
ABSTRACT

Title of dissertation: Language-based Techniques for Practical and Trustworthy
Secure Multi-party Computations

Aseem Rastogi, Doctor of Philosophy, 2016

Dissertation directed by: Professor Michael Hicks
Department of Computer Science

Secure Multi-party Computation (MPC) enables a set of parties to collaboratively

compute, using cryptographic protocols, a function over their private data in a way that

the participants do not see each other’s data, they only see the final output. Typical MPC

examples include statistical computations over joint private data, private set intersection,

and auctions. While these applications are examples of monolithic MPC, richer MPC

applications move between “normal” (i.e., per-party local) computations and “secure” (i.e.,

joint, multi-party secure) modes repeatedly, resulting overall in mixed-mode computations.

For example, we might use MPC to implement the role of the dealer in a game of mental

poker – the game will be divided into rounds of local decision-making (e.g. bidding)

and joint interaction (e.g. dealing). Mixed-mode computations are also used to improve

performance over monolithic secure computations.

Starting with the Fairplay project, several MPC frameworks have been proposed in

the last decade to help programmers write MPC applications in a high-level language,

while the toolchain manages the low-level details. However, these frameworks are either

not expressive enough to allow writing mixed-mode applications or lack formal specifica-

tion, and reasoning capabilities, thereby diminishing the parties’ trust in such tools, and

the programs written using them. Furthermore, none of the frameworks provides a veri-

fied toolchain to run the MPC programs, leaving the potential of security holes that can

compromise the privacy of parties’ data.

This dissertation presents language-based techniques to make MPC more practical

and trustworthy. First, it presents the design and implementation of a new MPC Domain

Specific Language, called Wysteria, for writing rich mixed-mode MPC applications.

Wysteria provides several benefits over previous languages, including a conceptual sin-

gle thread of control, generic support for more than two parties, high-level abstractions

for secret shares, and a fully formalized type system and operational semantics. Using

Wysteria, we have implemented several MPC applications, including, for the first time,

a card dealing application.

The dissertation next presents Wys?, an embedding of Wysteria in F?, a full-

featured verification oriented programming language. Wys? improves on Wysteria along

three lines: (a) It enables programmers to formally verify the correctness and security

properties of their programs. As far as we know, Wys? is the first language to provide

verification capabilities for MPC programs. (b) It provides a partially verified toolchain

to run MPC programs, and finally (c) It enables the MPC programs to use, with no extra

effort, standard language constructs from the host language F?, thereby making it more

usable and scalable.

Finally, the dissertation develops static analyses that help optimize monolithic MPC

programs into mixed-mode MPC programs, while providing similar privacy guarantees as

the monolithic versions.

Language-based Techniques for Practical and Trustworthy
Secure Multi-party Computations

by

Aseem Rastogi

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2016

Advisory Committee:
Professor Michael Hicks, Chair/Advisor
Dr. Nikhil Swamy
Professor Lawrence C. Washington, Dean’s Representative
Professor Jonathan Katz
Professor Charalampos (Babis) Papamanthou

c© Copyright by
Aseem Rastogi

2016

Acknowledgments

TBD

ii

Table of Contents

List of Figures vi

List of Abbreviations viii

1 Introduction 1
1.1 Overview . 5

1.1.1 Wysteria: A programming language for mixed-mode MPC . . . 5
1.1.2 Wys?: A verified language extension for MPC 8
1.1.3 Knowledge inference for optimizing MPC 11

1.2 Threat model . 12
1.3 Summary . 12

2 Wysteria: A Programming Language for Mixed-mode MPC 15
2.1 Wysteria overview . 16

2.1.1 Computation modes for secure and local computations 16
2.1.2 Wires for inputs and outputs . 18
2.1.3 Delegation effects . 19
2.1.4 First-class principals and n-party computation 20
2.1.5 Secret shares . 22

2.2 Formal syntax . 24
2.3 Type system . 27

2.3.1 Value typing . 30
2.3.2 Delegations typing judgments 30
2.3.3 Subtyping judgments . 31
2.3.4 Expression typing . 32

2.4 Operational semantics . 39
2.4.1 Single-threaded semantics . 39
2.4.2 Multi-threaded semantics . 49

2.5 Metatheory . 55
2.6 Implementation . 58

2.6.1 Type checker . 59
2.6.2 Interpreter . 59

iii

2.6.3 Secure computation extensions and optimizations 60
2.7 Evaluation . 61

2.7.1 Secure computations for n parties 61
2.7.2 Mixed-mode secure computations 62
2.7.3 MPC program for card dealing 65

2.8 Concluding remarks . 67

3 Wys?: A Verified Language Extension for Mixed-mode MPC 68
3.1 F? primer . 70
3.2 Verified programming in Wys? . 72

3.2.1 Secure computations with as sec 73
3.2.2 Optimizing PSI with as par . 76
3.2.3 Embedding a type system for Wys? in F? 78
3.2.4 Correctness and security verification 82
3.2.5 Relating security proofs to cryptographic security 86

3.3 Wys? formalization . 87
3.3.1 Comparison with Wysteria formalization 87
3.3.2 Syntax . 89
3.3.3 Single-threaded semantics . 92
3.3.4 Distributed semantics . 95
3.3.5 Metatheory . 101

3.4 Implementation . 103
3.4.1 Wys? interpreter . 103
3.4.2 Secure server backend . 104
3.4.3 FFI . 105

3.5 Applications . 107
3.6 Concluding remarks . 111

4 Knowledge Inference for Optimizing Secure Multi-party Computations 112
4.1 Overview . 114

4.1.1 Knowledge inference . 115
4.1.2 Constructive Knowledge Inference 118

4.2 Formal development . 121
4.2.1 Language Syntax . 121
4.2.2 Knowledge Inference . 123
4.2.3 Constructive Knowledge Inference 127

4.3 Discussion . 132
4.4 Experiments . 134

4.4.1 Implementation . 134
4.4.2 Results . 136

4.5 Concluding remarks . 139

iv

5 Related Work 140
5.1 Circuit libraries . 140
5.2 High-level DSLs for MPC . 141

5.2.1 Support for mixed-mode computations 142
5.2.2 DSLs for cloud-based MPC . 144
5.2.3 Other MPC languages . 145

5.3 Crypto DSLs . 145
5.4 Verification of source MPC programs 146
5.5 DSL implementation strategies . 147
5.6 Knowledge inference for MPC . 148

5.6.1 Self-composition and noninterference 149
5.6.2 Template based program verification 152

6 Looking back and going forward 153
6.1 Looking back . 153

6.1.1 Wysteria . 154
6.1.2 Wys? . 155
6.1.3 Knowledge inference . 155

6.2 Going forward . 156

A Formal definitions for Wysteria 161

B Wysteria Proofs 174

Bibliography 210

v

List of Figures

2.1 Two round bidding game in Wysteria 24
2.2 λWy syntax . 25
2.3 Value typing judgment . 28
2.4 Subtyping and delegation judgments . 29
2.5 Expression typing judgments . 33
2.6 Expression typing judgments for arrays 35
2.7 Expression typing judgments for wires 36
2.8 Remaining rules for expression typing 38
2.9 Wysteria runtime configuration syntax 39
2.10 Delegation semantics of single-threaded configurations 41
2.11 Local stepping of single-threaded configurations 43
2.12 Environment lookup judgments (selected rules) 44
2.13 Local stepping of single-threaded configurations: arrays and shares 45
2.14 Local stepping of single-threaded configurations: wires 47
2.15 Local stepping of single-threaded configurations: wapp 48
2.16 Local stepping of single-threaded configurations: waps 49
2.17 Local stepping of single-threaded configurations: wfold 50
2.18 Wysteria protocol syntax . 50
2.19 Multi-threaded target protocol semantics 51
2.20 Slicing judgments (selected rules) . 54
2.21 Overview of Wysteria system with four interacting clients. 58
2.22 (a) n-party MPC examples. (b) Secure median vs mixed-mode median.

(c) Secure PSI vs mixed-mode PSI for different density. 61
2.23 Monolithic median example in Wysteria 63
2.24 Mixed-mode median example in Wysteria 64

3.1 Architecture of an Wys? deployment . 72
3.2 Optimized PSI example in Wys? . 77
3.3 Access control with sealed types . 82
3.4 Wys? API in F? . 83
3.5 Wys? syntax . 89
3.6 Runtime configuration syntax . 90

vi

3.7 Wys? ST semantics (selected rules) . 91
3.8 Wys? ST semantics (remaining β-reduction rules) 94
3.9 Distributed semantics, selected local rules (M is always Par {p}) 96
3.10 Distributed semantics, multi-party rules 97
3.11 Time to run (in secs) normal and optimized PSI for varying per-party set

sizes and intersection densities. 107

4.1 Path conditions for secure median . 116
4.2 Median computation composed with itself. 118
4.3 Syntax. 121
4.4 Semantics. 122
4.5 Postcondition of a predicate φ w.r.t. statement S. 124
4.6 Variable renaming translation for a predicate. 125
4.7 Knowledge inference algorithm . 125
4.8 Constructive knowledge inference for boolean variables 127
4.9 Routines CFormula, CFormulaL, and CFormulaR 128
4.10 Constructive knowledge inference for integer variables 130
4.11 Joint economic lot size example . 133
4.12 Results . 136
4.13 Masked average example . 138

A.1 Value typing with no mode . 162
A.2 Effects delegation . 162
A.3 Auxiliary judgements used in the type system 163
A.4 Well-formedness judgements . 164
A.5 Environment closing judgements . 165
A.6 Environment closing judgements . 166
A.7 Slicing judgements . 167
A.8 Configuration slicing judgements . 168
A.9 Slicing and composing judgments . 169
A.10 Value and store composing judgements 170
A.11 Runtime value and expression typing . 171
A.12 Typing for store, stack, and environment 172
A.13 Runtime configuration typing . 173

vii

List of Abbreviations

MPC Secure Multi-party Computation
DSL Domain Specific Language
PSI Private Set Intersection
I/O Input/Output
GUI Graphical User Interface
FFI Foreign Function Interface
VDSILE Verified, Domain-Specific Integrated Language Extension
SIMD Single Instruction, Multiple Data
AST Abstract Syntax Tree
SMT Satisfiability Modulo Theories
ANF A-Normal Form
OT Oblivious Transfer
API Application Programming Interface
DNF Disjunctive Normal Form
IL Intermediate Language

viii

Chapter 1: Introduction

Secure Multi-party Computation (MPC) protocols [1–3] enable two or more parties

p1, ..., pn to cooperatively compute a function f over their private inputs x1, ..., xn in a way

that every party directly sees only the output f(x1, ..., xn) while keeping the variables xi

private. Some examples are

• the xi are arrays of private data and f is a statistical function (e.g., median) [4, 5];

• (private set intersection) the xi are private sets (implemented as arrays) and f is the

set-intersection operator ∩ [6, 7]; one use-case is determining only those friends,

interests, etc. that individuals have in common;

• (second-price auction) the xi are bids, and f determines the winning bidders [8]

In recent years MPC has also been used in detecting tax frauds [9] and collaborative

supply chain management [10].

MPC can be used for much more – it eliminates the need for a trusted third party

while providing similar data privacy guarantees. Users of an online dating application

do not have to trust the application server to match the compatible profiles, they can use

MPC and retain the control of their data. A web browser plugin can use MPC with the ad-

providers to compute relevant ads for a user without revealing all user preferences to the ad-

1

provider. An email client plugin can use MPC with other email clients to collaboratively

build a spam filter without revealing emails to each other. In a game of online poker,

the players do not have to trust the game portal for card dealing, they can use MPC. In

summary, MPC provides a general purpose solution to address increasing data privacy

concerns.

The examples above clearly go beyond the secure computation of a single function

f . Instead, they move between “normal” (i.e., per-party local) computations and “secure”

(i.e., joint, multi-party secure) modes repeatedly, resulting overall in what we call mixed-

mode computations. For example, an online poker MPC application is divided into rounds

of local computations (for strategizing and bidding) and joint secure computations (for card

dealing). In addition, secure computations use and modify a secret state consisting of the

deck of cards. The parties secretly share the deck in a way that no single party can see the

current deck in clear, but in secure computations they can combine their shares to recover

it. Such a secure state is also known as secret shares.

