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Compilers, besides testing for errors in a particular implementation of

an algorithm, can be implemented to analyze program structure. This
information can be fed back to the programmer in order to improve the
structure, reliability and efficiency of the resulting program. This

paper surveys several techniques that are currently implementable in a

compiler, describes

grams, -and briefly describes one such implementation of many of

ideas.

1. INTRODUCTION

The development of reliable software is
currently proceeding along several paths.
Languages are being developed which a
priori result in correct, more understan-
dable and more manageable programs [8]. At
the same time others are developing proof
techniques that, a posteriori, show that 1
program is correct [5]. A third path is the
development of techniques that result in
information during the development phase of
a program being fed back to the programmer
in order to suggest changes to be made i~
the source program [15].

as an example of this third
third
first

Compilers,
approach, seem to be entering into a
phase of development since they
appeared some twenty years ago. The first
compilers (and unfortunately still the
dominant class) simply converted a source
language program into an eguivalent machine
language program. If there were any syntax
errors in the program, then the compiler

generated an error message and terminated
the translation process. Semantic errors
were usually not detected by the compiler

and thus caused the program to give unpre-
dictable results during program execution.

The second class of
appeared during

compiler first
the early 1966°s. These
compilers of the load and go diagnostic
class attempted to aid in program develop-
ment {2,3,16,17). Should there have been
an obvious error in syntax, then the compi-
ler would generate an error message, "fix"
the error, and continue compilation. The
code generated also detected as many execu-
tion errors as possible; thus many semantic
errors were caught during program execu-
tion.

While diagnostic compilers are very
useful in fixing errors in a particular
implementation of an algorithm - once an
error has been detected - guestions such as
the reliability or efficiency of the resul-

ting program are not addressed. It is not
possible to detect whether a program is
"good" or "poor"; only that it produces
correct results on a small set of test
data. Therefore, a third generation of
compiler design 1is proposed. These compi-
lers analyze program behavior and report
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several new techniques that can be applied to pro-

these

back to the user information concerning the
efficiency and structure of the program.
Using this information, the programmer
should be able to modify the program accor-
dingly.

This report contains several
as to the type of data that can
generated by a compiler and be
the user in order to accomplish

suggestions
easily be
fed back to
this goal.

The development of a data entropy measure
will be described and the inclusion of
several of these techniques into a diagno-

stic PL/1 system implemented at the Univer-
sity of Maryland will also be mentioned.

2. FLOW ANALYSIS MEASURES

It has been argued [4] that languages
should not include any GOTO statement;
however, the simple lack of a GOTO does not
automatically lead to a well structured
program since data also plays a significant
role in program structure. An implementa-
tion that wuses certain variables in every
subroutine is not as well structured as one

that 1localizes all accesses to only a few
routines. This can be demonstrated by
considering the problems associated with

changing these variables. In the first case
every subroutine must be studied and
altered, while in the latter, only the few
routines that actually use these variables
must be changed. Parnas [14], among others,
has been developing rules that allow for
structured data.

Thus designing well structured programs
consists of more than simply omitting all
GOTO statements. The interesting question,
therefore, 1is "What is meant by a well
structured program?” Can this concept of
structure be measured? From a pragmatic
point of view, is this measurement effec-
tive, i. e. can a compiler be implemented
to provide this information at minimal
cost?

Several proposals have been made for
providing some of this data. This section
of the paper describes program traces as a
measurement technigue that gives a
pictorial representation of some aspect of
a program’s execution.



2.1. Execution Profiles

One of the oldest data collection aids
to be described is the execution profile
[9]. A compiler can easily be altered to
generate code to increment a count for each
statement executed during program execu-
tion. This data can be used to produce a
histogram or execution profile which gra-
phically displays how many times each sta-
tement has been executed (fig. 1). Some of
the advantages of such a system have been
described by Ingalls [9]. Basically, the
reasons for such a technique are:

1. Typically most of the execution time
of a program is spent within a small
section of the program; thus the execution
profile will allow the programmer to opti-
mize, by hand, those small sections of code
that are frequently executed.

2. In a test debugging run,
tement counts are zero,
did not properly reflect actual program
conditions since some program logic was
either not exercised, or was faulty.

if any sta-
then the test data

3. Execution profiles
strate

may also demon-
unexpected properties about a pro-
gram. It may turn out that a certain THEN
clause may unexpectedly be executed more
often than its corresponding ELSE clause.
This type of data can be fed back into the
compiler in order to better optimize the
source program (as in the old FORTRAN II
FREQUENCY statement).

