Engine

Host bus interface

Hardware
DVD/ HDTV

stream YUV/ RGBScaler

Texture units

Vertex skinning cache

cache
Texture

z−buffer

Graphics

overlay control
expander

Ratiometric

D/A converter
Triangle setup

Keyframe interpolation

Transform, clip, lighting

double data−rate memory
Synchronous DRAM or

3−d Engine

Display engine

Command engine

Pallette and

decoder

Video Engine

YUV to RGB

Scaler

VGA graphics controller

Memory controller and interface

cache
Pixel

Vertex

Fig. 6: The architecture of a sample graphics accelerator.

Color: The method chosen for representing color depends on the characteristics of the graphics output device (e.g.,
whether it isadditiveas are video displays orsubtractiveas are printers). It also depends on the number of bits
per pixel that are provided, called thepixel depth. For example, the most method used currently in video and
color LCD displays is a24-bit RGBrepresentation. Each pixel is represented as a mixture of red, green and
blue components, and each of these three colors is represented as a 8-bit quantity (0 for black and 255 for the
brightest color).

In many graphics systems it is common to add a fourth component, sometimes calledalpha, denotedA. This
component is used to achieve various special effects, most commonly in describing how opaque a color is. We
will discuss its use later in the semester. For now we will ignore it.

In some instances 24-bits may be unacceptably large. For example, when downloading images from the web,
24-bits of information for each pixel may be more than what is needed. A common alternative is to used acolor
map, also called acolor look-up-table(LUT). (This is the method used in most gif files, for example.) In a
typical instance, each pixel is represented by an 8-bit quantity in the range from 0 to 255. This number is an
index to a 256-element array, each of whose entries is a 234-bit RGB value. To represent the image, we store
both the LUT and the image itself. The 256 different colors are usually chosen so as to produce the best possible
reproduction of the image. For example, if the image is mostly blue and red, the LUT will contain many more
blue and red shades than others.

A typical photorealistic image contains many more than 256 colors. This can be overcome by a fair amount
of clever trickery to fool the eye into seeing many shades of colors where only a small number of distinct
colors exist. This process is calleddigital halftoning, as shown in Fig. 8. Colors are approximated by putting
combinations of similar colors in the same area. The human eye averages them out.

Lecture Notes 7 CMSC 427

154 247

R G B
Frame buffer

122

121

124

125

Colormap

031

176 002

123

015123

Fig. 7: Color-mapped color.

Fig. 8: Color approximation by digital halftoning. (Note that you are probably not seeing the true image, since has
already been halftoned by your document viewer or printer.)

Lecture Notes 8 CMSC 427

Lecture 3: Drawing in OpenGL: GLUT

Reading: Chapter 2 in Hearn and Baker. Detailed documentation on GLUT can be downloaded from the GLUT home
pagehttp://www.opengl.org/resources/libraries/glut.html.

The OpenGL API: Today we will begin discussion of using OpenGL, and its related libraries, GLU (which stands
for the OpenGL utility library) and GLUT (an OpenGL Utility Toolkit). OpenGL is designed to be a machine-
independent graphics library, but one that can take advantage of the structure of typical hardware accelerators
for computer graphics.

The Main Program: Before discussing how to actually draw shapes, we will begin with the basic elements of how
to create a window. OpenGL was intentionally designed to be independent of any specific window system.
Consequently, a number of the basic window operations are not provided. For this reason, a separate library,
calledGLUT or OpenGL Utility Toolkit, was created to provide these functions. It is the GLUT toolkit which
provides the necessary tools for requesting that windows be created and providing interaction with I/O devices.

Let us begin by considering a typical main program. Throughout, we will assume that programming is done in
C++. Do not worry for now if you do not understand the meanings of the various calls. Later we will discuss
the various elements in more detail. This program creates a window that is 400 pixels wide and 300 pixels high,
located in the upper left corner of the display.

Typical OpenGL/GLUT Main Program
int main(int argc, char** argv) // program arguments
{

glutInit(&argc, argv); // initialize glut and gl
// double buffering and RGB

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
glutInitWindowSize(400, 300); // initial window size
glutInitWindowPosition(0, 0); // initial window position
glutCreateWindow(argv[0]); // create window

...initialize callbacks here (described below)...

myInit(); // your own initializations
glutMainLoop(); // turn control over to glut
return 0; // (make the compiler happy)

}

Here is an explanation of the first five function calls.

glutInit(): The arguments given to the main program (argc andargv) are the command-line arguments supplied to the
program. This assumes a typical Unix environment, in which the program is invoked from a command line. We
pass these into the main initialization procedure,glutInit(). This procedure must be called before any others. It
processes (and removes) command-line arguments that may be of interest to GLUT and the window system and
does general initialization of GLUT and OpenGL. Any remaining arguments are then left for the user’s program
to interpret, if desired.

glutInitDisplayMode(): The next procedure,glutInitDisplayMode(), performs initializations informing OpenGL how to
set up its frame buffer. Recall that the frame buffer is a special 2-dimensional array in main memory where
the graphical image is stored. OpenGL maintains an enhanced version of the frame buffer with additional
information. For example, this include depth information for hidden surface removal. The system needs to
know how we are representing colors of our general needs in order to determine the depth (number of bits)
to assign for each pixel in the frame buffer. The argument toglutInitDisplayMode() is a logical-or (using the
operator “—”) of a number of possible options, which are given in Table 1.

Lecture Notes 9 CMSC 427

Display Mode Meaning
GLUT RGB Use RGB colors
GLUT RGBA Use RGB plusα (for transparency)
GLUT INDEX Use colormapped colors (not recommended)
GLUT DOUBLE Use double buffering (recommended)
GLUT SINGLE Use single buffering (not recommended)
GLUT DEPTH Use depth buffer (needed for hidden surface removal)

Table 1: Arguments toglutInitDisplayMode().
.

Color: First off, we need to tell the system how colors will be represented. There are three methods, of which
two are fairly commonly used:GLUT RGB or GLUT RGBA. The first uses standard RGB colors (24-bit
color, consisting of 8 bits of red, green, and blue), and is the default. The second requests RGBA coloring.
In this color system there is a fourth component (A orα), which indicates the opaqueness of the color (1 =
fully opaque, 0 = fully transparent). This is useful in creating transparent effects. We will discuss how this
is applied later this semester.

Single or Double Buffering: The next option specifies whether single or double buffering is to be used,GLUT SINGLE
or GLUT DOUBLE, respectively. To explain the difference, we need to understand a bit more about how
the frame buffer works. In raster graphics systems, whatever is written to the frame buffer is immediately
transferred to the display. (Recall this from Lecture 2.) This process is repeated frequently, say 30–60
times a second. To do this, the typical approach is to first erase the old contents by setting all the pixels
to some background color, say black. After this, the new contents are drawn. However, even though it
might happen very fast, the process of setting the image to black and then redrawing everything produces
a noticeable flicker in the image. Double buffering is a method to eliminate this flicker.
In double buffering, the system maintains two separate frame buffers. Thefront buffer is the one which
is displayed, and theback bufferis the other one. Drawing is always done to the back buffer. Then
to update the image, the system simply swaps the two buffers. The swapping process is very fast, and
appears to happen instantaneously (with no flicker). Double buffering requires twice the buffer space as
single buffering, but since memory is relatively cheap these days, it is the preferred method for interactive
graphics.

Depth Buffer: One other option that we will need later with 3-dimensional graphics will be hidden surface
removal. This fastest and easiest (but most space-consuming) way to do this is with a special array called a
depth buffer. We will discuss in greater detail later, but intuitively this is a 2-dimensional array which stores
the distance (or depth) of each pixel from the viewer. This makes it possible to determine which surfaces
are closest, and hence visible, and which are farther, and hence hidden. The depth buffer is enabled with
the optionGLUT DEPTH. For this program it is not needed, and so has been omitted.

glutInitWindowSize(): This command specifies the desired width and height of the graphics window. The general
form is glutInitWindowSize(int width, int height). The values are given in numbers of pixels.

glutInitPosition(): This command specifies the location of the upper left corner of the graphics window. The
form is glutInitWindowPosition(int x, int y) where the(x, y) coordinates are given relative to the upper left
corner of the display. Thus, the arguments(0, 0) places the window in the upper left corner of the display.
Note thatglutInitWindowSize() andglutInitWindowPosition() are both considered to be onlysuggestionsto
the system as to how to where to place the graphics window. Depending on the window system’s policies,
and the size of the display, it may not honor these requests.

glutCreateWindow(): This command actually creates the graphics window. The general form of the command is
glutCreateWindowchar(*title), wheretitle is a character string. Each window has a title, and the argument is
a string which specifies the window’s title. We pass inargv[0]. In Unix argv[0] is the name of the program
(the executable file name) so our graphics window’s name is the same as the name of our program.

Lecture Notes 10 CMSC 427

Note thatglutCreateWindow() does not really create the window, but rather sends a request to the system
that the window be created. Thus, it is not possible to start sending output to the window, until notification
has been received that this window is finished its creation. This is done by a display event callback, which
we describe below.

Event-driven Programming and Callbacks: Virtually all interactive graphics programs areevent driven. Unlike
traditional programs that read from a standard input file, a graphics program must be prepared at any time for
input from any number of sources, including the mouse, or keyboard, or other graphics devises such as trackballs
and joysticks.

In OpenGL this is done through the use ofcallbacks. The graphics program instructs the system to invoke
a particular procedure whenever an event of interest occurs, say, the mouse button is clicked. The graphics
program indicates its interest, orregisters, for various events. This involves telling the window system which
event type you are interested in, and passing it the name of a procedure you have written to handle the event.

Types of Callbacks: Callbacks are used for two purposes,user input eventsandsystem events. User input events
include things such as mouse clicks, the motion of the mouse (without clicking) also calledpassive motion,
keyboard hits. Note that your program is only signaled about events that happen to your window. For example,
entering text into another window’s dialogue box will not generate a keyboard event for your program.

There are a number of different events that are generated by the system. There is one such special event that
every OpenGL program must handle, called adisplay event. A display event is invoked when the system senses
that the contents of the window need to be redisplayed, either because:

• the graphics window has completed its initial creation,

• an obscuring window has moved away, thus revealing all or part of the graphics window,

• the program explicitly requests redrawing, by callingglutPostRedisplay().

Recall from above that the commandglutCreateWindow() does not actually create the window, but merely re-
quests that creation be started. In order to inform your program that the creation has completed, the system
generates a display event. This is how you know that you can now start drawing into the graphics window.

Another type of system event is areshape event. This happens whenever the window’s size is altered. The
callback provides information on the new size of the window. Recall that your initial call toglutInitWindowSize()
is only taken as a suggestion of the actual window size. When the system determines the actual size of your
window, it generates such a callback to inform you of this size. Typically, the first two events that the system will
generate for any newly created window are a reshape event (indicating the size of the new window) followed
immediately by a display event (indicating that it is now safe to draw graphics in the window).

Often in an interactive graphics program, the user may not be providing any input at all, but it may still be
necessary to update the image. For example, in a flight simulator the plane keeps moving forward, even without
user input. To do this, the program goes to sleep and requests that it be awakened in order to draw the next
image. There are two ways to do this, atimer eventand anidle event. An idle event is generated every time the
system has nothing better to do. This may generate a huge number of events. A better approach is to request a
timer event. In a timer event you request that your program go to sleep for some period of time and that it be
“awakened” by an event some time later, say 1/30 of a second later. InglutTimerFunc() the first argument gives
the sleep time as an integer in milliseconds and the last argument is an integer identifier, which is passed into the
callback function. Various input and system events and their associated callback function prototypes are given
in Table 2.

For example, the following code fragment shows how to register for the following events: display events, reshape
events, mouse clicks, keyboard strikes, and timer events. The functions likemyDraw() andmyReshape() are
supplied by the user, and will be described later.

Most of these callback registrations simply pass the name of the desired user function to be called for the
corresponding event. The one exception isglutTimeFunc() whose arguments are the number of milliseconds to

Lecture Notes 11 CMSC 427

Input Event Callback request User callback function prototype (returnvoid)
Mouse button glutMouseFunc myMouse(int b, int s, int x, int y)
Mouse motion glutPassiveMotionFunc myMotion(int x, int y)
Keyboard key glutKeyboardFunc myKeyboard(unsigned char c, int x, int y)

System Event Callback request User callback function prototype (returnvoid)
(Re)display glutDisplayFunc myDisplay()
(Re)size window glutReshapeFunc myReshape(int w, int h)
Timer event glutTimerFunc myTimer(int id)
Idle event glutIdleFunc myIdle()

Table 2: Common callbacks and the associated registration functions.

Typical Callback Setup
int main(int argc, char** argv)
{

...
glutDisplayFunc(myDraw); // set up the callbacks
glutReshapeFunc(myReshape);
glutMouseFunc(myMouse);
glutKeyboardFunc(myKeyboard);
glutTimerFunc(20, myTimeOut, 0); // (see below)
...

}

wait (an unsigned int), the user’s callback function, and an integer identifier. The identifier is useful if there
are multiple timer callbacks requested (for different times in the future), so the user can determine which one
caused this particular event.

Callback Functions: What does a typical callback function do? This depends entirely on the application that you are
designing. Some examples of general form of callback functions is shown below.

Examples of Callback Functions for System Events
void myDraw() { // called to display window

// ...insert your drawing code here ...
}
void myReshape(int w, int h) { // called if reshaped

windowWidth = w; // save new window size
windowHeight = h;
// ...may need to update the projection ...
glutPostRedisplay(); // request window redisplay

}
void myTimeOut(int id) { // called if timer event

// ...advance the state of animation incrementally...
glutPostRedisplay(); // request redisplay
glutTimerFunc(20, myTimeOut, 0); // request next timer event

}

Note that the timer callback and the reshape callback both invoke the functionglutPostRedisplay(). This proce-
dure informs OpenGL that the state of the scene has changed and should be redrawn (by calling your drawing
procedure). This might be requested in other callbacks as well.

Note that each callback function is provided with information associated with the event. For example, a reshape

Lecture Notes 12 CMSC 427

Examples of Callback Functions for User Input Events
// called if mouse click

void myMouse(int b, int s, int x, int y) {
switch (b) { // b indicates the button

case GLUT_LEFT_BUTTON:
if (s == GLUT_DOWN) // button pressed

// ...
else if (s == GLUT_UP) // button released

// ...
break;

// ... // other button events
}

}
// called if keyboard key hit

void myKeyboard(unsigned char c, int x, int y) {
switch (c) { // c is the key that is hit

case ’q’: // ’q’ means quit
exit(0);
break;

// ... // other keyboard events
}

}

event callback passes in the new window width and height. A mouse click callback passes in four arguments,
which button was hit (b: left, middle, right), what the buttons new state is (s: up or down), the(x, y) coordinates
of the mouse when it was clicked (in pixels). The various parameters used forb ands are described in Table 3.
A keyboard event callback passes in the character that was hit and the current coordinates of the mouse. The
timer event callback passes in the integer identifier, of the timer event which caused the callback. Note that each
call to glutTimerFunc() creates only one request for a timer event. (That is, you do not get automatic repetition
of timer events.) If you want to generate events on a regular basis, then insert a call toglutTimerFunc() from
within the callback function to generate the next one.

GLUT Parameter Name Meaning
GLUT LEFT BUTTON left mouse button
GLUT MIDDLE BUTTON middle mouse button
GLUT RIGHT BUTTON right mouse button
GLUT DOWN mouse button pressed down
GLUT UP mouse button released

Table 3: GLUT parameter names associated with mouse events.

Lecture 4: Drawing in OpenGL: Drawing and Viewports

Reading: Chapters 2 and 3 in Hearn and Baker.

Basic Drawing: We have shown how to create a window, how to get user input, but we have not discussed how to get
graphics to appear in the window. Today we discuss OpenGL’s capabilities for drawing objects.

Before being able to draw a scene, OpenGL needs to know the following information: what are theobjectsto
be drawn, how is the image to beprojectedonto the window, and howlighting andshadingare to be performed.

Lecture Notes 13 CMSC 427

To begin with, we will consider a very the simple case. There are only 2-dimensional objects, no lighting or
shading. Also we will consider only relatively little user interaction.

Because we generally do not have complete control over the window size, it is a good idea to think in terms
of drawing on a rectangularidealized drawing region, whose size and shape are completely under our control.
Then we will scale this region to fit within the actual graphics window on the display. More generally, OpenGL
allows for the grahics window to be broken up into smaller rectangular subwindows, calledviewports. We will
then have OpenGL scale the image drawn in the idealized drawing region to fit within the viewport. The main
advantage of this approach is that it is very easy to deal with changes in the window size.

We will consider a simple drawing routine for the picture shown in the figure. We assume that our idealized
drawing region is a unit square over the real interval[0, 1] × [0, 1]. (Throughout the course we will use the
notation[a, b] to denote the interval of real valuesz such thata ≤ z ≤ b. Hence,[0, 1] × [0, 1] is a unit square
whose lower left corner is the origin.) This is illustrated in Fig. 9.

0.5

1

10.50

red

blue

0

Fig. 9: Drawing produced by the simple display function.

Glut uses the convention that the origin is in the upper left corner and coordinates are given as integers. This
makes sense for Glut, because its principal job is to communicate with the window system, and most window
systems (X-windows, for example) use this convention. On the other hand, OpenGL uses the convention that
coordinates are (generally) floating point values and the origin is in the lower left corner. Recalling the OpenGL
goal is to provide us with an idealized drawing surface, this convention is mathematically more elegant.

The Display Callback: Recall that thedisplay callback functionis the function that is called whenever it is necessary
to redraw the image, which arises for example:

• The initial creation of the window,
• Whenever the window is uncovered by the removal of some overlapping window,
• Whenever your program requests that it be redrawn (through the use ofglutPostRedisplay() function, as in

the case of an animation, where this would happen continuously.

The display callback function for our program is shown below. We first erase the contents of the image window,
then do our drawing, and finally swap buffers so that what we have drawn becomes visible. (Recall double
buffering from the previous lecture.) This function first draws a red diamond and then (on top of this) it draws
a blue rectangle. Let us assume double buffering is being performed, and so the last thing to do is invoke
glutSwapBuffers() to make everything visible.

Let us present the code, and we will discuss the various elements of the solution in greater detail below.

Clearing the Window: The commandglClear() clears the window, by overwriting it with the background color. This
is set by the call

glClearColor(GLfloat Red, GLfloat Green, GLfloat Blue, GLfloat Alpha).

Lecture Notes 14 CMSC 427

Sample Display Function
void myDisplay() // display function
{

glClear(GL_COLOR_BUFFER_BIT); // clear the window

glColor3f(1.0, 0.0, 0.0); // set color to red
glBegin(GL_POLYGON); // draw a diamond

glVertex2f(0.90, 0.50);
glVertex2f(0.50, 0.90);
glVertex2f(0.10, 0.50);
glVertex2f(0.50, 0.10);

glEnd();

glColor3f(0.0, 0.0, 1.0); // set color to blue
glRectf(0.25, 0.25, 0.75, 0.75); // draw a rectangle

glutSwapBuffers(); // swap buffers
}

The typeGLfloat is OpenGL’s redefinition of the standardfloat. To be correct, you should use the approved
OpenGL types (e.g.GLfloat, GLdouble, GLint) rather than the obvious counterparts (float, double, and int).
Typically the GL types are the same as the corresponding native types, but not always.

Colors components are given as floats in the range from 0 to 1, from dark to light. Recall from Lecture 2 that
theA (or α) value is used to control transparency. For opaque colorsA is set to 1. Thus to set the background
color to black, we would useglClearColor(0.0, 0.0, 0.0, 1.0), and to set it to blue useglClearColor(0.0, 0.0, 1.0,
1.0). (Hint: When debugging your program, it is often a good idea to use an uncommon background color,
like a random shade of pink, since black can arise as the result of many different bugs.) Since the background
color is usually independent of drawing, the functionglClearColor() is typically set in one of your initialization
procedures, rather than in the drawing callback function.

Clearing the window involves resetting information within the frame buffer. As we mentioned before, the
frame buffer may store different types of information. This includes color information, of course, but depth or
distance information is used for hidden surface removal. Typically when the window is cleared, we want to clear
everything, but occasionally it is possible to achieve special effects by erasing only part of the buffer (just the
colors or just the depth values). So theglClear() command allows the user to select what is to be cleared. In this
case we only have color in the depth buffer, which is selected by the optionGL COLOR BUFFER BIT. If we had
a depth buffer to be cleared it as well we could do this by combining these using a “bitwise or” operation:

glClear(GL COLOR BUFFER BIT — GL DEPTH BUFFER BIT)

Drawing Attributes: The OpenGL drawing commands describe the geometry of the object that you want to draw.
More specifically, all OpenGL is based on drawing objects with straight sides, so it suffices to specify the
verticesof the object to be drawn. The manner in which the object is displayed is determined by various
drawing attributes(color, point size, line width, etc.).

The commandglColor3f() sets the drawing color. The arguments are threeGLfloat’s, giving the R, G, and B
components of the color. In this case, RGB= (1, 0, 0) means pure red. Once set, the attribute applies to
all subsequently defined objects, until it is set to some other value. Thus, we could set the color, draw three
polygons with the color, then change it, and draw five polygons with the new color.

This call illustrates a common feature of many OpenGL commands, namely flexibility in argument types. The
suffix “3f” means that three floating point arguments (actuallyGLfloat’s) will be given. For example,glColor3d()
takes threedouble (or GLdouble) arguments,glColor3ui() takes threeunsigned int arguments, and so on. For

Lecture Notes 15 CMSC 427

floats and doubles, the arguments range from 0 (no intensity) to 1 (full intensity). For integer types (byte, short,
int, long) the input is assumed to be in the range from 0 (no intensity) to its maximum possible positive value
(full intensity).

But that is not all! The three argument versions assume RGB color. If we were using RGBA color instead, we
would useglColor4d() variant instead. Here “4” signifies four arguments. (Recall that the A or alpha value is
used for various effects, such an transparency. For standard (opaque) color we setA = 1.0.)

In some cases it is more convenient to store your colors in an array with three elements. The suffix “v” means
that the argument is a vector. For exampleglColor3dv() expects a single argument, a vector containing three
GLdouble’s. (Note that this is a standard C/C++ style array, not the classvector from the C++ Standard Template
Library.) Using C’s convention that a vector is represented as a pointer to its first element, the corresponding
argument type would be “const GLdouble*”.

Whenever you look up the prototypes for OpenGL commands, you often see a long list, some of which are
shown below.

void glColor3d(GLdouble red, GLdouble green, GLdouble blue)
void glColor3f(GLfloat red, GLfloat green, GLfloat blue)
void glColor3i(GLint red, GLint green, GLint blue)
... (and forms for byte, short, unsigned byte and unsigned short) ...

void glColor4d(GLdouble red, GLdouble green, GLdouble blue, GLdouble alpha)
... (and 4-argument forms for all the other types) ...

void glColor3dv(const GLdouble *v)
... (and other 3- and 4-argument forms for all the other types) ...

Drawing commands: OpenGL supports drawing of a number of different types of objects. The simplest isglRectf(),
which draws a filled rectangle. All the others are complex objects consisting of a (generally) unpredictable
number of elements. This is handled in OpenGL by the constructsglBegin(mode) andglEnd(). Between these
two commands a list of vertices is given, which defines the object. The sort of object to be defined is determined
by themodeargument of theglBegin() command. Some of the possible modes are illustrated in Fig. 10. For
details on the semantics of the drawing methods, see the reference manuals.

Note that in the case ofGL POLYGON only convex polygons(internal angles less than 180 degrees) are sup-
ported. You must subdivide nonconvex polygons into convex pieces, and draw each convex piece separately.

glBegin(mode);
glVertex(v0); glVertex(v1); ...

glEnd();

In the example above we only defined thex- and y-coordinates of the vertices. How does OpenGL know
whether our object is 2-dimensional or 3-dimensional? The answer is that it does not know. OpenGL represents
all vertices as 3-dimensional coordinates internally. This may seem wasteful, but remember that OpenGL is
designed primarily for 3-d graphics. If you do not specify thez-coordinate, then it simply sets thez-coordinate
to 0.0. By the way,glRectf() always draws its rectangle on thez = 0 plane.

Between anyglBegin()...glEnd() pair, there is a restricted set of OpenGL commands that may be given. This
includesglVertex() and also other command attribute commands, such asglColor3f(). At first it may seem a bit
strange that you can assign different colors to the different vertices of an object, but this is a very useful feature.
Depending on the shading model, it allows you to produce shapes whose color blends smoothly from one end
to the other.

There are a number of drawing attributes other than color. For example, for points it is possible adjust their
size (withglPointSize()). For lines, it is possible to adjust their width (withglLineWidth()), and create dashed

Lecture Notes 16 CMSC 427

5

v4

v2
v1

v

1

0

v3

GL_LINE_LOOP

v5

v2
v

v6

GL TRIANGLE STRIP

v5

v4

v2
v1

v0

v3

GL_LINE_STRIP

v

0

GL_LINES

v5

v4v3

v2
v1

v0

GL_POINTS

v
v4

v3

GL_POLYGON

v5

v4v3

v2
v1

v0

4
v6

v3
v5

v7

GL QUAD STRIP

v0

v1 v2

v3 v

4
v5

v4

v2
v1

v0

v3

GL TRIANGLES

v0 v1

v2

v

4

5
v6

GL TRIANGLE FAN

v3

v0 v1

v2 v5

v v

v5

v6v7

GL QUADS

v3

v0

v1 v2

v4

Fig. 10: Some OpenGL object definition modes.

or dotted lines (withglLineStipple()). It is also possible to pattern or stipple polygons (withglPolygonStipple()).
When we discuss 3-dimensional graphics we will discuss many more properties that are used in shading and
hidden surface removal.

After drawing the diamond, we change the color to blue, and then invokeglRectf() to draw a rectangle. This
procedure takes four arguments, the(x, y) coordinates of any two opposite corners of the rectangle, in this case
(0.25, 0.25) and(0.75, 0.75). (There are also versions of this command that takes double or int arguments, and
vector arguments as well.) We could have drawn the rectangle by drawing aGL POLYGON, but this form is
easier to use.

Viewports: OpenGL does not assume that you are mapping your graphics to the entire window. Often it is desirable
to subdivide the graphics window into a set of smaller subwindows and then draw separate pictures in each
window. The subwindow into which the current graphics are being drawn is called aviewport. The viewport is
typically the entire display window, but it may generally be any rectangular subregion.

The size of the viewport depends on the dimensions of our window. Thus, every time the window is resized
(and this includes when the window is created originally) we need to readjust the viewport to ensure proper
transformation of the graphics. For example, in the typical case, where the graphics are drawn to the entire
window, the reshape callback would contain the following call which resizes the viewport, whenever the window
is resized.

Setting the Viewport in the Reshape Callback
void myReshape(int winWidth, int winHeight) // reshape window
{

...
glViewport (0, 0, winWidth, winHeight); // reset the viewport
...

}

The other thing that might typically go in themyReshape() function would be a call toglutPostRedisplay(), since
you will need to redraw your image after the window changes size.

The general form of the command is

glViewport(GLint x, GLint y, GLsizei width, GLsizei height),

Lecture Notes 17 CMSC 427

where(x, y) are the pixel coordinates of the lower-left corner of the viewport, as defined relative to the lower-left
corner of the window, andwidthandheightare the width and height of the viewport in pixels.

Projection Transformation: In the simple drawing procedure, we said that we were assuming that the “idealized”
drawing area was a unit square over the interval[0, 1] with the origin in the lower left corner. The transformation
that maps the idealized drawing region (in 2- or 3-dimensions) to the window is called theprojection. We did
this for convenience, since otherwise we would need to explicitly scale all of our coordinates whenever the user
changes the size of the graphics window.

However, we need to inform OpenGL of where our “idealized” drawing area is so that OpenGL can map it to our
viewport. This mapping is performed by a transformation matrix called theprojection matrix, which OpenGL
maintains internally. (In the next lecture we will discuss OpenGL’s transformation mechanism in greater detail.
In the mean time some of this may seem a bit arcane.)

Since matrices are often cumbersome to work with, OpenGL provides a number of relatively simple and natural
ways of defining this matrix. For our 2-dimensional example, we will do this by simply informing OpenGL of
the rectangular region of two dimensional space that makes up our idealized drawing region. This is handled by
the command

gluOrtho2D(left, right, bottom, top).

First note that the prefix is “glu” and not “gl”, because this procedure is provided by the GLU library. Also, note
that the “2D” designator in this case stands for “2-dimensional.” (In particular, it does not indicate the argument
types, as with, say,glColor3f()).

All arguments are of typeGLdouble. The arguments specify thex-coordinates (left and right) and they-
coordinates (bottomandtop) of the rectangle into which we will be drawing. Any drawing that we do outside
of this region will automatically be clipped away by OpenGL. The code to set the projection is given below.

Setting a Two-Dimensional Projection
glMatrixMode(GL_PROJECTION); // set projection matrix
glLoadIdentity(); // initialize to identity
gluOrtho2D(0.0, 1.0, 0.0, 1.0); // map unit square to viewport

The first command tells OpenGL that we are modifying the projection transformation. (OpenGL maintains three
different types of transformations, as we will see later.) Most of the commands that manipulate these matrices
do so by multiplying some matrix times the current matrix. Thus, we initialize the current matrix to the identity,
which is done byglLoadIdentity(). This code usually appears in some initialization procedure or possibly in the
reshape callback.

Where does this code fragment go? It depends on whether the projection will change or not. If we make the
simple assumption that are drawing will always be done relative to the[0, 1]2 unit square, then this code can
go in some initialization procedure. If our program decides to change the drawing area (for example, growing
the drawing area when the window is increased in size) then we would need to repeat the call whenever the
projection changes.

At first viewports and projections may seem confusing. Remember that the viewport is a rectangle within the
actual graphics window on your display, where you graphics will appear. The projection defined bygluOrtho2D()
simply defines a rectangle in some “ideal” coordinate system, which you will use to specify the coordinates of
your objects. It is the job of OpenGL to map everything that is drawn in your ideal window to the actual viewport
on your screen. This is illustrated in Fig. 11.

The complete program is shown in Figs. 12 and 13.

Lecture Notes 18 CMSC 427

top

bottom

Your graphics window

right

Drawing gluOrtho2d glViewport

left

viewport

height

width
(x,y)

idealized drawing region

Fig. 11: Projection and viewport transformations.

#include <cstdlib> // standard definitions
#include <iostream> // C++ I/O

#include <GL/glut.h> // GLUT
#include <GL/glu.h> // GLU
#include <GL/gl.h> // OpenGL

using namespace std; // make std accessible

// ... insert callbacks here

int main(int argc, char** argv)
{

glutInit(&argc, argv); // OpenGL initializations
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);// double buffering and RGB
glutInitWindowSize(400, 400); // create a 400x400 window
glutInitWindowPosition(0, 0); // ...in the upper left
glutCreateWindow(argv[0]); // create the window

glutDisplayFunc(myDisplay); // setup callbacks
glutReshapeFunc(myReshape);
glutMainLoop(); // start it running
return 0; // ANSI C expects this

}

Fig. 12: Sample OpenGL Program: Header and Main program.

Lecture Notes 19 CMSC 427

void myReshape(int w, int h) { // window is reshaped
glViewport (0, 0, w, h); // update the viewport
glMatrixMode(GL_PROJECTION); // update projection
glLoadIdentity();
gluOrtho2D(0.0, 1.0, 0.0, 1.0); // map unit square to viewport
glMatrixMode(GL_MODELVIEW);
glutPostRedisplay(); // request redisplay

}

void myDisplay(void) { // (re)display callback
glClearColor(0.5, 0.5, 0.5, 1.0); // background is gray
glClear(GL_COLOR_BUFFER_BIT); // clear the window
glColor3f(1.0, 0.0, 0.0); // set color to red
glBegin(GL_POLYGON); // draw the diamond

glVertex2f(0.90, 0.50);
glVertex2f(0.50, 0.90);
glVertex2f(0.10, 0.50);
glVertex2f(0.50, 0.10);

glEnd();
glColor3f(0.0, 0.0, 1.0); // set color to blue
glRectf(0.25, 0.25, 0.75, 0.75); // draw the rectangle
glutSwapBuffers(); // swap buffers

}

Fig. 13: Sample OpenGL Program: Callbacks.

Lecture 5: Drawing in OpenGL: Transformations

Reading: Transformation are discussed (for 3-space) in Chapter 5. Two dimensional projections and the viewport
transformation are discussed at the start of Chapter 6. For reference documentation, visit the OpenGL documentation
links on the course web page.

More about Drawing: So far we have discussed how to draw simple 2-dimensional objects using OpenGL. Suppose
that we want to draw more complex scenes. For example, we want to draw objects that move and rotate or to
change the projection. We could do this by computing (ourselves) the coordinates of the transformed vertices.
However, this would be inconvenient for us. It would also be inefficient, since we would need to retransmit
all the vertices of these objects to the display processor with each redrawing cycle, making it impossible for
the display processor to cache recently processed vertices. For this reason, OpenGL provides tools to handle
transformations. Today we consider how this is done in 2-space. This will form a foundation for the more
complex transformations, which will be needed for 3-dimensional viewing.

Transformations: Linear and affine transformations are central to computer graphics. Recall from your linear alge-
bra class that a linear transformation is a mapping in a vector space that preserves linear combinations. Such
transformations include rotations, scalings, shearings (which stretch rectangles into parallelograms), and com-
binations thereof. Affine transformations are somewhat more general, and include translations. We will discuss
affine transformations in detail in a later lecture. The important features of both transformations is that they
map straight lines to straight lines, they preserve parallelism, and they can be implemented through matrix
multiplication. They arise in various ways in graphics.

Moving Objects: from frame to frame in an animation.

Change of Coordinates: which is used when objects that are stored relative to one reference frame are to be
accessed in a different reference frame. One important case of this is that of mapping objects stored in a
standard coordinate system to a coordinate system that is associated with the camera (or viewer).

Lecture Notes 20 CMSC 427

Projection: is used to project objects from the idealized drawing window to the viewport, and mapping the
viewport to the graphics display window. (We shall see that perspective projection transformations are
more general than affine transformations, since they may not preserve parallelism.)

Mapping: between surfaces, for example, transformations that indicate how textures are to be wrapped around
objects, as part of texture mapping.

OpenGL has a very particular model for how transformations are performed. Recall that when drawing, it was
convenient for us to first define the drawing attributes (such as color) and then draw a number of objects using
that attribute. OpenGL uses much the same model with transformations. You specify a transformation, and then
this transformation is automatically applied to every object that is drawn, until the transformation is set again. It
is important to keep this in mind, because it implies that you must always set the transformation prior to issuing
drawing commands.

Because transformations are used for different purposes, OpenGL maintains three sets of matrices for perform-
ing various transformation operations. These are:

Modelview matrix: Used for transforming objects in the scene and for changing the coordinates into a form
that is easier for OpenGL to deal with. (It is used for the first two tasks above).

Projection matrix: Handles parallel and perspective projections. (Used for the third task above.)

Texture matrix: This is used in specifying how textures are mapped onto objects. (Used for the last task
above.)

We will discuss the texture matrix later in the semester, when we talk about texture mapping. There is one more
transformation that is not handled by these matrices. This is the transformation that maps the viewport to the
display. It is set byglViewport().

Understanding how OpenGL maintains and manipulates transformations through these matrices is central to
understanding how OpenGL works. This is not merely a “design consideration,” since most display processors
maintain such a set of matrices in hardware.

For each matrix type, OpenGL maintains astackof matrices. Thecurrent matrixis the one on the top of the
stack. It is the matrix that is being applied at any given time. The stack mechanism allows you to save the
current matrix (by pushing the stack down) and restoring it later (by popping the stack). We will discuss the
entire process of implementing affine and projection transformations later in the semester. For now, we’ll give
just basic information on OpenGL’s approach to handling matrices and transformations.

OpenGL has a number of commands for handling matrices. In order to know which matrix (Modelview, Pro-
jection, or Texture) to which an operation applies, you can set the currentmatrix mode. This is done with the
following command

glMatrixMode(〈mode〉);

where〈mode〉 is eitherGL MODELVIEW, GL PROJECTION, orGL TEXTURE. The default mode isGL MODELVIEW.

GL MODELVIEW is by far the most common mode, the convention in OpenGL programs is to assume that
you are always in this mode. If you want to modify the mode for some reason, you first change the mode
to the desired mode (GL PROJECTION or GL TEXTURE), perform whatever operations you want, and then
immediately change the mode back toGL MODELVIEW.

Once the matrix mode is set, you can perform various operations to the stack. OpenGL has an unintuitive way
of handling the stack. Note that most operations below (exceptglPushMatrix()) alter the contents of the matrix
at the top of the stack.

glLoadIdentity(): Sets the current matrix to the identity matrix.

glLoadMatrix*(M): Loads (copies) a given matrix over the current matrix. (The ‘*’ can be either ‘f’ or ‘ d’
depending on whether the elements ofM areGLfloat or GLdouble, respectively.)

Lecture Notes 21 CMSC 427

glMultMatrix*(M): Multiplies the current matrix by a given matrix and replaces the current matrix with this result.
(As above, the ‘*’ can be either ‘f’ or ‘ d’ depending onM .)

glPushMatrix(): Pushes a copy of the current matrix on top the stack. (Thus the stack now has two copies of the
top matrix.)

glPopMatrix(): Pops the current matrix off the stack.

We will discuss how matrices likeM are presented to OpenGL later in the semester. There are a number of
other matrix operations, which we will also discuss later.

C

I

B

A

M

B

A

load
identity

load
matrix(M)

B

A

pop
matrixmatrix

C

B

A

initial
stack

CM

B

A

mult
matrix(M)

C

B

A

push

Fig. 14: Matrix stack operations.

Automatic Evaluation and the Transformation Pipeline: Now that we have described the matrix stack, the next
question is how do we apply the matrix to some point that we want to transform? Understanding the answer
is critical to understanding how OpenGL (and actually display processors) work. The answer is that it happens
automatically. In particular,everyvertex (and hence virtually every geometric object that is drawn) is passed
through a series of matrices, as shown in Fig. 15. This may seem rather inflexible, but it is because of the simple
uniformity of sending every vertex through this transformation sequence that makes graphics cards run so fast.
Indeed, this is As mentioned above, these transformations behave much like drawing attributes—you set them,
do some drawing, alter them, do more drawing, etc.

Viewport

Transformation

Window
coordinates

(from glVertex)

Point

coordinates

Matrix

Modelview

Standard

coordinates

Camera (or eye)

coordinates

Matrix

Projection

Perspective

normalization

and clipping

Normalized
device

Fig. 15: Transformation pipeline.

A second important thing to understand is that OpenGL’s transformations do not alter the state of the objects
you are drawing. They simply modify things before they get drawn. For example, suppose that you draw a unit
square (U = [0, 1] × [0, 1]) and pass it through a matrix that scales it by a factor of5. The squareU itself has
not changed; it is still a unit square. If you wanted to change the actual representation ofU to be a5× 5 square,
then you need to perform your own modification ofU ’s representation.

You might ask, “what if I donot want the current transformation to be applied to some object?” The answer is,
“tough luck.” There are no exceptions to this rule (other than commands that act directly on the viewport). If
you do not want a transformation to be applied, then to achieve this, you load an identity matrix on the top of
the transformation stack, then do your (untransformed) drawing, and finally pop the stack.

Lecture Notes 22 CMSC 427

Example: Rotating a Rectangle (first attempt): The Modelview matrix is useful for applying transformations to
objects, which would otherwise require you to perform your own linear algebra. Suppose that rather than
drawing a rectangle that is aligned with the coordinate axes, you want to draw a rectangle that is rotated by 20
degrees (counterclockwise) and centered at some point(x, y). The desired result is shown in Fig. 16. Of course,
as mentioned above, you could compute the rotated coordinates of the vertices yourself (using the appropriate
trigonometric functions), but OpenGL provides a way of doing this transformation more easily.

4
20 degrees

10

0
4

100

(x,y)

Fig. 16: Desired drawing. (Rotated rectangle is shaded).