Mixed-mode computations are also used to improve the performance over mono-

lithic secure computations. As one example, we can perform private set intersection by

having each party iteratively compare elements in their private sets, with only the compar-

isons (rather than the entire looping computation) carried out securely [7]. Computing the

joint median can similarly be done by restricting secure computations only to comparisons,

which prior work has shown can net up to a 30x performance improvement [5].

MPC for a function f is typically implemented using cryptographic protocols that

expect f to be represented as a boolean or arithmetic circuit [1–3, 11]. Several libraries

and intermediate languages have been designed that provide efficient building blocks for

2

constructing circuits [12–14]. Programming directly with circuits and cryptography via

a host-language API can be painful, so starting with the Fairplay project [15] many re-

searchers have designed higher-level domain-specific languages (DSLs) in which to pro-

gram MPCs. In Fairplay, a compiler accepts a Pascal-like imperative program and com-

piles it to a garbled circuit [1]. More recent efforts by Holzer et al. [16] and Kreuter et

al. [17] support subsets of ANSI C, and follow-on work has expanded Fairplay’s expres-

siveness to handle n > 2 parties [18]. While such languages undoubtedly make it easier

to program MPCs, they still have several drawbacks regarding both security and usability.

First, projects like Fairplay focus only on how to compile normal-looking code into

a representation like a boolean circuit that can be run by an MPC engine. In most cases,

such compilation is done in advance. As such, mixed-mode programming is implemented

by writing local computations in some host language (like C or Java) that call out to the

MPC engine to evaluate the generated code. However, writing mixed-mode computations

in a single language has some compelling benefits over the multi-lingual approach. For

one, it is easier to write mixed-mode programs since the programmer can see all of the

interactions in one place, and not have to navigate foreign function interfaces, which are

hard to use [19]. For the same reason, programs are easier to understand, and thus answers

to security concerns (could the overall computation leak too much information about my

secrets?) will be more evident. Also, there is an opportunity for more dynamic execution

models, e.g., compiling secure blocks on the fly where the participants or elements of the

computation may be based on the results of prior interactions. Finally, there is an oppor-

tunity for greater code reuse, as a single language can encapsulate mixed mode protocols

as reusable library functions.

3

Second, MPC participants should be able to reason that f is correct and sufficiently

privacy preserving, i.e., that it computes the intended function and its output will not

reveal too much information about the inputs [20]. For example, for the optimized private

set intersection [7], parties should be able to formally prove that the extra messages reveal

nothing beyond the final result. The goal of an MPC DSL is secure computations, and

such reasoning gives assurance that this goal is being achieved. Yet, only a few DSLs (e.g.

Sharemind DSL [21]) have a mathematical semantics that can serve as a basis for formal

reasoning.

Third, those languages that do have a semantics lack support for (semi-) automated

reasoning of MPC programs: only by-hand proofs are possible, which provide less as-

surance than formally verified proofs. A middle ground might be a mechanization of the

semantics and its metatheory [22], which adds greater assurance that it is correct [23], but

no DSL has a mechanized semantics.

Fourth, there is a gap between the semantics, if there is one, and the actual im-

plementation. Within that gap is the potential for security holes. Formal verification of

the MPC DSL’s toolchain can significantly reduce the occurrence of security-threatening

bugs [24–31], but no existing MPC DSL implementation has been (even partially) verified.

Finally, there is the practical problem that existing DSLs do not scale up, because

they lack the infrastructure of a full-featured language. Adding more features (to both the

language and the formalization) would help, but doing so quickly becomes unwieldy and

frustrating, especially when the added features are “standard” and do not have much to do

with MPC. We want access to libraries and frameworks for I/O, GUIs, etc. in a way that

easily adds to functionality without adding complexity or compromising security.

4

This dissertation makes significant advances in solving each of the problems above.

In particular, our thesis is the following:

Formal methods from programming language design and program verification

can enable the development of rich and practical Secure Multi-party Compu-

tation applications, with strong correctness and security guarantees.

1.1 Overview

In this section, we present an overview of the contributions of this dissertation, re-

lating to how it addresses the problems mentioned above.

1.1.1 Wysteria: A programming language for mixed-mode MPC

We first present a new MPC DSL, called Wysteria, for writing mixed-mode se-

cure computations [32]. Wysteria is the first language to support writing mixed-mode,

multiparty computations in a generic manner, supporting any number of participants. We

summarize its several compelling features below.

Conceptual single-threaded semantics. All Wysteria programs operate in a com-

bination of parallel and secure modes, where the former identifies local computations

taking place on one or more hosts (in parallel), and the latter identifies secure computa-

tions occurring jointly among parties. Importantly, Wysteria mixed-mode computations

can be viewed as having a single thread of control, with all communication between hosts

expressed as variable bindings accessed within secure computations. Single threadedness

makes programs far easier to write and reason about (whether by humans or by automated

5

analyses [5,33]). We formalize Wysteria’s single-threaded semantics and prove a simula-

tion theorem from single- to multi-threaded semantics. In both semantics, it is evident that

all communication among parties occurs via secure blocks, and thus, information flows are

easier to understand.

Generic support for more than two parties. Wysteria programs may involve an

arbitrary number of parties, such that which parties, and their number, can be determined

dynamically rather than necessarily at compile-time. To support such programs, Wyste-

ria provides a notion of principals as data which can be used to dynamically determine

computation participants or their outcomes (e.g., to identify winners in a tournament pro-

ceeding to the next round). Wysteria also implements a novel feature of wire bundles

that are used to represent the inputs and outputs of secure computations such that a single

party’s view of a wire bundle is their own value, while the shared view makes evident

all possible values. A secure computation, having the shared view, may iterate over the

contents of a wire bundle. The domain of such a wire bundle may be unspecified initially.

The Wysteria compiler employs dynamic circuit generation to produce circuits when un-

knowns (like wire bundle domains) become available. Despite this dynamism, Wysteria’s

meta-theoretical properties guarantee that participants proceed synchronously, i.e., they

will always agree on the protocol they are participating in.

Secret shares. Many interesting programs interleave local and secure computations

where the secured outcomes are revealed later. For example, in mental poker, each party

must maintain a representation of the deck of cards whose contents are only revealed as

cards are dealt. To support such programs, Wysteria provides secret shares as first-class

objects. Secret shares resemble wire bundles in that each party has a local view (copy)

6

and these views are combined in secure blocks to recover the original value. The Wys-

teria single-threaded view ensures that shares are used properly; e.g., programs cannot

inadvertently combine the shares from different objects.

Refinement type system. Wysteria is a functional programming language that comes

equipped with a refinement type system to express the expectations and requirements of

computations in the language. In particular, the types for wire bundles and shares are de-

pendent, and directly identify the parties involved. For example, suppose we have a func-

tion is richer that takes a list of principals and their net worths and returns who is richest.

The logical refinement on the function’s return type will state that the returned principal is

one from the original set. Our type system also provides delegation effects for expressing

in which context a function can be called; e.g., a function that computes in parallel mode

cannot be called from within a secure computation, while the reverse is possible in certain

circumstances. In general, our type system ensures the standard freedom from type errors:

there will be no mistake of Alice communicating a string to a secure computation which

expects an integer. Wysteria’s mixed-mode design enables such reasoning easily: sepa-

rating the host and MPC languages would make a proof of type soundness for mixed-mode

programs far more difficult.

Wysteria is not the first language for mixed mode MPC, but is unique in its high-

level design, generality, and formal guarantees. For example, languages like L1 [34] and

SMCL [35] permit some mixed-mode computations to be expressed directly. However,

these languages lack Wysteria’s single-threaded semantics, exposing more low-level de-

tails, e.g., for performing communication or constructing secret shares. As such, there are

more opportunities for mistakes; e.g., one party may fail to always receive a sent mes-

7

sage (or may receive the wrong one), or may not provide the right protocol shares. L1

is also limited to only two parties, and neither language has a type system expressing the

requirements for well-formed mixed-mode compositions (which is handled by our del-

egation effects). No prior system of which we are aware has formalized its operational

semantics and type system and shown them to be sensible.

We have implemented a Wysteria interpreter which executes secure blocks by com-

piling them to boolean circuits, executed by Choi et al.’s implementation [11] of the Gol-

dreich, Micali, and Wigderson (GMW) protocol [2]. We have used Wysteria to build a

broad array of mixed-mode programs proposed in the literature, along with some new ones,

most notably a card dealing application. Our experimental results demonstrate three key

points. First Wysteria’s performance is competitive with prior approaches; e.g., we can

reproduce the mixed-mode performance gains reported previously. Second, generic pro-

tocols for n-principals can be expressed with ease in Wysteria, and executed efficiently.

Finally, Wysteria’s novel high-level abstractions, e.g. secure state, enables expressing

novel protocols not present in the existing literature.

1.1.2 Wys?: A verified language extension for MPC

With Wysteria’s easy-to-use, high-level abstractions in hand, the dissertation next

focuses on improving the usability and security of Wysteria programs and its toolchain.

While Wysteria significantly advances the state-of-the-art of the MPC DSLs, it does

not provide formal reasoning capabilities, and being a standalone DSL, lacks the features

of a rich programming language. To that end, we present Wys? [36], an embedding of

8

Wysteria in F? [37], a verification-oriented, full-featured programming language. Wys?

is what we call a Verified, Domain-Specific Integrated Language Extension, a new kind of

embedded DSL exemplified by following three elements.

Integrated language extension. Programmers can write Wys? MPC source programs

in what is essentially an extended dialect of F?. Like so-called shallow domain-specific

language embeddings, the Wysteria-specific combinators are expressed in normal F? syn-

tax, with prescriptions on their correct use expressed with F?’s dependent type-and-effect

system. This arrangement means that programmers can use F?’s semi-automated verifica-

tion facilities to prove correctness and security properties about their MPC programs.

Deep embedding of domain-specific semantics. A shallow embedding implements

the semantics of a DSL using the abstraction facilities of the host language, e.g., as a kind

of library. However, for Wysteria this is impossible because its core semantics cannot

be directly encoded in F?’s semantics. This is because a Wysteria program is like a kind

of SIMD program in which many parties alternate between computing locally on their

own data, in parallel, and computing jointly and securely on shared data. While such a

program can be viewed as having a single thread of control, it is not directly implemented

that way. As such, we take the approach of a typical deep embedding: We define an

interpreter in F? that operates over Wys? abstract syntax trees (ASTs), defined as an F?

data type; these trees are produced by running the F? compiler (in a special mode) on the

extended source program. Importantly, our interpreter does not need to understand all F?

constructs that might be extracted. Even though their use is intermixed with Wysteria-

specific constructs, their semantics is handled by a lightweight Foreign Function Interface

(FFI), mostly hidden from the source programmer.

9

Partially verified implementation. Within F? we mechanize two operational seman-

tics for Wysteria: a single-threaded semantics that formalizes the SIMD view, mentioned

above, and a distributed semantics, that formalizes programs as they are actually run by

multiple parties. Importantly, we have machine-checked proofs that the single-threaded

semantics is sound with respect to the distributed semantics, and that the distributed se-

mantics is correctly implemented by our interpreter. As a result, we have verified that the

properties we prove about the Wysteria-extended F? source programs hold for the multi-

party programs that actually run. There is an important caveat, though: Our interpreter

makes use of a circuit library to compile ASTs to circuits and then execute them using

the Goldreich, Micali and Wigderson (GMW) multi-party computation protocol [2], but

at present this library is not formally verified. Formal verification of GMW (which is, at

present, an open problem) would add even greater assurance.

To enable reasoning about the security properties of Wys? programs, Wys? seman-

tics is instrumented with traces that record observations made by the parties during the

execution of a program. The Wys? API makes these traces available to the programmers,

using which they can state and prove security properties about their programs.

Using Wys? we have implemented several programs, including private set intersec-

tion (PSI) and joint median. For PSI and joint median we implemented two versions each,

a straightforward one, but which achieves poor performance, and a more optimized ver-

sion. We formally proved that the optimized and unoptimized versions are equivalent, both

functionally and with respect to privacy. In particular, we prove that the visible events in

the optimized version’s trace provides neither participant with any additional information

about the other’s secrets. Performance experiments confirm that the optimized versions

10

do indeed perform better.