In general the execution profile gives a
condensed graphical picture of program
execution. Due to the relatively short
execution times for most debugging runs,
the additional overhead in producing this
data is well worthwhile. Depending upon the
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Fig. 1. _Execution_ profile  (partial
listing). Note that

since they correspond to nonexecutable sta-

tements like DECLARE statements,
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type of data used, the execution profile
can focus attention upon a small segment of
the program that should be further studied
by the programmer.

2.2, Static Language Analysis

Compilers can easily produce a count of
each program’s statements by type [11), and
can easily generate code to keep track of
how many times each statement type is exe-
cuted (fig. 2). While this information is
derivable from the source program 1listing
and from the execution profile, the sheer
volume of the data makes it almost manda-
tory that it be compiler generated.

This data can be wused to discover
general characteristics about a program.
Relationships between static program struc-
ture (at compile time) and dynamic program
structure (at execution time) may be stu-
died. For example, the number of times that
an IF statement is executed compared to the
number of IF statements in a program may
give an indication as to how well the input
data is screened before it is wused [180].
The collection of this data from many pro-
grams can lead to the development of
general properties across many programs
(fig. 4).

STATIC/DYNAMIC STATEMENT COUNTS
COMMENTS = 28 STATEMENTS = 85

“XECUTED STATEMENTS = 7521

COMPILATION EXECUTION
TYPE counT % COUNT %
BEGIN 0 .0 0 0
CALL © 7.0 142 1.8
SECTRRE S as § 10
END 15 17.2 1539 20,4
ENTRY 0 «0 0 o0
ORMAT 0 <0 0 «0
GET 1 1.l 48 6
GOTO 0 «0 0 N
IF S Se8 1175 15.6
OPEN 0 0 0 0
PROC 6 7.0 143 1.9
PUT 3 3¢5 94 1.2
RETURN 0 .0 0 oD
STOP 0 o0 0 0
NULL 0 .0 0 oN
BO wHILE ;o33 43 6 -
DO ITER 5 5.& 1443 19.1
DQ CASE 0 o0 0 N
T B 1 B
ASG 1 oP 24 23.3 1645 21.8
Fig. 2. Number and percentage of each Ssta-
tement type at compile and execution time

(partial listing),

2.3. Trace History

A concept related to the execution pro-
file 1is the concept of trace history. Let
Kt be the set of statement numbers executed
during time interval t. Kt is plotted vs. t
to obtain a scatter plot of program execu-
tion vs. time (fig. 3). This data can
easily be added to a compiler - especially
to one that already has a statement tracing
facility.

Using this data, the interrelationships
among statements can be measured. It may
show that certain statements are always
executed in tandem with other statements.



STATEMENT NUMBER
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Fig. 3. Trace history. Vertical axis is

execution time and horjzontal axis is sta-

tement number.

For large programs it may show which rou- gram will be heavily tested in the test
tines should be grouped into single run, and lessor used paths will be less

segments, and in a virtual machine environ-
ment it may give the programmer information
on how to regroup subroutines in order to
speed up execution time by reducing paging
overhead. While the trace history has been

used previously in the study of paging
systems [12], it has not as yet been
applied to study program behavior at the

source language level.

2.4 Probabilistic Program Validation

It is also possible to view the execu-
tion profile as a probability distribution
- the probability of being at a certain
statement at any given time. With this
approach, the same collected trace data can
be used to compute a transition matrix
giving the probability of transferring from
one statement to another. If that is done,
then some of the properties of Markov chain
theory can be applied.

One possible application of transition
probabilities is in a new definition of
program validation. Since it is impossible
to test a program for all possible input
data, selected subsets of the data that are
"representative" are chosen. One currently
used definition simply states that a pro-
gram is tested if every statement has been

executed. As any programmer intuitively.
knows, this definition is extremely weak.
An alternative definition has been that
every path through the program has been
executed. Unfortunately, the set of data
needed to perform this testing is in
general an undecidable problem. Therefore,

the following definition is proposgd: A
data set tests a program if and only if the

transition probabilities obtained are the
same as the actual probabilities. Thus
heavily used paths in the production pro-
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tested. Also, if the probabilities are the
same, then most of the different execution
paths will probably be tested. Note that
this definition also includes the first
definition of program validation mentioned
above - if a statemet 1is ever executed,
then its transition probability cannot be
2ero.

The problem with this definition is the
determination of the actual transition
probabilities. A proposed measure 1is to
keep track of the range of values of the
program variables. Using this range, dyna-
mic programming technigues can be used to
compute the probability of a conditional
expression being true or false, and thereby
giving estimates of the actual transition
probabilities.