Suppose that we are drawing within the unit square,0 ≤ x, y ≤ 10. Suppose we have a4× 4 sized rectangle to
be drawn centered at location(x, y). We could draw an unrotated rectangle with the following command:

glRectf(x - 2, y - 2, x + 2, y + 2);

Note that the arguments should be of type GLfloat (2.0f rather than2), but we will let the compiler cast the
integer constants to floating point values for us.

Now let us draw a rotated rectangle. Let us assume that the matrix mode isGL MODELVIEW (this is the default).
Generally, there will be some existing transformation (call itM) currently present in the Modelview matrix.
This usually represents some more global transformation, which is to be applied on top of our rotation. For
this reason, we will compose our rotation transformation with this existing transformation. Also, we should
save the contents of the Modelview matrix, so we can restore its contents after we are done. Because the
OpenGL rotation function destroys the contents of the Modelview matrix, we will begin by saving it, by using
the commandglPushMatrix(). Saving the Modelview matrix in this manner is not always required, but it is
considered good form. Then we will compose the current matrixM with an appropriate rotation matrixR.
Then we draw the rectangle (in upright form). Since all points are transformed by the Modelview matrix prior
to projection, this will have the effect of rotating our rectangle. Finally, we will pop off this matrix (so future
drawing is not rotated).

To perform the rotation, we will use the commandglRotatef(ang, x, y, z). All arguments areGLfloat’s. (Or, recall-
ing OpenGL’s naming convention, we could useglRotated() which takesGLdouble arguments.) This command
constructs a matrix that performs a rotation in 3-dimensional space counterclockwise by angleang degrees,
about the vector(x, y, z). It thencomposes(or multiplies) this matrix with the current Modelview matrix. In
our case the angle is 20 degrees. To achieve a rotation in the(x, y) plane the vector of rotation would be the
z-unit vector,(0, 0, 1). Here is how the code might look (but beware, this conceals a subtle error).

Drawing an Rotated Rectangle (First Attempt)
glPushMatrix(); // save the current matrix
glRotatef(20, 0, 0, 1); // rotate by 20 degrees CCW
glRectf(x-2, y-2, x+2, y+2); // draw the rectangle
glPopMatrix(); // restore the old matrix

The order of the rotation relative to the drawing command may seem confusing at first. You might think,
“Shouldn’t we draw the rectangle first and then rotate it?”. The key is to remember that whenever you draw

Lecture Notes 23 CMSC 427

(usingglRectf() or glBegin()...glEnd()), the points are automatically transformed using the current Modelview
matrix. So, in order to do the rotation, we must first modify the Modelview matrix, then draw the rectangle. The
rectangle will be automatically transformed into its rotated state. Popping the matrix at the end is important,
otherwise future drawing requests would also be subject to the same rotation.

Although this may seem backwards, it is the way in which almost all object transformations are performed in
OpenGL:

(1) Push the matrix stack,

(2) Apply (i.e., multiply) all the desired transformation matrices with the current matrix,

(3) Draw your object (the transformations will be applied automatically), and

(4) Pop the matrix stack.

Example: Rotating a Rectangle (correct): Something is wrong with this example given above. What is it? The
answer is that the rotation is performed about the origin of the coordinate system, not about the center of the
rectangle and we want.

10

0

100

(x,y)

20 degrees

Fig. 17: The actual rotation of the previous example. (Rotated rectangle is shaded).

Fortunately, there is an easy fix. Conceptually, we will draw the rectangle centered at the origin, then rotate it by
20 degrees, and finallytranslate(or move) it by the vector(x, y). To do this, we will need to use the command
glTranslatef(x, y, z). All three arguments areGLfloat’s. (And there is version withGLdouble arguments.) This
command creates a matrix which performs a translation by the vector(x, y, z), and then composes (or multiplies)
it with the current matrix. Recalling that all 2-dimensional graphics occurs in thez = 0 plane, the desired
translation vector is(x, y, 0).

So the conceptual order is (1) draw, (2) rotate, (3) translate. But remember that you need to set up the transfor-
mation matrixbeforeyou do any drawing. That is, if~v represents a vertex of the rectangle, andR is the rotation
matrix andT is the translation matrix, andM is the current Modelview matrix, then we want to compute the
product

M(T (R(~v))) = M · T ·R · ~v.

SinceM is on the top of the stack, we need to first apply translation (T) to M , and then apply rotation (R) to the
result, and then do the drawing (~v). Note that the order of application is the exactreversefrom the conceptual
order. This may seems confusing (and it is), so remember the following rule.

Drawing/Transformation Order in OpenGL’s
First, conceptualize your intent by drawing about the origin and then applying the appro-
priate transformations to map your object to its desired location. Then implement this by
applying transformations inreverse order, and do your drawing.

The final and correct fragment of code for the rotation is shown in the code block below.

Lecture Notes 24 CMSC 427

Drawing an Rotated Rectangle (Correct)
glPushMatrix(); // save the current matrix (M)
glTranslatef(x, y, 0); // apply translation (T)
glRotatef(20, 0, 0, 1); // apply rotation (R)
glRectf(-2, -2, 2, 2); // draw rectangle at the origin
glPopMatrix(); // restore the old matrix (M)

Projection Revisited: Last time we discussed the use ofgluOrtho2D() for doing simple 2-dimensional projection.
This call does not really do any projection. Rather, it computes the desired projection transformation and
multiplies it times whatever is on top of the current matrix stack. So, to use this we need to do a few things. First,
set the matrix mode toGL PROJECTION, load an identity matrix (just for safety), and the callgluOrtho2D().
Because of the convention that the Modelview mode is the default, we will set the mode back when we are done.

Two Dimensional Projection
glMatrixMode(GL_PROJECTION); // set projection matrix
glLoadIdentity(); // initialize to identity
gluOrtho2D(left, right, bottom top); // set the drawing area
glMatrixMode(GL_MODELVIEW); // restore Modelview mode

If you only set the projection once, then initializing the matrix to the identity is typically redundant (since this
is the default value), but it is a good idea to make a habit of loading the identity for safety. If the projection does
not change throughout the execution of our program, and so we include this code in our initializations. It might
be put in the reshape callback if reshaping the window alters the projection.

How is it done: How doesgluOrtho2D() andglViewport() set up the desired transformation from the idealized drawing
window to the viewport? Well, actually OpenGL does this in two steps, first mapping from the window to
canonical2 × 2 window centered about the origin, and then mapping this canonical window to the viewport.
The reason for this intermediate mapping is that the clipping algorithms are designed to operate on this fixed
sized window (recall the figure given earlier). The intermediate coordinates are often callednormalized device
coordinates.

As an exercise in deriving linear transformations, let us consider doing this all in one shot. LetW denote the
idealized drawing window and letV denote the viewport. LetWr, Wl, Wb, andWt denote the left, right, bottom
and top of the window. (The text calls thesexwmin, xwmax,ywmin, andywmax, respectively.) DefineVr, Vl, Vb,
andVt similarly for the viewport. We wish to derive a linear transformation that maps a point(x, y) in window
coordinates to a point(x′, y′) in viewport coordinates. See Fig. 18.

(x,y)

(x’,y’)

Vl VrWr

Wb

Wt

Wl

Vt

Vb

Fig. 18: Window to Viewport transformation.

Our book describes one way of doing this in Section 6-3. Just for the sake of variety, we will derive it in an
entirely different way. (Check them both out.) Letf(x, y) denote this function. Since the function is linear, and
clearly it operates onx andy independently, clearly

(x′, y′) = f(x, y) = (sxx + tx, syy + ty),

Lecture Notes 25 CMSC 427

wheresx, tx, sy andty, depend on the window and viewport coordinates. Let’s derive whatsx andtx are using
simultaneous equations. We know that thex-coordinates for the left and right sides of the window (Wl andWr)
should map to the left and right sides of the viewport (Vl andVr). Thus we have

sxWl + tx = Vl sxWr + tx = Vr.

We can solve these equations simultaneously. By subtracting them to eliminatetx we have

sx =
Vr − Vl

Wr −Wl
.

Plugging this back into to either equation and solving fortx we have

tx = Vl − sxWl

A similar derivation forsy andty yields

sy =
Vt − Vb

Wt −Wb
ty = Vb − syWb

These four formulas give the desired final transformation.

Lecture 6: Geometry and Geometric Programming

Reading: Appendix A in Hearn and Baker.

Geometric Programming: We are going to leave our discussion of OpenGL for a while, and discuss some of the
basic elements of geometry, which will be needed for the rest of the course. There are many areas of computer
science that involve computation with geometric entities. This includes not only computer graphics, but also
areas like computer-aided design, robotics, computer vision, and geographic information systems. In this and
the next few lectures we will consider how this can be done, and how to do this in a reasonably clean and painless
way.

Computer graphics deals largely with the geometry of lines and linear objects in 3-space, because light travels
in straight lines. For example, here are some typical geometric problems that arise in designing programs for
computer graphics.

Geometric Intersections: Given a cube and a ray, does the ray strike the cube? If so which face? If the ray is
reflected off of the face, what is the direction of the reflection ray?

Orientation: Three noncollinear points in 3-space define a unique plane. Given a fourth pointq, is it above,
below, or on this plane?

Transformation: Given unit cube, what are the coordinates of its vertices after rotating it 30 degrees about the
vector(1, 2, 1).

Change of coordinates:A cube is represented relative to some standard coordinate system. What are its coor-
dinates relative to a different coordinate system (say, one centered at the camera’s location)?

Such basic geometric problems are fundamental to computer graphics, and over the next few lectures, our goal
will be to present the tools needed to answer these sorts of questions. (By the way, a good source of information
on how to solve these problems is the series of books entitled “Graphics Gems”. Each book is a collection of
many simple graphics problems and provides algorithms for solving them.)

Lecture Notes 26 CMSC 427

Coordinate-free programming: If you look at almost any text on computer graphics (ours included) you will find
that the section on geometric computing begins by introducing coordinates, then vectors, then matrices. Then
what follows are many long formulas involving many4× 4 matrices. These formulas are handy, because (along
with some procedures for matrix multiplication) we can solve many problems in computer graphics. Unfortu-
nately, from the perspective of software design they are a nightmare, because the intention of the programmer
has been lost in all the “matrix crunching.” The product of a matrix and a vector can have many meanings. It
may represent a change of coordinate systems, it may represent a transformation of space, and it may represent
a perspective projection.

We will attempt to develop a clean, systematic way of thinking about geometric computations. This method
is calledcoordinate-free programming(so named by Tony DeRose, its developer). Rather than reducing all
computations to vector-matrix products, we will express geometric computations in the form of high-level geo-
metric operations. These in turn will be implemented using low-level matrix computations, but if you use a good
object-oriented programming language (such as C++ or Java) these details are hidden. Henceforth, when the
urge to write down an expression involving point coordinates comes to you, ask yourself whether it is possible
to describe this operation in a high-level coordinate-free form.

Ideally, this should be the job of a good graphics API. Indeed, OpenGL does provide the some support for
geometric operations. For example, it provides procedures for performing basic affine transformations. Unfor-
tunately, a user of OpenGL is still very aware of underlying presence of vectors and matrices in programming.
A really well designed API would allow us to conceptualize geometry on a higher level.

Geometries: Before beginning we should discuss a little history. Geometry is one of the oldest (if not the old-
est) branches of mathematics. Its origins were in land surveying (and hence its name: geo=earth, and me-
tria=measure). Surveying became an important problem as the advent of agriculture required some way of
defining the boundaries between one family’s plot and anothers.

Ancient civilizations (the Egyptians, for example) must have possessed a fairly sophisticated understanding of
geometry in order to build complex structures like the pyramids. However, it was not until much later in the
time of Euclid in Greece in the 3rd century BC, that the mathematical field of geometry was first axiomatized
and made formal. Euclid worked without the use of a coordinate system. It was much later in the 17th century
when cartesian coordinates were developed (by Descartes), which allowed geometric concepts to be expressed
arithmetically.

In the late 19th century a revolutionary shift occurred in people’s view of geometry (and mathematics in gen-
eral). Up to this time, no one questioned that there is but one geometry, namely the Euclidean geometry. Math-
ematicians like Lobachevski and Gauss, suggested that there may be other geometric systems which are just as
consistent and valid as Euclidean geometry, but in which different axioms apply. These are callednoneuclidean
geometries, and they played an important role in Einstein’s theory of relativity.

We will discuss three basic geometric systems: affine geometry, Euclidean geometry, and projective geometry.
Affine geometry is the most basic of these. Euclidean geometry builds on affine geometry by adding the con-
cepts of angles and distances. Projective geometry is more complex still, but it will be needed in performing
perspective projections.

Affine Geometry: The basic elements ofaffine geometryarescalars(which we can just think of as being real num-
bers),pointsandfree vectors(or simplyvectors). Points are used to specify position. Free vectors are used to
specify direction and magnitude, but have no fixed position. The term “free” means that vectors do not nec-
essarily emanate from some position (like the origin), but float freely about in space. There is a special vector
called thezero vector, ~0, that has no magnitude, such that~v + ~0 = ~0 + ~v = ~v. Note in particular that we did
not define azero pointor “origin” for affine space. (Although we will eventually have to break down and define
something like this in order, simply to be able to define coordinates for our points.)

You might ask, why make a distinction between points and vectors? Both can be represented in the same way
as a list of coordinates. The reason is to avoid hiding the intention of the programmer. For example, it makes
perfect sense to multiply a vector and a scalar (we stretch the vector by this amount). It is not so clear that it

Lecture Notes 27 CMSC 427

makes sense to multiply a point by a scalar. By keeping these concepts separate, we make it possible to check
the validity of geometric operations.

We will use the following notational conventions. Points will be denotes with upper-case Roman letters (e.g.,
P , Q, andR), vectors will be denoted with lower-case Roman letters (e.g.,u, v, andw) and often to emphasize
this we will add an arrow (e.g.,~u, ~v, ~w), and scalars will be represented as lower case Greek letters (e.g.,α, β,
γ). In our programs scalars will be translated to Roman (e.g.,a, b, c).

The table below lists the valid combinations of these entities. The formal definitions are pretty much what you
would expect. Vector operations are applied in the same way that you learned in linear algebra. For example,
vectors are added in the usual “tail-to-head” manner. The differenceP −Q of two points results in a free vector
directed fromQ to P . Point-vector additionR +~v is defined to be the translation ofR by displacement~v. Note
that some operations (e.g. scalar-point multiplication, and addition of points) are explicitly not defined.

vector← scalar· vector, vector← vector/scalar scalar-vector multiplication
vector← vector+ vector, vector← vector− vector vector-vector addition
vector← point− point point-point difference
point← point+ vector, point← point− vector point-vector addition

v

R+v

R

point−vector addition

P

point subtraction

P−Q

Qu+v

u v

vector addition

Fig. 19: Affine operations.

Affine Combinations: Although the algebra of affine geometry has been careful to disallow point addition and scalar
multiplication of points, there is a particular combination of two points that we will consider legal. The operation
is called anaffine combination.

Let’s say that we have two pointsP andQ and want to compute their midpointR, or more generally a pointR
that subdivides the line segmentPQ into the proportionsα and1− α, for someα ∈ [0, 1]. (The caseα = 1/2
is the case of the midpoint). This could be done by taking the vectorQ−P , scaling it byα, and then adding the
result toP . That is,

R = P + α(Q− P).

Another way to think of this pointR is as aweighted averageof the endpointsP andQ. Thinking ofR in these
terms, we might be tempted to rewrite the above formula in the following (illegal) manner:

R = (1− α)P + αQ.

Observe that asα ranges from 0 to 1, the pointR ranges along the line segment fromP to Q. In fact, we may
allow to become negative in which caseR lies to the left ofP (see the figure), and ifα > 1, thenR lies to the
right of Q. The special case when0 ≤ α ≤ 1, this is called aconvex combination.

In general, we define the following two operations for points in affine space.

Affine combination: Given a sequence of pointsP1, P2, . . . , Pn, an affine combination is any sum of the form

α1P1 + α2P2 + . . . + αnPn,

whereα1, α2, . . . , αn are scalars satisfying
∑

i αi = 1.

Lecture Notes 28 CMSC 427

P

Q

R = P + (Q−P)
P

Q Q

P
α < 0

0 < α < 1

α > 1

Q+ P

2
3

2
3

1
3

Fig. 20: Affine combinations.

Convex combination: Is an affine combination, where in addition we haveαi ≥ 0 for 1 ≤ i ≤ n.

Affine and convex combinations have a number of nice uses in graphics. For example, any three noncollinear
points determine a plane. There is a 1–1 correspondence between the points on this plane and the affine combina-
tions of these three points. Similarly, there is a 1–1 correspondence between the points in the triangle determined
by the these points and the convex combinations of the points. In particular, the point(1/3)P +(1/3)Q+(1/3)R
is thecentroidof the triangle.

We will sometimes be sloppy, and write expressions of the following sort (which is clearly illegal).

R =
P + Q

2
.

We will allow this sort of abuse of notation provided that it is clear that there is a legal affine combination that
underlies this operation.

To see whether you understand the notation, consider the following questions. Given three points in the 3-space,
what is the union of all their affine combinations? (Ans: the plane containing the 3 points.) What is the union
of all their convex combinations? (Ans: The triangle defined by the three points and its interior.)

Euclidean Geometry: In affine geometry we have provided no way to talk about angles or distances. Euclidean
geometry is an extension of affine geometry which includes one additional operation, called theinner product.

The inner product is an operator that maps two vectors to a scalar. The product of~u and~v is denoted commonly
denoted(~u,~v). There are many ways of defining the inner product, but any legal definition should satisfy the
following requirements

Positiveness:(~u, ~u) ≥ 0 and(~u, ~u) = 0 if and only if ~u = ~0.

Symmetry: (~u,~v) = (~v, ~u).

Bilinearity: (~u,~v + ~w) = (~u,~v) + (~u, ~w), and(~u, α~v) = α(~u,~v). (Notice that the symmetric forms follow by
symmetry.)

See a book on linear algebra for more information. We will focus on a the most familiar inner product, called the
dot product. To define this, we will need to get our hands dirty with coordinates. Suppose that thed-dimensional
vector~u is represented by the coordinate vector(u0, u1, . . . , ud−1). Then define

~u · ~v =
d−1∑
i=0

uivi,

Note that inner (and hence dot) product is defined only for vectors, not for points.

Using the dot product we may define a number of concepts, which are not defined in regular affine geometry.
Note that these concepts generalize to all dimensions.

Length: of a vector~v is defined to be|~v| = √~v · ~v.

Lecture Notes 29 CMSC 427

Normalization: Given any nonzero vector~v, define thenormalizationto be a vector of unit length that points
in the same direction as~v. We will denote this bŷv:

v̂ =
~v

|~v| .

Distance between points:dist(P,Q) = |P −Q|.
Angle: between two nonzero vectors~u and~v (ranging from 0 toπ) is

ang(~u,~v) = cos−1

(
~u · ~v
|~u||~v|

)
= cos−1(û · v̂).

This is easy to derive from the law of cosines.

Orthogonality: ~u and~v areorthogonal(or perpendicular) if~u · ~v = 0.

Orthogonal projection: Given a vector~u and a nonzero vector~v, it is often convenient to decompose~u into
the sum of two vectors~u = ~u1 + ~u2, such that~u1 is parallel to~v and~u2 is orthogonal to~v.

~u1 =
(~u · ~v)
(~v · ~v)

~v ~u2 = ~u− ~u1.

(As an exercise, verify that~u2 is orthogonal to~v.) Note that we can ignore the denominator if we know
that~v is already normalized to unit length. The vector~u1 is called theorthogonal projectionof ~u onto~v.

θ

u

v

Orthogonal projectionAngle between vectors

v

u

2u

1u

Fig. 21: The dot product and its uses.

Lecture 7: Coordinate Frames and Homogeneous Coordinates

Reading: Chapter 5 and Appendix A in Hearn and Baker.

Bases, Vectors, and Coordinates:Last time we presented the basic elements of affine and Euclidean geometry:
points, vectors, and operations such as affine combinations. However, as of yet we have no mechanism for
defining these objects. Today we consider the lower level issues of how these objects are represented using
coordinate frames and homogeneous coordinates.

The first question is how to represent points and vectors in affine space. We will begin by recalling how to do
this in linear algebra, and generalize from there. We will assume familiarity with concepts from linear algebra.
(If any of this seems unfamiliar, please consult any text in linear algebra.) We know from linear algebra that if
we have 2-linearly independent vectors,~u0 and~u1 in 2-space, then we can represent any other vector in 2-space
uniquely as alinear combinationof these two vectors:

~v = α0~u0 + α1~u1,

for some choice of scalarsα0, α1. Thus, given any such vectors, we can use them to represent any vector in
terms of a triple of scalars(α0, α1). In generald linearly independent vectors in dimensiond is called abasis.

Lecture Notes 30 CMSC 427

u0

u1

v

(a)

u0

u1

v

(b)

x
y

z
0 1v=2u + 3u

Fig. 22: Bases and linear combinations in linear algebra (a) and the standard basis (b).

Now, let us consider 3-space. The most familiar basis, called thestandard basis, is composed of the threeunit
vectors. In linear algebra, you probably learned to refer to these unit vectors by the correspondingcoordinate
vectors, for example:

~ex =


 1

0
0


 ~ey =


 0

1
0


 ~ez =


 0

0
1


 .

These vectors have the nice property of being of length 1 and are all mutually orthogonal. Such a basis is called
anorthonormal basis. Because it will be inconvenient to refer to column vectors in the text, we will often use
the T symbol (which denotes transpose) to express them more succinctly. For example, we could also write
~ex = (1, 0, 0)T . With very few exceptions all vectors will be represented as column vectors.

Note that we are using the term “vector” in two different senses here, one as a geometric entity and the other as
a sequence of numbers, given in the form of a row or column. The first is the object of interest (i.e., the abstract
data type, in computer science terminology), and the latter is a representation. As is common in object oriented
programming, we should “think” in terms of the abstract object, even though in our programming we will have
to get dirty and work with the representation itself.

Since these three vectors are linearly independent, they form a basis. Given any vector in 3-space, we can
represent it as a linear combination of these vectors:

~v = αx~ex + αy~ey + αz~ez,

The column vector(αx, αy, αz)T contains theCartesian coordinatesof the vector~v.

Coordinate Frames and Coordinates:Now let us turn from linear algebra to affine geometry. To define a coordinate
frame for an affine space we would like to find some way to represent any object (point or vector) as a sequence
of scalars. Thus, it seems natural to generalize the notion of a basis in linear algebra to define a basis in affine
space. Note that free vectors alone are not enough to define a point (since we cannot define a point by any
combination of vector operations). To specify position, we will designate an arbitrary a point, denotedO, to
serve as theorigin of our coordinate frame. Observe that for any pointP , P −O is just some vector~v. Such a
vector can be expressed uniquely as a linear combination of basis vectors. Thus, given the origin pointO and
any set of basis vectors~ui, any pointP can be expressed uniquely as a sum ofO and some linear combination
of the basis vectors:

P = α0~u0 + α1~u1 + α2~u2 +O,

for some sequence of scalarsα0, α1, α2. This is how we will define a coordinate frame for affine spaces. In
general we have:

Definition: A coordinate framefor a d-dimensional affine space consists of a point, called theorigin (which
we will denoteO) of the frame, and a set ofd linearly independentbasis vectors.

Lecture Notes 31 CMSC 427

In the figure below we show a pointP and vector−→w . We have also given two coordinate frames,F andG.
Observe thatP and−→w can be expressed as functions ofF andG as follows:

P = 3 · F.~e0 + 2 · F.~e1 + F.O
−→w = 2 · F.~e0 + 1 · F.~e1

P = 1 ·G.~e0 + 2 ·G.~e1 + G.O
−→w = −1 ·G.~e0 + 0 ·G.~e1

Notice that the position of−→w is immaterial, because in affine geometry vectors are free to float where they like.

P

F.O
F.e0F.e0

F.O

F.e1

w

G.e1

G.O
G.e0

w

F.e1

G.e0
G.O

G.e1P

P[F] =(3, 2, 1) =(2, 1, 0)w[F] P[G]=(1, 2, 1) =(−1, 0, 0)w[G]

Fig. 23: Coordinate Frame.

The Coordinate Axiom and Homogeneous Coordinates:Recall that our goal was to represent both points and vec-
tors as a list of scalar values. To put this on a more formal footing, we introduce the following axiom.

Coordinate Axiom: For every pointP in affine space,0 · P = ~0, and1 · P = P .

This is a violation of our rules for affine geometry, but it is allowed just to make the notation easier to understand.
Using this notation, we can now write the point and vector of the figure in the following way.

P = 3 · F.~e0 + 2 · F.~e1 + 1 · F.O
−→w = 2 · F.~e0 + 1 · F.~e1 + 0 · F.O

Thus, relative to the coordinate frameF = 〈F.~e0, F.~e1, F.O〉, we can expressP and−→w as coordinate vectors
relative to frameF as

P [F] =


 3

2
1


 and −→w [F] =


 2

1
0


 .

We will call thesehomogeneous coordinatesrelative to frameF . In some linear algebra conventions, vectors are
written as row vectors and some as column vectors. We will stick with OpenGL’s conventions, of using column
vectors, but we may be sloppy from time to time.

As we said before, the term “vector” has two meanings: one as anfree vectorin an affine space, and now as a
coordinate vector. Usually, it will be clear from context which meaning is intended.

In general, to represent points and vectors ind-space, we will use coordinate vectors of lengthd+1. Points have
a last coordinate of 1, and vectors have a last coordinate of 0. Some authors put the homogenizing coordinate
first rather than last. There are actually good reasons for doing this. But we will stick with standard engineering
conventions and place it last.

Lecture Notes 32 CMSC 427

Properties of homogeneous coordinates:The choice of appending a 1 for points and a 0 for vectors may seem to
be a rather arbitrary choice. Why not just reverse them or use some other scalar values? The reason is that this
particular choice has a number of nice properties with respect to geometric operations.

For example, consider two pointsP and Q whose coordinate representations relative to some frameF are
P [F] = (3, 2, 1)T andQ[F] = (5, 1, 1)T , respectively. Consider the vector

~v = P −Q.

If we apply the difference rule that we defined last time for points, and then convert this vector into it coordinates
relative to frameF , we find that~v[F] = (−2, 1, 0)T . Thus, to compute the coordinates ofP −Q we simply take
the component-wise difference of the coordinate vectors forP andQ. The 1-components nicely cancel out, to
give a vector result.

=(3, 2, 1)

Q
=(−2, 1, 0)

Q[F]
P−QP

P[F]

=(5, 1, 1)

(P−Q)[F]
F.e1

F.e0F.O

Fig. 24: Coordinate arithmetic.

In general, a nice feature of this representation is the last coordinate behaves exactly as it should. LetU andV
be either points or vectors. After a number of operations of the formsU + V or U − V or αU (when applied to
the coordinates) we have:

• If the last coordinate is 1, then the result is apoint.

• If the last coordinate is 0, then the result is avector.

• Otherwise, this is not a legal affine operation.

This fact can be proved rigorously, but we won’t worry about doing so.

This suggests how one might do type checking for a coordinate-free geometry system. Points and vectors
are stored using a common base type, which simply consists of a 4-element array of scalars. We allow the
programmer to perform any combination of standard vector operations on coordinates. Just prior to assignment,
check that the last coordinate is either 0 or 1, appropriate to the type of variable into which you are storing the
result. This allows much more flexibility in creating expressions, such as:

centroid← P + Q + R

3
,

which would otherwise fail type checking. (Unfortunately, this places the burden of checking on the run-time
system. One approach is to define the run-time system so that type checking can be turned on and off. Leave it
on when debugging and turn it off for the final version.)

Alternative coordinate frames: Any geometric programming system must deal with two conflicting goals. First, we
want points and vectors to be represented with respect to someuniversal coordinate frame(so we can operate
on points and vectors by just operating on their coordinate lists). But it is often desirable to define points relative
to some convenientlocal coordinate frame. For example, latitude and longitude may be a fine way to represent
the location of a city, but it is not a very convenient way to represent the location of a character on this page.

Lecture Notes 33 CMSC 427

What is the most universal coordinate frame? There is nothing intrinsic to affine geometry that will allow us
to define such a thing, so we will do so simply by convention. We will fix a frame called thestandard frame
from which all other objects will be defined. It will be anorthonormal frame, meaning that its basis vectors are
orthogonal to each other and each is of unit length. We will denote the origin byO and the basis vectors by~ei.
The coordinates of the elements of the standard frame (in 3-space) are defined to be:

~e0 =




1
0
0
0


 ~e1 =




0
1
0
0


 ~e2 =




0
0
1
0


 O =




0
0
0
1




Change of coordinates (example):One of the most important geometric operations in computer graphics is that of
converting points and vectors from one coordinate frame to another. Recall from the earlier figure that relative
to frameF we haveP [F] = (3, 2, 1)T , and−→w [F] = (2, 1, 0)T . We derived the coordinates relative to frame
G by inspection, but how could we do this computationally? Our goal is to find scalarsβ0, β1, β2, such that
P = β0G.e0 + β1G.e1 + β2G.O.

Given thatF is a frame, we can describe the elements ofG in terms ofF . If we do so we haveG.e0[F] =
(−2,−1, 0)T , G.e1[F] = (0, 1, 0)T , andG.O[F] = (5, 1, 1)T . Using this representation, it follows thatβ0, β1,
andβ2 must satisfy 

 3
2
1


 = β0


 −2
−1
0


+ β1


 0

1
0


+ β2


 5

1
1


 .

If you break this vector equation into its three components, you get three equations, and three unknowns. If you
solve this system of equations (by methods that you learned in linear algebra) then you find that(β0, β1, β2) =
(1, 2, 1). Hence we have

P [F] =


 3

2
1


 = 1


 −2
−1
0


+ 2


 0

1
0


+ 1


 5

1
1




= 1 ·G.e0[F] + 2 ·G.e1[F] + 1 ·G.O[F].

Therefore, the coordinates ofP relative toG are

P [G] =


 1

2
1


 .

As an exercise, see whether you can derive the fact that the coordinates for−→w [G] are(−1, 0, 0)T .

Change of coordinates (general case):We would like to generalize this for an arbitrary pair of frames. For concrete-
ness, let us assume thatF is the standard frame, and suppose that we defineG relative to this standard frame by
giving the coordinates for the basis vectorsG.e0, G.e1 and origin pointG.O relative to frameF :

G.e0[F] = (g00, g01, 0)T ,

G.e1[F] = (g10, g11, 0)T ,

G.O[F] = (g20, g21, 1)T .

Further suppose that we know the coordinate of some pointP relative toF , namelyP [F] = (α0, α1, α2)T . We
know thatα2 = 1 sinceP is a point, but we will leave it as a variable to get an expression that works for free
vectors as well.

Our goal is to determineP [G] = (β0, β1, β2)T . Therefore theβ values must satisfy:

P = β0G.e0 + β1G.e2 + β2G.O.

Lecture Notes 34 CMSC 427

This is an expression in affine geometry. If we express this in terms ofF ’s coordinate frame we have
 α0

α1

α2


 = β0


 g00

g01

0


+ β1


 g10

g11

0


+ β2


 g20

g21

1


 =


 g00 g10 g20

g01 g11 g21

0 0 1




 β0

β1

β2


 .

Let M denote the3×3 matrix above. Note that its columns are the basis elements forG, expressed as coordinate
vectors in terms ofF .

M =


 g00 g10 g20

g01 g11 g21

0 0 1


 =

(
G.~e0[F]

∣∣∣∣∣ G.~e1[F]

∣∣∣∣∣ G.O[F]

)
.

Thus, givenP [G] = (β0, β1, β2)T we can multiply this matrix byP [G] to getP [F] = (α0, α1, α2)T .

P [F] = M · P [G]

But this is not what we wanted. We wanted to getP [G] in terms ofP [F]. To do this we compute the inverse
of M , denotedM−1. We claim that if this is a valid basis (that is, if the basis vectors are linearly independent)
then this inverse will exist. Hence we have

P [G] = M−1 · P [F].

In the case of this simple3 × 3, this inverse is easy to compute. However, when we will be applying this, we
will normally be operating in 3-space, and the matrices will now be4 × 4 matrices and the inversion is more
involved.

Important Warning: OpenGL stores matrices incolumn-major order. This means that the elements of a4×4 matrix
are stored by unraveling them column-by-column.


a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15




Unfortunately, C and C++ (and most other programming languages other than Fortran) store matrices inrow-
major order. Consequently, if you declare a matrix to be used, say, inglLoadMatrix() you might use

GLdouble M[4][4];

But to access the element in rowi and columnj, then you need to refer to it byM [j][i] (not M [i][j] as you
normally would). Alternatively, you can declare it as “GLdouble M[16] ” and then perform your own in-
dexing. (You might think for a moment as to how to map an index pairi andj to a row-major offset in this
one-dimensional array.)

Lecture 8: Affine Transformations

Reading: Chapter 5 in Hearn and Baker.

Affine Transformations: So far we have been stepping through the basic elements of geometric programming. We
have discussed points, vectors, and their operations, and coordinate frames and how to change the representation
of points and vectors from one frame to another. Our next topic involves how to map points from one place to

Lecture Notes 35 CMSC 427

another. Suppose you want to draw an animation of a spinning ball. How would you define the function that
maps each point on the ball to its position rotated through some given angle?

We will consider a limited, but interesting class of transformations, calledaffine transformations. These include
(among others) the following transformations of space: translations, rotations, uniform and nonuniform scalings
(stretching the axes by some constant scale factor), reflections (flipping objects about a line) and shearings
(which deform squares into parallelograms). They are illustrated in the figure below.

Rotation Translation Uniform
Scaling Scaling

Reflection ShearingNonuniform

Fig. 25: Examples of affine transformations.

These transformations all have a number of things in common. For example, they all map lines to lines. Note that
some (translation, rotation, reflection) preserve the lengths of line segments and the angles between segments.
Others (like uniform scaling) preserve angles but not lengths. Others (like nonuniform scaling and shearing) do
not preserve angles or lengths.

All of the transformation listed above preserve basic affine relationships. (In fact, this is the definition of an
affine transformation.) For example, given any transformationT of one of the above varieties, and given two
pointsP andQ, and any scalarα,

R = (1− α)P + αQ ⇒ T (R) = (1− α)T (P) + αT (Q).

(We will leave the proof that each of the above transformations is affine as an exercise.) Putting this more
intuitively, if R is the midpoint of segmentPQ, before applying the transformation, then it is the midpoint after
the transformation.

There are a couple of special cases of affine transformations that are worth noting.

Rigid transformations: These transformations (also calledEuclidean transformations) preserve both angles
and lengths. Examples include translations, rotations, reflections and their combinations.

Orthogonal transformations: These transformations preserve angles but not necessarily lengths. Examples
include translation, rotation, uniform scaling, and their combinations.

Homothetic transformations: These transformations preserves slopes of lines (and hence preserve angles), but
do not necessarily preserve lengths. Examples include translation, uniform scaling, and their combinations.

Matrix Representation of Affine Transformations: Let us concentrate on transformations in 3-space. An important
consequence of the preservation of affine relations is the following.

R = α0F.~e0 + α1F.~e1 + α2F.~e2 + α3O
⇒

T (R) = α0T (F.~e0) + α1T (F.~e1) + α2T (F.~e2) + α3T (O).

Hereα3 is either 0 (for vectors) or 1 (for points). The equation on the left is the representation of a point or
vectorR in terms of the coordinate frameF . This implication shows that if we know the image of the frame
elements under the transformation, then we know the imageR under the transformation.

Lecture Notes 36 CMSC 427

From the previous lecture we know that the homogeneous coordinate representation ofR relative to frameF
is R[F] = (α0, α1, α2, α3)T . (Recall that the superscriptT in this context means to transpose this row vector
into a column vector, and should not be confused with the transformationT .) Thus, we can express the above
relationship in the following matrix form.

T (R)[F] =

(
T (F.~e0)[F]

∣∣∣∣∣ T (F.~e1)[F]

∣∣∣∣∣ T (F.~e2)[F]

∣∣∣∣∣ T (F.O)[F]

)
α0

α1

α2

α3


 .

Here the columns of the array are the representation (relative toF) of the images of the elements of the frame
underT . This implies that applying an affine transformation (in coordinate form) is equivalent to multiplying
the coordinates by a matrix. In dimensiond this is a(d + 1)× (d + 1) matrix.

If this all seems a bit abstract. In the remainder of the lecture we will give some concrete examples of trans-
formations. Rather than considering this in the context of 2-dimensional transformations, let’s consider it in
the more general setting of 3-dimensional transformations. The two dimensional cases can be extracted by just
ignoring the rows and columns for thez-coordinates.

Translation: Translation by a fixed vector~v maps any pointP to P + ~v. Note that free vectors are not altered
by translation. (Can you see why?)
Suppose that relative to the standard frame,v[F] = (αx, αy, αz, 0)T are the homogeneous coordinates
of ~v. The three unit vectors are unaffected by translation, and the origin is mapped toO + ~v, whose
homogeneous coordinates are(αx, αy, αz, 1). Thus, by the rule given earlier, the homogeneous matrix
representation for this translation transformation is

T (~v) =




1 0 0 αx

0 1 0 αy

0 0 1 αz

0 0 0 1


 .

O+v

O

Translation Uniform Scaling

0−e

Reflection

e0

e1

e0 2e0

e1

2e1

Fig. 26: Derivation of transformation matrices.

Scaling: Uniform scalingis a transformation which is performed relative to some central fixed point. We will
assume that this point is the origin of the standard coordinate frame. (We will leave the general case as
an exercise.) Given a scalarβ, this transformation maps the object (point or vector) with coordinates
(αx, αy, αz, αw)T to (βαx, βαy, βαz, αw)T .
In general, it is possible to specify separate scaling factors for each of the axes. This is callednonuniform
scaling. The unit vectors are each stretched by the corresponding scaling factor, and the origin is unmoved.
Thus, the transformation matrix has the following form:

S(βx, βy, βz) =




βx 0 0 0
0 βy 0 0
0 0 βz 0
0 0 0 1


 .

Lecture Notes 37 CMSC 427

Observe that both points and vectors are altered by scaling.

Reflection: A reflection in the plane is given a line and maps points by flipping the plane about this line. A
reflection in 3-space is given a plane, and flips points in space about this plane. In this case, reflection is
just a special case of scaling, but where the scale factor is negative. For example, to reflect points about the
yz-coordinate plane, we want to scale thex-coordinate by−1. Using the scaling matrix above, we have
the following transformation matrix:

Fx =



−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


 .

The cases for the other two coordinate frames are similar. Reflection about an arbitrary line or plane is left
as an exercise.

Rotation: In its most general form, rotation is defined to take place about some fixed point, and around some
fixed vector in space. We will consider the simplest case where the fixed point is the origin of the coordinate
frame, and the vector is one of the coordinate axes. There are three basic rotations: about thex, y and
z-axes. In each case the rotation is through an angleθ (given in radians). The rotation is assumed to be in
accordance with a right-hand rule: if your right thumb is aligned with the axes of rotation, then positive
rotation is indicated by your fingers.
Consider the rotation about thez-axis. Thez-unit vector and origin are unchanged. Thex-unit vector is
mapped to(cos θ, sin θ, 0, 0)T , and they-unit vector is mapped to(− sin θ, cos θ, 0, 0)T . Thus the rotation
matrix is:

Rz(θ) =




cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1


 .

x,y

z

x,y

z

x

y

Rotation (about z) Shear (orthogonal to z)

θ
θ

(sh , sh ,1)x y

θ(cos , sin)θ

(−sin , cos)θ θ

Fig. 27: Rotation and shearing.

For the other two axes we have

Rx(θ) =




1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1


 , Ry(θ) =




cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1


 .