1.1.3 Knowledge inference for optimizing MPC

Wys?, with its Foreign Function Interface (FFI), enables MPC programs to inherit

standard functionality such as UI libraries, datatypes, etc. directly from the host language

F?. However, another usability concern with MPC has to do with the performance – MPC

cryptographic protocols are known to be prohibitively expensive. Researchers have shown

that in some cases, such as PSI [7] and median computation [5], a monolithic MPC pro-

gram can be optimized to a mixed-mode MPC program while retaining the privacy char-

acteristics of the monolithic version. In particular, the mixed-mode version reveals exactly

the values of those intermediate variables that would have been known in the monolithic

version as well.

The final part of this dissertation explores methods for inferring when and if vari-

ables in an MPC can be inferred by the participants, and thus may enable protocol op-

timizations [33]. Specifically, we consider two related problems: knowledge inference

and constructive knowledge inference. Both problems are specified by giving an MPC

as a single program that uses multiple parties’ variables. From this program, a solution

to the knowledge inference problem states which parties can learn which additional vari-

ables (other than the inputs and outputs), if any, from a cooperative run of the unoptimized

protocol. We call a knowledge inference solution constructive if, in addition to correctly

asserting that a party p knows a variable y, the solution also gives an evidence of party

p’s knowledge of y in the form of a program that computes y from p’s private data and

11

the final output. We provide a sound and complete solution for the knowledge inference

problem, and a sound and conditionally-complete solution to the constructive knowledge

inference problem. Our solutions build on previous work on template-based program ver-

ification [38, 39] formulating the knowledge problem as satisfiability of predicates which

are discharged using the Z3 SMT-solver [40] in the backend.

1.2 Threat model

Throughout this dissertation, we assume the semi-honest (also known as honest-

but-curious) threat model [41]. In this model, parties follow the protocol properly to its

completion, but keep a record of all the intermediate computations (internal coin tosses

and messages received from other parties). In other words, the parties are honest (they

follow the proper protocol) but curious (they are interested in learning other parties’ se-

crets). Previous work has also considered mixed-mode MPC protocols in the context of

semi-honest threat model [5, 7]. While this model yields weaker security than the mali-

cious model, it is useful if information leakage is the only concern (e.g. two corporations

who would be wary of negative reactions if they do not comply with the protocol). See

Section 6.2 for discussion on supporting malicious threat model.

1.3 Summary

In summary, this dissertation makes the following contributions:

1. We describe the design and implementation of a new MPC DSL, called Wysteria.

Wysteria is the first language to support writing mixed-mode MPCs in a generic

12

manner, supporting any number of participants. It provide easy-to-use, high-level

abstractions with a conceptual single-threaded semantics that simplifies the reason-

ing about the correctness and security properties of MPC programs.

• We formalize two semantics for Wysteria, a single-threaded specification se-

mantics and a distributed, actual semantics, and prove that the two correspond.

• We implement a Wysteria interpreter that executes secure blocks by compil-

ing them at runtime to boolean circuits, executed by Choi et al.’s implementa-

tion of the Goldreich, Micali, and Wigderson protocol.

• We program several MPC programs in Wysteria, including for the first time,

a card dealing application, and illustrate that Wysteria’s novel high-level ab-

stractions, e.g. secure state, enable expressing novel protocols not considered

previously in the literature.

2. We describe Wys?, an embedding of Wysteria in F?. The embedding is a Verified,

Domain-Specific Integrated Language Extension providing the benefits of (a) formal

verification of the correctness and security properties of the MPC programs, (b) par-

tially verified implementation of the Wysteria toolchain, and (c) a Foreign Func-

tion Interface that enables MPC programs to inherit standard language constructs

directly from the host language F?. The programs we have written with Wys? con-

stitute the first MPC programs to be formally verified, and the Wys? implementation

itself is the first MPC DSL to be be constructed with formal assurance.

3. Finally, we formalize the problem of knowledge inference and constructive knowl-

13

edge inference, that can help optimize monolithic secure computations into mixed-

mode computations, with similar privacy characteristics as the monolithic versions.

We present solutions for both these problems and formally prove their soundness

and relative completeness.

14

Chapter 2: Wysteria: A Programming Language for Mixed-mode MPC

This chapter presents Wysteria, a new MPC DSL that provides high-level abstrac-

tions to write mixed-mode secure computation programs. Wysteria provides a concep-

tual single-threaded semantics that can be used to reason about the correctness and security

properties of the MPC programs, while the Wysteria metatheory guarantees that the rea-

soning also applies to the actual protocol runs. Whereas Wysteria allows for informal,

lightweight reasoning about the MPC programs, in Chapter 3, we make such reasoning

formal and mechanize the Wysteria metatheory.

We have used Wysteria to program several MPC applications from the literature,

as well as some novel ones, including a card dealing application (Section 2.7.3). In our

experience, we have found Wysteria abstractions to be expressive and easy-to-use.

We first present an overview of Wysteria features with the help of several examples

(2.1), followed by the formal specification of the Wysteria syntax, type system, and oper-

ational semantics (2.2, 2.3, 2.4). We then present the Wysteria metatheoretic properties

(2.5), including progress and preservation theorems (Theorem 1 and Theorem 2) and a

forward-simulation theorem that establishes the correspondence between the conceptual

single-threaded semantics and the actual protocol semantics (Theorem 3). We conclude

the chapter with Wysteria implementation (2.6) and evaluation (2.7).

15

2.1 Wysteria overview

Wysteria is a functional programming language with first-class (higher order) func-

tions, variable binding with let, tuples (aka records), sums (aka variants or tagged unions),

and standard primitive values like integers and arrays. The main novelty of Wysteria is

that it allows the programmers to write a distributed MPC as a single program with a con-

ceptual single-threaded semantics, while the runtime takes care of the actual distributed

semantics.

2.1.1 Computation modes for secure and local computations

Wysteria defines two computation modes: secure mode in which secure (multi-

party) computations take place, and parallel mode in which one or more parties compute

locally, in parallel. Here is a version of the so-called millionaires’ problem that employs

both modes:1

let a =par({Alice})= read () in
let b =par({Bob})= read () in
let out =sec({Alice,Bob})= a > b in
out

Ignoring the par() and sec() annotations, this program is just a series of let-bindings: it

first reads Alice’s value, then reads Bob’s value, computes which is bigger (who is richer?),

and returns the result. The annotations indicate how and where these results should be

computed. The par({Alice}) annotation indicates that the read() (i.e., the rhs computation)

will be executed locally (and normally) at Alice’s location only, while the par({Bob}) an-
1This program does not actually type check in Wysteria, but it is useful for illustration; the corrected

program (using “wires”) is given shortly.

16

notation indicates that the second read() will be executed at Bob’s location only. The

sec({Alice,Bob}) annotation indicates that a > b will be executed as a secure multiparty com-

putation between Alice and Bob. Notice communication from local nodes (Bob and Alice)

to the secure computation is done implicitly, as variable binding: the secure block “reads

in” values a and b from each site. Wysteria compiler sees this and compiles it to actual

communication. In general, Wysteria programs, though they will in actuality run on mul-

tiple hosts, can be viewed as having the apparent single-threaded semantics, i.e., as if there

were no annotations; we have proved a simulation theorem from single- to multi-threaded

semantics.

In the example, we used parallel mode merely as a means to acquire and commu-

nicate values to a secure-mode computation (which we sometimes call a secure block).

There are many occasions in which parallel mode is used as a substantial component of

the overall computation, often as a way to improve performance. On these occasions we

specify the mode par(w) where w is a set of principals, rather than (as above) a single prin-

cipal. In this case, the rhs of the let binding executes the given code at every principal

in the set. Indeed, the code in the example above is implicitly surrounded by the code

let result =par({Alice,Bob})= e in result (where e is the code given above). This says that Alice

and Bob both, in parallel, run the entire program. In doing so, they will delegate to other

computation modes, e.g., to a mode in which only Alice performs a computation (to bind to

a) or in which only Bob does one, or in which they jointly and securely compute the a > b.

The delegation rules stipulate that parallel mode computations among a set of principals

may delegate to any subset of those principals for either secure or parallel computations.

We will see several more examples as we go.

17

2.1.2 Wires for inputs and outputs

In the above example, we are implicitly expressing that a is Alice’s (acquired in

par({Alice}) mode) and b is Bob’s. But suppose we want to make the computation of out into

a function: what should the function’s type be, so that the requirements of input sources

are expressed? We do this with a language feature we call wires, as follows:

is richer = λa: W {Alice} nat. λb: W {Bob} nat.
let out =sec({Alice,Bob})= a[Alice] > b[Bob] in
out

Here, the is richer function takes two arguments a and b, each of which is a wire. The

wires express that the data “belongs to” a particular principal: a value of type W {Alice} t is

accessible only to Alice, which is to say, inside of par({Alice}) computations or sec({Alice}∪w)

computations (where w can be any set of principals); notably, it is not accessible from

within computations par({Alice}∪w}) where w is a nonempty set. Note that wires are given

dependent types [42, 43] which refer to principal values, in this case the values Alice and

Bob; we will see interesting uses of such types shortly. Here is how we can call this func-

tion:

let a =par({Alice})= read() in
let b =par({Bob})= read() in
let out = is richer (wire {Alice} a) (wire {Bob} b) in
out

This code is creating wires from Alice and Bob’s private values and passing them to

the function. Note that the output is not a wire, but just a regular value, and this is because

it should be accessible to both Alice and Bob.

18

2.1.3 Delegation effects

Just as we use types to ensure that the inputs to a function are from the right party,

we can use effects on a function’s type to ensure that the caller is in a legal mode. For ex-

ample, changing the third line in the above program to let out =par({Alice})= is richer .. would

be inappropriate, as we would be attempting to invoke the is richer function only from Alice

even though we also require Bob to participate in the secure computation in the function

body. The requirement of joint involvement is expressed as a delegation effect in our type

system, which indicates the expected mode of the caller. The delegation effect for is richer

function is sec({Alice,Bob}), indicating that it must be called from a mode involving at least

Alice and Bob (e.g., par({Alice,Bob})). The effect annotates the function’s type; the type of

is richer is thus W {Alice}nat→W {Bob}nat −sec({Alice,Bob})→ bool; i.e., is richer takes Alice’s

wire and Bob’s wire, delegates to a secure block involving the two of them, and produces

a boolean value. Delegation effects like par({Alice,Bob}) are also possible.

Wire bundles. So far we have used single wires, but Wysteria also permits bundling

wires together, which (as we will see later) is particularly useful when parties are generic

over which and how many principals can participate in a secure computation. Here is our

example modified to use bundling:

is richer = λv: W {Alice,Bob} nat.
let out =sec({Alice,Bob})= v[Alice] > v[Bob] in
out

This code says that the input is a wire bundle whose values are from both Alice

and Bob. We extract the individual values from the bundle v inside of the secure block

using array-like projection syntax. To call this function after reading the inputs a and b we

19

write is richer ((wire {Alice} a) ++(wire {Bob} b)). Here the calling code concatenates together,

using ++, the two wires from Alice and Bob into a bundle containing both of their inputs.

Of course, this is just an abstraction, and does not literally represent what is going on at

either party’s code when this is compiled. For principal p, an empty wire bundle · (“dot”)

is used for a wire bundle when p is not in its domain, so that for Alice the above wire

bundle would be represented as {Alice:a} ++· while for Bob it would be ·++{Bob:b}. When

the secure computation begins, each party contributes its own value for every input bundle,

and receives only its own value for every output bundle. The type system’s accessibility

rules for bundles generalize what was stated above: if v has type W ({A} ∪w1) nat, where

w1 may or may not be empty, then v[A] is only allowed in par({A}) mode or in sec({A} ∪w2)

mode (s.t. v is accessible to sec({A} ∪w2), and nowhere else.