3. FEATURE MEASUREMENT

A related development to the above gra-
phical techniques is the concept of feature
measurement. This is the study of various
numerical relationships that measure the
overall gquality of a program according to
some norm or ideal. While these techniques
do not give detailed breakdowns of the
various attributes of a program, they do
indicate trends in program structure. For
example, as a teaching tool, if a student
writes two versions of the same algorithm,
and one has a different measure than the
other, then one will be a better program
according to some criteria. These measures,
in conjunction with the graphical techni-
gues already discussed, should lead to the
feedback of information that should lead to
a more well developed program.

3.1. Algorithm Dynamics

Halstead [6] has been studying algorithm



size, and in the process has achieved some
interesting results. One such result is
that the approximation of program size is
independent of programming language used.
The number of tokens in the source program
should be approximately:

a log a + b log b
where a and b are the number of distinct
operators and operands in the program,
3.2. Program Work
Another trend 1is to compute the work
performed by a program. Hellerman [7] has
been studying the complexity of a function
by computing the number of input variables
that map to the same functional value. Let
Xy be the number of input values that map
to functional value y. The work performed
by the function is then defined to be:

Zxy log X_ = X log X -2 Xy log Xy
y Xy y

where X is the total
input values.

number of different

In terms of measuring program efficien-

cy, however, the program itself, and not
the wunderlying function, should be mea-
sured. Data entropy 1is proposed as one

such measure.

Van Emden (18] initially described a
measure similar to the entropy of a physi-
cal system. Let {pi} be a partition of set
P into sets of size ‘pi\. The entropy of
the partition is deflned as:

H = ~Ljpi} logpit = log |P}~ 1 Jipil log Ipil
iPT Tg» BT i
and is just the information content of a

finite probability space.

If {A,B} is a partition of P, then the
entropy loading of the partition is defined
as:

C(A,B) =

H(A) + H(B) - H(P)

Van Emden computed his entropy measure via
an object/predicate table where:

Aij=1 if and only if object i had predi-
cate j

For example, assume that the following
set of 5 objects {1,2,3,4,5} has 5 predi-
cates {a,b,c,d,e) as follows:

abcde
1 219109
2 1180
3 ipl1l1lae
4 1911
5 00018

In order to compute H({4,5}) consider only
those columns containing information about
either object 4 or object 5. The interre-
lationships among all objects, relative to
these columns, will be measured. Object 4
is described by predicated b, 4, and e.
Object 5 is described by predicate 4. Thus
a reduced object predicate table can be
prepared:
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G W N =

SHSeHDT
SRR N
[SESR-R-R W

From this data, the following partitions

can be developed:
{1}, {2}, {3,5},

and the entropy can be computed:

{4}

H({4,5}) = log 5 - (2/5) log 2
Similarly H({1,2,3}) and H({1,2,3,4,5}) can
be computed, as well as the entropy loading
of the partition:

H({1,2,3}) = (2/5) log 2
H({1,2,3,4,5)
C({11213}1{415}) =

log 5 ~
= log 5
log 5~(4/5)1log 5

that for two

({A,B} and
then A and B
thus A and B

Van Emden has shown
different decompositions of P
{¢c,n}), 1if cC(a,B) < C(C,D),
interact less than do C and D;
are more independent.

Chanon [1] has wused this measure in
order to evaluate top-down programming. As
a program 1is developed, assumptions are
made about the data and an object/predicate
table can be produced. Chanon showed that
for two different decompositions of the
same program, the one with the lower entro-
py loading was a more well structured
version.

Unfortunately Chanon’s idea cannot be
used to automatically evaluate program
structure via a compiler. Similar to the
problems of automatically certifying the
correctness of a program, the appropriate
theorem proving techniques simply do not
exist,

A modification to Chanon’s approach,
however, can be used to automatically
generate structuring information, This new
measure will be called data entropy of a
program. Consider the attributes relevant
to data storage: data may be known
(declared) within a subroutine, data may be
accessed, or data may be altered. Thus for
each statement j (row in an
object/predicate table) and
variable i in a program let:

for each

D(j,31i+1)
D(j,3i+2)
D(jl3i+3)

1 iff i is known at j
1 iff i is accessed by jJ
1 iff i is altered by J

Using this definition, D forms an
object/predicate table, and thus the entro-
py of a program can be computed.