Shearing: A shearing transformation is the hardest of the group to visualize. Think of a shear as a transforma-
tion that maps a square into a parallelogram in the plane, or a cube into a parallelepiped in 3-space. We
will consider the simplest form, in which we start with a unit cube whose lower left corner coincides with
the origin. Consider one of the axes, say thez-axis. The face of the cube that lies on thexy-coordinate
plane does not move. The face that lies on the planez = 1, is translated by a vector(shx, shy). In general,
a pointP = (px, py, pz, 1) is translated by the vectorpz(shx, shy, 0, 0). This vector is orthogonal to the

Lecture Notes 38 CMSC 427

z-axis, and its length is proportional to thez-coordinate ofP . This is called anxy-shear. (Theyz- and
xz-shears are defined analogously.)
Under thexy-shear, the origin andx- andy-unit vectors are unchanged. Thez-unit vector is mapped to
(shx, shy, 1, 0)T . Thus the matrix for this transformation is:

Hxy(θ) =




1 0 shx 0
0 1 shy 0
0 0 1 0
0 0 0 1


 .

Shears involving any other pairs of axes are defined similarly.

Building Transformations through Composition: Now that we know some basic affine transformations, we can use
these to construct more complex ones. Affine transformations are closed under composition. (This is not hard
to prove.) This means that ifS andT are two affine transformations, then the composition(S ◦ T), defined
(S ◦ T)(P) = T (S(P)), is also an affine transformation. SinceS andT can be represented in matrix form as
homogeneous matricesMS andMT , then it is easy to see that we can express their composition as the matrix
productMT MS . Notice the reversal of order here, since the last matrix in the produce is the first to be applied.

One way to compute more complex transformation is compose a series of the basic transformations together.
For example, suppose that you wanted to rotate about a vertical line (parallel toz) passing through the pointP .
We could do this by first translating the plane by the vectorO−P , so that the (old) pointP now coincides with
the (new) origin. Then we could apply our rotation about the (new) origin. Finally, we translate space back by
P −O so that the origin is mapped back toP . The resulting sequence of matrices would be

Rz(θ, P) = T (P −O) ·Rz(θ) · T (O − P).

Building Transformations “in One Shot”: Another approach for defining transformations is to compute the matrix
directly by determining the images of the basis elements of the standard frame. Once this is done, you can simply
create the appropriate transformation matrix by concatenating these images. This is often an easier approach
than composing many basic transformations. I call this theone-shot methodbecause it constructs the matrix in
a single step.

To illustrate the idea, consider the 2-dimensional example illustrated below. We want to compute a transforma-
tion that maps the square object shown on the left to positionP and rotated aboutP by some angleθ. To do
this, we can define two framesF andG, such that the object is in the same position relative to each frame, as
shown in the figure.

Q’

QO

G.O

F.O

θ(−sin , cos) (cos , sin)θ θ θ
θθ

P

Fig. 28: Constructing affine transformations.

For example, suppose for simplicity thatF is just the standard frame. (We’ll leave the more general case, where
neitherF norG is the standard frame as an exercise.) Then the framesG is composed of the elements

G.~e0 =


 cos θ

sin θ
0


 G.~e1 =


 − sin θ

cos θ
0


 G.O =


 3

1
1


 .

Lecture Notes 39 CMSC 427

To compute the transformation matrixA, we express the basis elements ofG relative toF , and then concatenate
them together. We have

A =


 cos θ − sin θ 3

sin θ cos θ 1
0 0 1


 .

As a check, consider the lower right corner pointQ of the original square, whose coordinates relative toF are
(1, 0, 1)T . The productA ·Q[F] yields

A ·Q[F] =


 cos θ − sin θ 3

sin θ cos θ 1
0 0 1




 1

0
1


 =


 3 + cos θ

1 + sin θ
1


 = P [F] +


 cos θ

sin θ
0


 .

These are the coordinates ofQ′, as expected.

Lecture 9: More Geometric Operators and Applications

Reading: Cross product is discussed in the Appendix of Hearn and Baker and orientation testing is not discussed. See
Chapter 6 for a discussion of various 2-dimensional line clipping algorithms. The Liang-Barsky algorithm discussed
here is discussed in Section 6.7. The coordinate-free presentation given here is quite a bit different from the one given
in the book and generalizes to all dimensions.

More Geometric Operators: So far we have discussed two important geometric operations used in computer graph-
ics, change of coordinate systems and affine transformations. We saw that both operations could be expressed
as the product of a matrix and vector (both in homogeneous form). Next we consider two more geometric
operations, which are of a significantly different nature.

Cross Product: Here is an important problem in 3-space. You are given two vectors and you want to find a third
vector that is orthogonal to these two. This is handy in constructing coordinate frames with orthogonal bases.
There is a nice operator in 3-space, which does this for us, called thecross product.

The cross product is usually defined in standard linear 3-space (since it applies to vectors, not points). So we
will ignore the homogeneous coordinate here. Given two vectors in 3-space,~u and~v, their cross productis
defined to be

~u× ~v =


 uyvz − uzvy

uzvx − uxvz

uxvy − uyvx


 .

u

v

u vx

Fig. 29: Cross product.

A nice mnemonic device for remembering this formula, is to express it in terms of the following symbolic
determinant:

~u× ~v =

∣∣∣∣∣∣
~ex ~ey ~ez

ux uy uz

vx vy vz

∣∣∣∣∣∣ .
Here~ex, ~ey, and~ez are the three coordinate unit vectors for the standard basis. Note that the cross product is
only defined for a pair of free vectors and only in 3-space. Furthermore, we ignore the homogeneous coordinate
here. The cross product has the following important properties:

Lecture Notes 40 CMSC 427

Skew symmetric: ~u × ~v = −(~v × ~u). It follows immediately that~u × ~u = 0 (since it is equal to its own
negation).

Nonassociative:Unlike most other products that arise in algebra, the cross product isnot associative. That is

(~u× ~v)× ~w 6= ~u× (~v × ~w).

Bilinear: The cross product is linear in both arguments. For example:

~u× (α~v) = α(~u× ~v),
~u× (~v + ~w) = (~u× ~v) + (~u× ~w).

Perpendicular: If ~u and~v are not linearly dependent, then~u × ~v is perpendicular to~u and~v, and is directed
according the right-hand rule.

Angle and Area: The length of the cross product vector is related to the lengths of and angle between the
vectors. In particular:

|~u× ~v| = |u||v| sin θ,

whereθ is the angle between~u and~v. The cross product is usually not used for computing angles because
the dot product can be used to compute the cosine of the angle (in any dimension) and it can be computed
more efficiently. This length is also equal to the area of the parallelogram whose sides are given by~u and
~v. This is often useful.

The cross product is commonly used in computer graphics for generating coordinate frames. Given two basis
vectors for a frame, it is useful to generate a third vector that is orthogonal to the first two. The cross product
does exactly this. It is also useful for generating surface normals. Given two tangent vectors for a surface, the
cross product generate a vector that is normal to the surface.

Orientation: Given two real numbersp andq, there are three possible ways they may be ordered:p < q, p = q, or
p > q. We may define an orientation function, which takes on the values+1, 0, or−1 in each of these cases.
That is, Or1(p, q) = sign(q− p), where sign(x) is either−1, 0, or+1 depending on whetherx is negative, zero,
or positive, respectively. An interesting question is whether it is possible to extend the notion of order to higher
dimensions.

The answer is yes, but rather than comparing two points, in general we can define the orientation ofd + 1
points ind-space. We define theorientationto be the sign of the determinant consisting of their homogeneous
coordinates (with the homogenizing coordinate given first). For example, in the plane and 3-space the orientation
of three pointsP , Q, R is defined to be

Or2(P,Q,R) = sign det


 1 1 1

px qx rx

py qy ry


 , Or3(P,Q,R, S) = sign det




1 1 1 1
px qx rx sx

py qy ry sy

pz qz rz sz


 .

Or(P,Q,R) = +1

R

QP

R

Q

P

Q

P
R

Or(P,Q,R) = 0 Or(P,Q,R) = −1 Or(P,Q,R,S) = +1 Or(P,Q,R,S) = −1

S

P

R QQ R

S

P

Fig. 30: Orientations in 2 and 3 dimensions.

What does orientation mean intuitively? The orientation of three points in the plane is+1 if the trianglePQR
is oriented counter-clockwise,−1 if clockwise, and 0 if all three points are collinear. In 3-space, a positive

Lecture Notes 41 CMSC 427

orientation means that the points follow a right-handed screw, if you visit the points in the orderPQRS. A
negative orientation means a left-handed screw and zero orientation means that the points are coplanar. Note
that the order of the arguments is significant. The orientation of(P,Q,R) is the negation of the orientation of
(P,R,Q). As with determinants, the swap of any two elements reverses the sign of the orientation.

You might ask why put the homogeneous coordinate first? The answer a mathematician would give you is that
is really where it should be in the first place. If you put it last, then positive oriented things are “right-handed” in
even dimensions and “left-handed” in odd dimensions. By putting it first, positively oriented things are always
right-handed in orientation, which is more elegant. Putting the homogeneous coordinate last seems to be a
convention that arose in engineering, and was adopted later by graphics people.

The value of the determinant itself is the area of the parallelogram defined by the vectorsQ − P andR − P ,
and thus this determinant is also handy for computing areas and volumes. Later we will discuss other methods.

Application: Intersection of Line Segments: Orientation is a nice operation to keep in mind. For example, suppose
you want to know whether two line segmentsPQ andRS intersect in the plane. Although this sounds like a
simple problem, it (like many simple geometry primitives) is fraught with special cases and potential pitfalls.
For example, you need to consider the possibility of lines being parallel, collinear, or intersecting in a T-junction,
etc. Let us assume that we are only interested inproper intersections, in which the interiors of the two segments
intersect in exactly one point. (Thus, T-junctions, end-to-end, or collinear intersections are not counted.)

End−to−endCollinearT−junctionProper

Fig. 31: Possible intersection types.

Observe that if any triple of points is collinear, then there is no proper intersection. Assuming that no three of
the points are collinear, then observe that the segments intersect if and only ifP andQ lie on the opposite sides
of the lineRS, and ifR andS lie on opposite sides of the linePQ. We can reduce these to orientation tests. In
particular, ifR andS lie on opposite sides of the linePQ, then Or2(P,Q,R) and Or2(P,Q, S) have opposite
(nonzero) signs, implying that their product is negative. A simple implementation is shown below.

Segment Intersection Test
bool properIntersect(Point P, Point Q, Point R, Point S)
{

return (Or2(P, Q, R) * Or2(P, Q, S) < 0) &&
(Or2(R, S, P) * Or2(R, S, Q) < 0);

}

Notice that this also handles the collinearity issue. Since if any triple is collinear, then one of the orientation
tests will return 0, and there is no way that we can satisfy both conditions. By the way, this is not the most
efficient way of testing intersection, because in computing the orientations separately, there are a number of
repeated calculations. You might consider how to recode this into a more efficient form.

Application: Line Clipping: To demonstrate some of these ideas, we present a coordinate-free algorithm for a clip-
ping a line relative to a convex polygon in the plane.Clipping is the process of trimming graphics primitives
(e.g., line segments, circles, filled polygons) to the boundaries of some window. (See Fig. 32 below.) It is often
applied in 2-space with a rectangular window. However, we shall see later that this procedure can also be invoked
in 3-dimensional space, and remarkably, it is most often invoked in the 4-dimensional space of homogeneous
coordinates, as part of a more general process calledperspective clipping.

Lecture Notes 42 CMSC 427

Line segment Clipping Halfspace

P

R

n

Fig. 32: Clipping and Halfspaces.

There are many different clipping algorithms. We will discuss an algorithm for clipping individual line segments
called theLiang-Barsky algorithm. Our approach will be coordinate-free in nature. The advantage of the
coordinate-free algorithm, which we will discuss, is that it is very easy to derive, and it is very general. It
applies to virtually any sort of line segment clipping and in all dimensions. We will use a generalization of this
procedure to intersect rays with polyhedra in ray shooting.

In 2-space, define ahalfplaneto be the portion of the plane lying to one side of a line. In general, in dimension
d, we define ahalfspaceto the portion ofd-space lying to one side of a(d− 1)-dimensional hyperplane. In any
dimension, a halfspaceH can be represented by a pair〈R,~n〉, whereR is a point lying on the plane and~n is
a normal vector pointing into the halfspace. Observe that a pointP lies within the halfspace if and only if the
vectorP −R forms an angle of at most 90 degrees with respect to~n, that is if

((P −R) · ~n) ≥ 0.

If the dot product is zero, thenP lies on the plane that bounds the halfspace.

A convex polygonin the plane is the intersection of a finite set of halfplanes. (This definition is not quite
accurate, since it allows for unbounded convex polygons, but it is good enough for our purposes.) In general
dimensions, aconvex polyhedronis defined to be the intersection of a finite set of halfspaces. We will discuss the
algorithm for the planar case, but we will see that there is nothing in our discussion that precludes generalization
to higher dimensions.

The input to the algorithm is a set of halfplanesH0, . . . , Hm−1, whereHi = 〈Ri, ~ni〉 and a set of line segments,
S1, . . . , Sn, where each line segment is represented by a pair of points,Pi,0Pi,1. The algorithm works by
clipping each line segment and outputting the resulting clipped segment. Thus it suffices to consider the case
of a single segmentP0P1. If the segment lies entirely outside the window, then we return a special status flag
indicating that the clipped segment is empty.

Parametric line clipper: We represent each line segmentparametrically, using convex combinations. In particular,
any point on the line segmentP0P1 can be represented as

P (α) = (1− α)P0 + αP1, where0 ≤ α ≤ 1.

The algorithm computes two parameter values,α0 andα1, and the resulting clipped line segment isP (α0)P (α1).
We require thatα0 < α1. Initially we setα0 = 0 andα1 = 1. Thus the initial clipped line segment is equal to
the original segment. (Be sure you understand why.)

Our approach is to clip the line segment relative to the halfplane of the polygon, one by one. Let us consider
how to clip one parameterized segment about one halfplane〈R,~n〉. As the algorithm proceeds,α0 increases and
α1 decreases, depending on where the clips are made. If everα0 > α1 then the clipped line is empty, and we
may return.

Lecture Notes 43 CMSC 427

We want to know the value ofα (if any) at which the line supporting the line segment intersects the line
supporting the halfplane. To compute this, we plug the definition ofP (α) into the above condition for lying
within the halfplane,

((P (α)−R) · ~n) ≥ 0,

and we solve forα. Through simple affine algebra we have

((1− α)P0 + αP1)−R) · ~n) ≥ 0
((α(P1 − P0)− (R− P0)) · ~n) ≥ 0

α((P1 − P0) · ~n)− ((R− P0) · ~n) ≥ 0
α((P1 − P0) · ~n) ≥ ((R− P0) · ~n)

αd1 ≥ dr

whered1 = ((P1 − P0) · ~n) anddr = ((R− P0)) · ~n). From here there are a few cases depending ond1.

d1 > 0: Thenα ≥ dr/d1. We set
α0 = max(α0, dr/d1).

If as a resultα0 > α1, then we return a flag indicating that the clipped line segment is empty.

d1 < 0: Thenα ≤ dr/d1. We set
α1 = min(α1, dr/d1).

If as a resultα1 < α0, then we return a flag indicating that the clipped line segment is empty.

d1 = 0: Thenα is undefined. Geometrically this means that the bounding line and the line segment are parallel.
In this case it suffices to check any point on the segment. So, if(P0 − R) · ~n < 0 then we know that the
entire line segment is outside of the halfplane, and so we return a special flag indicating that the clipped
line is empty. Otherwise we do nothing.

Example: Let us consider a concrete example. In the figure given below we have a convex window bounded by 4-
sides,4 ≤ x ≤ 10 and2 ≤ y ≤ 9. To derive a halfplane representation for the sides, we create two points with
(homogeneous) coordinatesR0 = (4, 2, 1)T andR1 = (10, 9, 1)T . Let~ex = (1, 0, 0)T and~ey = (0, 1, 0)T be
the coordinate unit vectors in homogeneous coordinates. Thus we have the four halfplanes

H0 = 〈R0, ~ex〉 H1 = 〈R0, ~ey〉
H2 = 〈R1,−~ex〉 H3 = 〈R1,−~ey〉.

Let us clip the line segmentP0 = (0, 8, 1) to P1 = (16, 0, 1).

R

P
R0

1

1P0
−ex−ey

(4,6)

ex
ey

(16,0)

2

104

9

(0,8)

Fig. 33: Clipping Algorithm.

Lecture Notes 44 CMSC 427

Initially α0 = 0 andα1 = 1. First, let us consider the left wall,〈R0, ~ex〉. Plugging into our equations we have

d1 = ((P1 − P0) · ~ex)
= (((16, 0, 1)− (0, 8, 1)) · (1, 0, 0)) = ((16, 8, 0) · (1, 0, 0)) = 16,

dr = ((R0 − P0)) · ~ex)
= (((4, 2, 1)− (0, 8, 1))) · (1, 0, 0)) = ((4,−6, 0) · (1, 0, 0)) = 4.

Note that the dot product was defined on standard coordinates, not homogeneous coordinates. So the last
component is ignored in performing the operation. This the homogeneous coordinate is 0 for vectors, it does
not really make any difference anyway.

Sinced1 > 0, we let
α0 = max(α0, dr/d1) = max(0, 4/16) = 1/4.

Observe that the resulting point is

P (α0) = (1− α0)P0 + α0P1 = (3/4)(0, 8, 1) + (1/4)(16, 0, 1) = (4, 6, 1).

This is the point of intersection of the left wall with the line segment. The algorithm continues by clipping with
respect to the other bounding halfplanes. We will leave the rest of the example as an exercise, but as a hint, from
constraintH1 we getα1 ≤ 3/4, from H2 we getα1 ≤ 5/8, and fromH3 we getα0 ≥ −1/16. The final values
areα0 = 1/4 andα1 = 5/8.

Pseudocode for the Liang-Barsky Clipper: Here is a pseudocode description of the Liang-Barsky line clipping al-
gorithm. For the sake of generality, the input consists of a collection of halfplanes, represented as an arrayR of
points and~n of normal vectors, andS = P0P1 is the line segment to be clipped.

The procedureclipLB() obtainsS’s endpointsP0 andP1, which remain fixed throughout the procedure. It
defines clipping parametersa0 anda1 (corresponding toα0 andα1 above). It then clipsS against each of
the clipping hyperplanes, by calling the functionclip1Side(). This function returns true if any part of the line
segment is still visible. The function has a side-effect of alteringa0 anda1.

Lecture 10: 3-d Viewing and Orthogonal Projections

Reading: Chapter 7 (through 7.7) in Hearn and Baker.

Viewing in OpenGL: For the next couple of lectures we will discuss how viewing and perspective transformations
are handled for 3-dimensional scenes. In OpenGL, and most similar graphics systems, the process involves
the following basic steps, of which the perspective transformation is just one component. We assume that all
objects are initially represented relative to a standard 3-dimensional coordinate frame, in what are calledworld
coordinates.

Modelview transformation: Maps objects (actually vertices) from their world-coordinate representation to one
that is centered around the viewer. The resulting coordinates are calledeye coordinates.

(Perspective) projection: This projects points in 3-dimensional eye-coordinates to points on a plane called the
viewplane. (We will see later that this transformation actually produces a 3-dimensional output, where the
third component records depth information.) This projection process consists of three separate parts: the
projection transformation (affine part), clipping, and perspective normalization. Each will be discussed
below.

Mapping to the viewport: Convert the point from these idealized 2-dimensional coordinates (normalized de-
vice coordinates) to the viewport (pixel) coordinates.

Lecture Notes 45 CMSC 427

Liang-Barsky Line Clipping Algorithm for Polygons
void clipLB(Point R[], Normal n[], Segment S) {

Point P0 = S.oneEndpoint(); // S’s endpoints
Point P1 = S.otherEndpoint();
float a0 = 0; // clipping parameters
float a1 = 1;
int i = 0;
bool visible = true;
while (i < R.size() && visible) { // clip until nothing left

visible = clip1Side(R[i], n[i], P0, P1, a0, a1);
i++;

}
if (visible) { // something remains

Point Q0 = (1+a0)*P0 + a0*P1; // get endpoints of
Point Q1 = (1+a1)*P0 + a1*P1; // ...clipped segment
drawLine(Q0, Q1);

}
}
void clip1Side(Point R, Normal n, Point P0, Point P1, float& a0, float& a1)
{

float d1 = dotProduct((P1 - P0), n);
float dr = dotProduct((R - P0), n);
if (d1 > 0) a0 = max(a0, dr/d1);
else if (d1 < 0) a1 = min(a1, dr/d1);
else return (dotProduct((P0 - R), n) >= 0); // parallel
return (a0 <= a1); // visible if a0 <= a1

}

We have ignored a number of issues, such as lighting and hidden surface removal. These will be considered
separately later. The process is illustrated in Fig. 34. We have already discussed the viewport transformation, so
it suffices to discuss the first two transformations.

ez ex

ey
scene

viewport transformation

viewport

view plane
viewer

Fig. 34: OpenGL Viewing Process.

Converting to Viewer-Centered Coordinate System:As we shall see below, the perspective transformation is sim-
plest when thecenter of projection, the location of the viewer, is the origin and theview plane(sometimes
called theprojection planeor image plane), onto which the image is projected, is orthogonal to one of the axes,
say thez-axis. Let us call theseeye coordinates. However the user represents points relative to a coordinate
system that is convenient for his/her purposes. Let us call theseworld coordinates. This suggests that prior
to performing the perspective transformation, we perform a change of coordinate transformation to map points
from world-coordinates to eye coordinates.

In OpenGL, there is a nice utility for doing this. The proceduregluLookAt() generates the desired transforma-
tion to perform this change of coordinates and multiplies it times the transformation at the top of the current

Lecture Notes 46 CMSC 427

transformation stack. (Recall OpenGL’s transformation structure from the previous lecture on OpenGL trans-
formations.) This should be done in Modelview mode. Conceptually, this change of coordinates is performed
after all other Modelview transformations are performed, and immediately before the projection. By the “re-
verse rule” of transformations, this implies that this change of coordinates transformation should be the first
transformation on the Modelview transformation matrix stack. Thus, it is almost always preceded by loading
the identity matrix. Here is the typical calling sequence. This should be called when the camera position is set
initially, and whenever the camera is (conceptually) repositioned in space.

// ... assuming: glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(eyeX, eyeY, eyeZ, ctrX, ctrY, ctrZ, upX, upY, upZ);
// ... all other Modelview transformations follow this

The arguments are all of typeGLdouble. The arguments consist of the coordinates of two points and vector, in
the standard coordinate system. The pointEye= (eyex, eyey, eyez)

T is theviewpoint, that is the location of they
viewer (or the camera). To indicate the direction that the camera is pointed, a central point to which the camera
is facing is given byCtr = (ctrx, ctry, ctrz)T . The center is significant only that its defines theviewing vector,
which indicates the direction that the viewer is facing. It is defined to beCtr− Eye.

These points define the position and direction of the camera, but the camera is still free to rotate about the
viewing direction vector. To fix last degree of freedom, the vector−→up = (upx, upy, upz)

T provides the direction
that is “up” relative to the camera. Under typical circumstances, this would just be a vector pointing straight up
(which might be(0, 0, 1)T in your world coordinate system). In some cases (e.g. in a flight simulator, when the
plane banks to one side) you might want to have this vector pointing in some other direction. This vectorneed
not be perpendicular to the viewing vector. However, it cannot be parallel to the viewing direction vector.

The Camera Frame: OpenGL uses the arguments togluLookAt() to construct a coordinate frame centered at the
viewer. Thex- andy-axes are directed to the right and up, respectively, relative to the viewer. It might seem
natural that thez-axes be directed in the direction that the viewer is facing, but this is not a good idea.

To see why, we need to discuss the distinction between right-handed and left-handed coordinate systems. Con-
sider an orthonormal coordinate system with basis vectors~ex, ~ey and~ez. This system is said to beright-handed
if ~ex × ~ey = ~ez, and left-handed otherwise (~ex × ~ey = −~ez). Right-handed coordinate systems are used by
default throughout mathematics. (Otherwise computation of orientations is all screwed up.) Given that thex-
andy-axes are directed right and up relative to the viewer, if thez-axis were to point in the direction that the
viewer is facing, this would result in left-handed coordinate system. The designers of OpenGL wisely decided
to stick to a right-handed coordinate system, which requires that thez-axes is directed opposite to the viewing
direction.

Building the Camera Frame: How does OpenGL implement this change of coordinate transformation? This turns
out to be a nice exercise in geometric computation, so let’s try it. We want to construct an orthonormal frame
whose origin is the pointEye, whose−z-basis vector is parallel to the view vector, and such that the−→up vector
projects to the up direction in the final projection. (This is illustrated in the Fig. 35, where thex-axis is pointing
outwards from the page.)

out of the page (towards you).

view

Ctr

Eye

up
yC.e

z

The x−basis vector is directed
C.e

Fig. 35: The camera frame.

Lecture Notes 47 CMSC 427

LetC (for camera) denote this frame. ClearlyC.O = Eye. As mentioned earlier, the view vector
−−→
viewis directed

from Eyeto Ctr. Thez-basis vector is the normalized negation of this vector.

−−→
view = normalize(Ctr− Eye)

C.~ez = −−−→view

(Recall that normalization operation divides a vector by its length, thus resulting in a vector having the same
direction and unit length.)

Next, we want to select thex-basis vector for our camera frame. It should be orthogonal to the viewing direction,
it should be orthogonal to the up vector, and it should be directed to the camera’s right. Recall that the cross
product will produce a vector that is orthogonal to any pair of vectors, and directed according to the right hand
rule. Also, we want this vector to have unit length. Thus we choose

C.~ex = normalize(
−−→
view×−→up).

The result of the cross product must be a nonzero vector. This is why we require that the view direction and up
vector are not parallel to each other. We have two out of three vectors for our frame. We can extract the last one
by taking a cross product of the first two.

C.~ey = (C.~ez × C.~ex).

There is no need to normalize this vector, because it is the cross product of two orthogonal vectors, each of unit
length. Thus it will automatically be of unit length.

Camera Transformation Matrix: Now, all we need to do is to construct the change of coordinates matrix from the
standard frameF to our camera frameC. Recall from our earlier lecture, that the change of coordinate matrix is
formed by considering the matrixM whose columns are the basis elements ofC relative toF , and then inverting
this matrix. The matrix before inversion is:

M =

(
C.~ex[F]

∣∣∣∣∣ C.~ey[F]

∣∣∣∣∣ C.~ez[F]

∣∣∣∣∣ C.O[F]

)
=




C.exx C.eyx C.ezx C.Ox

C.exy C.eyy C.ezy C.Oy

C.exz C.eyz C.ezz C.Oz

0 0 0 1


 .

We can apply a trick to compute the inverse,M−1, efficiently. Normally, inverting a matrix would involve
invoking a linear algebra procedure (e.g., based on Gauss elimination). However, becauseM is constructed
from an orthonormal frame, there is a much easier way to construct the inverse.

To see this, consider a3 × 3 matrix A whose columns are orthogonal and of unit length. Such a matrix is said
to beorthogonal. The following from linear algebra is useful in this context (and is not very hard to prove).

Lemma: The inverse of an orthogonal matrixA is its transpose, that is,A−1 = AT .

The upper-left3 × 3 submatrix ofM is of this type, but the last column is not. But we can still take advantage
of this fact. First, we construct a4× 4 matrixR whose upper left3× 3 submatrix is copied fromM :

R =




C.exx C.eyx C.ezx 0
C.exy C.eyy C.ezy 0
C.exz C.eyz C.ezz 0

0 0 0 1


 .

Note thatM is equal to the product of two matrices, a translation by the vectorEye, denotedT (Eye) andR.
Using the fact thatR−1 = RT , andT (Eye)−1 = T (−Eye) we have

M−1 = (T (Eye) ·R)−1 = R−1 · T (Eye)−1 = RT · T (−Eye).

Lecture Notes 48 CMSC 427

Thus, we do not need to invert any matrices to implementgluLookAt(). We simply compute the basis elements
of the camera-frame (using cross products and normalization as described earlier), then we computeRT (by
copying these elements into the appropriate positions in the final matrix) and computeT (−Eye), and finally
multiply these two matrices. If you consult the OpenGL Reference Manual you will see that this is essentially
how gluLookAt() is defined.

Parallel and Orthogonal Projection: The second part of the process involves performing the projection. Projections
fall into two basic groups,parallel projections, in which the lines of projection are parallel to one another, and
perspective projection, in which the lines of projection converge a point.

In spite of their superficial similarities, parallel and perspective projections behave quite differently with respect
to geometry. Parallel projections are affine transformations, and perspective projections are not. (In particular,
perspective projections do not preserve parallelism, as is evidenced by a perspective view of a pair of straight
train tracks, which appear to converge at the horizon.) So let us start by considering the simpler case of parallel
projections and consider perspective later.

There are many different classifications of parallel projections. Among these the simplest one is theorthogonal
(or orthographic) projection, in which the lines of projection are all parallel to one of the coordinate axes, the
z-axis in particular. See Fig. 36

−f
−n

l
r

t

b

glOrtho(l,r,b,t,n,f)Orthographic projection

−1

Note: z reversed

P

P’
−1

+1

+1

−1

+1

e

ye

ze

xe

ze

ye

x

e

ye

ze

x

Fig. 36: Orthographic Projection andglOrtho().

The transformation maps a point in 3-space to point on thexy-coordinate plane by setting thez-coordinate to
zero. Thus a pointP = (px, py, pz, 1)T is mapped to the pointP ′ = (px, py, 0, 1). OpenGL does a few things
differently in order to make its later jobs easier.

• First, the user specifies a window on thexy-plane such that all points that project outside this window will
be clipped. This window will then be stretched to fit the viewport. This is done by specifying the minimum
and maximumx-coordinates (left, right) andy-coordinates (bottom, top).

• Second, the transformation does not actually set thez-coordinate to zero. Even though thez-coordinate is
unneeded for the final drawing, it conveys depth information, which is useful for hidden surface removal.

For technical reasons having to do with how hidden surface removal is performed, it is necessary to indicate
the range of distances along thez-axis. The user gives the distance along the−(z)-axis of thenear and
far clipping planes. (The fact that thez-axis points away from the viewing direction is rather unnatural for
users. Thus, by using distances along the negativez-axis, the user will be entering positive numbers for
these values typically.)

These six values define a rectangleR in 3-space. Points lying outside of this rectangle are clipped away. OpenGL
mapsR to a2 × 2 × 2 hyperrectangle called thecanonical view volume, which extends from−1 to +1 along
each coordinate axis. This is done to simplify the clipping and depth buffer processing. The commandglOrtho()
is given these six arguments each as typeGLdouble. The typical call is:

Lecture Notes 49 CMSC 427

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(left, right, bottom, top, near, far);
glMatrixMode(GL_MODELVIEW);

The Projection Matrix: The matrix that achieves this transformation is easy to derive. We wish to translate the center
of the rectangleR to the origin, and then scale each axis so that each of the rectangle widths is scaled to a width
of 2. (Note the negation of thez scale factor below.)

tx = (right + left)/2 ty = (top + bottom)/2 tz = (far + near)/2
sx = 2/(right − left) sy = 2/(top − bottom) sz = −2/(far − near).

The final transformation is the composition of a scaling and translation matrix. (Note that, unlike thex andy
translations, thez translation is not negated becausesz is already negated.)

S(sx, sy, sz) · T (−tx,−ty,−tz) =




sx 0 0 −txsx

0 sy 0 −tysy

0 0 sz tzsz

0 0 0 1


 .

Lecture 11: Perspective

Reading: Chapter 7 in Hearn and Baker.

Basic Perspective:Perspective transformations are the domain of an interesting area of mathematics calledprojective
geometry. The basic problem that we will consider is the one of projecting points from a 3 dimensional space
onto the 2-dimensional plane, called theview plane, centrally through a point (not on this plane) called the
center of projection. The process is illustrated in the following figure.

P

R

Qcenter
of projection view plane

Fig. 37: Perspective Transformations. Note that they do not preserve affine combinations, since the midpoint ofPQ
does not map to the midpoint of the projected segment.

One nice things about projective transformations is that they map lines to lines. However, projective transforma-
tions are not affine, since (except for the special case of parallel projection) do not preserve affine combinations
and do not preserve parallelism. For example, consider the perspective projectionT shown in the figure. LetR
be the midpoint of segmentPQ thenT (R) is not necessarily the midpoint ofT (P) andT (Q).

Projective Geometry: In order to gain a deeper understanding of projective transformations, it is best to start with an
introduction toprojective geometry. Projective geometry was developed in the 17th century by mathematicians
interested in the phenomenon of perspective. Intuitively, the basic idea that gives rise to projective geometry is
rather simple, but its consequences are somewhat surprising.

In Euclidean geometry we know that two distinct lines intersect in exactly one point, unless the two lines are
parallel to one another. This special case seems like an undesirable thing to carry around. Suppose we make the
following simplifying generalization. In addition to theregular pointsin the plane (with finite coordinates) we

Lecture Notes 50 CMSC 427

will also add a set ofideal points(or points at infinity) that reside infinitely far away. Now, we can eliminate the
special case and say that every two distinct lines intersect in a single point. If the lines are parallel, then they
intersect at an ideal point. But there seem to be two such ideal points (one at each end of the parallel lines).
Since we do not want lines intersecting more than once, we just imagine that the projective planewraps around
so that two ideal points at the opposite ends of a line are equal to each other. This is very elegant, since all lines
behave much like closed curves (somewhat like a circle of infinite radius).

For example, in the figure below on the left, the pointP is a point at infinity. SinceP is infinitely far away it
does have a position (in the sense of affine space), but it can be specified by pointing to it, that is, by a direction.
All lines that are parallel to one another along this direction intersect atP . In the plane, the union of all the
points at infinity forms a line, called theline at infinity. (In 3-space the corresponding entity is called theplane
at infinity.) Note that every other line intersects the line at infinity exactly once. The regular affine plane together
with the points and line at infinity define theprojective plane. It is easy to generalize this to arbitrary dimensions
as well.

b

b

a

a

?

p

p

Fig. 38: Projective Geometry.

Although the points at infinity seem to be special in some sense, an important tenet of projective geometry is that
they are essentially no different from the regular points. In particular, when applying projective transformations
we will see that regular points may be mapped to points at infinity and vice versa.

Orientability and the Projective Space: Projective geometry appears to both generalize and simplify affine geom-
etry, so why we just dispensed with affine geometry and use projective geometry instead? The reason is that
along with the good comes some rather strange consequences. For example, the projective plane wraps around
itself in a rather strange way. In particular, it does not form a sphere as you might expect. (Try cutting it out of
paper and gluing the edges together if you need proof.)

The nice thing about lines in the Euclidean plane is that each partitions the plane into two halves, one above
and one below. This is not true for the projective plane (since each ideal point is both above and below).
Furthermore, orientations such as clockwise and counterclockwise cannot even be defined. The projective plane
is a nonorientable manifold(like a Moebius strip or Klein bottle). In particular, if you take an object with a
counterclockwise orientation, and then translate it through the line at infinity and back to its original position,
a strange thing happens. When passing through the line at infinity, its orientation changes. (Note that this does
not happen on orientable manifolds like the Euclidean plane or the surface of a sphere).

Intuitively, this is because as we pass through infinity, there is a “twist” in space as is illustrated in the figure
above on the right. Notice that the arrow is directed from pointa to b, and when it “reappears” on the other side
of the plane, this will still be the case. But, if you look at the figure, you will see that the relative positions ofa
andb are reversed2.

2One way of dealing with this phenomenon, is to define the projective plane differently, as atwo-sided projective plane. The object starts on the
front-side of the plane. When it passes through the line at infinity, it reappears on the back-side of the plane. When it passes again through the line
at infinity it reappears on the front-side. Orientations are inverted as you travel from the front to back, and then are corrected from going from back
to front.

Lecture Notes 51 CMSC 427

For these reasons, we choose not to use the projective plane as a domain in which to do most of our geometric
computations. Instead, we will briefly enter this domain, just long enough to do our projective transformations,
and quickly jump back into the more familiar world of Euclidean space. We will have to take care that when
performing these transformations we do not map any points to infinity, since we cannot map these points back
to Euclidean space.

New Homogeneous Coordinates:How do we represent points in projective space? It turns out that we can do this
by homogeneous coordinates. However, there are some differences. First off, we will not have free vectors in
projective space. Consider a regular pointP in the plane, with standard (nonhomogeneous) coordinates(x, y)T .
There will not be a unique representation for this point in projective space. Rather, it will be represented by any
coordinate vector of the form: 

 w · x
w · y
w


 , for w 6= 0.

Thus, ifP = (4, 3)T areP ’s standard Cartesian coordinates, the homogeneous coordinates(4, 3, 1)T , (8, 6, 2)T ,
and(−12,−9,−3)T are all legal representations ofP in projective plane. Because of its familiarity, we will
use the casew = 1 most often. Given the homogeneous coordinates of a regular pointP = (x, y, w)T , the
projective normalizationof P is the coordinate vector(x/w, y/w, 1)T . (This term is confusing, because it is
quite different from the process oflength normalization, which maps a vector to one of unit length. In computer
graphics this operation is also referred asperspective division.)

How do we represent ideal points? Consider a line passing through the origin with slope of 2. The following is
a list of the homogeneous coordinates of some of the points lying on this line:

 1
2
1


 ,


 2

4
1


 ,


 3

6
1


 ,


 4

8
1


 , . . . ,


 x

2x
1


 .

Clearly these are equivalent to the following
 1

2
1


 ,


 1

2
1/2


 ,


 1

2
1/3


 ,


 1

2
1/4


 , . . . ,


 1

2
1/x


 .

(This is illustrated in Fig. 39.) We can see that asx tends to infinity, the limiting point has the homogeneous
coordinates(1, 2, 0)T . So, whenw = 0, the point(x, y, w)T is the point at infinity, that is pointed to by the
vector(x, y)T (and(−x,−y)T as well by wraparound).

limit: (1, 2, 0)

(1,2, 1/x)

(1,2, 1/3)

(1,2, 1/2)

(1,2, 1)

(x,2x,1)

(3,6,1)

(2,4,1)

(1,2,1)

Fig. 39: Homogeneous coordinates for ideal points.

Important Note: In spite of the similarity of the names, homogeneous coordinates in projective geometry and
homogeneous coordinates in affine are entirely different concepts, and should not be mixed. This is because
the two geometric systems are entirely incompatible with each other. We will do almost all our geometric

Lecture Notes 52 CMSC 427

processing in affine geometry. Projective geometry will be used exclusively for the task of producing perspective
projections.

Perspective Projection Transformations: We will not give a formal definition of projective transformations. (But
it is not hard to do so. Just as affine transformations preserve affine combinations, projective transformations
map lines to lines and preserve something called across ratio.) It is generally possible to define a perspective
projection using a4 × 4 matrix as we did with affine transformations. However, we will need treat projective
transformations somewhat differently. Henceforth, we will assume that we will only be transforming points, not
vectors. (Typically we will be transforming the endpoints of line segments and vertices of polygonal patches.)
Let us assume for now that the points to be transformed are all strictly in front of the eye. We will see that
objects behind the eye must eventually be clipped away, but we will consider this later.

Let us consider the following viewing situation. Since it is hard to draw good perspective drawings in 3-space,
we will consider just they andz axes for now (and everything we do withy we will do symmetrically withx
later). We assume that the center of projection is located at the origin of some frame we have constructed.

Imagine that the viewer is facing the−z direction. (Recall that this follows OpenGL’s convention so that the
coordinate frame is right-handed.) Thex-axis points to the viewer’s right and they-axis points upwards relative
to the viewer. Suppose that we are projecting points onto a projection plane that is orthogonal to thez-axis and
is located at distanced from the origin along the−z axis. (Note thatd is given as a positive number, not a
negative. This is consistent with OpenGL’s conventions.) See the following figure.

d

P=(y,z)

yy

−z
x

y

z

z

z/d
yP’=(− ,−d)

Fig. 40: Perspective transformation. (On the right, imagine that thex-axis is pointing towards you.)

Consider a pointP = (y, z)T in the plane. (Note thatz is negative butd is positive.) Where should this point
be projected to on the view plane? LetP ′ = (y′, z′)T denote the coordinates of this projection. By similar
triangles it is easy to see that the following ratios are equal:

y

−z
=

y′

d
,

implying thaty′ = y/(−z/d). We also havez = −d. Generalizing this to 3-space, the point with coordinates
(x, y, z, 1)T is transformed to the point with homogeneous coordinates


x/(−z/d)
y/(−z/d)
−d
1


 .