2.1.4 First-class principals and n-party computation

Now suppose we would like to generalize our function to operate over an arbitrary

number of principals. At the moment we would have to write one function for two prin-

cipals, a different one for three, and yet another one for four. To be able to write just one

function for n parties we need two things, (1) a way to abstract which principals might be

involved in a computation, and (2) a way to iterate over wire bundles. Then we can write

a function that takes a wire bundle involving multiple arbitrary principals and iterate over

it to find the highest value, returning the principal who has it. Here is the code to do this:

20

richest of = λms:ps. λv: W ms nat.
let out =sec(ms)=

wfold(None, v,
λrichest. λp. λn. match richest with
| None ⇒ Some p
| Some q⇒ if n > v[q] then Some p

else Some q)
in (wire ms out)

The idea is that ms abstracts an unknown set of principals (which has type ps), and

wfold permits iterating over the wire bundle for those principals: notice how ms appears in

the type of v. The wfold construct takes three arguments. Its first argument None is the initial

value for the loop’s accumulator (None is a value of optional type). The second argument v

is the wire bundle to iterate over. The wfold’s body above is an anonymous function with

three parameters: richest is the current accumulator, whose value is the richest principal

thus far (or None), p is the current principal under consideration, and n is p’s wire value, a

nat. In the None case of the match, no principal has yet been considered so the first becomes

a candidate to be richest. Otherwise, in the Some case, the protocol compares the current

maximum with the present principal’s worth and updates the accumulator. When the loop

terminates, it yields the value of the accumulator, which is placed in a wire bundle and

returned.

In addition to wfold, Wysteria also provides a way to apply a function to every

element of a wire bundle, producing a new bundle (like the standard functional map).

The richest of function can be applied concretely as follows (where the variables end-

ing in networth we assume are read from each party’s console):

21

let all = {Alice,Bob,Charlie} in
let r : W all (ps{singl ∧⊆all} option) =

richest of all (wire {Alice} alice networth
++wire {Bob} bob networth
++wire {Charlie} charlie networth)

The richest of function illustrates that first-class principals are useful as the object of

computation: the function’s result r is a wire bundle carrying principal options. The type

for values in r is a refinement type of the form t{φ} where φ is a formula that refines the

base type t. The particular type states that every value in r is either None or Some(s) where

not only s has type ps (a set of principals), but that it is a singleton set (the singl part), and

this set is a subset of all (the⊆all part); i.e., s is exactly one of the set of principals involved

in the computation. Wysteria uses refinements to ensure delegation requirements, e.g., to

ensure that if ps0 is the set of principals in a nested parallel block, then the set of principals

ps1 in the enclosing block is a superset, i.e., that ps1 ⊇ ps0. Refinements capture relation-

ships between principal sets in their types to aid in proving such requirements during type

checking.

2.1.5 Secret shares

Secure computations are useful in that they only reveal the final outcome, and not any

intermediate results. However, in interactive settings we might not be able to perform an

entire secure computation at once but need to do it a little at a time, hiding the intermediate

results until the very end. To support this sort of program, Wysteria provides secret

shares. Within a secure computation, e.g., involving principals A and B, we can encode

a value of type t into shares having type Sh w t where w is the set of principals involved

22

in the computation (e.g., {A,B}). When a value of this type is returned, each party gets

its own encrypted share (similar to how wire bundles work, except that the contents are

abstract). When the principals engage in a subsequent secure computation their shares can

be recombined into the original value.

To illustrate the utility of secret shares in the context of mixed mode protocols, we

consider a simple two-player, two-round bidding game. In each of the two rounds, each

player submits a private bid. A player “wins” the game by having the higher average of

two bids. The twist is that after the first round, both players learn the identity of the higher

bidder, but not their bid. By learning which initial bid is higher, the players can adjust

their second bid to be either higher or lower, depending on their preferences and strategy.

Figure 2.1 shows the game as a mixed-mode computation that consists of two secure

blocks, one per round. In order to force players to commit to their initial bid while not

revealing it directly, the protocol stores the initial bids in secret shares. In the second

secure block, the protocol recovers these bids in order to compute the final winning bidder:

The first secure block above resembles the millionaires’ protocol, except that it re-

turns not only the principal c with the higher input but also secret shares of both inputs: sa

has type Sh {Alice,Bob} int, and both Alice and Bob will have a different value for sa, analo-

gous to wire bundles; the same goes for sb. The second block recovers the initial bids by

combining the players’ shares and computes the final bid as two averages.

Unlike past MPC languages that expose language primitives for secret sharing (e.g.,

[34]), in Wysteria the type system ensures that shares are not misused, e.g., shares for

different underlying values may not be combined.

23

(∗ Bidding round 1 of 2 ∗)
let a1 =par({Alice})= read () in
let b1 =par({Bob})= read () in
let in1 = (wire {Alice} a1) ++(wire {Bob} b1) in
let (higher1, sa, sb) =sec({Alice,Bob})=

let c = if in1[Alice] > in2[Bob] then Alice else Bob in
(c, makesh in1[Alice], makesh in1[Bob])

in
print higher1 ;

(∗ Bidding round 2 of 2 ∗)
let a2 =par({Alice})= read () in
let b2 =par({Bob})= read () in
let in2 = (wire {Alice} a2) ++(wire {Bob} b2) in
let higher2 =sec({Alice,Bob})=

let (a1, b1) = (combsh sa, combsh sb) in
let bid a = (a1 + in2[Alice]) / 2 in
let bid b = (b1 + in2[Bob]) / 2 in
if bid a > bid b then Alice else Bob

in print higher2

Figure 2.1: Two round bidding game in Wysteria

2.2 Formal syntax

In this section we introduce λWy, the formal core calculus that underpins the lan-

guage design of Wysteria.

Figure 2.2 gives the λWy syntax for values v , expressions e, and types τ . λWy

contains standard values v consisting of variables x , natural numbers n (typed as nat),

sums inji v (typed by the form τ1 + τ2),2 and products (v1, v2) (typed by the form τ1× τ2).

In addition, λWy permits principals p to be values, as well as sets thereof, constructed from

singleton principal sets {w} and principal set unions w1 ∪ w2. These are all given type

ps φ, where φ is a type refinement; the type system ensures that if a value w has type ps φ,
2Sums model tagged unions or variant types

24

Principal p, q ::= Alice | Bob | Charlie | · · ·

Value v , w ::= x | n | inji v | (v1, v2) | p | {w} | w1 ∪ w2

Expression e ::= v1⊕v2 | case (v , x1.e1, x2.e2) | fst (v) | snd (v) | λx .e | v1 v2 | fix x .λy .e

| array(v1, v2) | select(v1, v2) | update(v1, v2, v3) | let x = e1 in e2

| let x M
= e1 in e2 | wirew (v) | v1 ++ v2 | v [w] | wfoldw (v1, v2, v3)

|wappw (v1, v2) |wapsw (v1, v2) |wcopyw (v) |makesh(v) | combsh(v)

| v

Type environment Γ ::= . | Γ, x :M τ | Γ, x : τ

Mode M, N ::= m(w) | >

Modal operator m ::= p | s

Effect ε ::= · |M | ε1, ε2

Refinement φ ::= true | singl(ν) | ν ⊆ w | ν = w | φ1 ∧ φ2

Type τ ::= nat | τ1 + τ2 | τ1 × τ2 | ps φ |Ww τ | Array τ | Shw τ | x :τ1
ε→ τ2

Figure 2.2: λWy syntax

25

then φ[w/ν] is valid.3 Refinements in λWy are relations in set theory. Refinements ν ⊆ w

and ν = w capture subset and equality relationships, respectively, with another value w .

The refinement singl(ν) indicates that the principal set is a singleton.

λWy expressions e are, for simplicity, in so-called A-normal form (ANF) [44], where

nearly all sub-expressions are values, as opposed to arbitrary nested expressions. ANF

form can be generated from an unrestricted Wysteria program with simple compiler sup-

port.

Expressions include arithmetic operations (v1⊕v2), case expressions (for computing

on sums), and fst and snd for accessing elements of a product. Expressions λx .e and v1 v2

denote abstractions and applications respectively. λWy also includes standard fix point

expressions (which encode loops) and mutable arrays: array(v1, v2) creates an array (of

type Array τ) whose length is v1, and whose elements (of type τ) are each initialized to

v2; array accesses are written as select(v1, v2) where v1 is an array and v2 is an index; and

array updates are written as update(v1, v2, v3), updating array v1 at index v2 with value v3.

Let bindings in λWy can optionally be annotated with a mode M , which indicates

that expression e1 should be executed in mode M as a delegation from the present mode.

Modes are either secure (operator s) or parallel (operator p), among a set of principals

w . Mode > represents is a special parallel mode among all principals; at run-time, > is

replaced with p(w) where w is the set of all principals participating in the computation.

Once the execution of e1 completes, e2 then executes in the original mode. Unannotated let

bindings execute in the present mode. λWy has dependent function types, written x :τ1
ε→

τ2, where x is bound in ε and τ2; the ε annotation is an effect that captures all the delegations
3We write φ[w/ν] to denote the result of substituting w for ν in φ.

26

inside the function body. An effect is either empty, a mode, or a list of effects.

Wire bundle creation, concatenation, and folding are written wirew(v), w1 ++ w2,

and wfoldw(v1, v2, v3), respectively (the w annotation on wfold and other combinators

denotes the domain of the wire bundle being operated on). Wire bundles carrying a value

of type τ for each principal in a set w are given the (dependent) type Ww τ . We also

support mapping a wire bundle by a either a single function (wapsw(v1, v2)), or another

wire bundle of per-principal functions (wappw(v1, v2)). Finally, the form wcopyw(v) is

a coercion that allows wire bundles created in delegated computations to be visible in

computations that contain them (operationally, wcopyw(v) is a no-op). λWy also models

support for secret shares, which have type Shw τ , analogous to the type of wire bundles.

Shares of value v are created (in secure mode) with makesh(v) and reconstituted (also in

secure mode) with combsh(v).

2.3 Type system

At a high level, the λWy type system enforces the key invariants of a mixed-mode

protocol: (a) each variable can only be used in an appropriate mode, (b) delegated compu-

tations require that all participating principals are present in the current mode, (c) parallel

local state (viz., arrays) must remain consistent across parallel principals, and (d) code in

the secure blocks must be restricted so that it can be compiled to a boolean circuit in our

implementation. In this section, we present the typing rules, and show how these invariants

are maintained.

27

Γ `M v : τ (Value typing)

t-var

x :M τ ∈ Γ ∨ x : τ ∈ Γ

Γ ` τ

Γ `M x : τ

t-nat

Γ `M n : nat

t-inj

Γ `M v : τi j ∈ {1, 2}

τj IsFlat Γ ` τj

Γ `M inji v : τ1 + τ2

t-prod

Γ `M vi : τi

Γ `M (v1, v2) : τ1 × τ2

t-princ

Γ `M p : ps (ν = {p})

t-psone

Γ `M w : ps (singl(ν))

Γ `M {w} : ps (ν = {w})

t-psunion

Γ `M wi : ps φi

Γ `M w1 ∪ w2 : ps (ν = w1 ∪ w2)

t-psvar

Γ `M x : ps φ

Γ `M x : ps (ν = x)

t-msub

Γ `M

Γ `M x : τ Γ `M �N

N = s()⇒ τ IsSecIn

Γ `N x : τ

t-sub

Γ `M v : τ1

Γ ` τ1 <: τ Γ ` τ

Γ `M v : τ

Figure 2.3: Value typing judgment

28

Γ `M �N (Mode M can delegate to mode N)

d-refl

Γ ` w2 : ps (ν = w1)

Γ ` m(w1) �m(w2)

d-top

Γ ` w : ps φ

Γ ` >�m(w)

d-par

Γ ` w2 : ps (ν ⊆ w1)

Γ ` p(w1) � p(w2)

d-sec

Γ ` w2 : ps (ν = w1)

Γ ` p(w1) � s(w2)

Γ ` τ1 <: τ2 (Subtyping)

s-refl

Γ ` τ <: τ

s-trans

Γ ` τ1 <: τ2

Γ ` τ2 <: τ3

Γ ` τ1 <: τ3

s-sum

Γ ` τi <: τ ′i

Γ ` τ1 + τ2 <: τ ′1 + τ ′2

s-prod

Γ ` τi <: τ ′i

Γ ` τ1 × τ2 <: τ ′1 × τ ′2

s-princs

JΓK � φ1 ⇒ φ2

Γ ` ps φ1 <: ps φ2

s-wire

Γ ` w2 : ps (ν ⊆ w1)

Γ ` τ1 <: τ2

Γ `Ww1 τ1 <: Ww2 τ2

s-array

Γ ` τ1 <: τ2

Γ ` τ2 <: τ1

Γ ` Array τ1 <: Array τ2

s-share

Γ ` w2 : ps (ν = w1)

Γ ` τ1 <: τ2

Γ ` τ2 <: τ1

Γ ` Shw1 τ1 <: Shw2 τ2

s-arrow

Γ ` τ ′1 <: τ1

Γ, x : τ ′1 ` τ2 <: τ ′2

Γ ` x :τ1
ε→ τ2 <: x :τ ′1

ε→ τ ′2

Figure 2.4: Subtyping and delegation judgments

29

2.3.1 Value typing

Figure 2.3 shows the value typing judgment Γ `M v : τ , read as under Γ and in

current mode M , value v has type τ . Variable bindings in Γ are of two forms: the usual

x : τ , and x :M τ where M is the mode in which x is defined. Rule t-var looks up the

binding of x in Γ, and checks that either x is bound with no mode annotation, or matches

the mode M in the binding to the current mode. It uses an auxiliary judgment for type

well-formedness, Γ ` τ , which enforces invariants like, for a wire bundle type Ww τ , w

should have a ps φ type. The rule t-inj uses another auxiliary judgment τ IsFlat which

holds for types τ that lack wire bundles and shares. Both auxiliary judgments are defined

in the Appendix A (Figures A.3, A.4). Wysteria disallows wire bundles and shares in

sum values, since it hides their precise sizes; the size information of wires and shares is

required for boolean circuit generation. The rules t-prod, t-princ, t-psone, t-psunion,

and t-psvar are unsurprising.