This entropy measure has some of the
properties desired of an entropy measure.
It tries to measure the redundancy of data
within a program - i. e. how many distinct
variables actually represent the same phy-
sical construct. For example, 1in well
designed systems, the data should be local
to only a few routines. If that is so, then
the entropy of the progam, relative to that
data will be approxiamtely:

(k/n)

log n - log k



where n is the number of subroutines and k
is the number of routines that access the
data. For small k the entropy will be maxi-
mal. (Note that this differs from the usual
definitions of entropy where small values
of. the entropy measure mean less entropy.
This conflict can easily be corrected by

defining the measure as log n - H, since
the maximal value is log n.)
4. IMPLEMENTATION
4.1 Implemented Measures

In order to test some of these ideas
empirically, some of the previously
described techniques have been implemented

in a diagnostic system, called PLUM, imple-
mented by the author at the University of
Maryland.

PLUM is a load and go PL/1 compiler for
the Univac 1l108-series computer. It is
typical of several compile and go systems
in that it is based upon a very forgiving
philosophy - most syntax errors are correc-
ted automatically and most execution errors
result in default values being used rather
than having execution' terminated. It is
used primarily as a teaching tocl, with the
average student using under 5 seconds of
computer time for each run [19].

The implementation of PLUM produces the
execution profiles mentioned previously
(fig. 1). Since the current statement
number in execution was being saved in a
register for diagnostic purposes, it was
very easy to add code to update an array
for each statement executed.

PLUM also produces a table giving the
count of statement types in a program (fig.
2). Work is currently proceeding to modify
the lexical scanner in order to have it
generate the data necessary to produce the
algorithm dynamics information.

The first implementation of the trace
history (fig. 3) was a "quick and dirty"
implementation that took about an hour to

implement. Since PLUM already contains a
tracing feature, the trace history was
ATCCUNTING
ACCT 8 fLTe NAME O"TIONS

TTRES
TYSZ COMPL  EXEC # STMTS ©8J S5YMT

implemented by simply saving all traced
output in file, and running a PL/1 program
using this file as data. It will be a minor
change to the runtime support routines in
order to have the traced output save direc-

tly onto a mass storage file. In a similar
manner, the transition matrix has been
produced.

4.2 Development Tools

Aside from the measures that have been
added to PLUM, additional features have
been added which aid in developing well
structured programs. This 1is especially
important in a university environment where
the compiler is a teaching tool in addition
to being a program development aid.

A structured program 1is fregquently a
two dimensional program. Reading down the
left margin gives the overall flow of the
program, while reading to the right
generally gives successively more and more
detail as DO loops and IF statements are
expanded. In order to facilitate this docu-
mentation process, an automatic formatter
has been installed. Use of this option
causes the source program 1listing to be
indented for each nested DO loop or proce-
dure block. This feature is convenient when
statements are added as a program gets
debugged and the source listing tends to
get very messy (fig. 5).

Another feature which has been added is
the printing of an error message for insuf-
ficiently commented programs. As of now,
all programs must contain at least 10%
comments or else a warning message will be
printed. The next step will be to make this
a terminal error message; however, before
that can be done, more study must be done
on the nature of program comments. Since

this message has just recently been_addeq,
the reaction from the wuser community 1is
eagerly awaited.

The ability to analyze many programs

over long periods of time is important in
evaluating the program development process.
This ability has been added to PLUM via an
automatic data collection facility. Each
usage of the PLUM compiler causes approxi-
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Fig. 4. Sample data collected on each pro-

gram giving user account numbef, pRrogram
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GENERJEND
END}
F PROC(X)RETURNS(FLOAT)
ECLARE FLOAT;
RETURN(X**S—X+1 )i
FINI$H.END ROTO;

FPig. 5. The same program with the formatter
turned off, and on.

mately 188 words of information to be saved
in a mass storage file. Each entry consists
of programmer name, program name, compile
and execute time, and such program charac-
teristics as number of statements, error
messages and the static language analysis
mentioned previously. (See fig. 4 for a
partial 1listing of this data _now being
collected. ) This automatic collection of
data, unlike earlier semi-manual systems
[13], will be used to answer guestions such
as: How does a single program develop as
it gets debugged? What are characteristic
errors in a program? And does the static
language analysis undergo a similar evolu-
tion across a large class of procgrams as a
program is developed?

5. CONCLUSIONS

There is currently no agreed upon gquan-
titative definition of structured program-—
ming. It is not even clear as to what stru-
ctured programs really are. Because of
this, it is doubtful that automatic techni-
ques can be developed in the near future to
truly generate correct software.

However, a system can be implemented
which does feed back information to the
programmer which is of use in improving the
structure of a program. Ideas are develo-
ping as to what information can be
obtained, and how it can be used to produce
better software. While a compiler may not
know what reliable software is, it can let
you know when you probably have achieved
it.
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