Unfortunately, there is no4× 4 matrix that can realize this result. (Note thatz is NOT a constant and so cannot
be stored in the matrix.)

However, there is a4× 4 matrix that will generate the equivalent homogeneous coordinates. In particular, if we

Lecture Notes 53 CMSC 427

multiply the above vector by(−z/d) we get: 


x
y
z
−z/d


 .

This is a linear function ofx, y, andz, and so we can write the perspective transformation in terms of the
following matrix.

M =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1/d 0


 .

After we have the coordinates of a (affine) transformed pointP ′ = M ·P , we then apply projective normalization
(perspective division) to determine the corresponding point in Euclidean space.

MP =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1/d 0






x
y
z
1


 =




x
y
z
−z/d


 ≡




x/(−z/d)
y/(−z/d)
−d
1


 .

Notice that ifz = 0, then we will be dividing by zero. But also notice that the perspective projection maps
points on thexy-plane to infinity.

Lecture 12: Perspective in OpenGL

Reading: Chapter 7 in Hearn and Baker.

OpenGL’s Perspective Projection: OpenGL provides a couple of ways to specify the perspective projection. The
most general method is throughglFrustum(). We will discuss a simpler method calledgluPerspective(), which
suffices for almost all cases that arise in practice. In particular, this simpler procedure assumes that the viewing
window is centered about the view direction vector (the negativez-axis), whereasglFrustum() does not.

Consider the following viewing model. In front of his eye, the user holds rectangular window, centered on the
view direction, onto which the image is to be projected. The viewer sees any object that lies within a rectangular
pyramid, whose axis is the−z-axis, and whose apex is his eye. In order to indicate the height of this pyramid,
the user specifies its angular height, called they field-of-viewand denotedfovy. It is given in degrees. This is
shown in Fig. 41

w

h

far

near

z
x

y

aspect = w/h

fovy

Fig. 41: OpenGL’s perspective specification.

To specify the angular diameter of the pyramid, we could specify thex field-of-view, but the designers of
OpenGL decided on a different approach. Recall that theaspect ratiois defined to be the width/height ratio of

Lecture Notes 54 CMSC 427

the window. The user presumably knows the aspect ratio of his viewport, and typically users want an undistorted
view of the world, so the ratio of thex andy fields-of-view should match the viewport’s aspect ratio. Rather
than forcing the user to compute the number of degrees of angular width, the user just provides theaspect ratio
of the viewport, and the system then derives thex field-of-view from this value.

Finally, for technical reasons related to depth buffering, we need to specify a distance along the−z-axis to the
near clipping planeand to thefar clipping plane. Objects in front of the near plane and behind the far plane will
be clipped away. We have a limited number of bits of depth-precision, and supporting a greater range of depth
values will limit the accuracy with which we can represent depths. The resulting shape is called theviewing
frustum. (A frustumis the geometric shape that arises from chopping off the top of a pyramid. An example
appears on the back of the US one dollar bill.) These arguments form the basic elements of the main OpenGL
command for perspective.

gluPerspective(fovy, aspect, near, far);

All arguments are positive and of typeGLdouble. This command creates a matrix which performs the necessary
depth perspective transformation, and multiplies it with the matrix on top of the current stack. This transforma-
tion should be applied to the projection matrix stack. So this typically occurs in the following context of calls,
usually as part of your initializations.

glMatrixMode(GL_PROJECTION); // projection matrix mode
glLoadIdentity(); // initialize to identity
gluPerspective(...);
glMatrixMode(GL_MODELVIEW); // restore default matrix mode

This does not have to be called again unless the camera’s projection properties are changed (e.g., increasing or
decreasing zoom). For example, it does not need to be called if the camera is simply moved to a new location.

Perspective with Depth: The question that we want to consider next is what perspective transformation matrix does
OpenGL generate for this call? There is a significant shortcoming with the simple perspective transforma-
tion that we described last time. Recall from last time that the point(x, y, z, 1)T is mapped to the point
(−x/(z/d),−y/(z/d),−d, 1)T . The last two components of this vector convey no information, for they are
the same, no matter what point is projected.

Is there anything more that we could ask for? In turns out that there is. This isdepth information. We would like
to know how far a projected point is from the viewer. After the projection, all depth information is lost, because
all points are flattened onto the projection plane. Such depth information would be very helpful in performing
hidden-surface removal. Let’s consider how we might include this information.

We will design a projective transformation in which the(x, y)-coordinates of the transformed points are the
desired coordinates of the projected point, but thez-coordinate of the transformed point encodes the depth
information. This is called perspective with depth. The (x, y) coordinates are then used for drawing the
projected object and thez-coordinate is used in hidden surface removal. It turns out that this depth information
will be subject to a nonlinear distortion. However, the important thing will be that depth-order will be preserved,
in the sense that points that are farther from the eye (in terms of theirz-coordinates) will have greater depth
values than points that are nearer.

As a start, let’s consider the process in a simple form. As usual we assume that the eye is at the origin and
looking down the−z-axis. Let us also assume that the projection plane is located atz = −1. Consider the
following matrix:

M =




1 0 0 0
0 1 0 0
0 0 α β
0 0 −1 0


 .

Lecture Notes 55 CMSC 427

If we apply it to a pointP with homogeneous coordinates(x, y, z, 1)T , then the resulting point has coordinates

M · P =




x
y

αz + β
−z


 ≡




−x/z
−y/z
−α− β/z

1




Note that thex andy coordinates have been properly scaled for perspective (recalling thatz < 0 since we are
looking down the−z-axis). Thedepth valueis

z′ = −α− β

z
.

Depending on the values we choose forα andβ, this is a (nonlinear) monotonic function ofz. In particular,
depth increases as thez-values decrease (since we view down the negativez-axis), so if we setβ < 0, then the
depth valuez′ will be a monotonically increasing function of depth. In fact, by choosingα andβ properly, we
adjust the depth values to lie within whatever range of values suits us. We’ll see below how these values should
be chosen.

Canonical View Volume: In applying the perspective transformation, all points in projective space will be trans-
formed. This includes point that are not within the viewing frustum (e.g., points lying behind the viewer). One
of the important tasks to be performed by the system, prior to perspective division (when all the bad stuff might
happen) is to clip away portions of the scene that do not lie within the viewing frustum.

OpenGL has a very elegant way of simplifying this clipping. It adjusts the perspective transformation so that
the viewing frustum (no matter how it is specified by the user) is mapped to the same canonical shape. Thus
the clipping process is always being applied to the same shape, and this allows the clipping algorithms to be
designed in the most simple and efficient manner. This idealized shape is called thecanonical view volume.
Clipping is actually performed in homogeneous coordinate (i.e., 4-dimensional) space just prior to perspective
division. However, we will describe the canonical view volume in terms of how it appears after perspective
division. (We will leave it as an exercise to figure out what it looks like prior to perspective division.)

The canonical view volume (after perspective division) is just a 3-dimensional rectangle. It is defined by the
following constraints:

−1 ≤ x ≤ +1, −1 ≤ y ≤ +1, −1 ≤ z ≤ +1.

(See Fig. 42.) The(x, y) coordinates indicate the location of the projected point on the final viewing window.
Thez-coordinate is used for depth. There is a reversal of thez-coordinates, in the sense that before the transfor-
mation, points farther from the viewer have smallerz-coordinates (larger in absolute value, but smaller because
they are on the negativez side of the origin). Now, the points withz = −1 are the closest to the viewer (lying
on the near clipping plane) and the points withz = +1 are the farthest from the viewer (lying on the far clipping
plane). Points that lie on the top (resp. bottom) of the canonical volume correspond to points that lie on the top
(resp. bottom) of the viewing frustum.

Returning to the earlier discussion aboutα andβ, we see that we want to map points on the near clipping plane
z = −n to z′ = −1 and points on the far clipping planez = −f to z′ = +1, wheren andf denote the distances
to the near and far clipping planes. This gives the simultaneous equations:

−1 = −α− β

−n

+1 = −α− β

−f
.

Solving forα andβ yields

α =
f + n

n− f
β =

2fn

n− f
.

Lecture Notes 56 CMSC 427

y

−1+1

(top)

(bottom)

(near)(far)

y

−1

z=−far

z=−near

Viewing frustum

viewer

+1

Canonical view volume

z

z

Fig. 42: Perspective with depth.

Perspective Matrix: To see how OpenGL handles this process, recall the functiongluPerspective(). Let θ denote
the y field of view (fovy) in radians. Letc = cot(θ/2). We will take a side view as usual (imagine that the
x-coordinate is directed out of the page). Leta denote the aspect ratio, letn denote the distance to the near
clipping plane and letf denote the distance to the far clipping plane. (All quantities are positive.) Here is the
matrix it constructs to perform the perspective transformation.

M =




c/a 0 0 0
0 c 0 0

0 0
f + n

n− f

2fn

n− f
0 0 −1 0


 .

Observe that a pointP in 3-space with homogeneous coordinates(x, y, z, 1)T is mapped to

M · P =




cx/a
cy

((f + n)z + 2fn)/(n− f)
−z


 ≡




−cx/(az)
−cy/z

(−(f + n)− (2fn/z))/(n− f)
1


 .

How did we come up with such a strange mapping? Notice that other than the scaling factors, this is very similar
to the perspective-with-depth matrix given earlier (given our valuesα andβ plugged in). The diagonal entries
c/a andc are present to scale the arbitrarily shaped window into the square (as we’ll see below).

To see that this works, we will show that the corners of the viewing frustum are mapped to the corners of the
canonical viewing volume (and we’ll trust that everything in between behaves nicely). In Fig. 42 we show a
side view, thus ignoring thex-coordinate. Because the window has the aspect ratioa = w/h, it follows that for
points on the upper-right edge of the viewing frustum (relative to the viewer’s perspective) we havex/y = a,
and thusx = ay.

Consider a point that lies on the top side of the view frustum. We have−z/y = cot θ/2 = c, implying that
y = −z/c. If we take the point to lie on the near clipping plane, then we havez = −n, and hencey = n/c.
Further, if we assume that it lies on the upper right corner of the frustum (relative to the viewer’s position) then
x = ay = an/c. Thus the homogeneous coordinates of the upper corner on the near clipping plane (shown as a
white dot in Fig. 42) are(an/c, n/c,−n, 1)T . If we apply the above transformation, this is mapped to

M




an/c
n/c
−n
1


 =




n
n

−n(f + n)
n− f

+
2fn

n− f
n


 ≡




1
1

−(f + n)
n− f

+
2f

n− f
1


 =




1
1
−1

1


 .

Lecture Notes 57 CMSC 427

Notice that this is the upper corner of the canonical view volume on the near (z = −1) side, as desired.

Similarly, consider a point that lies on the bottom side of the view frustum. We have−z/(−y) = cot θ/2 = c,
implying thaty = z/c. If we take the point to lie on the far clipping plane, then we havez = −f , and so
y = −f/c. Further, if we assume that it lies on the lower left corner of the frustum (relative to the viewer’s
position) thenx = −af/c. Thus the homogeneous coordinates of the lower corner on the far clipping plane
(shown as a black dot in Fig. 42) are(−af/c,−f/c,−f, 1)T . If we apply the above transformation, this is
mapped to

M



−af/c
−f/c
−f
1


 =




−f
−f

−f(f + n)
n− f

+
2fn

n− f
f


 ≡




−1
−1

−(f + n)
n− f

+
2n

n− f
1


 =



−1
−1

1
1


 .

This is the lower corner of the canonical view volume on the far (z = 1) side, as desired.

Lecture 13: Lighting and Shading

Reading: Chapter 10 in Hearn and Baker.

Lighting and Shading: We will now take a look at the next major element of graphics rendering: light and shading.
This is one of the primary elements of generating realistic images. This topic is the beginning of an important
shift in approach. Up until now, we have discussed graphics from are purely mathematical (geometric) perspec-
tive. Light and reflection brings us to issues involved with the physics of light and color and the physiological
aspects of how humans perceive light and color.

An accurate simulation of light energy and how it emanates, reflects off and passes through objects is an amaz-
ingly complex, and computationally intractable task. OpenGL, like most interactive graphics systems, supports
a very simple lighting and shading model, and hence can achieve only limited realism. This was done primarily
because speed is of the essence in interactive graphics. OpenGL assumes alocal illumination model, which
means that the shading of a point depends only on its relationship to the light sources, without considering the
other objects in the scene. For example, OpenGL’s lighting model does not model shadows, it does not handle
indirect reflection from other objects (where light bounces off of one object and illuminates another), it does not
handle objects that reflect or refract light (like metal spheres and glass balls). However the designers of OpenGL
have included a number of tricks for essentially “faking” many of these effects.

OpenGL’s light and shading model was designed to be very efficient and very general (in order to permit the
faking alluded to earlier). It contains a number features that seem to bear little or no resemblance to the laws of
physics. The lighting model that we will is slightly different from OpenGL’s model, but is a bit more meaningful
from the perspective of physics.

Light: A detailed discussion of light and its properties would take us more deeply into physics than we care to
go. For our purposes, we can imagine a simple model of light consisting of a large number of photons being
emitted continuously from each light source. Each photon has an associated color. Although color is complex
phenomenon, for our purposes it is sufficient to consider color to be a modeled as a triple of red, green, and
blue components. (We will consider color later this semester.) The strength orintensityof the light time at any
location can be defined of in terms of the number of photons passing through a fixed area over a fixed amount
of time. Assuming that the atmosphere is a vacuum (in particular there is no smoke or fog), photons travel
unimpeded until hitting a surface, after which one of three things can happen.

Reflection: The photon can be reflected or scattered back into the atmosphere. If the surface were perfectly
smooth (like a mirror or highly polished metal) the refection would satisfy the rule “angle of incidence

Lecture Notes 58 CMSC 427

equals angle of reflection” and the result would be a mirror-like and very shiny in appearance. On the
other hand, if the surface is rough at a microscopic level (like foam rubber, say) then the photons are
scattered nearly uniformly in all directions. We can further distinguish different varieties of reflection:

Pure reflection: perfect mirror-like reflectors

Specular reflection: imperfect reflectors like brushed metal and shiny plastics.

Diffuse reflection: uniformly scattering, and hence not shiny.

Absorption: The photon can be absorbed into the surface (and hence dissipates in the form of heat energy).
We do not see this light. Thus, an object appears to be green, because it reflects photons in the green part
of the spectrum and absorbs photons in the other regions of the visible spectrum.

Transmission: The photon can pass through the surface. This happens perfectly withtransparentobjects (like
glass and polished gem stones) and with a significant amount of scattering withtranslucentobjects (like
human skin or a thin piece of tissue paper).

Light source

pure
reflection

specular diffuse
reflection

translucent
transmission

pure
transmission

absorption
reflection

Fig. 43: The ways in which a photon of light can interact with a surface point.

Of course real surfaces possess various combinations of these elements and these element can interact in com-
plex ways. For example, human skin is characterized by a complex phenomenon calledsubsurface scattering,
in which light is transmitted under the skin and then bounces around and is reflected at some other point.

What we “see” is a function of the photons that enter our eye. Photons leave the light source, are reflected and
transmitted in various ways in the environment, they bounce off various surfaces, and then they finally enter our
eye and we perceive the resulting color. The more accurately we can simulate this physical process, the more
realistic the lighting will be. Unfortunately, computers are not fast enough to produce a truly realistic simulation
of indirect reflections in real time, and so we will have to settle for much simpler approximations.

Light Sources: Before talking about light reflection, we need to discuss where the light originates. In reality, light
sources come in many sizes and shapes. They may emit light in varying intensities and wavelengths according
to direction. The intensity of light energy is distributed across a continuous spectrum of wavelengths.

To simplify things, OpenGL assumes that each light source is a point, and that the energy emitted can be modeled
as an RGB triple, called aluminance function. This is described by a vector with three components(Lr, Lg, Lb)
for the intensities of red, green, and blue light respectively. We will not concern ourselves with the exact units
of measurement, since this is very simple model.

Lighting in real environments usually involves a considerable amount of indirect reflection between objects of
the scene. If we were to ignore this effect, and simply consider a point to be illuminated only if it can see the
light source, then the resulting image in which objects in the shadows are totally black. In indoor scenes we are
accustomed to seeing much softer shading, so that even objects that are hidden from the light source are partially
illuminated. In OpenGL (and most local illumination models) this scattering of light modeled by breaking the
light source’s intensity into two components:ambient emissionandpoint emission.

Ambient emission: does not come from any one location. Like heat, it is scattered uniformly in all locations
and directions. A point is illuminated by ambient emission even if it is not visible from the light source.

Lecture Notes 59 CMSC 427

Point emission: originates from the point of the light source. In theory, point emission only affects points that
are directly visible to the light source. That is, a pointP is illuminate by light sourceQ if and only if the
open line segmentPQ does not intersect any of the objects of the scene.

Unfortunately, determining whether a point is visible to a light source in a complex scene with thousands of
objects can be computationally quite expensive. So OpenGL simply tests whether the surface is facing towards
the light or away from the light. Surfaces in OpenGL are polygons, but let us consider this in a more general
setting. Suppose that have a pointP lying on some surface. Let~n denote the normal vector atP , directed
outwardsfrom the object’s interior, and let~̀denote the directional vector fromP to the light source (~̀ = Q−P),
thenP will be illuminated if and only if the angle between these vectors is acute. We can determine this by
testing whether their dot produce is positive, that is,~n · ~̀ > 0.

For example, in the Fig. 44, the pointP is illuminated. In spite of the obscuring triangle, pointP ′ is also
illuminated, because other objects in the scene are ignored by the local illumination model. The pointP ′′ is
clearly not illuminated, because its normal is directed away from the light.

n n

not illuminatedP

n
P"

Q

l l

l

P’
illuminated

illuminated

Fig. 44: Point light source visibility using a local illumination model. Note thatP ′ is illuminated in spite of the
obscuring triangle.

Attenuation: The light that is emitted from a point source is subject toattenuation, that is, the decrease in strength
of illumination as the distance to the source increases. Physics tells us that the intensity of light falls off as the
inverse square of the distance. This would imply that the intensity at some (unblocked) pointP would be

I(P,Q) =
1

‖P −Q‖2 I(Q),

where‖P − Q‖ denotes the Euclidean distance fromP to Q. However, in OpenGL, our various simplifying
assumptions (ignoring indirect reflections, for example) will cause point sources to appear unnaturally dim using
the exact physical model of attenuation. Consequently, OpenGL uses an attenuation function that has constant,
linear, and quadratic components. The user specifies constantsa, b andc. Let d = ‖P −Q‖ denote the distance
to the point source. Then the attenuation function is

I(P,Q) =
1

a + bd + cd2
I(Q).

In OpenGL, the default values area = 1 andb = c = 0, so there is no attenuation by default.

Directional Sources and Spotlights:A light source can be placed infinitely far away by using the projective geom-
etry convention of setting the last coordinate to 0. Suppose that we imagine that thez-axis points up. At high
noon, the sun’s coordinates would be modeled by the homogeneous positional vector

(0, 0, 1, 0)T .

These are calleddirectional sources. There is a performance advantage to using directional sources. Many of
the computations involving light sources require computing angles between the surface normal and the light

Lecture Notes 60 CMSC 427

source location. If the light source is at infinity, then all points on a single polygonal patch have the same angle,
and hence the angle need be computed only once for all points on the patch.

Sometimes it is nice to have a directional component to the light sources. OpenGL also supports something
called aspotlight, where the intensity is strongest along a given direction, and then drops off according to the
angle from this direction. See the OpenGL functionglLight() for further information.

Light source

v

θ

Fig. 45: Spotlight. The intensity decreases as the angleθ increases.

Lighting in OpenGL: THIS MATERIAL IS DUPLICATED IN LECT 15 OpenGL uses a very simple model for
defining light color. This model is not particularly realistic, and this is why many computer games have a
certain familiar artificial look to them. However, achieving realism is lighting is quite hard.

OpenGL models the light energy emitted from a light source as an RGB triple. It is possible to specify separate
definitions for ambient, diffuse, and specular elements of the light. The diffuse and specular are usually set to
the same value, since this is physically realistic.

To use lighting in OpenGL, first you must enable lighting, through a call toglEnable(). OpenGL allows the user
to create up to 8 light sources, namedGL LIGHT0 throughGL LIGHT7. Each light source may either be enabled
(turned on) or disabled (turned off). By default they are all disabled. Again this is done usingglEnable() (and
glDisable()). The properties of each light source is set by the commandglLight*(). This command takes three
arguments, the name of the light, the property of the light to set, and the value of this property.

Consider the following example. Let us consider a light source 0, whose position is(2, 4, 5, 1)T in homoge-
neous coordinates, and which has a red ambient intensity, given as the RGB triple(0.9, 0, 0), and white diffuse
intensity, given as the RGB triple(1.2, 1.2, 1.2). (Normally the ambient and diffuse colors of the light will be the
same, although their overall intensities may differ. We have made them different just to show that it is possible.)
There are no real units of measurement involved here. Usually the values are adjusted manually by a designer
until the image “looks good.”

Light intensities are actually expressed in OpenGL as RGBA, rather than just RGB triples. The ‘A’ component
can be used for various special effects, but for now, let us just assume the default situation by setting ‘A’ to 1.
Here is an example of how to set up such a light in OpenGL. The procedureglLight*() can also be used for setting
other light properties, such as attenuation.

Setting up a simple lighting situation
GLfloat ambientIntensity[4] = {0.9, 0.0, 0.0, 1.0};
GLfloat diffuseIntensity[4] = {1.2, 1.2, 1.2, 1.0};
GLfloat position[4] = {2.0, 4.0, 5.0, 1.0};

glEnable(GL_LIGHTING); // enable lighting
glEnable(GL_LIGHT0); // enable light 0

// set up light 0 properties
glLightfv(GL_LIGHT0, GL_AMBIENT, ambientIntensity);
glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuseIntensity);
glLightfv(GL_LIGHT0, GL_POSITION, position);

Lecture Notes 61 CMSC 427

There are a number of other commands used for defining how light and shading are done in OpenGL. We will
discuss these in greater detail in the next lecture. They includeglLightModel() andglShadeModel().

Specifying Colors: In OpenGL, material properties are assigned to vertices (not to the polygonal faces that make
up the object). OpenGL computes the color of each vertex of your polygonal and then applies interpolation
between the various vertices to determine the color of the pixels that make up the polygonal face.

When lighting is involved, surface material properties are specified byglMaterialf() andglMaterialfv() (andnot
with glColor*() as we have used so far).

glMaterialf(GLenum face, GLenum pname, GLfloat param);
glMaterialfv(GLenum face, GLenum pname, const GLfloat *params);

It is possible to color the front and back faces separately. The first argument indicates which face we are
coloring (GL FRONT, GL BACK, or GL FRONT AND BACK). The second argument indicates the parameter
name (GL EMISSION, GL AMBIENT, GL DIFFUSE, GL SPECULAR, GL SHININESS). The last parameter is
the value (either scalar or vector). See the OpenGL documentation for more information.

Another aspect of drawing is the OpenGL does not automatically compute normal vectors. These vectors are
important for shading computations. Normal vectors are specified, just prior to drawing the vertex with the
commentglNormal*(). Normal vectors are assumed to be of unit length. For example, suppose that we wanted
to draw a red triangle on the x,y-plane. Here is a code fragment that would do this.

Drawing a Red Triangle on thex, y-plane
GLfloat red[4] = {1.0, 0.0, 0.0, 1.0}; // RGB for red

// set material color
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, red);
glNormal3f(0, 0, 1); // set normal vector (up)
glBegin(GL_POLYGON); // draw triangle on x,y-plane

glVertex3f(0, 0, 0);
glVertex3f(1, 0, 0);
glVertex3f(0, 1, 0);

glEnd();

Lecture 14: The Phong Reflection Model

Reading: Chapter 10 in Hearn and Baker.

Types of light reflection: The next issue needed to determine how objects appear is how this light isreflectedoff of
the objects in the scene and reach the viewer. So the discussion shifts from the discussion of light sources to
the discussion of object surface properties. We will assume that all objects are opaque. The simple model that
we will use for describing the reflectance properties of objects is called thePhong model. The model is over 20
years old, and is based on modeling surface reflection as a combination of the following components:

Emission: This is used to model objects that glow (even when all the lights are off). This is unaffected by the
presence of any light sources. However, because our illumination model is local, it does not behave like a
light source, in the sense that it does not cause any other objects to be illuminated.

Ambient reflection: This is a simple way to model indirect reflection. All surfaces in all positions and orienta-
tions are illuminated equally by this light energy.

Diffuse reflection: The illumination produced by matte (i.e, dull or nonshiny) smooth objects, such as foam
rubber.

Lecture Notes 62 CMSC 427

Specular reflection: The bright spots appearing on smooth shiny (e.g. metallic or polished) surfaces. Although
specular reflection is related to pure reflection (as with mirrors), for the purposes of our simple model these
two are different. In particular, specular reflection only reflects light, not the surrounding objects in the
scene.

Let L = (Lr, Lg, Lb) denote the illumination intensity of the light source. OpenGL allows us to break this
light’s emitted intensity into three components:ambientLa, diffuseLd, andspecularLs. Each type of light
component consists of the three color components, so, for example,Ld = (Ldr, Ldg, Ldb), denotes the RGB
vector (or more generally the RGBA components) of the diffuse component of light. As we have seen, modeling
the ambient component separately is merely a convenience for modeling indirect reflection. It is not as clear why
someone would want to turn on or turn off a light source’s ability to generate diffuse and specular reflection.
(There is no physical justification to this that I know of. It is an object’s surface properties, not the light’s
properties, which determine whether light reflects diffusely or specularly. But, again this is all just a model.)
The diffuse and specular intensities of a light source are usually set equal to each other.

An object’s color determines how much of a given intensity is reflected. LetC = (Cr, Cg, Cb) denote the
object’s color. These are assumed to be normalized to the interval[0, 1]. Thus we can think ofCr as the fraction
of red light that is reflected from an object. Thus, ifCr = 0, then no red light is reflected. When light of
intensityL hits an object of colorC, the amount of reflected light is given by the product

LC = (LrCr, LgCg, LbCb).

Beware: This is a component-by-component multiplication, and not a vector multiplication or dot-product in
the usual sense. For example, if the light is whiteL = (1, 1, 1) and the color is redC = (1, 0, 0) then the
reflection isLC = (1, 0, 0) which is red. However if the light is blueL = (0, 0, 1), then there is no reflection,
LC = (0, 0, 0), and hence the object appears to be black.

In OpenGL rather than specifying a single color for an object (which indicates how much light is reflected for
each component) you instead specify the amount of reflection for each type of illumination:Ca, Cd, andCs.
Each of these is an RGBA vector. This seems to be a rather extreme bit of generality, because, for example, it
allows you to specify that an object can reflect only red light ambient light and only blue diffuse light. Again, I
know of no physical explanation for this phenomenon. Note that it is common that the specular color (since it
arises by way of reflection of the light source) is usually made the same color as the light source, not the object.
In our presentation, we will assume thatCa = Cd = C, the color of the object, and thatCs = L, the color of
the light source.

So far we have laid down the foundation for the Phong Model. Next time we will discuss exactly how the Phong
model assigns colors to the points of a scene.

The Relevant Vectors: The shading of a point on a surface is a function of the relationship between the viewer, light
sources, and surface. (Recall that because this is a local illumination model the other objects of the scene are
ignored.) The following vectors are relevant to shading. We can think of them as being centered on the point
whose shading we wish to compute. For the purposes of our equations below, it will be convenient to think of
them all as being of unit length. They are illustrated in Fig. 46.

l r
u u

n

l

v

r

h

n’

n

viewer

Fig. 46: Vectors used in Phong Shading.

Lecture Notes 63 CMSC 427

Normal vector: A vector~n that is perpendicular to the surface and directed outwards from the surface. There
are a number of ways to compute normal vectors, depending on the representation of the underlying ob-
ject. For our purposes, the following simple method is sufficient. Given any three noncollinear points,
P0, P1, P2, on a polygon, we can compute a normal to the surface of the polygon as a cross product of two
of the associated vectors.

~n = normalize((P1 − P0)× (P2 − P0)).

The vector will be directed outwards if the tripleP0P1P2 has a counterclockwise orientation when seen
from outside.

View vector: A vector~v that points in the direction of the viewer (or camera).

Light vector: A vector~̀ that points towards the light source.

Reflection vector: A vector~r that indicates the direction of pure reflection of the light vector. (Based on the
law that the angle of incidence with respect to the surface normal equals the angle of reflection.) The
reflection vector computation reduces to an easy exercise in vector arithmetic. First observe that (because
all vectors have been normalized to unit length) the orthogonal projection of~̀ onto~n is

~n′ = (~n · ~̀)~n.

The vector directed from the tip of~̀ to the tip of~n′ is ~u = ~n′ − ~̀. To get~r observe that we need add two
copies of~u to ~̀. Thus we have

~r = ~̀+ 2~u = ~̀+ 2(~n′ − ~̀) = 2(~n · ~̀)~n− ~̀.

Halfway vector: A vector~h that is midway between~̀ and~v. Since this is half way between~̀ and~v, and
both have been normalized to unit length, we can compute this by simply averaging these two vectors and
normalizing (assuming that they are not pointing in exactly opposite directions). Since we are normalizing,
the division by 2 for averaging is not needed.

~h = normalize((~̀+ ~v)/2) = normalize(~̀+ ~v).

Phong Lighting Equations: There almost no objects that are pure diffuse reflectors or pure specular reflectors. The
Phong reflection model is based on the simple modeling assumption that we can model any (nontextured) ob-
ject’s surface to a reasonable extent as some mixture of purely diffuse and purely specular components of
reflection along with emission and ambient reflection. Let us ignore emission for now, since it is the rarest of
the group, and will be easy to add in at the end of the process.

The surface material properties of each object will be specified by a number of parameters, indicating the
intrinsic color of the object and its ambient, diffuse, and specular reflectance. LetC denote the RGB factors
of the object’s base color. As mentioned in the previous lecture, we assume that the light’s energy is given by
two RGB vectorsLa, its ambient component andLp its point component (assuming origin at pointQ). For
consistency with OpenGL, we will assume that we differentiateLp into two subcomponentsLd andLs, for the
diffuse and specular energy of the light source (which are typically equal to each other). Typically all three will
have the same proportion of red to green to blue, since they all derive from the same source.

Ambient light: Ambient light is the simplest to deal with. LetIa denote the intensity of reflected ambient light. For
each surface, let

0 ≤ ρa ≤ 1

denote the surface’scoefficient of ambient reflection, that is, the fraction of the ambient light that is reflected
from the surface. The ambient component of illumination is

Ia = ρaLaC

Note that this is a vector equation (whose components are RGB).

Lecture Notes 64 CMSC 427

Diffuse reflection: Diffuse reflection arises from the assumption that light from any direction is reflected uniformly
in all directions. Such an reflector is called a pureLambertian reflector. The physical explanation for this type
of reflection is that at a microscopic level the object is made up ofmicrofacetsthat are highly irregular, and these
irregularities scatter light uniformly in all directions.

The reason that Lambertian reflectors appear brighter in some parts that others is that if the surface is facing (i.e.
perpendicular to) the light source, then the energy is spread over the smallest possible area, and thus this part of
the surface appears brightest. As the angle of the surface normal increases with respect to the angle of the light
source, then an equal among of the light’s energy is spread out over a greater fraction of the surface, and hence
each point of the surface receives (and hence reflects) a smaller amount of light.

It is easy to see from the Fig. 47 that as the angleθ between the surface normal~n and the vector to the light
source~̀ increases (up to a maximum of 90 degrees) then amount of light intensity hitting a small differential
area of the surfacedA is proportional to the area of the perpendicular cross-section of the light beam,dA cos θ.
The is calledLambert’s Cosine Law.

θ

n
l

n

l

dA dAcosθθdA

Fig. 47: Lambert’s Cosine Law.

The key parameter of surface finish that controls diffuse reflection isρd, the surface’scoefficient of diffuse re-
flection. Let Id denote the diffuse component of the light source. If we assume that~̀ and~n are both normalized,
then we havecos θ = (~n·~̀). If (~n·~̀) < 0, then the point is on the dark side of the object. The diffuse component
of reflection is:

Id = ρd max(0, ~n · ~̀)LdC.

This is subject to attenuation depending on the distance of the object from the light source.

Specular Reflection: Most objects are not perfect Lambertian reflectors. One of the most common deviations is for
smooth metallic or highly polished objects. They tend to havespecular highlights(or “shiny spots”). Theo-
retically, these spots arise because at the microfacet level, light is not being scattered perfectly randomly, but
shows a preference for being reflected according to familiar rule that the angle of incidence equals the angle of
reflection. On the other hand, the microfacet level, the facets are not so smooth that we get a clear mirror-like
reflection.

There are two common ways of modeling of specular reflection. The Phong model uses the reflection vector
(derived earlier). OpenGL instead uses a vector called thehalfway vector, because it is somewhat more efficient
and produces essentially the same results. Observe that if the eye is aligned perfectly with the ideal reflection
angle, then~h will align itself perfectly with the normal~n, and hence(~n · ~h) will be large. On the other hand,
if eye deviates from the ideal reflection angle, then~h will not align with ~n, and(~n · ~h) will tend to decrease.
Thus, we let(~n · ~h) be the geometric parameter which will define the strength of the specular component. (The
original Phong model uses the factor(~r · ~v) instead.)

The parameters of surface finish that control specular reflection areρs, the surface’scoefficient of specular
reflection, andshininess, denotedα. As α increases, the specular reflection drops off more quickly, and hence
the size of the resulting shiny spot on the surface appears smaller as well. Shininess values range from 1 for low
specular reflection up to, say, 1000, for highly specular reflection. The formula for the specular component is

Is = ρs max(0, ~n · ~h)αLs.

As with diffuse, this is subject to attenuation.

Lecture Notes 65 CMSC 427

Specular reflectorDiffuse reflector

Fig. 48: Diffuse and specular reflection.

Putting it all together: Combining this withIe (the light emitted from an object), the total reflected light from a point
on an object of colorC, being illuminated by a light sourceL, where the point is distanced from the light source
using this model is:

I = Ie + Ia +
1

a + bd + cd2
(Id + Is)

= Ie + ρaLaC +
1

a + bd + cd2
(ρd max(0, ~n · ~̀)LdC + ρs max(0, ~n · ~h)αLs),

As before, note that this a vector equation, computed separately for the R, G, and B components of the light’s
color and the object’s color. For multiple light sources, we add up the ambient, diffuse, and specular components
for each light source.

Lecture 15: Lighting in OpenGL

Reading: Chapter 10 in Hearn and Baker.

Lighting and Shading in OpenGL: To describe lighting in OpenGL there are three major steps that need to be per-
formed: setting the lighting and shade model (smooth or flat), defining the lights, their positions and properties,
and finally defining object material properties.

Lighting/Shading model: There are a number of global lighting parameters and options that can be set through
the commandglLightModel*(). It has two forms, one for scalar-valued parameters and one for vector-valued
parameters.

glLightModelf(GLenum pname, GLfloat param);
glLightModelfv(GLenum pname, const GLfloat* params);

Perhaps the most important parameter is the global intensity of ambient light (independent of any light sources).
Its pname is GL LIGHT MODEL AMBIENT andparams is a pointer to an RGBA vector.

One important issue is whether polygons are to be drawn usingflat shading, in which every point in the polygon
has the same shading, orsmooth shading, in which shading varies across the surface by interpolating the vertex
shading. This is set by the following command, whose argument is eitherGL SMOOTH (the default) orGL FLAT.

glShadeModel(GL_SMOOTH); --OR-- glShadeModel(GL_FLAT);

In theory, shading interplation can be handled in one of two ways. In the classicalGouraud interpolationthe
illumination is computed exactly at the vertices (using the above formula) and the values are interpolated across
the polygon. InPhong interpolation, the normal vectors are given at each vertex, and the system interpolates
these vectors in the interior of the polygon. Then this interpolated normal vector is used in the above lighting
equation. This produces more realistic images, but takes considerably more time. OpenGL uses Gouraud
shading. Just before a vertex is given (withglVertex*()), you should specify its normal vertex (withglNormal*()).

The commandsglLightModel andglShadeModel are usually invoked in your initializations.

Lecture Notes 66 CMSC 427

Create/Enable lights: To use lighting in OpenGL, first you must enable lighting, through a call toglEnable(GL LIGHTING).
OpenGL allows the user to create up to 8 light sources, namedGL LIGHT0 throughGL LIGHT7. Each light
source may either be enabled (turned on) or disabled (turned off). By default they are all disabled. Again, this
is done usingglEnable() (andglDisable()). The properties of each light source is set by the commandglLight*().
This command takes three arguments, the name of the light, the property of the light to set, and the value of this
property.

Let us consider a light source 0, whose position is(2, 4, 5, 1)T in homogeneous coordinates, and which has a
red ambient intensity, given as the RGB triple(0.9, 0, 0), and white diffuse and specular intensities, given as the
RGB triple (1.2, 1.2, 1.2). (Normally all the intensities will be of the same color, albeit of different strengths.
We have made them different just to emphasize that it is possible.) There are no real units of measurement
involved here. Usually the values are adjusted manually by a designer until the image “looks good.”

Light intensities are actually expressed in OpenGL as RGBA, rather than just RGB triples. The ‘A’ component
can be used for various special effects, but for now, let us just assume the default situation by setting ‘A’ to 1.
Here is an example of how to set up such a light in OpenGL. The procedureglLight*() can also be used for setting
other light properties, such as attenuation.

Setting up a simple lighting situation
GLfloat ambientIntensity[4] = {0.9, 0.0, 0.0, 1.0};
GLfloat otherIntensity[4] = {1.2, 1.2, 1.2, 1.0};
GLfloat position[4] = {2.0, 4.0, 5.0, 1.0};

glEnable(GL_LIGHTING); // enable lighting
glEnable(GL_LIGHT0); // enable light 0

// set up light 0 properties
glLightfv(GL_LIGHT0, GL_AMBIENT, ambientIntensity);
glLightfv(GL_LIGHT0, GL_DIFFUSE, otherIntensity);
glLightfv(GL_LIGHT0, GL_SPECULAR, otherIntensity);
glLightfv(GL_LIGHT0, GL_POSITION, position);

Defining Surface Materials (Colors): When lighting is in effect, rather than specifying colors usingglColor() you
do so by setting the material properties of the objects to be rendered. OpenGL computes the color based on the
lights and these properties. Surface properties are assigned to vertices (and not assigned to faces as you might
think). In smooth shading, this vertex information (for colors and normals) are interpolated across the entire
face. In flat shading the information for the first vertex determines the color of the entire face.

Every object in OpenGL is a polygon, and in general every face can be colored in two different ways. In most
graphic scenes, polygons are used to bound the faces of solid polyhedra objects and hence are only to be seen
from one side, called thefront face. This is the side from which the vertices are given in counterclockwise
order. By default OpenGL, only applies lighting equations to the front side of each polygon and the back side
is drawn in exactly the same way. If in your application you want to be able to view polygons from both sides,
it is possible to change this default (usingglLightModel() so that each side of each face is colored and shaded
independently of the other. We will assume the default situation.

Recall from the Phong model that each surface is associated with a single color and various coefficients are
provided to determine the strength of each type of reflection: emission, ambient, diffuse, and specular. In
OpenGL, these two elements are combined into a single vector given as an RGB or RGBA value. For example,
in the traditional Phong model, a red object might have a RGB color of(1, 0, 0) and a diffuse coefficient of 0.5.
In OpenGL, you would just set the diffuse material to(0.5, 0, 0). This allows objects to reflect different colors
of ambient and diffuse light (although I know of no physical situation in which this arises).