2.3.2 Delegations typing judgments

Rule t-msub is used to permit reading a variable in the present mode N , though

the variable is bound in mode M . This is permitted under two conditions: when N =

s() ⇒ τ IsSecIn, and when Γ ` M � N , which is read as under type environment

Γ, mode M can delegate computation to mode N . The former condition enforces that

variables accessible in secure blocks do not include functions known only to some parties

as they can’t be compiled to circuits by all the parties. As such, the condition excludes

wire bundles that carry functions. The condition Γ ` M � N captures the intuitive idea

30

that a variable defined in a larger mode can be accessed in a smaller mode. It is defined

at the top of Figure 2.4. In addition to capturing valid variable accesses across different

modes, the same relation also checks when it is valid for a mode to delegate computation

to another mode (let x N
= e1 in e2). The rule d-refl type checks the reflexive case, where

the refinement ν = w1 captures that w2 = w1 at run-time. The special mode>, that we use

to type check generic library code written in Wysteria, can delegate to any mode (rule d-

top). Recall that at run-time,> is replaced with p(w), where w is the set of all principals.

A parallel mode p(w1) can delegate computation to another parallel mode p(w2) only if

all the principals in w2 are present at the time of delegation, i.e. w2 ⊆ w1. The rule d-par

enforces this check by typing w2 with the ν ⊆ w1 refinement. Finally, principals in parallel

mode can begin a secure computation; rule d-sec again uses refinements to check this

delegation. We note that uses of rule d-par and rule d-sec can be combined to effectively

delegate from parallel mode to secure block consisting of a subset of the ambient principal

set. Secure modes are only allowed to delegate to themselves (via rule d-refl), since

secure blocks are implemented using monolithic boolean circuits.

2.3.3 Subtyping judgments

Rule t-sub is the (declarative) subsumption rule, and permits giving a value of type

τ1 the type τ if the τ is a subtype of τ1. More precisely, the subtyping judgment Γ ` τ1 <:

τ2 is read as under Γ type τ1 is a subtype of τ2. The rules for this judgment are given at

the bottom of Figure 2.4. Rules s-refl, s-trans, s-sum, s-prod, s-array, and s-arrow

are standard. Rule s-princs offloads reasoning about refinements to an auxiliary judgment

31

written JΓK � φ1 ⇒ φ2, which reads assuming variables in Γ satisfy their refinements,

the refinement φ1 entails φ2. We elide the details of this ancillary judgment, as it can be

realized with an SMT solver; our implementation uses Z3 [40], as described in 2.6. For

wire bundles, the domain of the supertype, a principal set, must be a subset of domain of

the subtype, i.e. type Ww1 τ1 is a subtype of Ww2 τ2 if w2 ⊆ w1, and τ1 <: τ2 (rule s-

wire). As mentioned earlier, value w2 is typed with no mode annotation. Rule s-share is

similar but requires τ1 and τ2 to be invariant since circuit generation requires an fixed size

(in bits) for the shared value.

2.3.4 Expression typing

Figures 2.5 gives the typing judgment for expressions, written Γ `M e : τ ; ε and

read under Γ at mode M , the expression e has type τ and delegation effects ε. The rules

maintain the invariant that Γ ` M � ε, i.e. if e is well-typed, then M can perform all the

delegation effects in e.

The rules t-binop, t-fst, and t-snd are standard. Rule t-case is mostly standard, ex-

cept for two details. First, the effect in the conclusion contains the effects of both branches.

The second detail concerns secure blocks. We need to enforce that case expressions in se-

cure blocks do not return functions, since it won’t be possible to inline applications of such

functions when generating circuits. So, the premise (M = p()∧ε = M)∨(τ IsFO∧ε = ·)

enforces that either the current mode is parallel, in which case there are no restrictions on

τ , but we add an effect p(·) so that secure blocks cannot reuse this code, or the type returned

by the branches is first order (viz., not a function).

32

Γ `M e : τ ; ε (Expression typing: “Under Γ, expression e has type τ , and may be run at M . ”)

t-binop

Γ `M vi : nat

Γ `M v1 ⊕ v2 : nat; ·

t-fst

Γ `M v : τ1 × τ2

Γ `M fst (v) : τ1; ·

t-snd

Γ `M v : τ1 × τ2

Γ `M snd (v) : τ2; ·

t-case

(M = p() ∧ ε = p(·)) ∨ (τ IsFO ∧ ε = ·)

Γ ` v : τ1 + τ2

Γ, xi : τi `M ei : τ ; εi

Γ ` τ Γ `M � εi

Γ `M case (v , x1.e1, x2.e2) : τ ; ε, ε1, ε2

t-lam

Γ ` τ

Γ, x : τ `M e : τ1; ε

Γ `M λx .e : (x :τ
ε→ τ1); ·

t-app

Γ `M v1 : x :τ1
ε→ τ2

Γ ` v2 : τ1 Γ ` τ2[v2/x]

Γ `M � ε[v2/x]

M = s()⇒ τ2 IsFO

Γ `M v1 v2 : τ2[v2/x]; ε[v2/x]

t-let1

Γ `M e1 : τ1; ε1

Γ, x : τ1 `M e2 : τ2; ε2

Γ ` τ2 Γ `M � ε2

Γ `M let x = e1 in e2 : τ2; ε1, ε2

t-let2

M = m()

N = (w) Γ `M �N

Γ `N e1 : τ1; ε1

Γ, x :m(w) τ1 `M e2 : τ2; ε2

Γ ` τ2 Γ `M � ε2

Γ `M let x N
= e1 in e2 : τ2;N, ε1, ε2

t-fix

M = p()

Γ ` (y :τ1
ε,p(·)→ τ2)

Γ `M � ε

Γ, x : (y :τ1
ε,p(·)→ τ2) `M λy .e : (y :τ1

ε,p(·)→ τ2); ·

Γ `M fix x .λy .e : (y :τ1
ε,p(·)→ τ2); ·

Figure 2.5: Expression typing judgments

33

Rule t-lam is the standard rule for typing a dependent effectful function: the variable

x may appear free in the type of function body τ1 and its effect ε, and ε appears on the

function type. Rule t-app is the function application rule. It checks that v1 is a function

type, v2 matches the argument type of the function,4 and that the application type τ2[v2/x]

is well-formed in Γ. The rule performs two additional checks. First, it ensures that the

current mode M can perform the delegation effects inside the function body (Γ ` M �

ε[v2/x]). Second, it disallows partial applications in secure blocks (M = s()⇒ τ IsFO)

to prevent a need to represent functional values as circuits; our implementation of secure

blocks inlines all function applications before generating circuits.

Rule t-let1 is the typing rule for regular let bindings. Rule t-let2 type checks the let

bindings with delegation annotations. The rule differs from rule t-let1 in several aspects.

First, it checks that the delegation is legal (premise Γ ` M �N). Second, it checks e1 in

mode N , instead of current mode M . Third, it checks e2 with variable x bound in mode

m(w) in Γ. This mode consists of the outer modal operator m and the delegated party set

w , meaning that x is available only to principals in w , but within the ambient (secure or

parallel) block.

Rule t-fix type checks unguarded recursive loops (which are potentially non-terminating).

The rule is standard, but with the provisos that such loops are only permitted in parallel

blocks (M = p()) and the current mode can perform all the effects of the loop (Γ `M�ε).
4We restrict the values appearing in dependent types (v2 in this case) to be typed without any mode

annotation. We use an auxiliary judgment (similar to value-typing) Γ ` v : τ to type such values (see

Appendix A Figure A.1). This judgment can only access those variables in Γ that are bound without any

mode.

34

Γ `M e : τ ; ε (Expression typing: “Under Γ, expression e has type τ , and may be run at M . ”)

t-array

M = p() Γ `M v1 : nat

Γ `M v2 : τ

Γ `M array(v1, v2) : Array τ ; ·

t-select

Γ `M v1 : Array τ

Γ `M v2 : nat

Γ `M select(v1, v2) : τ ; ·

t-update

M = p()

mode(v1,Γ) = M

Γ `M v1 : Array τ

Γ `M v2 : nat

Γ `M v3 : τ

Γ `M update(v1, v2, v3) : unit; ·

Figure 2.6: Expression typing judgments for arrays

It also adds an effect p(·) to the final type, so that secure blocks cannot use such loops de-

fined in parallel blocks.

Figure 2.6 shows the typing judgments for arrays. The rules t-array, t-select, and

t-update type array creation, reading, and writing, respectively, and are standard with

the proviso that the first and third are only permitted in parallel blocks. For array writes,

the premise mode(v1,Γ) = M also requires the mode of the array to exactly match the

current mode, so that all principals who can access the array do the modification. We elide

the definition of this function, which simply extracts the mode of the argument from the

typing context (note that since the type of v1 is an array, and since programmers do not

write array locations in their programs directly, the value v1 must be a variable and not an

array location).

Figure 2.7 shows the typing judgments for wires. Rule t-wire introduces a wire

bundle for the given principal set w1, mapping each principal to the given value v . The

first premise Γ ` w1 : ps (ν ⊆ w2) requires that w1 ⊆ w2, i.e., all principals contributing

35

Γ `M e : τ ; ε (Expression typing: “Under Γ, expression e has type τ , and may be run at M . ”)

t-wire

Γ ` w1 : ps (ν ⊆ w2)

m = s⇒ N = s(w2)

m = p⇒ N = p(w1)

Γ `N v : τ

m = s⇒ τ IsFO

τ IsFlat

Γ `m(w2) wirew1(v) : Ww1 τ ; ·

t-wproj

m = p⇒ φ = (ν = w1)

m = s⇒ φ = (ν ⊆ w1)

Γ `m(w1) v : Ww2 τ

Γ ` w2 : ps (φ ∧ singl(ν))

Γ `m(w1) v [w2] : τ ; ·

t-wireun

Γ `M v1 : Ww1 τ

Γ `M v2 : Ww2 τ

Γ `M v1 ++ v2 : W (w1 ∪ w2) τ ; ·

t-wfold

M = s() τ2 IsFO

φ = (ν ⊆ w ∧ singl(ν))

Γ `M v1 : Ww τ

Γ `M v2 : τ2

Γ `M v3 : τ2
·→ ps φ ·→ τ

·→ τ2

Γ `M wfoldw (v1, v2, v3) : τ2; ·

t-wapp

M = p()

Γ `M v1 : Ww τ1

Γ `M v2 : Ww (τ1
·→ τ2)

Γ `M wappw (v1, v2) : Ww τ2; ·

t-waps

M = s()

τ2 IsFO τ2 IsFlat

Γ `M v1 : Ww τ1

Γ `M v2 : τ1
·→ τ2

Γ `M wapsw (v1, v2) : Ww τ2; ·

t-wcopy

M = p(w1)

Γ ` w2 : ps (ν ⊆ w1)

Γ `p(w2) v : Ww2 τ

Γ `M wcopyw2
(v) : Ww2 τ ; ·

Figure 2.7: Expression typing judgments for wires

36

to the bundle are present in the current mode. The mode under which value v is typed

is determined by the modal operator m of the current mode. If it is p, v is typed under

p(w1). However, if it is s, v is typed under the current mode itself. In parallel blocks, where

parties execute locally, the wire value can be typed locally. However, in secure blocks, the

value needs to be typable in secure mode. The next premise m = s ⇒ τ IsFO ensures

that wire bundles created in secure mode do not contain functions, again to prevent private

code execution in secure blocks. Finally, the premise τ IsFlat prevents creation of wire

bundles containing shares.