Surface material properties are specified byglMaterialf() andglMaterialfv().

glMaterialf(GLenum face, GLenum pname, GLfloat param);

Lecture Notes 67 CMSC 427

glMaterialfv(GLenum face, GLenum pname, const GLfloat *params);

It is possible to color the front and back faces separately. The first argument indicates which face we are
coloring (GL FRONT, GL BACK, or GL FRONT AND BACK). The second argument indicates the parameter
name (GL EMISSION, GL AMBIENT, GL DIFFUSE, GL SPECULAR, GL SHININESS). The last parameter is
the value (either scalar or vector). See the OpenGL documentation for more information.

Other options: You may want to enable a number of GL options usingglEnable(). This procedure takes a single
argument, which is the name of the option. To turn each option off, you can useglDisable(). These optional
include:

GL CULL FACE: Recall that each polygon has two sides, and typically you know that for your scene, it is
impossible that a polygon can only be seen from its back side. For example, if you draw a cube with six
square faces, and you know that the viewer is outside the cube, then the viewer will never see the back
sides of the walls of the cube. There is no need for OpenGL to attempt to draw them. This can often save a
factor of 2 in rendering time, since (on average) one expects about half as many polygons to face towards
the viewer as to face away.

Backface cullingis the process by which faces which face away from the viewer (the dot product of the
normal and view vector is negative) are not drawn.

By the way, OpenGL actually allows you to specify which face (back or front) that you would like to have
culled. This is done withglCullFace() where the argument is eitherGL FRONT or GL BACK (the latter
being the default).

GL NORMALIZE: Recall that normal vectors are used in shading computations. You supply these normal to
OpenGL. These are assumed to be normalized to unit length in the Phong model. Enabling this option
causes all normal vectors to be normalized to unit length automatically. If you know that your normal
vectors are of unit length, then you will not need this. It is provided as a convenience, to save you from
having to do this extra work.

Computing Surface Normals: We mentioned one way for computing normals above based on taking the cross prod-
uct of two vectors on the surface of the object. Here are some other ways.

Normals by Cross Product: Given three (nocollinear) points on a polygonal surface,P0, P1, andP2, we can
compute a normal vector by forming the two vectors and taking their cross product.

~u1 = P1 − P0 ~u2 = P2 − P0 ~n = normalize(~u1 × ~u2).

This will be directed to the side from which the points appear in counterclockwise order.

Normals by Area: The method of computing normals by considering just three points is subject to errors if
the points are nearly collinear or not quite coplanar (due to round-off errors). A more robust method is
to consider all the points on the polygon. Suppose we are given a planar polygonal patch, defined by a
sequence ofn pointsP0, P1, . . . , Pn−1. We assume that these points define the vertices of a polygonal
patch.

Here is a nice method for determining the plane equation,

ax + by + cz + d = 0.

Once we have determined the plane equation, the normal vector has the coordinates~n = (a, b, c)T , which
can be normalized to unit length.

This leaves the question of to computea, b, andc? An interesting method makes use of the fact that the
coefficientsa, b, andc are proportional to the signed areas of the polygon’s orthogonal projection onto the
yz-, xz-, andxy-coordinate planes, respectively. By a signed area, we mean that if the projected polygon

Lecture Notes 68 CMSC 427

is oriented clockwise the signed area is positive and otherwise it is negative. So how do we compute the
projected area of a polygon? Let us consider thexy-projection for concreteness. The formula is:

c =
1
2

n∑
i=1

(yi + yi+1)(xi − xi+1).

But where did this formula come from? The idea is to break the polygon’s area into the sum of signed
trapezoid areas. See the figure below.

Area = (y2+y3)(x2−x3)

x

(x3,y3)
(x2,y2)

y

1

2

2

1

(y2+y3)

(x2−x3)

Fig. 49: Area of polygon.

Assume that the points are oriented counterclockwise around the boundary. For each edge, consider the
trapezoid bounded by that edge and its projection onto thex-axis. (Recall that this is the product of the
length of the base times the average height.) The area of the trapezoid will be positive if the edge is directed
to the left and negative if it is directed to the right. The cute observation is that even though the trapezoids
extend outside the polygon, its area will be counted correctly. Every point inside the polygon is under one
more left edge than right edge and so will be counted once, and each point under the polygon is under the
same number of left and right edges, and these areas will cancel.
The final computation of the projected areas is, therefore:

a =
1
2

n∑
i=1

(zi + zi+1)(yi − yi+1)

b =
1
2

n∑
i=1

(xi + xi+1)(zi − zi+1)

c =
1
2

n∑
i=1

(yi + yi+1)(xi − xi+1)

Normals for Implicit Surfaces: Given a surface defined by animplicit representation, e.g. the set of points
that satisfy some equation,f(x, y, z) = 0, then the normal at some point is given bygradient vector,
denoted∇. This is a vector whose components are the partial derivatives of the function at this point

~n = normalize(∇) ∇ =


 ∂f/∂x

∂f/∂y
∂f/∂z


 .

As usual this should be normalized to unit length. (Recall that∂f/∂x is computed by taking the derivative
of f with respect tox and treatingy andz as though they are constants.)
For example, consider a bowl shapedparaboloid, defined by the equalx2 + y +2 = z. The corresponding
implicit equation isf(x, y, z) = x2 + y2 − z = 0. The gradient vector is

∇(x, y, z) =


 2x

2y
−1


 .

Lecture Notes 69 CMSC 427

Consider a point(1, 2, 5)T on the surface of the paraboloid. The normal vector at this point is∇(1, 2, 5) =
(2, 4,−1)T .

Normals for Parametric Surfaces: Surfaces in computer graphics are more often represented parametrically.
A parametric representationis one in which the points on the surface are defined by three function of 2
variables orparameters, sayu andv:

x = φx(u, v),
y = φy(u, v),
z = φz(u, v).

We will discuss this representation more later in the semester, but for now let us just consider how to
compute a normal vector for some point(φx(u, v), φy(u, v), φz(u, v)) on the surface.

To compute a normal vector, first compute the gradients with respect tou andv,

∂φ

∂u
=


 ∂φx/∂u

∂φy/∂u
∂φz/∂u


 ∂φ

∂v
=


 ∂φx/∂v

∂φy/∂v
∂φz/∂v


 ,

and then return their cross product

~n =
∂φ

∂u
× ∂φ

∂v
.

Lecture 16: Texture Mapping

Reading: Sections 10–17 and 10–21 in Hearn and Baker.

Surface Detail: We have discussed the use of lighting as a method of producing more realistic images. This is fine
for smooth surfaces of uniform color (plaster walls, plastic cups, metallic objects), but many of the objects that
we want to render have some complex surface finish that we would like to model. In theory, it is possible to try
to model objects with complex surface finishes through extremely detailed models (e.g. modeling the cover of
a book on a character by character basis) or to define some sort of regular mathematical texture function (e.g. a
checkerboard or modeling bricks in a wall). But this may be infeasible for very complex unpredictable textures.

Textures and Texture Space :Although originally designed for textured surfaces, the process oftexture mappingcan
be used to map (or “wrap”) any digitized image onto a surface. For example, suppose that we want to render a
picture of the Mona Lisa. We could download a digitized photograph of the painting, and then map this image
onto a rectangle as part of the rendering process.

There are a number of common image formats which we might use. We will not discuss these formats. Instead,
we will think of an image simply as a 2-dimensional array of RGB values. Let us assume for simplicity that
the image is square, of dimensionsN × N (OpenGL requires thatN actually be a power of 2 for its internal
representation). Images are typically indexed row by row with the upper left corner as the origin. The individual
RGB pixel values of the texture image are often calledtexels, short fortexture elements.

Rather than thinking of the image as being stored in an array, it will be a little more elegant to think of the image
as function that maps a point(s, t) in 2-dimensionaltexture spaceto an RGB value. That is, given any pair
(s, t), 0 ≤ s, t ≤ 1, the texture image defines the value ofT (s, t) is an RGB value.

For example, if we assume that our image arrayIm is indexed by row and column from 0 toN − 1 starting
from the upper left corner, and our texture spaceT (s, t) is coordinatized bys (horizontal) andt (vertical)

Lecture Notes 70 CMSC 427

from the lower left corner, then we could apply the following function to round a point in image space to the
corresponding array element:

T (s, t) = Im[b(1− t)Nc , bsNc], for s, t ∈ (0, 1).

This is illustrated in Fig. 50.

s

t

s

Image Repeated texture space

T

t

i

j
Im

N−1

0
N−10

Texture space
(single copy)

Fig. 50: Texture space.

In many cases, it is convenient to imagine that the texture is an infinite function. We do this by imagining that
the texture image is repeated cyclically throughout the plane. This is sometimes called arepeated texture. In
this case we can modify the above function to be

T (s, t) = Im[b(1− t)Nc mod N, bsNc mod N], for s, t ∈ R.

Parameterizations: We wish to “wrap” this 2-dimensional texture image onto a 2-dimensional surface. We need
to define a wrapping function that achieves this. The surface resides in 3-dimensional space, so the wrapping
function would need to map a point(s, t) in texture space to the corresponding point(x, y, z) in 3-space.

This is typically done by first computing a 2-dimensionalparameterizationof the surface. This means that we
associate each point on the object surface with two coordinates(u, v) in surface space. Then we have three
functions,x(u, v), y(u, v) andz(u, v), which map the parameter pair(u, v) to thex, y, z-coordinates of the
corresponding surface point. We then map a point(u, v) in the parameterization to a point(s, t) in texture
space.

Let’s make this more concrete with an example. Suppose that our shape is the surface of a unit sphere centered
at the origin. We can represent any point on the sphere with two angles, representing the point’s latitude and
longitude. We will use a slightly different approach. Any point on the sphere can be expressed by two angles,
φ andθ. (These will take the roles of the parametersu andv mentioned above.) Think of the vector from the
origin to the point on the sphere. Letφ denote the angle in radians between this vector and thez-axis (north
pole). Soφ is related to, but not equal to, the latitude. We have0 ≤ φ ≤ π. Let θ denote the counterclockwise
angle of the projection of this vector onto thexy-plane. Thus0 ≤ θ ≤ 2π. (This is illustrated in Fig. 51.)

What are the coordinates of the point on the sphere as a function of these two parameters? Thez-coordinate is
just cos φ, and clearly ranges from1 to −1 asφ increases from 0 toπ. The length of the projection of such a
vector onto thex, y-plane will besinφ. It follows that thex andy coordinates are related to the cosine and sine
of angleθ, respectively, but scaled by this length. Thus we have

z(φ, θ) = cosφ, x(φ, θ) = cos θ sinφ, y(φ, θ) = sin θ sin φ.

If we wanted to normalize the values of our parameters to the range[0, 1], we couldreparameterizeby letting
u = 1 − (φ/π) andv = θ/(2π). (The reason for subtractingφ/π from 1 is that its value decreases as we
go from bottom to top, and having it increase is more natural.) Thus,u implicitly encodes a function of the
latitude ranging from 0 at the south pole up to 1 at the north pole, andv encodes the longitude ranging from 0

Lecture Notes 71 CMSC 427

2π
θ

π

ϕ
ϕ

θ

(param)
t

s

IW

0

0

z

y

x

Fig. 51: Parameterization of a sphere.

to 1 as we encircle the equator. (As an exercise, see if you can do this for the traditional latitude and longitude
representation, or try this for some other shapes, such as a cone or cylinder.)

We shall see below, that the inverse process is often more important. Given a point(x, y, z) on the surface of
the sphere, it is useful to derive the corresponding parameter values. In particular, it is easy to see that

φ = arccos z θ = arctan(y/x),

whre0 ≤ φ ≤ π and0 ≤ θ ≤ 2π. Normalizing these value we have

u = 1− arccos z

π
v =

arctan(y/x)
2π

for 0 ≤ u ≤ 1 and0 ≤ v ≤ 1.

Note that at the north and south poles there is a singularity in the sense that we cannot derive unique values for
θ or v. This is phenomenon is well known to map makers. It is not possible (certainly it is not easy) to map the
entire sphere to a single rectangle without suffering some sort of singularity.

The inverse wrappingfunctionIW (u, v) maps a point on the parameterized surface to a point(s, t) in texture
space. Intuitively, this is an “unwrapping” function, since it unwraps the surface back to the texture, but as
we will see, this is what we need. For this simple example, let’s just set this function to the identity, that is,
IW (u, v) = (u, v).

The Texture Mapping Process: Suppose that the unwrapping functionIW , and a parameterization of the surface are
given. Here is an overview of the texture mapping process. (See Fig. 52.) We will discuss some of the details
below.

Project pixel to surface: First we consider a pixel that we wish to draw. We determine thefragmentof the
object’s surface that projects onto this pixel, by determining which points of the object project through the
corners of the pixel. (We will describe methods for doing this below.) Let us assume for simplicity that
a single surface covers the entire fragment. Otherwise we should average the contributions of the various
surfaces fragments to this pixel.

Parameterize: We compute the surface space parameters(u, v) for each of the four corners of the fragment.
This generally requires a function for converting from the(x, y, z) coordinates of a surface point to its
(u, v) parameterization.

Unwrap and average: Then we apply the inverse wrapping function to determine the corresponding region of
texture space. Note that this region may generally have curved sides, if the inverse wrapping function is
nonlinear. We compute the average intensity of the texels in this region of texture space, by computing a
weighted sum of the texels that overlap this region, and then assign the corresponding average color to the
pixel.

Lecture Notes 72 CMSC 427

s
t

Texture space

i
j

Image

Surface space

u

pixel

Projection plane

eye y
x

v

Fig. 52: Texture mapping overview.

Texture Mapping Polygons: In OpenGL, all objects are polygons. This simplifies the texture mapping process. For
example, suppose that a triangle is being drawn. Typically, when the vertices of the polygon are drawn, the
user also specifies the corresponding(s, t) coordinates of these points in texture space. These are calledtexture
coordinates. This implicitly defines a linear mapping from texture space to the surface of the polygon. These are
specifiedbeforeeach vertex is drawn. For example, a texture-mapped object in 3-space with shading is drawn
using the following structure.

glBegin(GL_POLYGON);
glNormal3f(nx, ny, nz); glTexCoord2f(tx, ty); glVertex3f(vx, vy, vz);
...

glEnd();

There are two ways handle texture mapping in this context. The “quick-and-dirty” way (which is by far the
faster of the two) is to first project the vertices of the triangle onto the viewport. This gives us three pointsP0,
P1, andP2 for the vertices of the triangle in 2-space. LetQ0, Q1 andQ2 denote the three texture coordinates,
corresponding to these points. Now, for any pixel in the triangle, letP be its center. We can representP uniquely
as an affine combination

P = α0P0 + α1P1 + α2P2 for α0 + α1 + α2 = 1.

So, once we compute theαi’s the corresponding point in texture space is just

Q = α0Q0 + α1Q1 + α2Q2.

Now, we can just apply our indexing function to get the corresponding point in texture space, and use its RGB
value to color the pixel.

What is wrong with this approach? There are two problems, which might be very significant or insignificant
depending on the context. The first has to do with something calledaliasing. Remember that we said that
after determining the fragment of texture space onto which the pixel projects, we should average the colors of
the texels in this fragment. The above procedure just considers a single point in texture space, and does no
averaging. In situations where the pixel corresponds to a point in the distance and hence covers a large region
in texture space, this may produce very strange looking results, because the color of the pixel is determined
entirely by the point in texture space that happens to correspond to the pixel’s center.

The second problem has to do with perspective. This approach makes the incorrect assumption that affine
combinations are preserved under perspective projection. This is not true. For example, after a perspective
projection, the centroid of a triangle in 3-space is in general not mapped to the centroid of the projected triangle.
(This is true for parallel projections, but not perspective projections.) Thus, projection followed by wrapping
(using affine combinations in 2-space) is not the same as wrapping (using affine combinations in 3-space) and
then projecting. The latter is what we should be doing, and the former is what this quick-and-dirty method really
does.

There are a number of ways to fix this problem. One requires that you compute the inverse of the projection
transformation. For each pixel, we map it back into three space, then compute the wrapping function in 3-space.

Lecture Notes 73 CMSC 427

(Hearn and Baker does not discuss this. See Section 8.5.2 in Hill’s graphics book for a detailed discussion.) The
other involve slicing the polygon up into small chunks, such that within each chunk the amount of distortion due
to perspective is small.

Texture mapping in OpenGL: OpenGL supports a fairly general mechanism for texture mapping. The process in-
volves a bewildering number of different options. You are referred to the OpenGL documentation for more
detailed information. The very first thing to do is to enable texturing.

glEnable(GL_TEXTURE_2D);

The next thing that you need to do is to input your texture and present it to OpenGL in a format that it can access
efficiently. It would be nice if you could just point OpenGL to an image file and have it convert it into its own
internal format, but OpenGL does not provide this capability. You need to input your image file into an array
of RGB (or possibly RGBA) values, one byte per color component (e.g. three bytes per pixel), stored row by
row, from upper left to lower right. By the way, OpenGL requires images whose height and widths are powers
of two.

Once the array is input, call the procedureglTexImage2D() to have the texture processed into OpenGL’s internal
format. Here is the calling sequence. There are many different options, which are explained in the documenta-
tion.

glTexImage2d(GL_TEXTURE_2D, level, internalFormat, width, height,
border, format, type, image);

The procedure has an incredible array of options. Here is a simple example to present OpenGL an RGB image
stored in the arraymyImage. The image is to be stored with an internal format involving three components
(RGB) per pixel. It is of width 512 and height 256. It has no border (border = 0), and we are storing the highest
level resolution3 (level = 0). The format of the data that we will provide is RGB (GL RGB) and the type of each
element is an unsigned byte (GL UNSIGNED BYE). So the final call might look like the following:

glTexImage2d(GL_TEXTURE_2D, 0, GL_RGB, 512, 256, 0, GL_RGB,
GL_UNSIGNED_BYTE, myImage);

Once the image has been input and presented to OpenGL, we need to tell OpenGL how it is to be mapped
onto the surface. Again, OpenGL provides a large number of different methods to map a surface. The two
most common areGL DECAL which simply makes the color of the pixel equal to the color of the texture, and
GL MODULATE (the default) which makes the colors of the pixel the product of the color of the pixel (without
texture mapping) times the color of the texture. This latter option is applied when shading is used, since the
shading is applied to the texture as well. A example is:

glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

The last step is to specify the how the texture is to be mapped to each polygon that is drawn. For each vertex
drawn byglVertex*(), specify the corresponding texture coordinates, as we discussed earlier.

Lecture 17: Bump and Environment Mapping

Reading: Chapter 10 (Sects. 10.13 and 10.18) in Hearn and Baker.
3Other levels of resolution are used to implement the averaging process, through a method calledmipmaps. We will not discuss this. Typically,

the level parameter will be 0.

Lecture Notes 74 CMSC 427

Bump mapping: Texture mapping is good for changing the surface color of an object, but we often want to do more.
For example, if we take a picture of an orange, and map it onto a sphere, we find that the resulting object does
not look realistic. The reason is that there is an interplay between the bumpiness of the orange’s peel and the
light source. As we move our viewpoint from side to side, the specular reflections from the bumps should move
as well. However, texture mapping alone cannot model this sort of effect. Rather than just mapping colors, we
should consider mapping whatever properties affect local illumination. One such example is that of mapping
surface normals, and this is whatbump mappingis all about.

What is the underlying reason for this effect? The bumps are too small to be noticed through perspective depth.
It is the subtle variations insurface normalsthat causes this effect. At first it seems that just displacing the
surface normals would produce a rather artificial effect (for example, the outer edge of the object’s boundary
will still appear to be perfectly smooth). But in fact, bump mapping produces remarkably realistic bumpiness
effects.

Here is an overview of how bump mapping is performed. As with texture mapping we are presented with an
image that encodes the bumpiness. Think of this as a monochrome (gray-scale) image, where a large (white)
value is the top of a bump and a small (black) value is a valley between bumps. (An alternative, and more direct
way of representing bumps would be to give anormal mapin which each pixel stores the(x, y, z) coordinates
of a normal vector. One reason for using gray-valued bump maps is that they are often easier to compute and
involve less storage space.) As with texture mapping, it will be more elegant to think of this discrete image
as an encoding of a continuous 2-dimensionalbump space, with coordinatess andt. The gray-scale values
encode a function called thebump displacement functionb(s, t), which maps a point(s, t) in bump space to its
(scalar-valued) height. As with texture mapping, there is aninverse wrapping functionIW , which maps a point
(u, v) in the object’s surface parameter space to(s, t) in bump space.

Perturbing normal vectors: Let us think of our surface as a parametric function in the parametersu andv. That is,
each pointP (u, v) is given by three coordinate functionsx(u, v), y(u, v), andz(u, v). Consider a pointP (u, v)
on the surface of the object (which we will just callP). Let ~n denote the surface normal vector at this point.
Let (s, t) = IW (u, v), so thatb(s, t) is the corresponding bump value. The question is, what is theperturbed
normal~n′ for the pointP according to the influence of the bump map? Once we know this normal, we just use
it in place of the true normal in our Phong illumination computations.

Here is a method for computing the perturbed normal vector. The idea is to imagine that the bumpy surface
has been wrapped around the object. The question is how do these bumps affect the surface normals? This is
illustrated in the figure below.

(Perturbed normal)

(True normal)
Bump space

N’
P’

b(s,t) P

N

Fig. 53: Bump mapping.

SinceP is a function ofu andv, let Pu denote the partial derivative ofP with respect tou and definePv

similarly with respect tov. SinceP has three coordinates,Pu andPv can be thought of as three dimensional
vectors. Intuitively,Pu andPv are tangent vectors to the surface at pointP . It follows that the normal vector~n

Lecture Notes 75 CMSC 427

is (up to a scale factor) given by

~n = Pu × Pv =


 ∂x/∂u

∂y/∂u
∂z/∂u


×


 ∂x/∂v

∂y/∂v
∂z/∂v


 .

(NOTE: In spite of the notational similarity, this is quite different from the gradient of an implicit function,
which gives the normal. These derivatives produce two tangent vectors to the surface at the pointP . Thus,
their cross product is the normal.) Since~n may not generally be of unit length, we definen̂ = ~n/|~n| to be the
normalized normal.

If we apply our bump at pointP , it will be elevated by an amountb = b(u, v) in the direction of the normal. So
we have

P ′ = P + bn̂,

is the elevated point. Note that just likeP , the perturbed pointP ′ is really a function ofu andv. We want to
know what the (perturbed) surface normal should be atP ′. But this requires that we know its partial derivatives
with respect tou andv. Letting~n′ denote this perturbed normal we have

~n′ = P ′
u × P ′

v,

whereP ′
u andP ′

v are the partials ofP ′ with respect tou andv, respectively. Thus we have

P ′
u =

∂

∂u
(P + bn̂) = Pu + bun̂ + bn̂u,

wherebu andn̂u denote the partial derivatives ofb and b̂ with respect tou. An analogous formula applies for
P ′

v. Assuming that the height of the bumpb is small but its rate of changebu andbv may be high, we can neglect
the last term, and write these as

P ′
u ≈ Pu + bun̂ P ′

v ≈ Pv + bvn̂.

Taking the cross product (and recalling that cross product distributes over vector addition) we have

~n′ ≈ (Pu + bun̂)× (Pv + bvn̂)
≈ (Pu × Pv) + bv(Pu × n̂) + bu(n̂× Pv) + bubv(n̂× n̂).

Sincen̂× n̂ = 0 and(Pu × n̂) = −(n̂× Pu) we have

~n′ ≈ ~n + bu(n̂× Pv)− bv(n̂× Pu).

The partial derivativesbu andbv depend on the particular parameterization of the object’s surface. If we assume
that the object’s parameterization has been constructed in common alignment with the image, then we have the
following formula

~n′ ≈ ~n + bs(n̂× Pv)− bt(n̂× Pu).

If we have an explicit representation forP (u, v) andb(s, t), then these partial derivatives can be computed by
calculus. If the surface a polygonal, thenPu andPv are constant vectors over the entire surface, and are easily
computed. Typically we storeb(s, t) in an image, and so do not have an explicit representation, but we can
approximate the derivatives by taking finite differences.

In summary, for each pointP on the surface with (smooth) surface normal~n we apply the above formula to
compute the perturbed normal~n′. Now we proceed as we would in any normal lighting computation, but instead
of using~n as our normal vector, we use~n′ instead. As far as I know, OpenGl does not support bump mapping.

Lecture Notes 76 CMSC 427

Environment Mapping: Next we consider another method of applying surface detail to model reflective objects.
Suppose that you are looking at a shiny waxed floor, or a metallic sphere. We have seen that we can model
the shininess by setting a high coefficient of specular reflection in the Phong model, but this will mean that
the only light sources will be reflected (as bright spots). Suppose that we want the surfaces to actually reflect
the surrounding environment. This sort of reflection of the environment is often used in commercial computer
graphics. The shiny reflective lettering and logos that you see on television, the reflection of light off of water,
the shiny reflective look of a automobile’s body, are all examples.

The most accurate way for modeling this sort of reflective effect is through ray-tracing (which we will discuss
later in the semester). Unfortunately, ray-tracing is a computationally intensive technique. To achieve fast
rendering times at the cost of some accuracy, it is common to apply an alternative method calledenvironment
mapping(also calledreflection mapping).

What distinguishes reflection from texture? When you use texture mapping to “paint” a texture onto a surface,
the texture stays put. For example, if you fix your eye on a single point of the surface, and move your head
from side to side, you always see the same color (perhaps with variations only due to the specular lighting
component). However, if the surface is reflective, as you move your head and look at the same point on the
surface, the color changes. This is because reflection is a function of the relationships between the viewer, the
surface, and the environment.

Computing Reflections: How can we encode such a complex reflective relationship? The basic question that we need
to answer is, given a point on the reflective surface, and given the location of the viewer, determine what the
viewer sees in the reflection. Before seeing how this is done in environment mapping, let’s see how this is done
in the more accurate method calledray tracing. In ray tracing we track the path of a light photon backwards
from the eye to determine the color of the object that it originated from. When a photon strikes a reflective
surface, it bounces off. If~v is the (normalized) view vector and~n is the (normalized) surface normal vector,
then just as we did in the Phong model, we can compute theview reflection vector, ~rv, for the view vector as

~rv = 2(~n · ~v)~n− ~v.

(See Lecture 14 for a similar derivation of the light reflection vector.)

To compute the “true” reflection, we should trace the path of this ray back from the point on the surface along
~rv. Whatever color this ray hits, will be the color that the viewer observes as reflected from this surface.

rv
v

n

Fig. 54: Reflection vector.

Unfortunately, it is expensive to shoot rays through 3-dimensional environments to determine what they hit.
(However, this is exactly how the method of ray-tracing works.) We would like to do what we did in texture
mapping, and just look the answer up in a precomputed image. To make this tractable, we will make one
simplifying assumption.

Distant Environment Assumption: (For environment mapping) The reflective surface is small in comparison
with the distances to the objects being reflected in it.

Lecture Notes 77 CMSC 427

For example, the reflection of a room surrounding a silver teapot would satisfy this requirement. However, if the
teapot is sitting on a table, then the table would be too close (resulting in a distorted reflection). The reason that
this assumption is important is that the main parameter in determining what the reflection ray hits is thedirection
of the reflection vector, and not the location on the surface from which the ray starts. The space of directions is
a 2-dimensional space, implying that we can precompute this information and store it in a 2-dimensional image
array.

The environment mapping process:Here is a sketch of how environment mapping can be implemented. The first
thing you need to do is to compute the environment map. First off remove the reflective object from your
environment. Place a small sphere or cube about the center of the object. It should be small enough that it
does not intersect any of the surrounding objects. (You may actually use any convex object for this purpose.
Spheres and cubes each have advantages and disadvantages. We will assume the case of a cube in the rest of
the discussion.) Project the entire environment onto the six faces of the cube, using the center of the cube as
the center of projection. That is, take six separate pictures which together form a complete panoramic picture
of the surrounding environment, and store the results in six image files. It may take some time to compute these
images, but once they have been computed they can be used to compute reflections from all different viewing
positions.

By the way, an accurate representation of the environment is not always necessary. For example, to simulate a
shiny chrome-finished surface, a map with varying light and dark regions is probably good enough to fool the
eye. This is calledchrome mapping. But if you really want to simulate a mirrored surface, a reasonably accurate
environment map is necessary.

Now suppose that we want to compute the color reflected from some point on the object. As in the Phong model
we compute the usual vectors: normal vector~n, view vector~v, etc. We compute the view reflection vector~rv

from these two. (This is not the same as the light reflection vector,~r, which we discussed in the Phong model,
but it is the counterpart where the reflection is taken with respect to the viewer rather than the light source.)
To determine the reflected color, we imagine that the view reflection vector~rv is shot from the center of the
cube and determine the point on the cube which is hit by this ray. We use the color of this point to color the
corresponding point on the surface. (We will leave as an exercise the problem of mapping a vector to a point on
the surface of the cube.) The process is illustrated below.

viewer

Building the map Using the map

v
n

True reflection by
ray tracing

final color

rv

rv

Fig. 55: Environment mapping.

Note that the final color returned by the environment map is a function of the contents of the environment image
and~rv (and hence of~v and~n). In particular, it isnot a function of the location of the point on the surface.
Wouldn’t taking this location into account produce more accurate results? Perhaps, but by our assumption that
objects in the environment are far away, the directional vector is the most important parameter in determining
the result. (If you really want accuracy, then use ray tracing instead.)

Reflection mapping through texture mapping: OpenGL does not support environment mapping directly, but there
is a reasonably good way to “fake it” using texture mapping. Consider a polygonal face to which you want to
apply an environment map. They key question is how to compute the point in the environment map to use in

Lecture Notes 78 CMSC 427

computing colors. The solution is to compute this quantities yourself for each vertex on your polygon. That
is, for each vertex on the polygon, based on the location of the viewer (which you know), and the location of
the vertex (which you know) and the polygon’s surface normal (which you can compute), determine the view
reflection vector. Use this vector to determine the corresponding point in the environment map. Repeat this for
each of the vertices in your polygon. Now, just treat the environment map as though it were a texture map.

What makes the approach work is that when the viewer shifts positions, you will change the texture coordinates
of your vertices. In normal texture mapping, these coordinates would be fixed, independent of the viewer’s
position.

Lecture 18: Ray Tracing

Reading: Section 10-11 in Hearn and Baker.

Ray Tracing: Ray tracing is among the conceptually simplest methods for synthesizing highly realistic images. Un-
like the simple polygon rendering methods used by OpenGL, ray tracing can easily produce shadows, and it can
model reflective and transparent objects. Because it is slow, ray tracing is typically used for generating highly
realistic images offline (as opposed to interactively), but it is useful for generating realistic texture maps and
environment maps that could later be used in interactive rendering. Ray tracing also forms the basis of many
approaches to more producing highly realistic complex types of shading and lighting. In spite of its conceptual
simplicity, ray tracing can be computationally quite intensive. Today we will discuss the basic elements of ray
tracing, and next time we will discuss the details of handling ray intersections in greater detail.

The Basic Idea: Consider our standard perspective viewing scenario. There is a viewer located at some position, and
in front of the viewer is the view plane, and on this view plane is a window. We want to render the scene that is
visible to the viewer through this window. Consider an arbitrary point on this window. The color of this point is
determined by the light ray that passes through this point and hits the viewer’s eye.

More generally, light travels in rays that are emitted from the light source, and hit objects in the environment.
When light hits a surface, some of its energy is absorbed, and some is reflected in different directions. (If the
object is transparent, light may also be transmitted through the object.) The light may continue to be reflected
off of other objects. Eventually some of these reflected rays find their way to the viewer’s eye, and only these
are relevant to the viewing process.

If we could accurately model the movement of all light in a 3-dimensional scene then in theory we could produce
very accurate renderings. Unfortunately the computational effort needed for such a complex simulation would
be prohibitively large. How might we speed the process up? Observe that most of the light rays that are emitted
from the light sources never even hit our eye. Consequently the vast majority of the light simulation effort is
wasted. This suggests that rather than tracing light rays as they leave the light source (in the hope that it will
eventually hit the eye), instead we reverse things and trace backwards along the light rays that hit the eye. This
is the idea upon whichray tracing is based.

Ray Tracing Model: Imagine that the viewing window is replaced with a fine mesh of horizontal and vertical grid
lines, so that each grid square corresponds to a pixel in the final image. We shoot rays out from the eye through
the center of each grid square in an attempt to trace the path of light backwards toward the light sources.
Consider the first object that such a ray hits. (In order to avoid problems with jagged lines, calledaliasing, it
is more common to shoot a number of rays per pixel and average their results.) We want to know the intensity
of reflected light at this surface point. This depends on a number of things, principally the reflective and color
properties of the surface, and the amount of light reaching this point from the various light sources. The amount
of light reaching this surface point is the hard to compute accurately. This is because light from the various light
sources might be blocked by other objects in the environment and it may be reflected off of others.

A purely local approach to this question would be to use the model we discussed in the Phong model, namely
that a point is illuminated if the angle between the normal vector and light vector is acute. In ray tracing it is

Lecture Notes 79 CMSC 427

common to use a somewhat more global approximation. We will assume that the light sources are points. We
shoot a ray from the surface point to each of the light sources. For each of these rays that succeeds in reaching
a light source before being blocked another object, we infer that this point is illuminated by this source, and
otherwise we assume that it is not illuminated, and hence we are in the shadow of the blocking object. (Can you
imagine a situation in which this model will fail to correctly determine whether a point is illuminated?) This
model is illustrated on the left in Fig. 56.

X

reflective and transparent objects.
Recursive ray tracing forRay tracing

P

R

L

i

j

P

R

tR

rR

LR

ij

Fig. 56: Ray Tracing.

Given the direction to the light source and the direction to the viewer, and the surface normal (which we can
compute because we know the object that the ray struck), we have all the information that we need to compute
the reflected intensity of the light at this point, say, by using the Phong model and information about the ambient,
diffuse, and specular reflection properties of the object. We use this model to assign a color to the pixel. We
simply repeat this operation on all the pixels in the grid, and we have our final image.

Even this simple ray tracing model is already better than what OpenGL supports, because, for example, OpenGL’s
local lighting model does not compute shadows. The ray tracing model can easily be extended to deal with re-
flective objects (such as mirrors and shiny spheres) and transparent objects (glass balls and rain drops). For
example, when the ray hits a reflective object, we compute the reflection ray and shoot it into the environment.
We invoke the ray tracing algorithmrecursively. When we get the associated color, we blend it with the local
surface color and return the result. The generic algorithm is outlined below.

rayTrace(): Given the camera setup and the image size, generate a rayRij from the eye passing through the
center of each pixel(i, j) of your image window (See Fig. 56.) Calltrace(R) and assign the color returned
to this pixel.

trace(R): ShootR into the scene and letX be the first object hit andP be the point of contact with this object.

(a) If X is reflective, then compute the reflection rayRr of R atP . Let Cr ← trace(Rr).
(b) If X is transparent, then compute the transmission (refraction) rayRt of R atP . LetCt ← trace(Rt).
(c) For each light sourceL,

(i) Shoot a rayRL from P to L.
(ii) If RL does not hit any object until reachingL, then apply the lighting model to determine the

shading at this point.
(d) Combine the colorsCr andCt due to reflection and transmission (if any) along with the combined

shading from (c) to determine the final colorC. ReturnC.

There are two questions to be considered. How to determine what object the ray intersects (which we will
consider next time) and how to use this information to determine the reflected color? We will concentrate on
this latter item today.

Lecture Notes 80 CMSC 427

Reflection: Recall the Phong reflection model. Each object is associated with a color, and its coefficients of ambient,
diffuse, and specular reflection, denotedρa, ρd andρs. To model the reflective component, each object will
be associated with an additional parameter called thecoefficient of reflection, denotedρr. As with the other
coefficients this is a number in the interval[0, 1]. Let us assume that this coefficient is nonzero. We compute the
view reflection ray (which equalizes the angle between the surface normal and the view vector). Let~v denote
the normalizedview vector, which points backwards along the viewing ray. Thus, if you ray isP + t~u, then
~v = −normalize(~u). (This is essentially the same as the view vector used in the Phong model, but it may not
point directly back to the eye because of intermediate reflections.) Let~n denote the outward pointing surface
normal vector, which we assume is also normalized. The normalizedview reflection vector, denoted~rv was
derived earlier this semester:

~rv = 2(~n · ~v)~n− ~v.

vrv

θθ

n

Fig. 57: Reflection.

Next we shoot the ray emanating from the surface contact point along this direction and apply the above ray-
tracing algorithm recursively. Eventually, when the ray hits a nonreflective object, the resulting color is returned.
This color is then factored into the Phong model, as will be described below. Note that it is possible for this
process to go into an infinite loop, if say you have two mirrors facing each other. To avoid such looping, it is
common to have a maximum recursion depth, after which some default color is returned, irrespective of whether
the object is reflective.

Transparent objects and refraction: To model refraction, also calledtransmission, we maintain a coefficient of
transmission, denotedρt. We also need to associate each surface with two additional parameters, theindices of
refraction4 for the incident sideηi and the transmitted side,ηt. Recall from physics that the index of refraction
is the ratio of the speed of light through a vacuum versus the speed of light through the material. Typical indices
of refraction include:

Material Index of Refraction
Air (vacuum) 1.0
Water 1.333
Glass 1.5
Diamond 2.47

Snell’s lawsays that if a ray is incident with angleθi (relative to the surface normal) then it will transmitted with
angleθt (relative to the opposite normal) such that

sin θi

sin θt
=

ηt

ηi
.

Let us work out the direction of the transmitted ray from this. As before let~v denote the normalized view vector,
directed back along the incident ray. Let~t denote the unit vector along the transmitted direction, which we wish
to compute. The orthogonal projection of~v onto the normalized normal vector~n is

~mi = (~v · ~n)~n = (cos θi)~n.
4To be completely accurate, the index of refraction depends on the wavelength of light being transmitted. This is what causes white light to be

spread into a spectrum as it passes through a prism. But since we do not model light as an entire spectrum, but only through a triple of RGB values
(which produce the same color visually, but not the same spectrum physically) we will not get realistic results. For simplicity we assume that all
wavelengths have the same index of refraction.

Lecture Notes 81 CMSC 427

t t t

mv

i
i

i

tη

w

i

η

m w

θ

θ

−n

t

n

Fig. 58: Refraction.

Consider the two parallel horizontal vectors~wi and ~wt in the figure. We have

~wi = ~mi − ~v.

Since~v and~t are each of unit length we have

ηt

ηi
=

sin θi

sin θt
=
|~wi|/|~v|
|~wt|/|~t|

=
|~wi|
|~wt| .

Since~wi and ~wt are parallel we have

~wt =
ηi

ηt
~wi =

ηi

ηt
(~mi − ~v).

The projection of~t onto−~n is ~mt = −(cos θt)~n, and hence the desired refraction vector is:

~t = ~wt + ~mt =
ηi

ηt
(~mi − ~v)− (cos θt)~n =

ηi

ηt
((cos θi)~n− ~v)− (cos θt)~n

=
(

ηi

ηt
cos θi − cos θt

)
~n− ηi

ηt
~v.

We have already computedcos θi = (~v · ~n). We can derivecos θt from Snell’s law and basic trigonometry:

cos θt =
√

1− sin2 θt =

√
1−

(
ηi

ηt

)2

sin2 θi =

√
1−

(
ηi

ηt

)2

(1− cos2 θi)

=

√
1−

(
ηi

ηt

)2

(1− (~v · ~n)2).

What if the term in the square root is negative? This is possible if(ηi/ηt) sin θi > 1. In particular, this can only
happen ifηi/ηt > 1, meaning that you are already inside an object with an index of refraction greater than 1.
Notice that when this is the case, Snell’s law breaks down, since it is impossible to findθt whose sine is greater
than 1. This is a situation wheretotal internal reflectiontakes place. The light source is not refracted at all, but
is reflected within the object. (For example, this is one of the important elements in the physics of rainbows.)
When this happens, the refraction reduces to reflection and so we set~t = ~rv, the view reflection vector.

Illumination Equation Revisited: We can combine the familiar Phong illumination model with the reflection and
refraction computed above. We assume that we have shot a ray, and it has hit an object at some pointP .

Lecture Notes 82 CMSC 427

Light sources: Let us assume that we have a collection of light sourceL1, L2, Each is associated with an
RGB vector of intensities (any nonnegative values). LetLa denote the global RGB intensity of ambient
light.

Visibility of Light Sources: The function Vis(P, i) returns 1 if light sourcei is visible to pointP and 0 other-
wise. If there are no transparent objects, then this can be computed by simply shooting a ray fromP to the
light source and seeing whether it hits any objects.

Material color: We assume that an object’s material color is given byC. This is an RGB vector, in which each
component is in the interval[0, 1]. We assume that the specular color is the same as the light source, and
that the object does not emit light. Letρa, ρd, andρs denote the ambient, diffuse, and specular coefficients
of illumination, respectively. These coefficients are typically in the interval[0, 1]. Letα denote the specular
shininess coefficient.

Vectors: Let~n,~h, and~l denote the normalized normal, halfway-vector, and light vectors. See the lecture on the
Phong model for how they are computed.

Attenuation: We assume the existence of general quadratic light attenuation, given by the coefficientsa, b, and
c, as before. Letdi denote the distance from the contact pointP to theith light source.

Reflection and refraction: Let ρr andρt denote the reflective and transmitted (refracted) coefficients of illumi-
nation. Ifρt 6= 0 then letηi andηt denote the indices of refraction, and let~rv and~t denote the normalized
view reflection and transmission vectors.

Let the pair(P,~v) denote a ray originating at pointP and heading in direction~v. The complete ray-tracing
reflection equation is:

I = ρaLaC +
∑

i

Vis(P, i)
Li

a + bdi + cd2
i

[ρdC max(0, ~n ·~l) + ρs max(0, (~n · ~h))α]

+ρrtrace(P,~rv) + ρttrace(P,~t).

Recall that Vis(P, i) indicates whether theith light source is visible fromP . Note that ifρr or ρt are equal to
0 (as is often the case) then the corresponding ray-trace call need not be made. Observe that attenuation and
lighting are not applied to results of reflection and refraction. This seems to behave reasonably in most lighting
situations, where lights and objects are relatively close to the eye.

Lecture 19: Ray Tracing: Geometric Processing

Reading: Chapter 10 in Hearn and Baker.

Rays Representation:We will discuss today how rays are represented, generated, and how intersections are deter-
mined. First off, how is a ray represented? An obvious method is to represent it by its origin pointP and a
directional vector~u. Points on the ray can be describedparametricallyusing a scalart:

R = {P + t~u | t > 0}.

Notice that our ray isopen, in the sense that it does not include its endpoint. This is done because in many
instances (e.g., reflection) we are shooting a ray from the surface of some object. We do not want to consider
the surface itself as an intersection. (As a practical matter, it is good to require thatt is larger than some very
small value, e.g.t ≥ 10−3. This is done because of floating point errors.)

In implementing a ray tracer, it is also common to store some additional information as part of aray object. For
example, you might want to store the valuet0 at which the ray hits its first object (initially,t0 =∞) and perhaps
a pointer to the object that it hits.

Lecture Notes 83 CMSC 427

Ray Generation: Let us consider the question of how to generate rays. Let us assume that we are given essentially
the same information that we use ingluLookAt() andgluPerspective(). In particular, letE denote the eye point,
C denote the center point at which the camera is looking, and let~up denote the up vector forgluLookAt(). Let
θy = π · fovy/180 denote they-field of view in radians. LetnRowsandnColsdenote the number of rows and
columns in the final image, and letα = nCols/nRowsdenote the window’s aspect ratio.

In gluPerspective we also specified the distance to the near and far clipping planes. This was necessary for
setting up the depth buffer. Since there is no depth buffer in ray tracing, these values are not needed, so to
make our life simple, let us assume that the window is exactly one unit in front of the eye. (The distance is not
important, since the aspect ratio and the field-of-view really determine everything up to a scale factor.)

The height and width of view window relative to its center point are

h = 2 tan(θy/2) w = hα.

So, the window extends from−h/2 to +h/2 in height and−w/2 to +w/2 in width. Now, we proceed to
compute the viewing coordinate frame, very much as we did in Lecture 10. The origin of the camera frame is
E, the location of the eye. The unit vectors for the camera frame are:

~ez = −normalize(C − E),
~ex = normalize(~up× ~ez),
~ey = ~ez × ~ex.

We will follow the (somewhat strange) convention used in .bmp files and assume that rows are indexed from
bottom to top (top to bottom is more common) and columns are indexed from left to right. Every point on the
view window has~ez coordinate of−1. Now, suppose that we want to shoot a ray for rowr and columnc, where
0 ≤ r < nRowsand0 ≤ c < nCols. Observe thatr/nRowsis in the range from 0 to 1. Multiplying byh maps
us linearly to the interval[0,+h] and then subtractingh/2 yields the final desired interval[−h/2, h/2].

ur = h
r

nRows
− h

2
,

uc = w
c

nCols
− w

2
.

The location of the corresponding point on the viewing window is

P (r, c) = E + uc~ex + ur~ey − ~ez.

Thus, the desired rayR(r, c) has the originE and the directional vector

~u(r, c) = normalize(P (r, c)− E).

fovy

aspect = w/h

y

x
z

h

w

1

(not drawn to scale)

P(r,c)

c

r

Fig. 59: Ray generation.

Lecture Notes 84 CMSC 427

Rays and Intersections: Given an object in the scene, aray intersection proceduredetermines whether the ray inter-
sects and object, and if so, returns the valuet′ > 0 at which the intersection occurs. (This is a natural use of
object-oriented programming, since the intersection procedure can be made a member function of the object.)
Otherwise, ift′ is smaller than the currentt0 value, thent0 is set tot′. Otherwise the trimmed ray does not
intersect the object. (For practical purposes, it is useful for the intersection procedure to determine two other
quantities. First, it should return the normal vector at the point of intersection and second, it should indicate
whether the intersection occurs on the inside or outside of the object. The latter information is useful if refraction
is involved.)

Ray-Sphere Intersection: Let us consider one of the most popular nontrivial intersection tests for rays, intersection
with a sphere in 3-space. We represent a rayR by giving its origin pointP and a normalized directional vector
~u. Suppose that the sphere is represented by giving its center pointC and radiusr (a scalar). Our goal is to
determine the value oft for which the ray strikes the sphere, or to report that there is no intersection. In our
development, we will try to avoid using coordinates, and keep the description ascoordinate-freeas possible.

P

P+tu

C
u

r

Fig. 60: Ray-sphere intersection.

We know that a pointQ lies on the sphere if its distance from the center of the sphere isr, that is if |Q−C| = r.
So the ray intersects at the value oft such that

|(P + t~u)− C| = r.

Notice that the quantity inside the|.| above is a vector. Let~p = C − P . This gives us

|t~u− ~p| = r.

We know~u, ~p, andr and we want to findt. By the definition of length using dot products we have

(t~u− ~p) · (t~u− ~p) = r2.

Observe that this equation is scalar valued (not a vector). We use the fact that dot-product is a linear operator,
and so we can manipulate this algebraically into:

t2(~u · ~u)− 2t(~u · ~p) + (~p · ~p)− r2 = 0

This is a quadratic equationat2 + bt + c = 0, where

a = (~u · ~u) = 1 (since~u is normalized),

b = −2(~u · ~p),
c = (~p · ~p)− r2

We can solve this using the quadratic formula to produce two roots. Using the fact thata = 1 we have:

t− =
−b−√b2 − 4ac

2a
=
−b−√b2 − 4c

2

t+ =
−b +

√
b2 − 4ac

2a
=
−b +

√
b2 − 4c

2
.

Lecture Notes 85 CMSC 427

If t− > 0 we uset− to define the intersection point. Otherwise, ift+ > 0 we t+. If both are nonpositive, then
there is no intersection.

Note that it is a not a good idea to compare floating point numbers against zero, since floating point errors are
always possible. A good rule of thumb is to do all of these 3-d computations using doubles (not floats) and
perform comparisons against some small value instead, e.g.double TINY = 1E-3. The proper choice of this
parameter is a bit of “magic”. It is usually adjusted until the final image looks okay.

Normal Vector: In addition to computing the intersection of the ray with the object, it is also necessary to compute
the normal vector at the point of intersection. In the case of the sphere, note that the normal vector is directed
from the center of the sphere to point of contact. Thus, ift is the parameter value at the point of contact, the
normal vector is just

~n = normalize(P + t~u− C).

Note that this vector is directed outwards. Ift− was used to define the intersection, then we are hitting the object
from the outside, and so~n is the desired normal. However, ift+ was used to define the intersection, then we are
hitting the object from the inside, and−~n should be used instead.

Numerical Issues: There are some numerical instabilities to beware of. Ifr is small relative to|~p| (which happens
when the sphere is far away) then we may lose the effect ofr in the computation of the discriminant. It is
suggested that rather than computing this in the straightforward way, instead use the following algebraically
equivalent manner. The discriminant isD = b2 − 4ac. First observe that we can express the determinant as

D = 4(r2 − |~p− (~u · ~p)~u|2).
(We will leave it as an exercise to verify this.) IfD is negative then there is no solution, implying that the ray
misses the sphere. If it is positive then there are two real roots:

t =
−b±√D

2a
= (~u · ~p)±

√
r2 − |~p− (~u · ~p)~u|2.

Which root should we take? Recall thatt > 0 and increases as we move along the ray. Therefore, we want the
smaller positive root. If neither root is positive then there is no intersection. Consider

t− = (~u · ~p)−
√

r2 − |~p− (~u · ~p)~u|2 t+ = (~u · ~p) +
√

r2 − |~p− (~u · ~p)~u|2.
If t− > 0 then take it, otherwise ift+ > 0 then take it. Otherwise, there is no intersection (since it intersects the
negative extension of the ray).

More Care with Roundoff Errors: There is still a possibility of roundoff error if we simply use the formulas given
above for solving the quadratic equation. The problem is that when two very similar numbers are subtracted we
may lose many significant digits. Recall the basic equationat2 + bt+ c = 0. Rather than applying the quadratic
formula directly, numerical analysts recommend that you first compute the root with the larger absolute value,
and then use the identityt−t+ = c/a, to extract the other root. In particular, ifb ≤ 0 then use:

t+ =
−b +

√
D

2a
= (~u · ~p) +

√
r2 − |~p− (~u · ~p)~u|2,

t− =
c

at+
(only if t+ > 0).

Otherwise, ifb > 0, then we use

t− =
−b−√D

2a
= (~u · ~p)−

√
r2 − |~p− (~u · ~p)~u|2,

t+ =
c

at−
(only if t− < 0).

As before, select the smaller positive root as the solution. In typical applications of ray tracing, this extra care
does not seem to be necessary, but it is good thing to keep in mind if you really want to write a robust ray tracer.

Lecture Notes 86 CMSC 427

Lecture 20: More Ray Intersections

Reading: Chapter 10 in Hearn and Baker. (This material is not covered there.)

Ray-Cone Intersection: Last time we saw how to intersect a ray with a sphere. Along the same vein, let us consider a
somewhat more challenging case of the intersection of a ray with a cone. One approach to solving this problem
would be to use the implicit representation of a cone. Consider a cone whose apex is at the origin, whose axis is
aligned with thez-axis, and whose central angle with respect to this axis isθ. The length of the radius at height
z is r(z) =

√
x2 + y2 and from basic trigonometry we can see thatr(z)/z = tan θ. If we let T = tan θ and

square the equation we obtain
x2 + y2 − T 2z2 = 0.

We can then use this implicit equation exactly as we did in the case of a sphere to determine a quadratic equation
where the ray intersects the cone. (See Fig. 61.)

z

x

y

x

z

θ

side view

r(z)

a
r

cone

C

Fig. 61: A axis-aligned cone (left and center) and an arbitrarily oriented cone (right).

This models an infinite cone. Note that this algebraic formulation actually generates adouble cone, which
extends symmetrically below thex, y-coordinates plane. (Observe that if(x, y, z) satisfies the equation, then
(x, y,−z) satisfies it as well.) So, some care is needed to ignore intersections with the other side of the cone.

Intersection by the Method of Inverse Transformations: The question is how to extend this approach to computing
intersections with arbitrarily oriented cones. There are a couple of ways to do this. One is to find a linear
transformationM that maps the axis-aligned cone above to the desired arbitrary cone. LetR : P + t~u be our
ray. LetC be our arbitrary cone. To determine whether the rayR hits C, we can transform space by applying
M−1. This mapsC into to the axis-aligned coneM−1C. Also, let P ′ = M−1P and~u′ = M−1~u be the
transformed ray entities.

We now apply the intersection test for axis-aligned cones to see whether the transformed rayR′ : P + t~u′

intersectsM−1C. This gives us at value of the intersection. We then return to the space before transformation,
and use the pointP + t~u as the actual point of intersection.

Coordinate-Free Ray-Cone Intersection:The method of inverse transformations is quite general, but not always
needed. Let us consider a completely different method for intersecting a ray with an arbitrarily oriented double-
cone in 3-space. This method will be based on coordinate-free geometric programming. We model a cone in
3-space using three parameters, letC be the apex point of the cone, let~a be the axis vector, and letr denote the
radius of the cone at the base of the cone, that is, at the pointC + ~a. Let the ray beR : P + t~u for some scalar
t > 0.

For the purposes of derivation, letQ = P + t~u be a point of intersection of the ray with the cone. Our objective
is to computet, and so to determineQ. Let ~q = Q− C be the vector fromC to Q. Let ~w be the normalization
of ~a, that is~w = ~a/|~a|. We first decompose~q into its components parallel to and orthogonal to~w:

~qp = (~q · ~w)~w ~qo = ~q − ~qp = ~q − (~q · ~w)~w.

Let T = r/|~a| denote the tangent of the central angle of the cone (relative to the central axis).Q lies on the
cylinder if and only if|~qo|/|~qp| = T , which is equivalent to

(~qo · ~qo) = T 2(~qp · ~qp). (1)

Lecture Notes 87 CMSC 427

By expanding the definitions of~qp and~qo and using the fact that~w is a unit vector we have

(~qp · ~qp) = (((~q · ~w)~w) · ((~q · ~w)~w)) = (~q · ~w)2(~w · ~w) = (~q · ~w)2

(~q · ~qp) = (~q · ((~q · ~w)~w)) = (~q · ~w)2

(~qo · ~qo) = ((~q − ~qp) · (~q − ~qp)) = (~q · ~q)− 2(~q · ~qp) + (~qp · ~qp) = (~q · ~q)− (~q · ~w)2.

Thus, by substituting into Eq. (1) we see thatQ lies on the cone if and only if

(~q · ~q)− (~q · ~w)2 = T 2(~q · ~w)2

(~q · ~q) = (1 + T 2)(~q · ~w)2 = S(~q · ~w)2. (2)

WhereS = (1 + T 2) is the squared cosecant of the central angle. We know thatQ = P + t~u, and so

~q = Q− C = (P − C) + t~u = ~p + t~u,

where~p = P − C. Substituting this for~q in Eq. (2), we have

((~p + t~u) · (~p + t~u)) = S((~p + t~u) · ~w)2. (3)

We can simplify the subterms as follows:

((~p + t~u) · (~p + t~u)) = (~p · ~p) + 2t(~p · ~u) + t2(~u · ~u)
(~p + t~u) · ~w = (~p · ~w) + t(~u · ~w).

Now, to avoid having to write out all these dot products, define

pp = (~p · ~p) pu = (~p · ~u) uw = (~u · ~w), . . . and so on.

In terms of these variables Eq. (3) now can be written as

pp + 2t · pu + t2 · uu = S · (pw + t · uw)2

= S · (pw2 + 2t · pw · uw + t2 · uw2).

By combining the common terms of the unknownt we have

0 = t2(uu− S · uw2) + 2t(pu− S · pw · uw) + (pp− S · pw2)

This is a quadratic equation of the form0 = at2 + bt + c where

a = uu− S · uw2 b = 2(pu− S · pw · uw) c = pp− S · pw2.

We proceed as we did in the case of the sphere. First we compute the discriminant

∆ = b2 − 4ac.

If ∆ ≤ 0 then there is no intersection. Otherwise we solve fort using the quadratic formula,

t =
−b±√∆

2a
.

This gives us an interval[t0, t1]. In the case of an infinite ray we simply take whichever of these values is
smaller, provided it is positive.

Lecture Notes 88 CMSC 427

Computing the Normal Vector: If a hit is detected, we need to compute the normal vector. We do this in two steps.
First, recall the orthogonal vector~qo from the axis to the point of contact. We then compute a tangent to the cone
at Q as the cross product~qt = ~w × ~qo. The vector~qt is counterclockwise oriented if(~q · ~w) > 0 and clockwise
oriented otherwise. We obtain the final normal asn = (~w×~qo)×~q. This is directed into the exterior of the cone
if (~q · ~w) > 0 and into the interior otherwise. We negate the normal as needed, so it is directed to the proper side
of the cone.

Ray-Polyhedron Intersection: Next, we present an intersection algorithm for a ray and a convex polyhedron. The
convex polyhedron is defined as the intersection of a collection of halfspaces in 3-space. Recall that a halfspace
is the set of points lying to one side of a plane. The problem of intersecting a ray with a plane is a special case
of this. (This algorithm is a variation of the Liang-Barsky line segment clipping algorithm, which is used for
clipping line segments against the 3-dimensional view volume, which was introduced when we were discussing
perspective.)

As before, we represent the ray parametrically asP + t~u, for scalart > 0. Let H1,H2, . . . , Hk denote the half-
spaces defining the polyhedron. Each halfspaceH is represented by a 4-dimensional homogeneous coordinate
vectorH : (a, b, c, d). It represents the set of pointsP = (px, py, pz)T satisfying the equation:

apx + bpy + cpz + d ≤ 0

Observe that ifP is expressed in homogenous coordinatesP = (px, py, pz, 1)T , then this can be written more
succinctly as the dot product(H · P) ≤ 0. We can think of a plane the special case of the boundary of a
polyhedron defined by a single halfspace. In such a case the outward pointing normal is~no = normalize(a, b, c)
and the inward pointing normal is~ni = normalize(−a,−b,−c). We will compute the intersection of the ray
with each halfspace in turn. The final result will be the intersection of the ray with the entire polyhedron.

An important property of convex bodies (of any variety) is that a line intersects a convex body in at most one
line segment. Thus the intersection of the ray with the polyhedron can be specified entirely by an interval of
scalars[t0, t1], such that the intersection is defined by the set of points

P + t~u for t0 ≤ t ≤ t1.

Initially, let this interval be[0,∞]. (For line segment intersection the only change is that the initial value oft1
is set so that we end and the endpoint of the segment. Otherwise the algorithm is identical.)

Suppose that we have already performed the intersection with some number of the halfspaces. It might be that
the intersection is already empty. This will be reflected by the fact thatt0 > t1. When this is so, we may
terminate the algorithm at any time. Otherwise, letH = (a, b, c, d) be the coefficients of the current halfspace.

We want to know the value oft (if any) at which the ray intersects the plane. Plugging in the representation of
the ray into the halfspace inequality we have

a(px + t~ux) + b(py + t~uy) + c(pz + t~uz) + d ≤ 0,

which after some manipulations is

t(a~ux + b~uy + c~uz) ≤ −(apx + bpy + cpz + d).

If P and~u are given in homogeneous coordinates, this can be written as

t(H · ~u) ≤ −(H · P).

This is not really a legitimate geometric expression (since dot product should only be applied between vectors).
Actually the halfspaceH should be thought of as a special geometric object, a sort ofgeneralized normal vector.
(For example, when transformations are applied, normal vectors should be multiplied by the inverse transpose
matrix to maintain orthogonality.)

We consider three cases.

Lecture Notes 89 CMSC 427

(H · ~u) > 0 : In this case we have the constraint

t ≤ −(H · P)
(H · ~u)

.

Let t∗ denote the right-hand side of this inequality. We trim the high-end of the intersection interval to
[t0,min(t1, t∗)].

(H · ~u) < 0 : In this case we have

t ≥ −(H · P)
(H · ~u)

.

Let t∗ denote the right-hand side of this inequality. In this case, we trim the low-end of the intersection
interval to[max(t0, t∗), t1].

(H · ~u) = 0 : In this case the ray is parallel to the plane. Either entirely above or below. We check the origin.
If (H · P) ≤ 0 then the origin lies in (or on the boundary of) the halfspace, and so we leave the current
interval unchanged. Otherwise, the origin lies outside the halfspace, and the intersection is empty. To
model this we can sett1 to any negative value, e.g.,−1.

After we repeat this on each face of the polyhedron, we have the following possibilities:

Miss (t1 < t0) : In this case the ray does not intersect the polyhedron.

From inside (0 = t0 ≤ t1) : In this case, the origin is within the polyhedron. Ift1 = ∞, then the polyhedron
must be unbounded (e.g. like a cone) and there is no intersection. Otherwise, the first intersection point
is the pointP + t1~u. In this case, ifHi is the halfspace that generated the intersection point, we use the
inward pointing normal normalize(−ai,−bi,−ci).

From outside (0 < t0 ≤ t1) : In this case, the origin is outside the polyhedron, and the first intersection is at
P + t0~u. In this case, ifHi is the halfspace that generated the intersection point, we use the outward
pointing normal normalize(ai, bi, ci).

As with spheres it is a good idea to check against a small positive number, rather than 0 exactly, because of
floating point errors. For ray tracing applications, when we set the value of eithert0 or t1, it is a good idea to
also record which halfspace we intersected. This will be useful if we want to know the normal vector at the
point of intersection (which will be(a, b, c) for the current halfspace).

Lecture 21: Ray Tracing: Procedural Textures

Reading: Chapter 10 in Hearn and Baker, Sections 10-12 and 10-17.

Procedural Textures: We can apply texture mapping in ray tracing just as we did in OpenGL’s rendering model.
Given the intersection of the ray with an object, we need to map this intersection point to some sort of 2-
dimensional parameterization(u, v). From this parameterization, we can then apply the inverse wrapping func-
tion to map this point into texture coordinates(u, v).

In ray tracing there is another type of texture, which is quite easy to implement. The idea is to create a function
f(x, y, z) which maps a point in 3-space to a color. This is called aprocedural texture.

We usually think of textures as 2-dimensional “wallpapers” that are wrapped around objects. The notion here is
different. We imagine that the texture covers all of 3-space and that the object is cut out of this infinite texture.
This is actually quite realistic in some cases. For example, a wood grain texture arises from the cylindrical
patterns of light and dark wood that results from the trees varying rates of growth between the seasons. When
you cut a board of wood, the pattern on the surface is the intersection of a single plane and this cylindrical
3-dimensional texture. Here are some examples.

Lecture Notes 90 CMSC 427

Checker: Let C0 andC1 be two RGB colors. Imagine that we tile all of three dimensional space with a collection of
unit cubes each of side lengths and of alternating colorsC0 andC1. This is easiest to see in the 1-dimensional
case first. Given anx-coordinate, we divide it bys and take its floor. If the resulting number is even then we
assign the colorC0 and if odd we assignC1.

checker(x) =
{

C0 if (bx/sc mod 2) = 0
C1 otherwise.

Beware: It is important to use an honest implementation of the floor function,bx/sc. Note that the integer cast
operation of programming languages such as C, C++, and Java, namely “int(x/s)” will not work properly if x is
negative. (Integer casting maps to the smaller absolute value.) Instead, on C/C++ systems use the combination,
“ int(floor(x/s)),” which first computes the “honest” floor and then casts the resulting integer-valued double to an
integer.

To generalize this to 3-space, we simply apply this idea separately to each coordinate and sum the results.

checker(x, y, z) =
{

C0 if ((bx/sc+ by/sc+ bz/sc) mod 2) = 0
C1 otherwise.

Note that if we intersect an axis-orthogonal plane with the resulting 3-dimensional checker pattern, then the
result will be a 3-dimensional checker. If we intersect it with a non-axis aligned object (like a sphere) then the
result takes on a decidedly different appearance.

Fig. 62: 3-d checkerboard and gradient textures.

An example is shown in Fig. 62. Notice that the checkerboard appears to be distorted. Although the checker-
board is formed of perfectly flat sides, it is being “cut out” along the curved surface of the sphere. This is whay
makes it appear to be curved. If you consider the slices along thez-axis, they would cut the sphere along a series
of circular horizontal latitude lines. These can be readily seen in the figure, as can the corresponding circles for
x andy. Thus, the texture is indeed “three-dimensional.”

Linear Gradient: A gradient is a texture that alternates smoothly between two colorsC0 andC1. To explore this, let
us first consider a gradient in a 1-dimensional setting for a parameter valuex. We want the color to vary back and
forth fromC0 to C1. The color isC0 wheneverx is an even multiple ofs, that is,x ∈ {. . . ,−2s, 0, 2s, 4s, . . .},
and we want the color to beC1 wheneverx is an odd multiple ofs, that isx ∈ {. . . ,−s, s, 3s, 5s, . . .}.
The fact that we are blending the colors suggests that we use an affine combination(1− α)C0 + αC1, whereα
varies smoothly as a function ofx. To achieve smoothness, we can letα vary as a cosine function. (See Fig. 63.)
As x varies from 0 tos, we want the blending value to vary from 0 to 1. Since the cosine function naturally
varies from 1 to−1, asx varies from 0 toπ, this suggests the following transformations. First, we transformx
by mapping it tox′ ← πx/s. Thus, forx ∈ [0, s], we havex′ ∈ [0, π]. Thus,cos x′ ∈ [1,−1]. In order to map
this to the interval[0, 1] we subtract from 1 (yielding the interval[0, 2]) and divide by 2 (yielding the interval

Lecture Notes 91 CMSC 427

[0, 1]), which is exactly what we want. Thus we have the final color:

(1− α)C0 + αC1 where α =
1
2

(
1− cos

πx

s

)
.

Substitute (by hand) the valuesx = 〈0, s, 2s, 3s〉 to see that this works.

2s

p=P−Q

3ss−s

2s

3ss−s

−2s

+1

0

−1

0

+1

0

−2s 0

(1 − cos (x/s))/2

1C

1C

0C

0C

π
0C

1C

πcos (x/s)

P

β=−1

β=2

β=1

β=0

v

Q

Fig. 63: Computation of the gradient texture.

In order to generalize this to 3-space, we need to define an appropriate mapping of a pointP = (x, y, z) to a
one dimensional parameter. There are various ways to do this, and different ways produce different textures.
One simple method is alinear gradient, where the color is constant for all the points on a plane, and then varies
orthogonally to this plane. Such a gradient can be specified by giving an origin pointQ, where the color isC0,
and some directional vector~v, which indicates the orthogonal direction. (For example, in Fig. 62, right, the
origin might be the center of the sphere and the directional vector points up.) At the pointQ+~v the color should
beC1, andQ + 2~v the color isC0, and so one.

How do we determine the color of an arbitrary pointP = (x, y, z) in 3-space. The idea is that for each pointP ,
consider the relative length of the projection of the vector~p = P −Q onto~v

β =
((P −Q) · ~v)

(~v · ~v)
,

and then use the value ofβ to blend smoothly betweenC0 andC1. Whenβ is even, we use colorC0 and
whenβ is odd we use the colorC1. (See Fig. 63.) Thus,β takes the role ofx in the 1-dimensional case,
and nows is simply 1. As before, we want to interpolate smoothly between these cases. To do so, we set
α = (1 − cos(βπ))/2. Observe that whenβ is evenα = 0 and whenβ is odd,α = 1, andα varies smoothly
between these values.

Thus, the color of pointP is the convex combination,

β =
((P −Q) · ~v)

(~v · ~v)
α =

1− cos(βπ)
2

gradient(P) = (1− α)C0 + αC1.

Fig. 62 above right shows an example of applying a gradient pattern to a sphere, where the center pointQ is the
center of the sphere,~v is vertical, and the length of~v is half the radius of the sphere.

Transforming Textures: Suppose that you want to rotate your checkerboard texture or apply some other affine trans-
formation. Note that 3-dimensional textures do not “transform” very easily. Their functions are closely linked
to the coordinates of the point. There is a simple trick that can be applied however. Rather than transforming
the texture, instead transform the point.

Lecture Notes 92 CMSC 427

Here is an example. Suppose that we are given a functionsimpleChecker(P) that returns a simple checkerboard
texture for a pointP in which the side lengths is equal to 1. We want to rotate the texture by 20 degrees about
thez-axis. Rather than modifyingf , instead we rotateP through−20 degrees, and then callf directly. That is,

Color rotateChecker(Point P, double angle) {
Point P’ = rotate(P, -angle, 0, 0, 1)
return simpleChecker(P’)

}

Observe that this does exactly what we want it to do.

There is a more general principal at work here. Suppose that you have some complex texture, which can be
described as applying some arbitrary affine (invertible) transformationM to a known simple texture. In order
to determine the color of a pointP , we first compute the inversion transformationM−1, and apply this toP ,
yieldingP ′ = M−1P . Then we apply the simple texture directly toP ′, and return the result asP ’s color.

This trick of transforming the point space has many applications in texturing. For example, many complex
“turbulent” textures can be created by starting with a simple regular texture and then applying an appropriate
pseudo-random turbulence function to the point. This is how complex natural textures, such as wood grains and
marble textures, are created.

Lecture 22: 3-D Modeling: Constructive Solid Geometry

Reading: Chapter 8 and Sect. 8-20 in Hearn and Baker. Some of the material is not covered in Hill.

Solid Object Representations:We begin discussion of 3-dimensional object models. There is an important funda-
mental split in the question of how objects are to be represented. Two common choices are between repre-
senting the 2-dimensional boundary of the object, called aboundary representationor B-rep for short, and a
volume-based representation, which is sometimes calledCSGfor constructive solid geometry. Both have their
advantages and disadvantages.

Volume Based Representations:One of the most popular volume-based representations isconstructive solid geome-
try, orCSGfor short. It is widely used in manufacturing applications. One of the most intuitive ways to describe
complex objects, especially those arising in manufacturing applications, is as set ofboolean operations(that
is, set union, intersection, difference) applied to a basic set of primitive objects. Manufacturing is an important
application of computer graphics, and manufactured parts made by various milling and drilling operations can
be described most naturally in this way. For example, consider the object shown in the figure below. It can be
described as a rectangular block, minus the central rectangular notch, minus two cylindrical holes, and union
with the rectangular block on the upper right side.

+
= − −

−

Fig. 64: Constructive Solid Geometry.

This idea naturally leads to a tree representation of the object, where the leaves of the tree are certainprimitive
object types(rectangular blocks, cylinders, cones, spheres, etc.) and the internal nodes of the tree areboolean
operations, union (X ∪ Y), intersection (X ∩ Y), difference (X − Y), etc. For example, the object above might
be described with a tree of the following sort. (In the figure we have used+ for union.)

Lecture Notes 93 CMSC 427

−

−

−

+

Fig. 65: CSG Tree.

The primitive objects stored in the leaf nodes are represented in terms of a primitiveobject type(block, cylinder,
sphere, etc.) and a set of definingparameters(location, orientation, lengths, radii, etc.) to define the location
and shape of the primitive. The nodes of the tree are also labeled by transformation matrices, indicating the
transformation to be applied to the object prior to applying the operation. By storing both the transformation
and its inverse, as we traverse the tree we can convert coordinates from the world coordinates (at the root of the
tree) to the appropriate local coordinate systems in each of the subtrees.

This method is called constructive solid geometry (CSG) and the tree representation is called a CSG tree. One
nice aspect to CSG and this hierarchical representation is that once a complex part has been designed it can
be reused by replicating the tree representing that object. (Or if we share subtrees we get a representation as a
directed acyclic graph or DAG.)

Point membership: CSG trees are examples ofunevaluated models. For example, unlike a B-rep representation in
which each individual element of the representation describes a feature that we know is a part of the object,
it is generally impossible to infer from any one part of the CSG tree whether a point is inside, outside, or on
the boundary of the object. As a ridiculous example, consider a CSG tree of a thousand nodes, whose root
operation is the subtraction of a box large enough to enclose the entire object. The resulting object is the empty
set! However, you could not infer this fact from any local information in the data structure.

Consider the simple membership question: Given a pointP doesP lie inside, outside, or on the boundary of an
object described by a CSG tree. How would you write an algorithm to solve this problem? For simplicity, let
us assume that we will ignore the case when the point lies on the boundary (although we will see that this is a
tricky issue below).

The idea is to design the program recursively, solving the problem on the subtrees first, and then combining
results from the subtrees to determine the result at the parent. We will write a procedureisMember(Point P,
CSGnode T) whereP is the point, andT is pointer to a node in the CSG tree. This procedure returns True if the
object defined by the subtree rooted atT containsP and False otherwise. IfT is an internal node, letT.left and
T.right denote the children ofT . The algorithm breaks down into the following cases.

Note that the semantics of operations “||” and “&&” avoid making recursive calls when they are not needed. For
example, in the case of union, ifP lies in the right subtree, then the left subtree need not be searched.

CSG and Ray Tracing: CSG objects can be handled very naturally in ray tracing. Suppose thatR is a ray, andT is
a CSG tree. The intersection of the ray with any CSG object can be described as a (possibly empty) sorted set
of intervals in the parameter space.

I = 〈[t0, t1], [t2, t3], . . .〉.
(See Fig. 66.) This means that we intersect the object whenevert0 ≤ t ≤ t1 andt2 ≤ t ≤ t3, and so on. At the
leaf level, the set of intervals is either empty (if the ray misses the object) or is a single interval (if it hits). Now,

Lecture Notes 94 CMSC 427

Membership Test for CSG Tree
bool isMember(Point P, CSGnode T) {

if (T.isLeaf)
return (membership test appropriate to T’s type)

else if (T.isUnion)
return isMember(P, T.left || isMember(P, T.right)

else if (T.isIntersect)
return isMember(P, T.left && isMember(P, T.right)

else if (T.isDifference)
return isMember(P, T.left && !isMember(P, T.right)

}

we evaluate the CSG tree through a post-order traversal, working from the leaves up to the root. Suppose that
we are at a union nodev and we have the results from the left childIL and the right childIR.

We compute the union of these two sets of intervals. This is done by first sorting the endpoints of the intervals.
With each interval endpoint we indicate whether this is an entry or exit. Then we traverse this sorted list. We
maintain a depth counter, which is initialized to zero, and is incremented whenever we enter an interval and
decremented when we exit an interval. Whenever this count transitions from 0 to 1, we output the endpoint as
the start of a new interval in the union, and whenever the depth count transitions from 1 to 0, we output the
resulting count as the endpoint of an interval. An example is shown in Fig. 66. (A similar procedure applies for
intersection and difference. As an exercise, determine the depth count transitions that mark the start and end of
each interval.) The resulting set of sorted intervals is then associated with this node. When we arrive at the root,
we select the smallest interval enpoint whoset-value is positive.

32s1s

depth count
Union

010101210

RI

LI

uP

s

3t 3s2s2t1s0t

s

3t2t

0

1t0t

0 tt t2

t3

1

Fig. 66: Ray tracing in a CSG Tree.

Regularized boolean operations:There is a tricky issue in dealing with boolean operations. This goes back to a the
same tricky issue that arose in polygon filling, what to do about object boundaries. Consider the intersection
A ∩ B shown in Fig. 67. The result contains a “dangling” piece that has no width. That is, it is locally two-
dimensional.

These low-dimensional parts can result from boolean operations, and are usually unwanted. For this reason, it
is common to modify the notion of a boolean operation to perform aregularizationstep. Given a 3-dimensional
setA, the regularization ofA, denotedA∗, is the set with all components of dimension less than 3 removed.

In order to define this formally, we must introduce some terms from topology. We can think of every (reasonable)
shape as consisting of three disjoint parts, itsinterior of a shapeA, denoted int(A), its exterior, denoted ext(A),
and itsboundary, denoted bnd(A). Define theclosureof any set to be the union of itself and its boundary, that
is, closure(A) = A ∪ bnd(A).

Topologically,A∗ is defined to be the closer of the interior ofA

A∗ = closure(int(A)).

Lecture Notes 95 CMSC 427

(a) (b) (c)

A B

Fig. 67: (a)A andB, (b) A ∩B, (c) A ∩∗ B.

Note that int(A) does not contain the dangling element, and then its closure adds back the boundary.

When performing operations in CSG trees, we assume that the operations are allregularized, meaning that the
resulting objects are regularized after the operation is performed.

A op∗ B = closure(int(A opB)).

where op is either∩,∪, or−. Eliminating these dangling elements tends to complicate CSG algorithms, because
it requires a bit more care in how geometric intersections are represented.

Lecture 23: Fractals

Reading: Section 8.23 in Hearn and Baker.

Fractals: One of the most important aspects of any graphics system is how objects are modeled. Most man-made
(manufactured) objects are fairly simple to describe, largely because the plans for these objects are be designed
“manufacturable”. However, objects in nature (e.g. mountainous terrains, plants, and clouds) are often much
more complex. These objects are characterized by a nonsmooth, chaotic behavior. The mathematical area of
fractalswas created largely to better understand these complex structures.

One of the early investigations into fractals was a paper written on the length of the coastline of Scotland. The
contention was that the coastline was so jagged that its length seemed to constantly increase as the length of
your measuring device (mile-stick, yard-stick, etc.) got smaller. Eventually, this phenomenon was identified
mathematically by the concept of thefractal dimension. The other phenomenon that characterizes fractals isself
similarity, which means that features of the object seem to reappear in numerous places but with smaller and
smaller size.

In nature, self similarity does not occur exactly, but there is often a type ofstatisticalself similarity, where
features at different levels exhibit similar statistical characteristics, but at different scales.

Iterated Function Systems and Attractors: One of the examples of fractals arising in mathematics involves sets
calledattractors. The idea is to consider some function of space and to see where points are mapped under
this function. There are many ways of defining functions of the plane or 3-space. One way that is popular with
mathematicians is to consider the complex plane. Each coordinate(a, b) in this space is associated with the
complex numbera + bi, wherei =

√−1. Adding and multiplying complex numbers follows the familiar rules:

(a + bi) + (c + di) = (a + c) + (b + d)i

Lecture Notes 96 CMSC 427

and
(a + bi)(c + di) = (ac− bd) + (ad + bc)i

Define themodulusof a complex numbera + bi to be length of the corresponding vector in the complex plane,√
a2 + b2. This is a generalization of the notion of absolute value with reals. Observe that the numbers of given

fixed modulus just form a circle centered around the origin in the complex plane.

Now, consider any complex numberz. If we repeatedly square this number,

z → z2,

then the number will tend to fall towards zero if its modulus is less than 1, it will tend to grow to infinity if its
modulus is greater than 1. And numbers with modulus 1 will stay at modulus 1. In this case, the set of points
with modulus 1 is said to be anattractor of this iterated function system(IFS).

In general, given any iterated function system in the complex plane, theattractor setis a subset of nonzero
points that remain fixed under the mapping. This may also be called thefixed-point setof the system. Note that
it is the set as a whole that is fixed, even though the individual points tend to move around. (See Fig. 68.)

Attractor Set

Fig. 68: Attractor set for an interated function system.

Julia Sets: Suppose we modify the complex function so that instead of simply squaring the point we apply the iterated
function

z → z2 + c

wherec is any complex constant. Now as before, under this function, some points will tend toward∞ and others
towards finite numbers. However there will be a set of points that will tend toward neither. Altogether these
latter points form theattractor of the function system. This is called theJulia setfor the pointc. An example
for c = −0.62− 0.44i is shown in Fig. 69.

A common method for approximately rendering Julia sets is to iterate the function until the modulus of the
number exceeds some prespecified threshold. If the number diverges, then we display one color, and otherwise
we display another color. How many iterations? It really depends on the desired precision. Points that are far
from the boundary of the attractor will diverge quickly. Points that very close, but just outside the boundary may
take much longer to diverge. Consequently, the longer you iterate, the more accurate your image will be.

The Mandelbrot Set: For some values ofc the Julia set forms a connected set of points in the complex plane. For
others it is not. For each pointc in the complex plane, if we color it black if Julia(c) is connected, and color it
white otherwise, we will a picture like the one shown below. This set is called theMandelbrot set. (See Fig. 70.)

Lecture Notes 97 CMSC 427

Fig. 69: A Julia Set.