Rule t-wproj types wire projection v [w2]. The premise Γ `m(w1) v : Ww2 τ ensures

that v is a wire bundle having w2 in its domain. To check w2, there are two subcases,

distinguished by current mode being secure or parallel. If the latter, there must be but

one participating principal, and that principal value needs to be equal to the index of wire

projection: the refinement φ enforces that w2 = w1, and w2 is a singleton. If projecting in

a secure block, the projected principal need only be a member of the current principal set.

Intuitively, this check ensures that principals are participants in any computation that uses

their private data.

The rule t-wireun concatenates two wire bundle arguments, reflecting the concate-

nation in the final type W (w1 ∪ w2) τ . The rules t-wfold, t-wapp, t-waps, and t-wcopy

type the remaining primitives for wire bundles. In rule t-wfold, the premise enforces

that wfold is only permitted in secure blocks, that the folding function is pure (viz., its

set of effects is empty), and that the types of the wire bundle, accumulator and function

agree. As with general function application in secure blocks, the rule enforces that the

result of the fold is first order. The rules t-wapp and t-waps are similar to each other, and

37

Γ `M e : τ ; ε (Expression typing: “Under Γ, expression e has type τ , and may be run at M . ”)

t-makesh

M = s(w) τ IsFO

τ IsFlat Γ `M v : τ

Γ `M makesh(v) : Shw τ ; ·

t-combsh

M = s(w)

Γ `M v : Shw τ

Γ `M combsh(v) : τ ; ·

t-sube

Γ `M e : τ ′; ε

Γ ` τ ′ <: τ Γ ` τ

Γ `M e : τ ; ε

Figure 2.8: Remaining rules for expression typing

to rule t-wfold. In both rules, a function v2 is applied to the content of a wire bundle

v1. rule t-wapp handles parallel mode applications where the applied functions reside in

a wire bundle (i.e., each principal can provide their own function). Rule t-waps handles

a more restricted case where the applied function is not within a wire bundle; this form is

required in secure mode because to compile a secure block to a boolean circuit at run-time

each principal must know the function being applied. As with rule t-wfold, the applied

functions must be pure. Rule t-wcopy allows copying of a wire bundle value v from p(w2)

to p(w1) provided w2 ⊆ w1. This construct allows principals to carry over their private

values residing in a wire bundle from a smaller mode to a larger mode while maintaining

the privacy – principals in larger mode that are not in the wire bundle see an empty wire

bundle (·).

Figure 2.8 shows the remaining expression typing judgments for shares and the sub-

sumption rule. Rules t-makesh and t-combsh introduce and eliminate secret share values

of type Shw τ , respectively. In both rules, the type of share being introduced or elimi-

nated carries the principal set of the current mode, to enforce that all sharing participants

are present when the shares are combined. Values within shares must be flat and first-

38

Configuration C ::= M{σ;κ;ψ; e}

Store σ ::= · | σ{` :M v1, . . . , vk}

Stack κ ::= · | κ :: 〈M ;ψ; x .e〉 | κ :: 〈ψ; x .e〉

Environment ψ ::= · | ψ{x 7→M v} | ψ{x 7→ v}

Figure 2.9: Wysteria runtime configuration syntax

order so that their bit-level representation size can be determined. Finally, rule t-sube is

the subsumption rule for expressions.

2.4 Operational semantics

We define two distinct operational semantics for λWy programs, each with its own

role and advantages. The single-threaded semantics of λWy provides a deterministic view

of execution that makes apparent the synchrony of multi-party protocols. The multi-

threaded semantics of λWy provides a non-deterministic view of execution that makes

apparent the relative parallelism and privacy of multi-party protocols.

2.4.1 Single-threaded semantics

Wysteria’s single-threaded semantics defines a transition relation for machine con-

figurations (just configurations for short). A configuration C consists of a designated cur-

rent mode M , and four additional run-time components: a store σ, a stack κ, an envi-

ronment ψ and a program counter e (which is an expression representing the code to run

next). The definitions are shown in Figure 2.9.

A store σ models mutable arrays, and consists of a finite map from (array) locations

39

` to value sequences v1, .. , vk . Each entry in the store additionally carries the mode M of

the allocation, which indicates which parties have access. A stack κ consists of a (possibly

empty) list of stack frames, of which there are two varieties. The first variety is introduced

by delegations (let bindings with mode annotations) and consists of a mode, an environ-

ment (which stores the values of local variables), and a return continuation, which is an

expression containing one free variable standing in for the return value supplied when the

frame is popped. The second variety is introduced by regular let-bindings where the mode

is invariant; it consists of only an environment and a return continuation.

An environment ψ consists of a finite map from variables to closed values. As with

stores, each entry in the environment additionally carries a mode M indicating which

principals have access and when (whether in secure or in parallel blocks). Note that we

extend the definition of values v from Figure 2.2 to include several new forms that ap-

pear only during execution. During run-time, we add forms to represent empty party sets

(written ·), empty wire bundles (written ·), single-principal wire bundles ({p : v}), wire

bundle concatenation (v1 ++ v2), array locations (`), and closures (written clos (ψ;λx .e)

and clos (ψ; fix f .λx .e)).

Our “environment-passing” semantics (in contrast to a semantics based on substitu-

tion) permits us to directly recover the multi-threaded view of each principal in the midst

of single-threaded execution. Later, we exploit this ability to show that the single and

multi-threaded semantics enjoy a precise correspondence. If we were to substitute val-

ues for variables directly into the program text these distinct views of the program’s state

would be tedious or impossible to recover.

We split the single-threaded semantics in two judgments, one that change the stack

40

C1 −→ C2 Configuration stepping: “Configuration C1 steps to C2”

stpC-Local

M{σ1;κ;ψ1; e1} −→ M{σ2;κ;ψ2; e2} when σ1;ψ1; e1
M−→ σ2;ψ2; e2

stpC-Let

M{σ;κ;ψ; let x = e1 in e2} −→ M{σ;κ :: 〈ψ; x .e2〉 ;ψ; e1}

stpC-delPar

p(w1 ∪ w2){σ;κ;ψ; let x p(w ′)
= e1 in e2} −→ p(w2){σ;κ :: 〈p(w1 ∪ w2);ψ; x .e2〉 ;ψ; e1}

when ψJw ′K = w2

stpC-delSSec

s(w){σ;κ;ψ; let x s(w ′)
= e1 in e2} −→ s(w){σ;κ :: 〈s(w);ψ; x .e2〉 ;ψ; e1}

when ψJw ′K = w

stpC-delPSec

p(w){σ;κ;ψ; let x s(w ′)
= e1 in e2} −→ p(w){σ;κ :: 〈p(w);ψ; x .e2〉 ;ψ; securew ′(e1)}

stpC-secEnter

p(w){σ;κ;ψ; securew ′(e)} −→ s(w){σ;κ;ψ; e} when ψJw ′K = w

stpC-popStk1

N{σ;κ :: 〈M ;ψ1; x .e〉 ;ψ2; v} −→ M{σ;κ;ψ1{x 7→m(w) (ψ2JvKN)}; e}

when M = m() and N = (w)

stpC-popStk2

M{σ;κ :: 〈ψ1; x .e〉 ;ψ2; v} −→ M{σ;κ;ψ1{x 7→ (ψ2JvKM)}; e}

Figure 2.10: Delegation semantics of single-threaded configurations

41

and the mode of the current configuration, and one that does not. Figure 2.10 shows

the judgments for the first kind. The judgment C1 −→ C2 can be read as saying con-

figuration C1 steps to C2. Configurations manage their current mode in a stack-based

discipline, using their stack to record and recover modes as the thread of execution en-

ters and leaves nested parallel and secure blocks. The rules of C1 −→ C2 handle eight

cases: Local stepping only (stpc-local), regular let-binding with no delegation annota-

tion (stpc-let), delegation to a parallel block (stpc-delpar), delegation to secure block

from a secure or parallel block (stpc-delssec and stpc-delpsec, respectively), entering a

secure block (stpc-secenter) and handling return values using the two varieties of stack

frames (stpc-popstk1 and stpc-popstk2).

Both delegation rules move the program counter under a let, saving the returning

context on the stack for later (to be used in stpc-popstk). Parallel delegation is permitted

when the current principals are a superset of the delegated principal set; secure delegation

is permitted when the sets coincide. Secure delegation occurs in two phases, which is

convenient later when relating the single-threaded configuration semantics to the multi-

threaded view; stpc-secenter handles the second phase of secure delegation.

The second judgment for single-threaded semantics, called local stepping judgment

σ1;ψ1; e1
M−→ σ2;ψ2; e2, covers all (common) cases where neither the stack nor the mode

of the configuration change. This judgment can be read as under store σ1 and environment

ψ1, expression e1 steps at modeM to σ2, ψ2 and e2. Most configuration stepping rules are

local, in the sense that they stay within one mode and do not affect the stack.

Figure 2.11 shows some cases for this judgment. We explain the first rule in detail,

as a model for the rest. Case analysis (stpl-case) branches based on the injection, step-

42

σ1;ψ1; e1
M−→ σ2;ψ2; e2 Local stepping: “Under σ1 and ψ1, e1 steps at mode M to σ2, ψ2 and e2”

stpL-Case

σ;ψ; case (v , x1.e1, x2.e2)
M−→ σ;ψ{xi 7→ v ′}; ei when ψJvKM = inji v ′

stpL-Fst

σ;ψ; fst (v)
M−→ σ;ψ; v1 when ψJvKM = (v1, v2)

stpL-Snd

σ;ψ; snd (v)
M−→ σ;ψ; v2 when ψJvKM = (v1, v2)

stpL-BinOp

σ;ψ; v1 ⊕ v2
M−→ σ;ψ; v ′ when ψJv1KM = v ′1, ψJv2KM = v ′2 and

v ′1 ⊕ v ′2 = v ′

stpL-Lambda

σ;ψ;λx .e
M−→ σ;ψ; clos (ψ;λx .e)

stpL-Apply

σ;ψ1; v1 v2
M−→ σ;ψ2{x 7→ v ′}; e when ψ1Jv1KM = clos (ψ2;λx .e) and

ψ1Jv2K = v ′

stpL-Fix

σ;ψ; fix x .λy .e
p(w)−→ σ;ψ; clos (ψ; fix x .λy .e)

stpL-FixApply

σ;ψ1; v1 v2
M−→ σ;ψ′; e when ψ1Jv1KM = clos (ψ; fix x .λy .e),

ψ1Jv2K = v ′ and

ψ′ = ψ{x 7→ clos (ψ; fix x .λy .e); y 7→ v ′}

Figure 2.11: Local stepping of single-threaded configurations

43

ψJvKM = v ′ Environment lookup: “Closing v for M under ψ is v ′”

ψJ(v1, v2)KM = (v ′1, v
′
2) when ψJv1KM = v ′1 and ψJv2KM = v ′2

ψJxKM = v when x 7→N v ∈ ψ and . ` N �M

ψJxKM = v when x 7→ v ∈ ψ

Figure 2.12: Environment lookup judgments (selected rules)

ping to the appropriate branch and updating the environment with the payload value of

the injected value v ′. The incoming environment ψ closes the (possibly open) scruntinee

value v of the case expression using value bindings for the free variables accessible at the

current modeM . We write the closing operation as ψJvKM and show selected rules in Fig-

ure 2.12 (complete rules are in the Appendix A Figure A.5). Note the second rule makes

values bound in larger modes available in smaller modes. The rule stpl-case updates the

environment using the closed value, adding a new variable binding at the current mode.