One way of approximating whether a complex pointd is in the Mandelbrot set is to start withz = (0, 0) and
successively iterate the functionz → z2 + d, a large number of times. If after a large number of iterations the
modulus exceeds some threshold, then the point is considered to be outside the Mandelbrot set, and otherwise
it is inside the Mandelbrot set. As before, the number of iterations will generally determine the accuracy of the
drawing.

Fig. 70: The Mandelbrot Set.

Fractal Dimension: One of the important elements that characterizes fractals is the notion offractal dimension.
Fractal sets behave strangely in the sense that they do not seem to be 1-, 2-, or 3-dimensional sets, but seem to
have noninteger dimensionality.

What do we mean by thedimensionof a set of points in space? Intuitively, we know that a point is zero-
dimensional, a line is one-dimensional, and plane is two-dimensional and so on. If you put the object into a
higher dimensional space (e.g. a line in 5-space) it does not change its dimensionality. If you continuously
deform an object (e.g. deform a line into a circle or a plane into a sphere) it does not change its dimensionality.

How do you determine the dimension of an object? There are various methods. Here is one, which is called
fractal dimension. Suppose we have a set ind-dimensional space. Define ad-dimensionalε-ball to the interior of
ad-dimensional sphere of radiusε. An ε-ball is an open set (it does not contain its boundary) but for the purposes
of defining fractal dimension this will not matter much. In fact it will simplify matters (without changing the
definitions below) if we think of anε-ball to be a solidd-dimensional hypercube whose side length is2ε (an
ε-square).

The dimension of an object depends intuitively on how the number of balls its takes to cover the object varies
with ε. First consider the case of a line segment. Suppose that we have covered the line segment, withε-balls,
and found that it takes some number of these balls to cover to segment. Suppose we cut the size of the balls
exactly by 1/2. Now how many balls will it take? It will take roughly twice as many to cover the same area.
(Note, this does not depend on the dimension in which the line segment resides, just the line segment itself.)
More generally, if we reduce the ball radius by a factor of1/a, it will take roughlya times as many balls to

Lecture Notes 98 CMSC 427

cover the segment.

On the other hand, suppose we have covered a planar region withε-balls. Now, suppose we cut the radius by
1/2. How many balls will it take? It will take 4 times as many. Or in general, if we reduce the ball by a radius
of 1/a it will take roughlya2 times as many balls to cover the same planar region. Similarly, one can see that
with a 3-dimensional object, reducing by a factor of1/2 will require 8 times as many, ora3.

This suggests that the nature of ad-dimensional object is that the number of balls of radiusε that are needed to
cover this object grows as(1/ε)d. To make this formal, given an objectA in d-dimensional space, define

N(A, ε) = smallest number ofε-balls needed to coverA.

It will not be necessary to the absolute minimum number, as long as we do not use more than a constant factor
times the minimum number. We claim that an objectA has dimensiond if N(A, ε) grows asC(1/ε)d, for some
constantC. This applies in the limit, asε tends to 0. How do we extract this value ofd? Observe that if we
computelnN(A, ε) (any base logarithm will work) we getlnC + d ln(1/ε). As ε tends to zero, the constant
termC remains the same, and thed ln(1/ε) becomes dominant. If we divide this expression byln(1/ε) we will
extract thed.

Thus we define thefractal dimensionof an object to be

d = lim
ε→0

lnN(A, ε)
ln(1/ε)

.

Formally, an object is said to be afractal if it is self-similar (at different scales) and it has a noninteger fractal
dimension.

Now suppose we try to apply this to fractal object. Consider first theSierpinski triangle, defined as the limit of
the following process. (See Fig. 71.)

Fig. 71: The Sierpinski triangle.

How manyε-balls does it take to cover this figure. It takes one 1-square to cover it, three(1/2)-balls, nine
(1/4)-balls, and in general3k, (1/2k)-balls to cover it. Lettingε = 1/2k, we find that the fractal dimension of
the Sierpinski triangle is

D = lim
ε→0

lnN(A, ε)
ln(1/ε)

= lim
k→∞

lnN(A, (1/2k))
ln(1/(1/2k))

= lim
k→∞

ln 3k

ln 2k
= lim

k→∞
k ln 3
k ln 2

= lim
k→∞

ln 3
ln 2

=
ln 3
ln 2

≈ 1.58496

Lecture Notes 99 CMSC 427

Thus although the Sierpinski triangle resides in 2-dimensional space, it is essentially a 1.58 dimensional ob-
ject, with respect to fractal dimension. Although this definition is general, it is sometimes easier to apply the
following formula for fractals made through repeated subdivision. Suppose we form an object by repeatedly
replacing each “piece” of lengthx by b nonoverlapping pieces of lengthx/a each. Then it follows that the
fractal dimension will be

D =
ln b

ln a
.

As another example, consider the limit of the process shown in Fig. 71. The area of the object does not change,
and it follows that the fractal dimension of the interior is the same as a square, which is 2 (since the balls that
cover the square could be rearranged to cover the object, more or less). However, if we consider the boundary,
observe that with each iteration we replace one segment of lengthx with 4 subsegments each of length

√
2/4.

It follows that the fractal dimension of the boundary is

ln 4
ln(4/

√
2)

= 1.3333

The the shape is not a fractal (by our definition), but its boundary is.

Fig. 72: An object with a fractal boundary.

Lecture 24: Curved Models and Bezier Curves

Reading: Chapter 8.10 in Hearn and Baker.

Boundary Models: Last time we discussed volume-based representations of 3-d objects. Today we consider the more
common representation calledboundary representation, or B-rep for short. Boundary models can be formed of
either smooth surfaces or flat (polygonal) surfaces. Polygonal surfaces most suitable for representing geometric
objects with flat side, such as a cube. However, even smooth objects can be approximated by “gluing” together
a large number of small polygonal objects into apolygonal mesh. This is the approach that OpenGL assumes.
Through the use of polygonal mesh models and smooth shading, it is possible to produce the illusion of a smooth
surface. Even when algebraic surfaces are used as the underlying representation, in order to render them, it is
often necessary to first convert them into a polygonal mesh.

Curved Models: Smooth surface models can be broken down into many different forms, depending on the nature
of the defining functions. The most well understood functions arealgebraic functions. These are polynomials
of their arguments (as opposed, say to trigonometric functions). Thedegreeof an algebraic function is the
highest sum of exponents. For examplef(x, y) = x2 + 2x2y − y is an algebraic function of degree 3. The
ratio of two polynomial functions is called arational function. These are important, since perspective projective
transformations (because of perspective normalization), map rational functions to rational functions.

Lecture Notes 100 CMSC 427

Fig. 73: Polygonal meshes used to represent curved surfaces.

Implicit representation: In this representation a curve in 2-d and a surface in 3-d is represented as the zeros of
a formulaf(x, y, z) = 0. We have seen the representation of a sphere, e.g.

x2 + y2 + z2 − 1 = 0.

It is common to place some restrictions on the possible classes of functions.
Implicit representation are fine for surfaces in 3-space, and in general for(d− 1)-dimensional surfaces in
d-dimensional space. But to represent a lower dimensional object, say a curve in 3-space we would need
to compute the intersection of two such surfaces. This involves solving a system of algebraic equations,
which can be quite difficult.

Parametric representation: In this representation the(x, y)-coordinates of a curve in 2-d is given as three
functions of one parameter(x(u), y(u)). Similarly, a two-dimensional surface in 3-d is given as function
of two parameters(x(u, v), y(u, v), z(u, v)). An example is the parametric representation of a sphere, we
derived in our discussion of texture mapping:

x(θ, φ) = sinφ cos θ

y(θ, φ) = sinφ sin θ

z(θ, φ) = cos φ,

for 0 ≤ θ ≤ 2π and0 ≤ φ ≤ π. Hereφ roughly corresponds to latitude andθ to longitude. Notice
that although the sphere has an algebraic implicit representation, it does not seem to have an algebraic
parametric representation. (The one above involves trigonometric functions, which are not algebraic.)
Note that parametric representations can be used for both curves and surfaces in 3-space (depending on
whether 1 or 2 parameters are used).

Which representation is the best? It depends on the application. Implicit representations are nice, for example,
for computing the intersection of a ray with the surface, or determining whether a point lies inside, outside, or on
the surface. On the other hand, parametric representations are nice if you want to break the surface up into small
polygonal elements for rendering. Parametric representations are nice because they are easy to subdivide into
small patches for rendering, and hence they are popular in graphics. Sometimes (but not always) it is possible
to convert from one representation to another. We will concentrate on parametric representations in this lecture.

Continuity: Consider a parametric curveP (u) = (x(u), y(u), z(u))T . An important condition that we would like
our curves (and surfaces) to satisfy is that they should be as smooth as possible. This is particularly important
when two or more curves or surfaces are joined together. We can formalize this mathematically as follows.
We would like the curves themselves to be continuous (that is not making sudden jumps in value). If the firstk
derivatives (as function ofu) exist and are continuous, we say that the curve haskth order parametric continuity,
denotedCk continuity. Thus,0th order continuity just means that the curve is continuous,1st order continuity
means that tangent vectors vary continuously, and so on. This is shown in Fig. 74

Generally we will want as high a continuity as we can get, but higher continuity generally comes with a higher
computational cost.C2 continuity is usually an acceptable goal.

Lecture Notes 101 CMSC 427

discontinuity
curvature

discontinuity
slope

C continuous1 C continuous20C continuousNot continuous

discontinuity

Fig. 74: Degrees of continuity.

Interpolation vs. Approximation: For a designer who wishes to design a curve or surface, a symbolic representation
of a curve as a mathematical formula is not very easy representation to deal with. A much more natural method
to define a curve is to provide a sequence ofcontrol points, and to have a system which automatically generates a
curve which approximates this sequence. Such a procedure inputs a sequence of points, and outputs a parametric
representation of a curve. (This idea can be generalized to surfaces as well, but let’s study it first in the simpler
context of curves.)

It might seem most natural to have the curve pass through the control points, that is tointerpolatebetween these
points. There exists such an interpolating polygon, called theLagrangian interpolating polynomial. However
there are a number of difficulties with this approach. For example, suppose that the designer wants to interpolate
a nearly linear set of points. To do so he selects a sequence of points that are very close to lying on a line.
However, polynomials tend to “wiggle”, and as a result rather than getting a line, we get a wavy curve passing
through these points. (See Fig. 75.)

Interpolation Approximation

Fig. 75: Interpolation versus approximation.

Bézier Curves and the de Casteljau Algorithm: Let us continue to consider the problem of defining a smooth curve
that approximates a sequence of control points,〈p0, p1, . . .〉. We begin with the simple idea on which these
curves will be based. Let us start with the simplest case of two control points. The simplest “curve” which
approximates them is just the line segmentp0p1. The function mapping a parameteru to a points on this
segment involves a simple affine combination:

p(u) = (1− u)p0 + up1 for 0 ≤ u ≤ 1.

Observe that this is a weighted average of the points, and for any value ofu, the two weighting orblending
functionsu and(1− u) are nonnegative and sum to 1.

0

p1

p0

p1

p2

p (u)01

p (u)

p3

11

p1 2

p (u)01

p (u)

p (u)11

p (u)
21

p p0

12
p

p (u)
02

p(u)
p(u)p(u)

4 control points3 control points2 control points

Fig. 76: Repeated interpolation.

Three control points: Now, let us consider how to generalize this to three points. We want a smooth curve approxi-
mating them. Consider the line segmentsp0p1 andp1p2. From linear interpolation we know how to interpolate

Lecture Notes 102 CMSC 427

a point on each, say:

p01(u) = (1− u)p0 + up1 p11(u) = (1− u)p1 + up2.

Now that we are down to two points, let us apply the above method to interpolate between them:

p(u) = (1− u)p01(u) + up11(u)
= (1− u)((1− u)p0 + up1) + u((1− u)p1 + up2)
= (1− u)2p0 + (2u(1− u))p1 + u2p2.

An example of the resulting curve is shown in Fig. 77 on the left.

3
2

0

2

0

p
p

1p

p

p

1p

p

Fig. 77: B́ezier curves for three and four control points.

This is a algebraic parametric curve of degree 2, called aBézier curveof degree 2. Observe that the function
involves a weighted sum of the control points using the followingblending functions:

b02(u) = (1− u)2 b12(u) = 2u(1− u) b22(u) = u2.

As before, observe that for any value ofu the blending functions are all nonnegative and all sum to 1, and hence
each point on the curve is a convex combination of the control points.

Four control points: Let’s carry this one step further. Consider four control pointsp0, p1, p2, andp3. First use
linear interpolation between each pair yielding the pointsp01(u) andp11(u) andp21(u) as given above. Then
compute the linear interpolation between each pair of these giving

p02(u) = (1− u)p01(u) + up11(u) p12(u) = (1− u)p11(u) + up21(u).

Finally interpolate these(1− u)p02(u) + up12(u). Expanding everything yields

p(u) = (1− u)3p0 + (3u(1− u)2)p1 + (3u2(1− u))p2 + u3p3.

This process of repeated interpolation is called thede Casteljau algorithm, named after a CAGD (computer-
aided geometric design) designer working for a French automobile manufacturer. The final result is a Bézier
curve of degree 3. Again, observe that if you plug in any value foru, these blending functions are all nonnegative
and sum to 1. In this case, the blending functions are

b03(u) = (1− u)3

b13(u) = 3u(1− u)2

b23(u) = 3u2(1− u)
b33(u) = u3.

Notice that if we write out the coefficients for the bending functions (adding a row for the degree 4 functions,
which you can derive on your own), we get the following familiar pattern.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

Lecture Notes 103 CMSC 427

This is just the famous Pascal’s triangle. In general, theith blending function for the degreek Bézier curve has
the general form

bik(u) =
(

k

i

)
(1− u)k−iui, where

(
k

i

)
=

k!i!
(k − i)!

.

These polynomial functions are important in mathematics, and are called theBernstein polynomials, and are
shown in Fig. 78 over the rangeu ∈ [0, 1].

10

b (u)

b (u)33

b (u)2313

b (u)03

u

Fig. 78: B́ezier blending functions (Bernstein polynomials) of degree 3.

Bézier curve properties: Bézier curves have a number of interesting properties. Because each point on a Bézier
curve is a convex combination of the control points, the curve lies entirely within the convex hull of the control
points. (This is not true of interpolating polynomials which can wiggle outside of the convex hull.) Observe that
all the blending functions are 0 atu = 0 except the one associated withp0 which is 1 and so the curve starts at
p0 whenu = 0. By a symmetric observation, whenu = 1 the curve ends at the last point. By evaluating the
derivatives at the endpoints, it is also easy to verify that the curve’s tangent atu = 0 is collinear with the line
segmentp0p1. A similar fact holds for the ending tangent and the last line segment.

If you compute the derivative of the curve with respect tou, you will find that it is itself a B́ezier curve. Thus,
the parameterized tangent vector of a Bézier curve is a B́ezier curve. Finally the B́ezier curve has the following
variation diminishing property. Consider the polyline connecting the control points. Given any line`, the line
intersects the B́ezier curve no more times than it intersects this polyline. Hence the sort of “wiggling” that we
saw with interpolating polynomials does not occur with Bézier curves.

Lecture Notes 104 CMSC 427

Supplemental Topics

Lecture 25: More on Graphics Systems and Models

Reading: This material is not covered in our text. See the OpenGL Programming Guide Chapt 3 for discussion of the
general viewing model.

Image Synthesis: In a traditional bottom-up approach to computer graphics, at this point we would begin by dis-
cussing how pixels are rendered to the screen to form lines, curves, polygons, and eventually build up to 2-d and
then to 3-d graphics.

Instead we will jump directly into a discussion 3-d graphics. We begin by considering a basic model of viewing,
based on the notion of a viewer holding up asynthetic-camerato a model of the scene that we wish to render.
This implies that our graphics model will involve the following major elements:

Objects: A description of the 3-dimensional environment. This includes the geometric structure of the objects
in the environment, their colors, reflective properties (texture, shininess, transparency, etc).

Light sources: A description of the locations of light sources, their shape, and the color and directional prop-
erties of their energy emission.

Viewer: A description of the location of the viewer and the position and properties of the synthetic camera
(direction, field of view, and so on).

Each of these elements may be described to a greater or lesser degree of precision and realism. Of course there
are trade-offs to be faced in terms of the efficiency and realism of the final images. Our goal will be to describe
a model that is as rich as possible but still fast enough to allow real time animation (say, at least 20 frames per
second) on modern graphics workstations.

Geometric Models: The first issue that we must consider is how to describe our 3-dimensional environment in a man-
ner that can be processed by our graphics API. As mentioned above, such a model should provide information
about geometry, color, texture, and reflective properties for these objects. Models based primarily around simple
mathematical structures are most popular, because they are easy to program with. (It is much easier to render a
simple object like a sphere or a cube or a triangle, rather than a complex object like a mountain or a cloud, or a
furry animal.)

Of course we would like our modeling primitives to be flexible enough that we can model complex objects
by combining many of these simple entities. A reasonably flexible yet simple method for modeling geometry
is through the use ofpolyhedral models. We assume that the solid objects in our scene will be described by
their 2-dimensional boundaries. These boundaries will be assumed to be constructed entirely from flat elements
(points, line segments, and planar polygonal faces). Later in the semester we will discuss other modeling
methods involving curved surfaces (as arise often in manufacturing) and bumpy irregular objects (as arise often
in nature).

The boundary of any polyhedral object can be broken down into its boundary elements of various dimensions:

Vertex: Is a (0-dimensional) point. It is represented by its(x, y, z) coordinates in space.

Edge: Is a (1-dimensional) line segment joining two vertices.

Face: Is a (2-dimensional) planar polygon whose boundary is formed by a closed cycle of edges.

Lecture Notes 105 CMSC 427

The way in which vertices, edges and faces are joined to form the surface of an object is called itstopology. An
object’s topology is very important for reasoning about it properties. (For example, a robot system may want
to know whether an object has an handles which it can use to pick the object up with.) However, in computer
graphics, we are typically only interested in what we need to render the object. These are its faces.

Faces form the basic rendering elements in 3-dimensional graphics. Generally speaking a face can be defined
by an unlimited number of edges, and in some models may even contain polygonalholes. However, to speed up
the rendering process, most graphics systems assume that faces consist of simple convex polygons. A shape is
said to beconvexif any line intersects the shape in a single line segment. Convex polygons have internal angles
that are at most 180 degrees, and contain no holes.

Since you may want to have objects whose faces are not convex polygons, many graphics API’s (OpenGL
included) provide routines to break complex polygons down into a collection of convex polygons, and triangles
in particular (because all triangles are convex). This process is calledtriangulationor tesselation. This increases
the number of faces in the model, but it significantly simplifies the rendering process.

Fig. 79: A polyhedral model and one possible triangulation of its faces.

In addition to specifying geometry, we also need to specify color, texture, surface finish, etc in order to complete
the picture. These elements affect how light is reflected, giving the appearance of dullness, shininess, bumpiness,
fuzziness, and so on. We will discuss these aspects of the model later. This is one of the most complex aspects
of modeling, and good surface modeling may require lots of computational time. In OpenGL we will be quite
limited in our ability to affect surface finishes.

Light and Light Sources: The next element of the 3-dimensional model will be the light sources. The locations of
the light sources will determine theshadingof the rendered scene (which surfaces are light and which are dark),
and the location of shadows. There are other important elements with light sources as well. The first is shape
of the light source. Is it a point (like the sun) or does it cover some area (like a florescent light bulb). This
affects things like the sharpness of shadows in the final image. Also objects (like a brightly lit ceiling) can act
as indirect reflectors of light. In OpenGL we will have only point light sources, and we will ignore indirect
reflection. We will also pretty much ignore shadows, but there are ways of faking them. These models are called
local illumination models.

The next is the color of the light. Incandescent bulbs produce light with a high degree of red color. On the other
hand florescent bulbs produce a much bluer color of light. Even the color of the sun is very much dependent on
location, time of year, time of day. It is remarkable how sensitive the human eye is to even small variations.

The light that is emitted from real light sources is a complex spectrum of electromagnetic energy (over the
visible spectrum, wavelengths ranging from 350 to 780 nanometers). However to simplify things, in OpenGL
(and almost all graphics systems) we will simply model emitted light as some combination of red, green and
blue color components. (This simple model cannot easily handle some phenomenon such as rainbows.)

Just how light reflects from a surface is a very complex phenomenon, depending on the surface qualities and mi-
croscopic structure of object’s surface. Some objects are smooth and shiny and others are matte (dull). OpenGL
models the reflective properties of objects by assuming that each object reflects light in some combination of
these extremes. Later in the semester we will discuss shiny orspecular reflection, and dull ordiffuse reflection.

Lecture Notes 106 CMSC 427

We will also model indirect reflection (light bouncing from other surfaces) by assuming that there is a certain
amount ofambient light, which is just floating around all of space, without any origin or direction.

Later we will provide an exact specification for how these lighting models work to determine the brightness and
color of the objects in the scene.

Camera Model: Once our 3-dimensionalscenehas been modeled, the next aspect to specifying the image is to
specify the location and orientation of a synthetic camera, which will be taking a picture of the scene.

Basically we mustproject a 3-dimensional scene onto a 2-dimensional imaging window. There a number of
ways of doing this. The simplest is called aparallel projectionwhere all objects are projected along parallel
lines, and the other is calledperspective projectionwhere all objects are projected along lines that meet at
a common point. Parallel projection is easier to compute, but perspective projections produce more realistic
images.

One simple camera model is that of apin-hole camera. In this model the camera consists of a single point called
thecenter of projectionon one side of a box and on the opposite side is theimaging planeor view planeonto
which the image is projected.

Let us take a moment to consider the equations that define how a point in 3-space would be projected to our
view plane. To simplify how perspective views are taken, let us imaging that the camera is pointing along the
positivez-axis, the center of projection is at the origin, and the imaging plane is distanced behind the center of
projection (atz = −d). Let us suppose that the box ish units high (along they-axis) andw units wide (along
thex-axis).

A side view along theyz-plane is shown below. Observe that, by similar triangles, a point with coordinates
(y, z) will be projected to the point

yp = − y

z/d
,

and by a similar argument thex-coordinate of the projection will be

xp = − x

z/d
.

z

(y,z)

zq

yy

h

d

h

d

Fig. 80: Pinhole camera.

Thus once we have transformed our points into this particular coordinate system, computing a perspective
transformation is a relatively simple operation.

(x, y, z)⇒
(
− x

z/d
,− y

z/d
,−d

)
.

Thez-coordinate of the result is not important (since it is the same for all projected points) and may be discarded.

Finally observe that this transformation is not defined for all points in 3-space. First off, ifz = 0, then the
transformation is undefined. Also observe that this transformation has no problem projecting points that lie

Lecture Notes 107 CMSC 427

behind the camera. For this reason it will be important toclip away objects that lie behind planez = 0 before
applying perspective.

Even objects that lie in front of the center of projection may not appear in the final image, if their projection
does not lie on the rectangular portion of the image plane. By a little trigonometry, it is easy to figure out what
is the angular diameterθ of the cone of visibility. Let us do this for theyz-plane. This is called thefield of view
(for y). (A similar computation could be performed for thexz-plane). The first rule of computing angles is to
reduce everything to right triangles. If we bisectθ by thez-axis, then we see that it lies in a right triangle whose
opposite leg has lengthh/2 and whose adjacent leg has lengthd, implying thattan(θ/2) = h/(2d). Thus, the
field of view is

θ = 2arctan
h

2d
.

Observe that the image has been inverted in the projection process. In real cameras it is not possible to put the
film in from of the lens, but there is not reason in our mathematical model that we should be limited in this way.
Consequently, when we introduce the perspective transformation later, we assume that the view plane is in front
of the center of projection, implying that the image will not be inverted.

Before moving on we should point out one important aspect of this derivation. Reasoning in 3-space is very
complex. We made two important assumptions to simplify our task. First, we selected a convenient frame of
reference (by assuming that the camera is pointed along thez-axis, and the center of projection is the origin.
The second is that we projected the problem to a lower dimensional space, where it is easier to understand. First
we considered theyz-plane, and reasoned by analogy to thexy-plane. Remember these two ideas. They are
fundamental to getting around the complexities of geometric reasoning.

But what if you camera is not pointing along thez-axis? Later we will learn how to perform transformations of
space, which will map objects into a coordinate system that is convenient for us.

Camera Position: Given our 3-dimensional scene, we need to inform the graphics system where our camera is lo-
cated. This usually involves specifying the following items:

Camera location: The location of the center of projection.

Camera direction: What direction (as a vector) is the camera pointed in.

Camera orientation: What direction is “up” in the final image.

Focal length: The distance from the center of projection to the image plane.

Image size: The size (and possibly location) of the rectangular region on the image plane to be taken as the
final image.

There are a number of ways of specifying these quantities. For example, rather than specifying focal length and
image size, OpenGL has the user specify the field of view and the imageaspect ratio, the ratio of its width (x)
to height (y).

At this point, we have outlined everything that must be specified for rendering a 3-dimensional scene (albeit
with a considerable amount of simplification and approximation in modeling). Next time we will show how to
use OpenGL to turn this abstract description into a program, which will render the scene.

Lecture 26: X Window System

Reading: Chapter 1 in Hill.

X Window System: Although Window systems are not one of the principal elements of a graphics course, some
knowledge about how typical window systems works is useful. We will discuss elements of the X-window
system, which is typical of many window systems, such as Windows95.

Lecture Notes 108 CMSC 427

X divides thedisplayinto rectangular regions calledwindows. (Note: The termwindowwhen used later in the
context of graphics will have a different meaning.) Each window acts as an input/output area for one or more
processes. Windows in X are organized hierarchically, thus each window (except for a special one called the
root that covers the entire screen) has aparentand may have one or morechild windows that it creates and
controls. For example, menus, buttons, scrollbars are typically implemented as child windows.

Window systems like X are quite complex in structure. The following are components of X.

X-protocol: The lowest level of X provides routines for communicating with graphics devices (which may
reside elsewhere on some network).

One of the features of X is that a program running on one machine can display graphics on another by
sending graphics (in the form of messages) over the network. Your program acts like aclient and sends
commands to theX-serverwhich talks to the display to make the graphics appear. The server also handles
graphics resources, like the color map.

Xlib: This is a collection of library routines, which provide low-level access to X functions. It provides access
to routines for example, creating windows, setting drawing colors, drawing graphics (e.g., lines, circles,
and polygons), drawing text, and receiving input either through the keyboard or mouse.

Another important aspect of Xlib is maintaining a list of user’s preferences for the appearance of windows.
Xlib maintains a database of desired window properties for various applications (e.g., the size and location
of the window and its background and foreground colors). When a new application is started, the program
can access this database to determine how it should configure itself.

Toolkit: Programming at the Xlib level is extremely tedious. A toolkit provides a higher level of functionality
for user interfaces. This includes objects such as menus, buttons, and scrollbars.

When you create a button, you are not concerned with how the button is drawn or whether its color changes
when it is clicked. You simply tell it what text to put into the button, and the system takes care drawing
the button, and informing your program when a the button has been selected. The X-toolkit functions
translate these requests into calls to Xlib functions. We will not be programming in Xlib or the X-toolkit
this semester. We will discuss GLUT later. This is a simple toolkit designed for use with OpenGL.

Graphics API: The toolkit supplies tools for user-interface design, but it does little to help with graphics.
Dealing with the window system at the level of drawing lines and polygons is very tedious when designing
a 3-dimensional graphics program. A graphics API (application programming interface) is a library of
functions which provide high-level access to routines for doing 3-dimensional graphics. Examples of
graphics API’s include PHIGS, OpenGL (which we will be using), and Java3D.

Window Manager: When you are typing commands in a Unix system, you are interacting with a program called a
shell. Similarly, when you resize windows, move windows, delete windows, you are interacting with a program
called awindow manager. A window manager (e.g. twm, ctwm, fvwm) is just an application written in X.
It’s only real “privilege” with respect to the X system is that it has final say over where windows are placed.
Whenever a new window is created, the window-manager is informed of its presence, and informs approves (or
determines) its location and placement.

It is the window manager’s job to control the layout of the various windows, determine where these windows are
to be placed, and which windows are to be on top. Neither the window manager, nor X, is responsible for saving
the area of the screen where a window on top obscures a window underneath. Rather, when a window goes
away, or is moved, X informs the program belonging to the obscured window that it has now been “exposed”.
It is the job of the application program to redraw itself.

Lecture 27: Ray Tracing: Triangle Intersection

Reading: Chapter 10 in Hearn and Baker.

Lecture Notes 109 CMSC 427

X Server
Display

Xlib

Client

Xlib

Network

Window Man.

Mouse

Keyboard

OpenGL

Toolkit

Client

Xlib

Device Drivers

Fig. 81: X-windows client-server structure.

Ray-Triangle Intersection: Suppose that we wish to intersect a ray with a polyhedral object. There are two standard
approaches to this problem. The first works only for convex polyhedra. In this method, we represent a polyhe-
dron as the intersection of a set of halfspaces. In this case, we can easily modify the 2-d line segment clipping
algorithm presented in Lecture 9 to perform clipping against these halfspaces. We will leave this as an exercise.
The other method involves representing the polyhedron by a set of polygonal faces, and intersecting the ray with
these polygons. We will consider this approach here.

There are two tasks which are needed for ray-polygon intersection tests. The first is to extract the equation of
the (infinite) plane that supports the polygon, and determine where the ray intersects this plane. The second step
is to determine whether the intersection occurs within the bounds of the actual polygon. This can be done in a
2-step process. We will consider a slightly different method, which does this all in one step.

2

1
1Q

2Qw

0

u

Q

w

P+tu

P

Fig. 82: Ray-triangle intersection.

Let us first consider how to extract the plane containing one of these polygons. In general, a plane in 3-space
can be represented by a quadruple of coefficients(a, b, c, d), such that a pointP = (px, py, pz) lies on the plane
if and only if

apx + bpy + cpz + d = 0.

Note that the quadruple(a, b, c, d) behaves much like a point represented in homogeneous coordinates, because
any scalar multiple yields the same equation. Thus(a/d, b/d, c/d, 1) would give the same equation (provided
thatd 6= 0).

Given any three (noncollinear) vertices of the polygon, we can compute these coefficients by solving a set of
three linear equations. Such a system will be underdetermined (3 equations and 4 unknowns) but we can find a
unique solution by adding a fourth normalizing equation, e.g.a + b + c + d = 1. We can also represent a plane
by giving a normal vector~n and a point on the planeQ. In this case(a, b, c) will just be the coordinates of~n

Lecture Notes 110 CMSC 427

and we can derived from the fact that

aqx + bqy + cqz + d = 0.

To determine the value oft where the ray intersect the plane, we could plug the ray’s parametric representation
into this equation and simply solve fort. If the ray is represented byP + t~u, then we have the equation

a(px + tux) + b(py + tuy) + c(pz + tuz) + d = 0.

Soving fort we have

t = − apx + bpy + cpz

aux + buy + cuz
.

Note that the denominator is 0 if the ray is parallel to the plane. We may simply assume that the ray does not
intersect the polygon in this case (ignoring the highly unlikely case where the ray hits the polygon along its
edge). Once the intersection valuet′ is known, the actual point of intersection is just computed asP + t~u.

Let us consider the simplest case of a triangle. LetQ0, Q1, andQ2 be the vertices of the triangle in 3-space.
Any pointQ′ that lies on this triangle can be described by a convex combination of these points

Q′ = α0Q0 + α1Q1 + α2Q2,

whereαi ≥ 0 and
∑

i αi = 1. From the fact that theαi’s sum to 1, we can setα0 = 1− α1 − α2 and do a little
algebra to get

Q′ = Q0 + α1(Q1 −Q0) + α2(Q2 −Q0),

whereαi ≥ 0 andα1 + α2 ≤ 1. Let

~w1 = Q1 −Q0, ~w2 = Q2 −Q0,

giving us the following
Q′ = Q0 + α1 ~w1 + α2 ~w2.

Recall that our ray is given byP + t~u for t > 0. We want to know whether there is a pointQ′ of the above form
that lies on this ray. To do this, we just substitute the parametric ray value forQ′ yielding

P + t~u = Q0 + α1 ~w1 + α2 ~w2

P −Q0 = −t~u + α1 ~w1 + α2 ~w2.

Let ~wP = P − Q0. This is an equation, wheret, α1 andα2 are unknown (scalar) values, and the other values
are all 3-element vectors. Hence this is a system of three equations with three unknowns. We can write this as(

−~u

∣∣∣∣∣ ~w1

∣∣∣∣∣ ~w2

)  t
α1

α2


 =

(
~wP

)
.

To determinet, α1 andα2, we need only solve this system of equations. LetM denote the3× 3 matrix whose
columns are−~u, ~w1 and ~w2. We can do this by computing the inverse matrixM−1 and then we have

 t
α1

α2


 = M−1

(
~wP

)
.

There are a number of things that can happen at this point. First, it may be that the matrix is singular (i.e., its
columns are not linearly independent) and no inverse exists. This happens if~t is parallel to the plane containing
the triangle. In this case we will report that there is no intersection. Otherwise, we check the values ofα1 and
α2. If either is negative then there is no intersection and ifα1 + α2 > 1 then there is no intersection.

Lecture Notes 111 CMSC 427

Normal Vector: In addition to computing the intersection of the ray with the object, it is also desirable to compute
the normal vector at the point of intersection. In the case of the triangle, this can be done by computing the cross
product

~n = normalize((Q1 −Q0)× (Q2 −Q0)) = normalize(~w1 × ~w2).

But which direction should we take for the normal,~n or −~n? This depends on which side of the triangle the
ray arrives. The normal should be directed opposite to the directional ray of the vector. Thus, if~n · ~u > 0, then
negate~n.

Lecture 28: Ray Tracing Bezier Surfaces

Reading: (This material is not covered in our text.)

Issues in Ray Tracing: Today we consider a number of miscellaneous issues in the ray tracing process.

Ray and Bézier Surface Intersection: Let us consider a more complex but more realistic ray intersection problem,
namely that of intersecting a ray with a Bézier surface. One possible approach would be to derive an implicit
representation of infinite algebraic surface on which the Bézier patch resides, and then determine whether the
ray hits the portion of this infinite surface corresponding to the patch. This leads to a very complex algebraic
task.

A simpler approach is based on using circle-ray and triangle-ray intersection tests (which we have already
discussed) and the deCasteljau procedure for subdividing Bézier surfaces. The idea is to construct a simple
enclosing shape for the curve, which we will use as afilter, to rule out clear misses. Let us describe the process
for a Bézier curve, and we will leave the generalization to surfaces as an exercise.

What enclosing shape shall we use? We could use the convex hull of the control points. (Recall the convex hull
property, which states that a Bézier curve or surface is contained within the convex hull of its control points.)
However, computing convex hulls, especially in 3-space, is a tricky computation.

We will instead apply a simpler test, by finding an enclosing circle for the curve. We do this by first computing
a center pointC for the curve. This can be done, for example, by computing the centroid of the control points.
(That is, the average of the all the point coordinates.) Alternatively, we could take the midpoint between the
first and last control points. Given the center pointC, we then compute the distance from each control point and
C. Let dmax denote the largest such distance. The circle with centerC and radiusdmax encloses all the control
points, and hence it encloses the convex hull of the control points, and hence it encloses the entire curve. We
test the ray for intersection with this circle. An example is shown in Fig. 83.

maxd

refine

ray ray

refine

ray

C

Fig. 83: Ray tracing B́ezier curves through filtering and subdivision.

If it does not hit the circle, then we may safely say that it does not hit the Bézier curve. If the ray does hit the
circle, it still may miss the curve. Here we apply the deCasteljau algorithm to subdivide the Bezier curve into
two Bezier subcurves. Then we apply the ray intersection algorithm recursively to the two subcurves. (Using

Lecture Notes 112 CMSC 427

the same circle filter.) If both return misses, then we miss. If either or both returns a hit, then we take the closer
of the two hits. We need some way to keep this recursive procedure from looping infinitely. To do so, we need
some sort of stopping criterion. Here are a few possibilities:

Fixed level decomposition:Fix an integerk, and decompose the curve to a depth ofk levels (resulting in2k)
subcurves in all. This is certainly simple, but not a very efficient approach. It does not consider the shape
of the curve or its distance from the viewer.

Decompose until flat: For each subcurve, we can compute some function that measures howflat, that is, close
to linear, the curve is. For example, this might be done by considering the ratio of the length of the line
segment between the first and last control points and distance of the furthest control point from this line.
At this point we reduce the ray intersection to line segment intersection problem.

Decompose to pixel width: We continue to subdivide the curve until each subcurve, when projected back to
the viewing window, overlaps a region of less than one pixel. Clearly it is unnecessary to continue to
subdivide such a curve. This solves the crack problem (since cracks are smaller than a pixel) but may
produce an unnecessarily high subdivision for nearly flat curves. Also notice that this the notion of back
projection is easy to implement for rays emanating from the eye, but this is much harder to determine for
reflection or refracted rays.

Lecture 29: Scan Conversion

Reading: Chapter 10 in Hill.

Scan Conversion: We turn now to a number of miscellaneous issues involved in the implementation of computer
graphics systems. In our top-down approach we have concentrated so far on the high-level view of computer
graphics. In the next few lectures we will consider how these things are implemented. In particular, we consider
the question of how to map 2-dimensional geometric objects (as might result from projection) to a set of pixels
to be colored. This process is calledscan conversionor rasterization. We begin by discussing the simplest of
all rasterization problems, drawing a single line segment.

Let us think of our raster display as an integer grid, in which each pixel is a circle of radius1/2 centered at
each point of the grid. We wish to illuminate a set of pixels that lie on or close to the line. In particular, we
wish to draw a line segment fromq = (qx, qy) to r = (rx, ry), where the coordinates are integer grid points
(typically by a process of rounding). Let us assume further that the slope of the line is between 0 and 1, and
thatqx < rx. This may seem very restrictive, but it is not difficult to map any line drawing problem to satisfy
these conditions. For example, if the absolute value of the slope is greater than 1, then we interchange the roles
of x andy, thus resulting in a line with a reciprocal slope. If the slope is negative, the algorithm is very easy
to modify (by decrementing rather than incrementing). Finally, by swapping the endpoints we can always draw
from left to right.

Bresenham’s Algorithm: We will discuss an algorithm, which is calledBresenham’s algorithm. It is one of the
oldest algorithms known in the field of computer graphics. It is also an excellent example of how one can
squeeze every but of efficiency out an algorithm. We begin by considering animplicit representation of the line
equation. (This is used only for deriving the algorithm, and is not computed explicitly by the algorithm.)

f(x, y) = ax + by + c = 0.

If we let dx = rx − qx, dy = ry − qy, it is easy to see (by substitution) thata = dy, b = −dx, andc =
−(qxry − rxqy). Observe that all of these coefficients are all integers. Also observe thatf(x, y) > 0 for points
that lie below the line andf(x, y) < 0 for points above the line. For reasons that will become apparent later, let
us use an equivalent representation by multiplying by 2

f(x, y) = 2ax + 2by + 2c = 0.

Lecture Notes 113 CMSC 427

Here is the intuition behind Bresenham’s algorithm. For each integerx value, we wish to determine which
integery value is closest to the line. Suppose that we have just finished drawing a pixel(px, py) and we are
interested in figuring out which pixel to draw next. Since the slope is between 0 and 1, it follows that the
next pixel to be drawn will either be the pixel to our East (E = (px + 1, py)) or the pixel to our NorthEast
(NE = (px + 1, py + 1)). Let q denote the exacty-value (a real number) of the line atx = px + 1. Let
m = py + 1/2 denote they-value midway betweenE andNE . If q < m then we want to selectE next, and
otherwise we want to selectNE . IF q = m then we can pick either, sayE . See the figure.

y

y

m
q

f(x,y) > 0

f(x,y) < 0

E

NE
p

p

p pp x

+1

+2x+1x

Fig. 84: Bresenham’s midpoint algorithm.

To determine which one to pick, we have adecision variableD which will be the value off at the midpoint.
Thus

D = f(px + 1, py + (1/2))

= 2a(px + 1) + 2b

(
py +

1
2

)
+ 2c

= 2apx + 2bpy + (2a + b + 2c).

If D > 0 thenm is below the line, and so theNE pixel is closer to the line. On the other hand, ifD ≤ 0 then
m is above the line, so theE pixel is closer to the line. (Note: We can see now why we doubledf(x, y). This
makesD an integer quantity.)

The good news is thatD is an integer quantity. The bad news is that it takes at least at least two multiplications
and two additions to computeD (even assuming that we precompute the part of the expression that does not
change). One of the clever tricks behind Bresenham’s algorithm is to computeD incrementally. Suppose we
know the currentD value, and we want to determine its next value. The nextD value depends on the action we
take at this stage.

We go toE next: Then the next midpoint will have coordinates(px + 2, py + (1/2)) and hence the newD
value will be

Dnew = f(px + 2, py + (1/2))

= 2a(px + 2) + 2b

(
py +

1
2

)
+ 2c

= 2apx + 2bpy + (4a + b + 2c)
= 2apx + 2bpy + (2a + b + 2c) + 2a
= D + 2a = D + 2dy.

Thus, the new value ofD will just be the current value plus2dy.

We go toNE next: Then the next midpoint will have coordinates(px + 2, py + 1 + (1/2)) and hence the new

Lecture Notes 114 CMSC 427

D value will be

Dnew = f(px + 2, py + 1 + (1/2))

= 2a(px + 2) + 2b
(

py +
3
2

)
+ 2c

= 2apx + 2bpy + (4a + 3b + 2c)
= 2apx + 2bpy + (2a + b + 2c) + (2a + 2b)
= D + 2(a + b) = D + 2(dy − dx).

Thus the new value ofD will just be the current value plus2(dy − dx).

Note that in either case we need perform only one addition (assuming we precompute the values2dy and
2(dy − dx). So the inner loop of the algorithm is quite efficient.

The only thing that remains is to compute the initial value ofD. Since we start at(qx, qy) the initial midpoint is
at (qx + 1, qy + 1/2) so the initial value ofD is

Dinit = f(qx + 1, qy + 1/2)

= 2a(qx + 1) + 2b

(
qy +

1
2

)
+ 2c

= (2aqx + 2bqy + 2c) + (2a + b)
= 0 + 2a + b Since(qx, qy) is on line

= 2dy − dx.

We can now give the complete algorithm. Recall our assumptions thatqx < rx and the slope lies between 0
and 1. Notice that the quantities2dy and2(dy − dx) appearing in the loop can be precomputed, so each step
involves only a comparison and a couple of additions of integer quantities.

Bresenham’s midpoint algorithm
void bresenham(IntPoint q, IntPoint r) {

int dx, dy, D, x, y;
dx = r.x - q.x; // line width and height
dy = r.y - q.y;
D = 2*dy - dx; // initial decision value
y = q.y; // start at (q.x,q.y)
for (x = q.x; x <= r.x; x++) {

writePixel(x, y);
if (D <= 0) D += 2*dy; // below midpoint - go to E
else { // above midpoint - go to NE

D += 2*(dy - dx); y++;
}

}
}

Bresenham’s algorithm can be modified for drawing other sorts of curves. For example, there is a Bresenham-
like algorithm for drawing circular arcs. The generalization of Bresenham’s algorithm is called themidpoint
algorithm, because of its use of the midpoint between two pixels as the basic discriminator.

Filling Regions: In most instances we do not want to draw just a single curve, and instead want to fill a region. There
are two common methods of defining the region to be filled. One is polygon-based, in which the vertices of a
polygon are given. We will discuss this later. The other ispixel based. In this case, a boundary region is defined

Lecture Notes 115 CMSC 427

by a set of pixels, and the task is to fill everything inside the region. We will discuss this latter type of filling for
now, because it brings up some interesting issues.

The intuitive idea that we have is that we would like to think of a set of pixels as defining theboundaryof some
region, just as a closed curve does in the plane. Such a set of pixels should be connected, and like a curve, they
should split the infinite grid into two parts, aninterior and anexterior. Define the4-neighborsof any pixel to be
the pixels immediately to the north, south, east, and west of this pixel. Define the8-neighborsto be the union
of the 4-neighbors and the 4 closest diagonal pixels. There are two natural ways to define the notion of being
connected, depending on which notion of neighbors is used.

Fig. 85: 4-connected (left) and 8-connected (right) sets of pixels.

4-connected: A set is 4-connected if for any two pixels in the set, there is path from one to the other, lying
entirely in the set and moving from one pixel to one of its 4-neighbors.

8-connected: A set is 8-connected if for any two pixels in the set, there is path from one to the other, lying
entirely in the set and moving from one pixel to one of its 8-neighbors.

Observe that a 4-connected set is 8-connected, but not vice versa. Recall from the Jordan curve theorem that
a closed curve in the plane subdivides the plane into two connected regions, and interior and an exterior. We
have not defined what we mean by a closed curve in this context, but even without this there are some problems.
Observe that if a boundary curve is 8-connected, then it is generally not true that it separates the infinite grid
into two 8-connected regions, since (as can be seen in the figure) both interior and exterior can be joined to each
other by a 8-connected path. There is an interesting way to fix this problem. In particular, if we require that the
boundary curve be 8-connected, then we require that the region it define be 4-connected. Similarly, if we require
that the boundary be 4-connected, it is common to assume that the region it defines be 8-connected.

Recursive Flood Filling: Irrespective of how we define connectivity, the algorithmic question we want to consider
is how to fill a region. Suppose that we are given a starting pixelp = (px, py). We wish to visit all pixels in
the sameconnected component(using say, 4-connectivity), and assign them all the same color. We will assume
that all of these pixels initially share some commonbackground color, and we will give them a newregion
color. The idea is to walk around, as whenever we see a 4-neighbor with the background color we assign it
color the region color. The problem is that we may go down dead-ends and may need to backtrack. To handle
the backtracking we can keep a stack of unfinished pixels. One way to implement this stack is to use recursion.
The method is calledflood filling. The resulting procedure is simple to write down, but it is not necessarily the
most efficient way to solve the problem. See the book for further consideration of this problem.

Lecture 30: Scan Conversion of Circles

Reading: Section 3.3 in Foley, vanDam, Feiner and Hughes.

Lecture Notes 116 CMSC 427

Recursive Flood-Fill Algorithm (4-connected)
void floodFill(intPoint p) {

if (getPixel(p.x, p.y) == backgroundColor) {
setPixel(p.x, p.y, regionColor);
floodFill(p.x - 1, p.y); // apply to 4-neighbors
floodFill(p.x + 1, p.y);
floodFill(p.x, p.y - 1);
floodFill(p.x, p.y + 1);

}
}

Midpoint Circle Algorithm: Let us consider how to generalize Bresenham’s midpoint line drawing algorithm for the
rasterization of a circle. We will make a number of assumptions to simplify the presentation of the algorithm.
First, let us assume that the circle is centered at the origin. (If not, then the initial conditions to the following
algorithm are changed slightly.) LetR denote the (integer) radius of the circle.

The first observations about circles is that it suffices to consider how to draw the arc in the positive quadrant
from π/4 to π/2, since all the other points on the circle can be determined from these by8-way symmetry.

(−x,y)

(−x,−y)

(−y,−x)

(x,−y)

(y,−x)

(y,x)

(x,y)

(−y,x)

Fig. 86: 8-way symmetry for circles.

What are the comparable elements of Bresenham’s midpoint algorithm for circles? As before, we need an
implicit representation of the function. For this we use

F (x, y) = x2 + y2 −R2 = 0.

Note that for pointsinside the circle (or under the arc) this expression is negative, and for pointsoutsidethe
circle (or above the arc) it is positive.

+1px

M

SE

E

−1py

px

py

Fig. 87: Midpoint algorithm for circles.

Let’s assume that we have just finished drawing pixel(xp, yp), and we want to select the next pixel to draw
(drawing clockwise around the boundary). Since the slope of the circular arc is between 0 and−1, our choice

Lecture Notes 117 CMSC 427

at each step our choice is between the neighbor to the eastE and the neighbor to the southeastSE. If the circle
passes above the midpointM between these pixels, then we go toE next, otherwise we go toSE.

Next, we need a decision variable. We take this to be the value ofF (M), which is

D = F (M) = F (xp + 1, yp − 1
2
)

= (xp + 1)2 + (yp − 1
2
)2 −R2.

If D < 0 thenM is belowthe arc, and so theE pixel is closer to the line. On the other hand, ifD ≥ 0 thenM
is abovethe arc, so theSE pixel is closer to the line.

Again, the new value ofD will depend on our choice.

We go toE next: Then the next midpoint will have coordinates(xp +2, yp−(1/2)) and hence the newd value
will be

Dnew = F (xp + 2, yp − 1
2
)

= (xp + 2)2 + (yp − 1
2
)2 −R2

= (x2
p + 4xp + 4) + (yp − 1

2
)2 −R2

= (x2
p + 2xp + 1) + (2xp + 3) + (yp − 1

2
)2 −R2

= (xp + 1)2 + (2xp + 3) + (yp − 1
2
)2 −R2

= D + (2xp + 3).

Thus, the new value ofD will just be the current value plus2xp + 3.

We go toNE next: Then the next midpoint will have coordinates(xp + 2, Syp − 1 − (1/2)) and hence the
newD value will be

Dnew = F (xp + 2, yp − 3
2
)

= (xp + 2)2 + (yp − 3
2
)2 −R2

= (x2
p + 4xp + 4) + (y2

p − 3yp +
9
4
)−R2

= (x2
p + 2xp + 1) + (2xp + 3) + (y2

p − yp +
1
4
) + (−2yp +

8
4
)−R2

= (xp + 1)2 + (yp − 1
2
)2 −R2 + (2xp + 3) + (−2yp + 2)

= D + (2xp − 2yp + 5)

Thus the new value ofD will just be the current value plus2(xp − yp) + 5.

The last issue is computing the initial value ofD. Since we start atx = 0, y = R the first midpoint of interest

Lecture Notes 118 CMSC 427

is atx = 1, y = R− 1/2, so the initial value ofD is

Dinit = F (1, R− 1
2
)

= 1 + (R− 1
2
)2 −R2

= 1 + R2 −R +
1
4
−R2

=
5
4
−R.

This is something of a pain, because we have been trying to avoid floating point arithmetic. However, there is a
very clever observation that can be made at this point. We are only interested in testing whetherD is positive or
negative. Whenever we change the value ofD, we do so by a integer increment. Thus,D is always of the form
D′ + 1/4, whereD′ is an integer. Such a quantity is positive if and only ifD′ is positive. Therefore, we can
just ignore this extra1/4 term. So, we initializeDinit = 1−R (subtracting off exactly1/4), and the algorithm
behavesexactlyas it would otherwise!

Lecture 31: Cohen-Sutherland Line Clipping

Cohen-Sutherland Line Clipper: Let us consider the problem of clipping a line segment with endpoint coordinates
P0 = (x0, y0) andP1 = (x1, y1), against a rectangle whose top, bottom, left and right sides are given byWT,
WB, WL andWR, respectively. We will present an algorithm called theCohen-Sutherlandclipping algorithm.
The basic idea behind almost all clipping algorithms is that it is often the case that many line segments require
only very simple analysis to determine either than they are entirely visible or entirely invisible. If either of these
tests fail, then we need to invoke a more complex intersection algorithm.

To test whether a line segment is entirely visible or invisible, we use the following (imperfect but efficient)
heuristic. Let be the endpoints of the line segment to be clipped. We compute a 4 bit code for each of the
endpointsP0 andP1. The code of a point(x, y) is defined as follows.

Bit 1: 1 if point is above window, i.e.y > WT.

Bit 2: 1 if point is below window, i.e.y < WB.

Bit 3: 1 if point is right of window, i.e.x > WR.

Bit 4: 1 if point is left of window, i.e.x < WL.

This subdivides the plane into 9 regions based on the values of these codes. See the figure.

Now, observe that a line segment is entirely visible if and only if both of the code values of its endpoints are
equal to zero. That is, ifC0 ∨ C1 = 0 then the line segment is visible and we draw it. If both line segments lie
entirely above, entirely below, entirely right or entirely left of the window then the segment can be rejected as
completely invisible. In other words, ifC0 ∧ C1 6= 0 then we can discard this segment as invisible. Note that it
is possible for a line to be invisible and still pass this test, but we don’t care, since that is a little extra work we
will have to do to determine that it is invisible.

Otherwise we have to actually clip the line segment. We know that one of the code values must be nonzero, let’s
assume that it is(x0, x1). (Otherwise swap the two endpoints.) Now, we know that some code bit is nonzero,
let’s try them all. Suppose that it is bit 4, implying thatx0 < WL. We can infer thatx1 ≥ WL for otherwise
we would have already rejected the segment as invisible. Thus we want to determine the point(xc, yc) at which
this segment crossesWL. Clearly

xc = WL,

Lecture Notes 119 CMSC 427

WT

WB

WRWL

Window

01100101 0100

0000 0010

101010001001

0001

Fig. 88: Cohen-Sutherland region codes.

and using similar triangles we can see that

yc − y0

y1 − y0
=

WL− x0

x1 − x0
.

(xc,yc)
yc−y0

y1−y0

WL

(x1,y1)

(x0,y0)

x1−x0

WL−x0

Fig. 89: Clipping on left side of window.

From this we can solve foryc giving

yc =
WL− x0

x1 − x0
(y1 − y0) + y0.

Thus, we replace(x0, y0) with (xc, yc), recompute the code values, and continue. This is repeated until the line
is trivially accepted (all code bits = 0) or until the line is completely rejected. We can do the same for each of
the other cases.

Lecture 32: Hidden Surface Removal

Reading: Chapter 13 in Hill.

Hidden-Surface Removal: We consider algorithmic approaches to an important problem in computer graphics,hid-
den surface removal. We are given a collection of objects in 3-space, represented, say, by a set of polygons, and

Lecture Notes 120 CMSC 427

a viewing situation, and we want to render only the visible surfaces. Each polygon face is assumed to be flat
and opaque. (Extensions to hidden-surface elimination of curved surfaces is an interesting problem.) We may
assume that each polygon is represented by a cyclic listing of the(x, y, z) coordinates of their vertices, so that
from the “front” the vertices are enumerated in counterclockwise order.

One question that arises right away is what do we want as the output of a hidden-surface procedure. There are
generally two options.

Object precision: The algorithm computes its results to machine precision (the precision used to represent
object coordinates). The resulting image may be enlarged many times without significant loss of accuracy.
The output is a set of visible object faces, and the portions of faces that are only partially visible.

Image precision: The algorithm computes its results to the precision of a pixel of the image. Thus, once the
image is generated, any attempt to enlarge some portion of the image will result in reduced resolution.

Although image precision approaches have the obvious drawback that they cannot be enlarged without loss of
resolution, the fastest and simplest algorithms usually operate by this approach.

The hidden-surface elimination problem for object precision is interesting from the perspective of algorithm
design, because it is an example of a problem that is rather hard to solve in the worst-case, and yet there exists
a number of fast algorithms that work well in practice. As an example of this, consider a patch-work ofn
thin horizontal strips in front ofn thin vertical strips. (See Fig. 90.) If we wanted to output the set of visible
polygons, observe that the complexity of the projected image with hidden-surfaces removed isO(n2). Hence, it
is impossible to beatO(n2) in the worst case. However, almost no one in graphics uses worst-case complexity
as a measure of how good an algorithm is, because these worst-case scenarios do not happen often in practice.
(By the way there is an “optimal”O(n2) algorithm, which is never used in practice.)

n strips

n strips

Fig. 90: Worst-case example for hidden-surface elimination.

Culling: Before performing a general hidden surface removal algorithm, it is common to first apply heuristics to
remove objects that are obviously not visible. This process is calledculling. There are three common forms of
culling.

Back-face Culling: This is a simple trick, which can eliminate roughly half of the faces from consideration.
Assuming that the viewer is never inside any of the objects of the scene, then the back sides of objects are
never visible to the viewer, and hence they can be eliminated from consideration.

For each polygonal face, we assume an outward pointing normal has been computed. If this normal is
directedaway from the viewpoint, that is, if its dot product with a vector directed towards the viewer is
negative, then the face can be immediately discarded from consideration. (See Fig. 91.)

View Frustum Culling: If a polygon does not lie within the view frustum (recall from the lecture on perspec-
tive), that is, the region that is visible to the viewer, then it does not need to be rendered. This automatically
eliminates polygons that lie behind the viewer. (See Fig. 91.)

This amounts to clipping a 2-dimensional polygon against a 3-dimensional frustum. The Liang-Barsky
clipping algorithm can be generalized to do this.

Lecture Notes 121 CMSC 427

Eye

Back−face culling

Eye

View−frustum culling

Fig. 91: Culling.

Visibility Culling: Sometimes a polygon can be culled because it is “known” that the polygon cannot be visible,
based on knowledge of the domain. For example, if you are rendering a room of a building, then it is
reasonable to infer that furniture on other floors or in distant rooms on the same floor are not visible. This
is the hardest type of culling, because it relies on knowledge of the environment. This information is
typically precomputed, based on expert knowledge or complex analysis of the environment.

Depth-Sort Algorithm: A fairly simple hidden-surface algorithm is based on the principle of painting objects from
back to front, so that more distant polygons are overwritten by closer polygons. This is called thedepth-
sort algorithm. This suggests the following algorithm: sort all the polygons according to increasing distance
from the viewpoint, and then scan convert them in reverse order (back to front). This is sometimes called the
painter’s algorithmbecause it mimics the way that oil painters usually work (painting the background before
the foreground). The painting process involves setting pixels, so the algorithm is an image precision algorithm.

There is a very quick-and-dirty technique for sorting polygons, which unfortunately does not generally work.
Compute arepresentative pointon each polygon (e.g. the centroid or the farthest point to the viewer). Sort the
objects by decreasing order of distance from the viewer to the representative point (or using the pseudodepth
which we discussed in discussing perspective) and draw the polygons in this order. Unfortunately, just because
the representative points are ordered, it does not imply that the entire polygons are ordered. Worse yet, it may
be impossibleto order polygons so that this type of algorithm will work. The Fig. 92 shows such an example, in
which the polygons overlap one another cyclically.

3
2

1
3

4

21

5

Fig. 92: Hard cases to depth-sort.

In these cases we may need tocut one or more of the polygons into smaller polygons so that the depth order
can be uniquely assigned. Also observe that if two polygons do not overlap inx, y space, then it does not matter
what order they are drawn in.

Here is a snapshot of one step of the depth-sort algorithm. Given any object, define itsz-extentsto be an
interval along thez-axis defined by the object’s minimum and maximumz-coordinates. We begin by sorting
the polygons by depth using farthest point as the representative point, as described above. Let’s consider the
polygonP that is currently at the end of the list. Consider all polygonsQ whosez-extents overlapsP ’s. This
can be done by walking towards the head of the list until finding the first polygon whose maximumz-coordinate
is less thanP ’s minimumz-coordinate. Before drawingP we apply the following tests to each of these polygons
Q. If any answers is “yes”, then we can safely drawP beforeQ.

Lecture Notes 122 CMSC 427

(1) Are thex-extents ofP andQ disjoint?

(2) Are they-extents ofP andQ disjoint?

(3) Consider the plane containingQ. DoesP lie entirely on the opposite side of this plane from the viewer?

(4) Consider the plane containingP . DoesQ lie entirely on the same side of this plane from the viewer?

(5) Are the projections of the polygons onto the view window disjoint?

In the cases of (1) and (2), the order of drawing is arbitrary. In cases (3) and (4) observe that if there is any plane
with the property thatP lies to one side andQ and the viewer lie to the other side, thenP may be drawn before
Q. The plane containingP and the plane containingQ are just two convenient planes to test. Observe that tests
(1) and (2) are very fast, (3) and (4) are pretty fast, and that (5) can be pretty slow, especially if the polygons are
nonconvex.

If all tests fail, then the only way to resolve the situation may be to split one or both of the polygons. Before
doing this, we first see whether this can be avoided by puttingQ at the end of the list, and then applying the
process onQ. To avoid going into infinite loops, we mark each polygon once it is moved to the back of the list.
Once marked, a polygon is never moved to the back again. If a marked polygon fails all the tests, then we need
to split. To do this, we useP ’s plane like a knife to splitQ. We then take the resulting pieces ofQ, compute the
farthest point for each and put them back into the depth sorted list.

In theory this partitioning could generateO(n2) individual polygons, but in practice the number of polygons is
much smaller. The depth-sort algorithm needs no storage other than the frame buffer and a linked list for storing
the polygons (and their fragments). However, it suffers from the deficiency that each pixel is written as many
times as there are overlapping polygons.

Depth-buffer Algorithm: The depth-buffer algorithmis one of the simplest and fastest hidden-surface algorithms.
Its main drawbacks are that it requires a lot of memory, and that it only produces a result that is accurate to pixel
resolution and the resolution of the depth buffer. Thus the result cannot be scaled easily and edges appear jagged
(unless some effort is made to remove these effects called “aliasing”). It is also called thez-buffer algorithm
because thez-coordinate is used to represent depth. This algorithm assumes that for each pixel we store two
pieces of information, (1) the color of the pixel (as usual), and (2) the depth of the object that gave rise to this
color. The depth-buffer values are initially set to the maximum possible depth value.

Suppose that we have ak-bit depth buffer, implying that we can store integer depths ranging from 0 toD =
2k − 1. After applying the perspective-with-depth transformation (recall Lecture 12), we know that all depth
values have been scaled to the range[−1, 1]. We scale the depth value to the range of the depth-buffer and
convert this to an integer, e.g.b(z + 1)/(2D)c. If this depth is less than or equal to the depth at this point of the
buffer, then we store its RGB value in the color buffer. Otherwise we do nothing.

This algorithm is favored for hardware implementations because it is so simple and essentially reuses the same
algorithms needed for basic scan conversion.

Implementation of the Depth-Buffer Algorithm: Consider the scan-conversion of a triangle shown in Fig. 93 using
a depth-buffer. Our task is to convert the triangle into a collection of pixels, and assign each pixel a depth value.
Because this step is executed so often, it is necessary that it be performed efficiently. (In fact, graphics cards
implement some variation of this approach in hardware.)

Let P0, P1, andP2 be the vertices of the triangle after the perspective-plus-depth transformation has been
applied, and the points have been scaled to the screen size. LetPi = (xi, yi, zi) be the coordinates of each
vertex, where(xi, yi) are the final screen coordinates andzi is the depth of this point.

Scan-conversion takes place by scanning along each row of pixels that this triangle overlaps. Based on the
y-coordinates of the current scan lineys and they-coordinates of the vertices of the triangle, we can interpolate
the depth of at the endpointsPa andPb of the scan-line. For example, given the configuration in the figure, we
have:

ρa =
ys − y0

y1 − y0

Lecture Notes 123 CMSC 427

scan line
P

x b

P2

P0

P1

ys
Pa Pb

y1

y0

xa x

Fig. 93: Depth-buffer scan conversion.

is the ratio into which the scan line subdivides the edgeP0P1. The depth of pointPa, can be interpolated by the
following affine combination

za = (1− ρa)z0 + ρaz1.

(Is this really an accurate interpolation of the depth information? Remember that the projection transformation
maps lines to lines, but depth is mapped nonlinearly. It turns out that this does work, but we’ll leave the
explanation as an exercise.) We can derive a similar expression forzb.

Then as we scan along the scan line, for each value ofy we have

α =
x− xa

xb − xa
,

and the depth of the scanned point is just the affine combination

z = (1− α)za + ρzb.

It is more efficient (from the perspective of the number of arithmetic operations) to do this by computingza

accurately, and then adding a small incremental value as we move to each successive pixel on the line. The scan
line traversesxb − xa pixels, and over this range, the depth values change over the rangezb − za. Thus, the
change in depth per pixel is

∆z =
zb − za

xb − xa
.

Starting withza, we add the value∆z to the depth value of each successive pixel as we scan across the row. An
analogous trick may be used to interpolate the depth values along the left and right edges.

Lecture 33: Light and Color

Reading: Chapter 12 in Hill. Our book does not discuss Gamma correction.

Achromatic Light: Light and its perception are important to understand for anyone interested in computer graphics.
Before considering color, we begin by considering some issues in the perception of light intensity and the
generation of light on most graphics devices. Let us consider color-free, orachromatic light, that is gray-
scale light. It is characterized by one attribute:intensitywhich is a measure of energy, orluminance, which
is the intensity that we perceive. Intensity affects brightness, and hence low intensities tend to black and high
intensities tend to white. Let us assume for now that each intensity value is specified as a number from 0 to 1,
where 0 is black and 1 is white. (Actually intensity has no limits, since it is a measure of energy. However, from
a practical perspective, every display device has some maximum intensity that it can display. So think of 1 as
the brightest white that your monitor can generate.)

Lecture Notes 124 CMSC 427

Perceived Brightness:You would think that intensity and luminance are linearly proportional to each other, that
is, twice the intensity is perceived as being twice as bright. However, the human perception of luminance is
nonlinear. For example, suppose we want to generate 10 different intensities, producing a uniform continuous
variation from black to white on a typical CRT display. It would seem logical to use equally spaced intensities:
0.0, 0.1, 0.2, 0.3, . . . , 1.0. However our eye does not perceive these intensities as varying uniformly. The reason
is that the eye is sensitive toratiosof intensities, rather than absolute differences. Thus,0.2 appears to be twice
as bright as0.1, but0.6 only appears to be 20% brighter than0.5. In other words, the responseR of the human
visual system to a light of a given intensityI can be approximated (up to constant factors) by a logarithmic
function

R(I) = log I.

This is called theWeber-Fechner law. (It is not so much a physical law as it is a model of the human visual
system.)

For example, suppose that we want to generate intensities that appear to varying linearly between two intensities
I0 to I1, asα varies from 0 to 1. Rather than computing an affine (i.e., arithmetic) combination ofI0 andI1,
instead we should compute ageometric combinationof these two intensities

Iα = I1−α
0 · Iα

1 .

Observe that, as with affine combinations, this varies continuously fromI0 to I1 asα varies from 0 to 1. The
reason for this choice is that the response function varies linearly, that is,

R(Iα) = log(I1−α
0 · Iα

1) = (1− α) log I0 + α log I1 = (1− α)R(I0) + αR(I1).

Gamma Correction: Just to make things more complicated, there is not a linear relation between the voltage supplied
to the electron gun of a CRT and the intensity of the resulting phosphor. Thus, the RGB value(0.2, 0.2, 0.2)
does not emit twice as much illumination energy as the RGB value(0.1, 0.1, 0.1), when displayed on a typical
monitor.

The relationship between voltage and brightness of the phosphors is more closely approximated by the following
function:

I = V γ ,

whereI denotes the intensity of the pixel andV denotes the voltage on the signal (which is proportional to the
RGB values you store in your frame buffer), andγ is a constant that depends on physical properties of the display
device. For typical CRT monitors, it ranges from 1.5 to 2.5. (2.5 is typical for PC’s and Sun workstations.) The
termgammarefers to the nonlinearity of the transfer function.

Users of graphics systems need to correct this in order to get the colors they expect.Gamma correctionis the
process of altering the pixel values in order to compensate for the monitor’s nonlinear response. In a system that
does not do gamma correction, the problem is that low voltages produce unnaturally dark intensities compared
to high voltages. The result is that dark colors appear unusually dark. In order to correct this effect, modern
monitors provide the capability of gamma correction. In order to achieve a desired intensityI, we instead aim
to produce a corrected intensity:

I ′ = I1/γ

which we display instead ofI. Thus, when the gamma effect is taken into account, we will get the desired
intensity.

Some graphics displays (like SGIs and Macs) provide an automatic (but typically partial) gamma correction. In
most PC’s the gamma can be adjusted manually. (However, even with gamma correction, do not be surprised
if the same RGB values produce different colors on different systems.) There are resources on the Web to
determine the gamma value for your monitor.

Lecture Notes 125 CMSC 427

Light and Color: Light as we perceive it iselectromagnetic radiationfrom a narrow band of the complete spectrum
of electromagnetic radiation called thevisible spectrum. The physical nature of light has elements that are like
particle (when we discuss photons) and as a wave. Recall that wave can be described either in terms of its
frequency, measured say in cycles per second, or the inverse quantity ofwavelength. The electro-magnetic spec-
trum ranges from very low frequency (high wavelength) radio waves (greater than 10 centimeter in wavelength)
to microwaves, infrared, visible light, ultraviolet and x-rays and high frequency (low wavelength) gamma rays
(less than 0.01 nm in wavelength). Visible light lies in the range of wavelengths from around 400 to 700 nm,
wherenmdenotes a nanometer, or10−9 of a meter.

Physically, the light energy that we perceive as color can be described in terms of a function of wavelengthλ,
called thespectral distribution functionor simply spectral function, f(λ). As we walk along the wavelength
axis (from long to short wavelengths), the associated colors that we perceive varying along the colors of the
rainbow red, orange, yellow, green, blue, indigo, violet. (Remember the “Roy G. Biv” mnemonic.) Of course,
these color names are human interpretations, and not physical divisions.

The Eye and Color Perception: Light and color are complicated in computer graphics for a number of reasons. The
first is that thephysicsof light is very complex. Secondly, ourperceptionof light is a function of our optical
systems, which perform numerous unconscious corrections and modifications to the light we see.

The retina of the eye is a light sensitive membrane, which contains two types of light-sensitive receptors,rods
andcones. Cones are color sensitive. There are three different types, which are selectively more sensitive to
red, green, or blue light. There are from 6 to 7 million cones concentrated in thefovea, which corresponds to
the center of your view. Thetristimulus theorystates that we perceive color as a mixture of these three colors.

Blue cones: peak response around 440 nm with about 2% of light absorbed by these cones.

Green cones:peak response around 545 nm with about 20% of light absorbed by these cones.

Red cones:peak response around 580 nm, with about 19% of light absorbed by these cones.

The different absorption rates comes from the fact that we have far fewer blue sensitive cones in the fovea as
compared with red and green. Rods in contrast occur in lower density in the fovea, and do not distinguish color.
However they are sensitive to low light and motion, and hence serve a function for vision at night.

0.2

F
ra

ct
io

n
of

 li
gh

t a
bs

or
be

d
by

 c
on

e

0.1

Wavelength (nm)
680560480400

blue

redgreen

Fig. 94: Spectral response curves for cones (adapted from Foley, vanDam, Feiner and Hughes).

It is possible to produce light within a very narrow band of wavelengths using lasers. Note that because of our
limited ability to sense light of different colors, there are many different spectra that appear to us to be the same
color. These are calledmetamers. Thus, spectrum and color are not in 1–1 correspondence. Most of the light

Lecture Notes 126 CMSC 427

we see is a mixture of many wavelengths combined at various strengths. For example, shades of gray varying
from white to black all correspond to fairly flat spectral functions.

Describing Color: Throughout this semester we have been very lax about defining color carefully. We just spoke of
RGB values as if that were enough. However, we never indicated what RGB means, independently from the
notion that they are the colors of the phosphors on your display. How would you go about describing color
precisely, so that, say, you could unambiguously indicate exactly what shade you wanted in a manner that is
independent of the display device? Obviously you could give the spectral function, but that would be overkill
(since many spectra correspond to the same color) and it is not clear how you would find this function in the
first place.

There are three components to color, which seem to describe color much more predictably than does RGB. These
are hue, saturation, and lightness. Thehuedescribes the dominant wavelength of the color in terms of one of the
pure colors of the spectrum that we gave earlier. Thesaturationdescribes how pure the light is. The red color
of a fire-engine is highly saturated, whereas pinks and browns are less saturated, involving mixtures with grays.
Gray tones (including white and black) are the most highly unsaturated colors. Of course lightness indicates the
intensity of the color. But although these terms are somewhat more intuitive, they are hardly precise.

The tristimulus theory suggests that we perceive color by a process in which the cones of the three types each
send signals to our brain, which sums these responses and produces a color. This suggests that there are three
“primary” spectral distribution functions,R(λ), G(λ), andB(λ), and every saturated color that we perceive can
be described as a positive linear combination of these three:

C = rR + gG + bB wherer, g, b ≥ 0.

Note thatR, G andB are functions of the wavelengthλ, and so this equation means we weight each of these
three functions by the scalarsr, g, andb, respectively, and then integrate over the entire visual spectrum.C is
the color that we perceive.

Extensive studies with human subjects have shown that it is indeed possible to define saturated colors as a
combination of three spectra, but the result has a very strange outcome. Some colors can only be formed by
allowing some of the coefficientsr, g, or b to be negative. E.g. there is a colorC such that

C = 0.7R + 0.5G− 0.2B.

We know what it means to form a color by adding light, but we cannot subtract light that is not there. The way
that this equation should be interpreted is that we cannot form colorC from the primaries, but we can form the
color C + 0.2B by combining0.7R + 0.5G. When we combine colors in this way they are no longer pure, or
saturated. Thus such a colorC is in some sensesuper-saturated, since it cannot be formed by a purely additive
process.

The CIE Standard: In 1931, a commission was formed to attempt to standardize the science of colorimetry. This
commission was called the Commission Internationale de l’Éclairage, or CIE.

The results described above lead to the conclusion that we cannot describe all colors as positive linear combina-
tions of three primary colors. So, the commission came up with a standard for describing colors. They defined
three specialsuper-saturatedprimary colorsX, Y , andZ, which do not correspond to any real colors, but they
have the property that every real color can be represented as a positive linear combination of these three.

The resulting 3-dimensional space, and hence is hard to visualize. A common way of drawing the diagram is
to consider a single 2-dimensional slice, by normalize by cutting with the planeX + Y + Z = 1. We can then
project away theZ component, yielding thechromaticity coordinates:

x =
X

X + Y + Z
y =

Y

X + Y + Z

(andz can be defined similarly). These components describe just the color of a point. Its brightness is a function
of theY component. (Thus, an alternative, but seldom used, method of describing colors is asxyY .)

Lecture Notes 127 CMSC 427

X

Wave length (nm)
600 700500400

S
tim

ul
us

 v
al

ue

1.5

1.0

0.5

0

Y

X

Z

Fig. 95: CIE primary colors (adapted from Hearn and Baker).

If we plot the various colors in this(x, y) coordinates produce a 2-dimensional “shark-fin” convex shape shown
in Fig. 96. Let’s explore this figure a little. Around the curved top of the shark-fin we see the colors of the
spectrum, from the long wavelength red to the short wavelength violet. The top of the fin is green. Roughly
in the center of the diagram is white. The pointC corresponds nearly to “daylight” white. As we get near the
boundaries of the diagram we get the purest or mostsaturatedcolors (orhues). As we move towardsC, the
colors become less and less saturated.

0.40.30.2 0.50.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(Violet)

(Blue)

(Cyan)

600

0.6

480

Color gamut

400

0.8

(Green)

C (White)

500
(Yellow)

(Red)700

x

y

(Purple)

Spectral colors

0 0.7

580

560

540
520

Fig. 96: CIE chromaticity diagram and color gamut (adapted from Hearn and Baker).

An interesting consequence is that, since the colors generated by your monitor are linear combinations of three
different colored phosphors, there exist regions of the CIE color space that your monitor cannot produce. (To
see this, find a bright orange sheet of paper, and try to imitate the same saturated color on your monitor.)

The CIE model is useful for providing formal specifications of any color as a 3-element vector. Carefully de-
signed image formats, such as TIFF and PNG, specify colors in terms of the CIE model, so that, in theory, two
different devices can perform the necessary corrections to display the colors as true as possible. Typical hard-
ware devices like CRT’s, televisions, and printers use other standards that are more convenient for generation
purposes. Unfortunately, neither CIE nor these models is particularly intuitive from a user’s perspective.

Lecture Notes 128 CMSC 427

Lecture 34: Halftone Approximation

Reading: Chapter 10 in Hill.

Halftone Approximation: Not all graphics devices provide a continuous range of intensities. Instead they provide a
discrete set of choices. The most extreme case is that of a monochrom display with only two colors, black and
white. Inexpensive monitors have look-up tables (LUT’s) with only 256 different colors at a time. Also, when
images are compressed, e.g. as in the gif format, it is common to reduce from 24-bit color to 8-bit color. The
question is, how can we use a small number of available colors or shades to produce the perception of many
colors or shades? This problem is calledhalftone approximation.

We will consider the problem with respect to monochrome case, but the generalization to colors is possible, for
example by treating the RGB components as separate monochrome subproblems.

Newspapers handle this in reproducing photographs by varying the dot-size. Large black dots for dark areas and
small black dots for white areas. However, on a CRT we do not have this option. The simplest alternative is just
to round the desired intensity to the nearest available gray-scale. However, this produces very poor results for a
monochrome display because all the darker regions of the image are mapped to black and all the lighter regions
are mapped to white.

One approach, calleddithering, is based on the idea of grouping pixels into groups, e.g.3× 3 or 4× 4 groups,
and assigning the pixels of the group to achieve a certain affect. For example, suppose we want to achieve 5
halftones. We could do this with a2× 2 dither matrix.

0.0−0.2 0.2−0.4 0.4−0.6 0.6−0.8 0.8−1.0

Fig. 97: Halftone approximation with dither patterns.

This method assumes that our displayed image will be twice as large as the original image, since each pixel is
represented by a2 × 2 array. (Actually, there are ways to adjust dithering so it works with images of the same
size, but the visual effects are not as good as the error-diffusion method below.)

If the image and display sizes are the same, the most popular method for halftone approximation is callederror
diffusion. Here is the idea. When we approximate the intensity of a pixel, we generate some approximation
error. If we create the same error at every pixel (as can happen with dithering) then the overall image will suffer.
We should keep track of these errors, and use later pixels to correct for them.

Consider for example, that we a drawing a 1-dimensional image with a constant gray tone of1/3 on a black
and white display. We would round the first pixel to 0 (black), and incur an error of+1/3. The next pixel will
have gray tone1/3 which we add the previous error of1/3 to get2/3. We round this to the next pixel value
of 1 (white). The new accumulated error is−1/3. We add this to the next pixel to get 0, which we draw as
0 (black), and the final error is 0. After this the process repeats. Thus, to achieve a1/3 tone, we generate the
pattern010010010010 . . ., as desired.

We can apply this to 2-dimensional images as well, but we should spread the errors out in both dimensions.
Nearby pixels should be given most of the error and further away pixels be given less. Furthermore, it is
advantageous to distribute the errors in a somewhat random way to avoid annoying visual effects (such as
diagonal lines or unusual bit patterns). The Floyd-Steinberg method distributed errors as follows. Let(x, y)
denote the current pixel.

Right: 7/16 of the error to(x + 1, y).

Lecture Notes 129 CMSC 427

Below left: 3/16 of the error to(x− 1, y − 1).

Below: 5/16 of the error to(x, y − 1).

Below right: 1/16 of the error to(x + 1, y − 1).

Thus, letS[x][y] denote the shade of pixel(x, y). To drawS[x][y] we round it to the nearest available shadeK
and seterr = S[x][y] − K. Then we compensate by adjusting the surrounding shades, e.g.S[x + 1][y]+ =
(7/16)err.

There is no strong mathematical explanation (that I know of) for these magic constants. Experience shows that
this produces fairly good results without annoying artifacts. The disadvantages of the Floyd-Steinberg method
is that it is a serial algorithm (thus it is not possible to determine the intensity of a single pixel in isolation), and
that the error diffusion can sometimes general “ghost” features at slight displacements from the original.

The Floyd-Steinberg idea can be generalized to colored images as well. Rather than thinking of shades as simple
scalar values, let’s think of them as vectors in a 3-dimensional RGB space. First, a set ofrepresentative colorsis
chosen from the image (either from a fixed color palette set, or by inspection of the image for common trends).
These can be viewed as a set of, say 256, points in this 3-dimensional space. Next each pixel is “rounded” to
the nearest representative color. This is done by defining a distance function in 3-dimensional RGB space and
finding the nearest neighbor among the representatives points. The difference of the pixel and its representative
is a 3-dimensional error vector which is then propagated to neighboring pixels as in the 2-dimensional case.

Lecture Notes 130 CMSC 427

Fig. 98: Floyd-Steinberg Algorithm (Source: Poulbére and Bousquet, 1999).

Lecture Notes 131 CMSC 427