The remainder of the rules follow a similar pattern of environment usage.

Projection of pairs (stpl-fst,stpl-snd) gives the first or second value of the pair (re-

spectively). Binary operations close the operands before computing a result (stpl-binop).

Lambdas and fix-points step similarly. In both cases a rule closes the expression, intro-

ducing a closure value with the current environment (stpl-lambda and stpl-fix). Their

application rules restore the environment from the closure, update it to hold the argument

binding, and in the case of the fix-points, a binding for the fix expression. The mode

p(w) enforces that (potentially unguarded) recursion via stpl-fix may not occur in secure

blocks.

Figure 2.13 shows the local stepping judgment for arrays and shares. The array prim-

itives access or update the store, which remained invariant in all the cases above. Array

44

σ1;ψ1; e1
M−→ σ2;ψ2; e2 Local stepping: “Under σ1 and ψ1, e1 steps at mode M to σ2, ψ2 and e2”

stpL-array

σ;ψ; array(v1, v2)
M−→ σ{` :M wk};ψ; ` when ψJv1KM = k , ψJv2KM = w and nextM (σ) = `

stpL-select

σ;ψ; select(v1, v2)
M−→ σ;ψ;wi when ψJv1KM = `, ψJv2KM = i , i ∈ [1..k] and

σ(`) = {w̄}k

stpL-sel-err

σ;ψ; select(v1, v2)
M−→ σ;ψ; error when ψJv1KM = `, ψJv2KM = i , i /∈ [1..k] and

σ(`) = {w̄}k

stpL-update

σ;ψ; update(v1, v2, v3)
M−→ σ′;ψ; () when ψJv1KM = `, ψJv2KM = i , ψJv3KM = w ′i

σ(`) = {w̄}k , j ∈ [1..k],w ′j = wj for j 6= i and

σ′ = σ{` :M {w̄ ′}k}

stpL-upd-err

σ;ψ; update(v1, v2, v3)
M−→ σ;ψ; error when ψJv1KM = `, ψJv2KM = i , i /∈ [1..k] and

σ(`) = {w̄}k

stpL-Makesh

σ;ψ; makesh(v)
s(w)−→ σ;ψ; shw v ′ when ψJvKs(w) = v ′

stpL-Combsh

σ;ψ; combsh(v)
s(w)−→ σ;ψ; v ′ when ψJvKs(w) = shw v ′

Figure 2.13: Local stepping of single-threaded configurations: arrays and shares

45

creation (stpl-array) updates the store with a fresh array location `; the location maps to

a sequence of v1 copies of initial value v2. The fresh location is chosen (deterministically)

by the auxiliary function nextM(σ). Array selection (stpl-select,stpl-sel-err) projects

a value from an array location by its index. The side conditions of stpl-select enforce

that the index is within range. When out of bounds, stpl-sel-err applies instead, step-

ping the program text to error, indicating that a fatal (out of bounds error) has occurred.

We classify an error program as halted rather than stuck. As with (“successfully”) halted

programs that consist only of a return value, the error program is intended to lack any

applicable stepping rules. Array updating (stpl-update,stpl-upd-err) is similar to pro-

jection, except that it updates the store with a new value at one index (and the same values

at all other indices). As with projection, an out-of-bounds array index results in the error

program.

For secret sharing, the two rules stpl-makesh and stpl-combsh give the semantics

of makesh and combsh, respectively. Both rules require secure computation, indicated

by the mode above the transition arrow. In stpl-makesh, the argument value is closed

and “distributed” as a share value shw v ′ associated with th principal set w of the current

mode s(w). stpl-combsh performs the reverse operation, “combining” the share values

of each principal of w to recover the original value.

The remaining local stepping rules support wire bundles and their combinators. Fig-

ure 2.14 shows the wire bundle creation and projection. stpl-wire introduces a wire bun-

dle for given party set w, mapping each principal in the set to the argument value (closed

under the current environment). stpl-wcopy is a no-op: it yields its argument wire bundle.

stpl-parproj projects from wire bundles in a parallel mode when the projected principal

46

σ1;ψ1; e1
M−→ σ2;ψ2; e2 Local stepping: “Under σ1 and ψ1, e1 steps at mode M to σ2, ψ2 and e2”

stpL-Wire

σ;ψ; wirew (v)
M−→ σ;ψ; {|(ψJvKN)|}wiresw ′ where {|v |}wiresw1∪w2

= {|v |}wiresw1
++ {|v |}wiresw2

stpL-Wcopy

σ;ψ; wcopyw (v)
M−→ σ;ψ; v and {|v |}wires{p} = {p : v}, {|v |}wires· = ·,

ψJwK = w ′,M = m(),

m = s⇒ N = M and m = p⇒ N = p(w ′)

stpL-parProj

σ;ψ; v1[v2]
p({p})−→ σ;ψ; v ′ when ψJv2Kp({p}) = p and

ψJv1Kp({p}) = {p : v ′} ++ w ′

stpL-secProj

σ;ψ; v1[v2]
s({p}∪w)−→ σ;ψ; v ′ when ψJv2Ks({p}∪w) = p and

ψJv1Ks({p}∪w) = {p : v ′} ++ w ′

stpL-WireUn

σ;ψ; v1 ++ v2
M−→ σ;ψ; v ′1 ++ v ′2 when ψJv1KM = v ′1 and ψJv2KM = v ′2

Figure 2.14: Local stepping of single-threaded configurations: wires

47

σ1;ψ1; e1
M−→ σ2;ψ2; e2 Local stepping: “Under σ1 and ψ1, e1 steps at mode M to σ2, ψ2 and e2”

stpL-wapp1

σ;ψ; wappw (v1, v2)
M−→ σ;ψ; · when ψJwK = ·

stpL-wapp2

σ;ψ; wappw (v1, v2)
M−→ σ;ψ; e when ψJwK = {p} ∪ w ′,M = p(({p} ∪ w ′) ∪ w1),

ψJv1KM = v ′1 and ψJv2KM = v ′2

where e = let z1
p({p})

= let z2 = v ′1[p] in let z3 = v ′2[p] in z2 z3 in

let z4 = wappw ′(v ′1, v
′
2) in ((wire{p}(z1)) ++ z4)

Figure 2.15: Local stepping of single-threaded configurations: wapp

is present and alone. stpl-secproj projects from wire bundles in a secure mode when the

projected principal is present (alone or not).

We now turn to the wire combinators. The wire combinator rules follow a common

pattern. For each of the three combinators, there are two cases for the party set w that

indexes the combinator: either w is empty, or it consists of at least one principal. In

the empty cases, the combinators reduce according to their respective base cases. In the

inductive cases there is at least one principal p. In these cases, the combinators each

unfold once for p (we intentionally keep the order of this unfolding non-deterministic, so

all orderings of principals are permitted).

In Figure 2.15, rule stpl-wapp1 reduces to the empty wire bundle (base case), and

rule stpl-wapp2 unfolds a parallel-mode wire application for p({p}), creating let-bindings

that project the argument and function from the two wire bundle arguments, perform the

function application and recursively process the remaining principals; finally, the unfold-

48

σ1;ψ1; e1
M−→ σ2;ψ2; e2 Local stepping: “Under σ1 and ψ1, e1 steps at mode M to σ2, ψ2 and e2”

stpL-waps1

σ;ψ; wapsw (v1, v2)
M−→ σ;ψ; · when ψJwK = ·

stpL-waps2

σ;ψ; wapsw (v1, v2)
M−→ σ;ψ; e when ψJwK = {p} ∪ w ′,M = s(({p} ∪ w ′) ∪ w1),

ψJv1KM = v ′1 and ψJv2KM = v ′2

where e = let z1 = v ′1[p] in let z2 = v ′2 z1 in let z3 = wapsw ′(v ′1, v
′
2) in

((wire{p}(z2)) ++ z3)

Figure 2.16: Local stepping of single-threaded configurations: waps

ing concatenates the resulting wire bundle for the other principals with that of p.

In Figure 2.16, rule stpl-waps1 reduces to the empty wire bundle (base case), while

rule stpl-waps2 is similar to stpl-wapp2, except that the function being applied v2 is not

carried in a wire bundle (recall that secure blocks forbid functions within wire bundles).

Finally, Figure 2.17 shows the rules for the last wire combinator. Rule stpl-wfold1

reduces to the accumulator value v2 (base case), while stpl-wfold2 projects a value for p

from v1 and applies the folding function v3 to the current accumulator v2, the principal p,

the projected value. The result of this application is used as the new accumulator in the

remaining folding steps.

2.4.2 Multi-threaded semantics

Whereas the single-threaded semantics of λWy makes synchrony evident, in actu-

ality a Wysteria program is run as a distributed program involving distinct computing

49

σ1;ψ1; e1
M−→ σ2;ψ2; e2 Local stepping: “Under σ1 and ψ1, e1 steps at mode M to σ2, ψ2 and e2”

stpL-wfold1

σ;ψ; wfoldw (v1, v2, v3)
M−→ σ;ψ; v ′ when ψJwK = · and ψJv2KM = v ′

stpL-wfold2

σ;ψ; wfoldw (v1, v2, v3)
M−→ σ;ψ; e when ψJwK = {p} ∪ w ′,M = s(({p} ∪ w ′) ∪ w1),

ψJv1KM = v ′1, ψJv2KM = v ′2 and ψJv3KM = v ′3

where e = let z1 = v ′1[p] in let z2 = v ′3 v
′
2 p z1 in wfoldw ′(v ′1, z2, v

′
3)

Figure 2.17: Local stepping of single-threaded configurations: wfold

Protocol π ::= ε | π1 · π2 | A

Agent A ::= p {σ;κ;ψ; e} | s(w1
w2

) {σ;κ;ψ; e}

Figure 2.18: Wysteria protocol syntax

principals. We make this multi-agent view apparent in a multi-threaded semantics of λWy

which defines the notion of a protocol (Figure 2.18).

A protocol π consists of a (possibly empty) sequence of agents A. There are two

varieties of agents. First, principal agents are written p {σ;κ;ψ; e} and correspond to

the machine of a single principal p. Second, secure agents are written s(w1
w2

) {σ;κ;ψ; e}

and correspond to a secure block for principals w2, where w1 is the subset of these prin-

cipals still waiting for their result. Both varieties of agents consist of a store, stack, en-

vironment and expression – the same components as the single-threaded configurations

described above. We note that in the rules discussed below, we treat protocols as com-

mutative monoids, meaning that the order of composition does not matter, and that empty

protocols can be freely added and removed without changing the meaning.

50

π1 −→ π2 Protocol stepping: “Protocol π1 steps to π2”

stpP-Private

p {σ1;κ1;ψ1; e1} −→ p {σ2;κ2;ψ2; e2}

when p({p}){σ1;κ1;ψ1; e1} −→ p({p}){σ2;κ2;ψ2; e2}

StpP-Present

p

{
σ;κ;ψ; let x p(w)

= e1 in e2

}
−→ p {σ;κ1;ψ; e1}

when {p} ⊆ ψJwK and κ1 = κ :: 〈p({p});ψ; x .e2〉

StpP-Absent

p

{
σ;κ;ψ; let x m(w)

= e1 in e2

}
−→ p {σ;κ;ψ; e2} when {p} 6⊆ ψJwK

stpP-Frame

π1 · π2 −→ π′1 · π2 when π1 −→ π′1

StpP-SecStep

s(ww) {σ1;κ1;ψ1; e1} −→ s(ww) {σ2;κ2;ψ2; e2}

when s(w){σ1;κ1;ψ1; e1} −→ s(w){σ2;κ2;ψ2; e2}

StpP-SecBegin

ε −→ s(·w) {·; ·; ·; e}

StpP-SecEnd

s(·w2
) {σ; ·;ψ; v} −→ ε

StpP-SecEnter

s(w1
w2

) {σ; ·;ψ; e} · p {σ′;κ;ψ′; securew2
(e)} −→ s(

w1∪{p}
w2) {σ ◦ σ′; ·;ψ ◦ ψ′; e} · p {σ′;κ; ·; wait}

StpP-SecLeave

s(
w1∪{p}
w2) {σ′; ·;ψ; v} · p {σ;κ; ·; wait} −→ s(w1

w2
) {σ′; ·;ψ; v} · p {σ;κ; ·; v ′}

when slicep(ψJvKs(w2)) ; v ′

Figure 2.19: Multi-threaded target protocol semantics

51

Figure 2.19 defines the stepping judgment for protocols π1 −→ π2, read as pro-

tocol π1 steps to protocol π2. Rule stpp-private steps principal p’s computing agent in

mode p({p}) according to the single-threaded semantics. We note that this rule covers

nearly all parallel mode code, by virtue of parallel mode meaning “each principal does

the same thing in parallel.” However, single-threaded rules involving delegation effects,

stpc-delpar and stpc-secenter are different in multi-threaded semantics.

Parallel delegation reduces by case analysis on the agent’s principal p. Rule stpp-

present applies when p is a member of the delegated set. In that case, p simply reduces

by pushing e2 on the stack and continue to e1. When p is not a member of the delegated

set, rule stpp-absent entirely skips the first nested expression and continues with e2. The

type system ensures that in this case, p never uses x , and hence does not needs its binding

in the environment.

To see the effect of these rules, consider the following code, which is like the mil-

lionaires’ example we considered earlier.

e =

let x1
p({Alice})

= read () in

let x2
p({Bob})

= read () in

let x3 = (wire{Alice}(x1)) ++ (wire{Bob}(x2)) in

let x4
s({Alice,Bob})

= x3[Alice] > x3[Bob] in

x4

To start, both Alice and Bob start running the program (call it e) in protocol Alice {·; ·; ·; e}·

Bob {·; ·; ·; e}. Consider evaluation for Bob’s portion. The protocol will take a step ac-

cording to stpp-absent (via stpp-frame) since the first let binding is for Alice (so Bob is

not permitted to see the result). Rule stpp-present binds the x2 to whatever is read from

52

Bob’s console; suppose it is 5. Then, Bob will construct the wire bundle x3, where Alice’s

binding is absent and Bob’s binding x2 is 5.

At the same time, Alice will evaluate her portion of the protocol similarly, eventually

producing a wire bundle where her value for x1 is whatever was read in (6, say), and Bob’s

binding is absent. (Of course, up to this point each of the steps of one party might have

been interleaved with steps of the other.) The key is that elements of the joint protocol that

are private to one party are hidden from the others, in fact totally absent from others’ local

environments. Now, both are nearly poised to delegate to a secure block.

Secure delegation reduces in a series of phases that involve multi-agent coordination.

In the first phase, the principal agents involved in a secure block each reduce to a secure

expression securew(e), using stpc-delpsec via stpp-private. At any point during this

process, rule stpp-begin (non-deterministically) creates a secure agent with a matching

principal set w and expression e. After which, each principal agent can enter their input

into the secure computation via stpp-secenter, upon which they begin to wait, blocking

until the secure block completes. Their input takes the form of their current store σ and

environment ψ, which the rule combines with that of the secure agent. We explain the

combine operation below. Once all principals have entered their inputs into the secure

agent, the secure agent can step via stpp-secstep. The secure agent halts when its stack is

empty and its program is a value.

Once halted, the secure block’s principals can leave with the output value via stpp-

secleave. As values may refer to variables defined in the environment, the rule first closes

the value with the secure block’s environment, and then each party receives the slice of

the closed value that is relevant to him. We show selected slicing rules in Figure 2.20. The

53

slicep(v1) ; v2 Value slicing: “Value v1 sliced for p is v2”

slicep((v1, v2)) ; (v ′1, v
′
2) when slicep(vi) ; v ′i

slicep({p : v} ++ v1) ; {p : v}

slicep(v1 ++ v2) ; · when p 6∈ dom(v1 ++ v2)

slicep(ψ) ; ψ′ Environment slicing: “Environment ψ sliced for p is ψ′”

slicep(ψ{x 7→p(w) v}) ; slicep(ψ){x 7→p({p}) slicep(v)} , p ∈ w

slicep(ψ{x 7→p(w) v}) ; slicep(ψ) , p 6∈ w

slicep(ψ{x 7→ v}) ; slicep(ψ){x 7→ slicep(v)}

Figure 2.20: Slicing judgments (selected rules)

complete definition is in the Appendix A Figures A.7 and A.9. Intuitively, the slice of a

value is just a congruence, except in the case of wire bundle values, where each principal

of the bundle gets its own component; other principals get ·, the empty wire bundle. The

combine operation mentioned above is analogous to slice, but in the reverse direction – it

combines the values in a congruent way, but for wire bundles it concatenates them (see

Appendix A Figure A.10).

Returning to our example, we can see that Bob and Alice will step to secure{Alice,Bob}(e
′)

(with the result poised to be bound to x4 in both cases) where e ′ is x3[Alice] > x3[Bob].

At this point we can begin a secure block for e ′ using stpp-secbegin and both Bob and

Alice join up with it using stpp-secenter. This causes their environments to be merged,

with the important feature that for wire bundles, each party contributes his/her own value,

and as such x3 in the joined computation is bound to {Alice : 6} ++ {Bob : 5}. Now the

secure block performs this computation while Alice and Bob’s protocols wait. When the

result 1 (for “true”) is computed, it is passed to each party via stpp-secleave, along with

54

the sliced environment ψ′ (as such each party’s wire bundle now just contains his/her own

value). At this point each party steps to 1 as his final result.

2.5 Metatheory

We prove several meta-theoretical results for λWy that are relevant for mixed-mode

multi-party computations. Proofs for these results can be found in Appendix B. Antic-

ipating on Chapter 3, we have mechanized the proofs of Theorem 3 and Theorem 4 in

F? [37].

First, we show that well-typed Wysteria programs always make progress (and stay

well-typed). In particular, they never get stuck: they either complete with a final result, or

reach a well-defined error state (due to an out of bounds array access or update, but for no

other reason).

Theorem 1 (Progress). If Σ ` C1 : τ then either C1 halted or there exists configuration

C2 such that C1 −→ C2.

Theorem 2 (Preservation). If Σ1 ` C1 : τ and C1 −→ C2, then there exists Σ2 ⊇ Σ1 s.t.

Σ2 ` C2 : τ .

The premise Σ ` C1 : τ appears in both theorems and generalizes the notion of

well-typed expressions to that of well-typed configurations; it can be read as under store

typing Σ, configuration C1 has type τ . This definition involves giving a notion of well-

typed stores, stacks and environments, of which we give the full formal definitions in

Appendix A Figure A.12.

55

Next, turning to the relationship between the single- and multi-threaded semantics,

the following theorem shows that every transition in the single-threaded semantics admits

corresponding transitions in the multi-threaded semantics:

Theorem 3 (Sound forward simulation). Suppose that Σ ` C1 : τ and that C1 −→ C2.

Then there exist π1 and π2 such that π1 −→∗ π2 and slicew(Ci) ; πi (for i ∈ {1, 2}),

where w is the set of all principals.

The conclusion of the theorem uses the auxiliary slicing judgment to construct a

multi-threaded protocol from a (single-threaded) configuration (Appendix A Figure A.8).

Turning to the multi-threaded semantics, the following theorem states that the non-

determinism of the protocol semantics always resolves to the same outcome, i.e., given

any two pairs of protocol steps that take a protocol to two different configurations, there

always exists two more steps that bring these two intermediate states into a common final

state:

Theorem 4 (Confluence). Suppose that π1 −→ π2 and π1 −→ π3, then there exists π4

such that π2 −→ π4 and π3 −→ π4.

A corollary of confluence is that every terminating run of the (non-deterministic)

multi-threaded semantics yields the same result. We formalize this corollary (and mech-

anize its proof) in Chapter 3.

One of the most important consequences of these theorems is that principals run-

ning parallel to one another, and whose computations successfully terminate in the single-

threaded semantics, will be properly synchronized in the multi-threaded semantics; e.g.,

no principal will be stuck waiting for another one that will never arrive.

56

For correspondence in the other direction (multi- to single-threaded), we can prove

the following lemma.

Lemma 5 (Correspondence of final configurations). Let Σ ` C : τ and slicew(C) ; π,

where w is the set of all principals. If π −→∗ π′, where π′ is an error-free terminated

protocol, then there exists an error-free terminated C ′ s.t. C −→∗ C ′ and slicew(C ′) ; π′.

We would like to prove a stronger, backward simulation result that also holds for

non-terminating programs, but unfortunately it does not hold because of the possibility of

errors and divergence. For example, when computing let x M
= e1 in e2, the single-threaded

semantics could diverge or get an array access error in e1, and therefore may never get to

compute e2. However, in multi-threaded semantics, principals not in M are allowed to

make progress in e2. Thus, for those steps in the multi-threaded semantics, we cannot give

a corresponding source configuration. We plan to take up backward simulation (e.g., by

refining the semantics) as future work.

Security. As can be seen in Figure 2.19, the definition of the multi-threaded seman-

tics makes apparent that all inter-principal communication (and thus information leakage)

occurs via secure blocks. As such, all information flows between parties must occur via

secure blocks. These flows are made more apparent by Wysteria’s single-threaded se-

mantics, and are thus easier to understand. In Chapter 3, we enhance the Wysteria API

(and semantics) with observable traces that can be used to formally reason about the se-

curity properties.

57

GMW
Server

Z3

Public
Wysteria
program

Private I/O

Wysteria Client (A)

Client
B

Client
C

Client
D

Parser

Type
Checker

Interpreter

Figure 2.21: Overview of Wysteria system with four interacting clients.

2.6 Implementation

We have implemented a tool chain for Wysteria, including a front-end, a type

checker, and a run-time interpreter. Our implementation is written in OCaml, and is

roughly 6000 lines of code. Our implementation supports the core calculus features (in

gentler syntax) and also has named records and conditionals. To run a Wysteria program,

each party invokes the interpreter with the program file and his principal name. If the pro-

gram type checks it is interpreted. The interpreter dynamically generates boolean circuits

from secure blocks it encounters, running them using Choi et al.’s implementation [11] of

the Goldreich, Micali, and Wigderson (GMW) protocol [2], which provably simulates (in

the semi-honest setting) a trusted third party. Figure 2.21 gives a high-level overview of

Wysteria running for four clients (labeledA,B, C andD). The remainder of this section

discusses the implementation in detail.

58

2.6.1 Type checker

The Wysteria type checker uses standard techniques to turn the declarative type

rules presented earlier into an algorithm (e.g., inlining uses of subsumption to make the

typing rules syntax-directed). We use the Z3 SMT solver [40] to discharge the refinement

implications, encoding sets using Z3’s theory of arrays. Since Z3 cannot reason about

the cardinality of sets encoded this way, we add support for singl(ν) as an uninterpreted

logical function single that maps sets to booleans. Facts about this function are added to

Z3 in the rule t-princ.

2.6.2 Interpreter

When the interpreter reaches a secure block it compiles that block to a circuit in

several steps. First, it must convert the block to straight-line code. It does this by expand-

ing wfold and waps expressions (according to the now available principal sets), inlining

function calls, and selectively substituting in non-wire and non-share variables from its

environment. The type system ensures that, thanks to synchrony, each party will arrive at

the same result.

Next, the interpreter performs a type-directed translation to a boolean circuit, taking

place in two phases. In the first phase, it assigns a set of wire IDs to each value and

expression, where the number of wires depends on the corresponding type. The wires are

stitched together using high-level operators (e.g., ADD r1 r2 r3, where r1, r2, and r3 are

ranges of wire IDs). As usual, we generate circuits for both branches of case expressions

and feed their results to a multiplexer switched by the compiled guard expression’s output

59

wire. Records and wire bundles are simply an aggregation of their components. Wire IDs

are also assigned to the input and output variables of each principal—these are the free

wire and share variables that remained in the block after the first step.

In the second phase, each high-level operator (e.g. ADD) is translated to low-level

AND and XOR gates. Once again, the overall translation is assured to produce exactly

same circuit, including wire ID assignments, at each party. Each host’s interpreter also

translates its input values into bit representations. Once the circuit is complete it is written

to disk.

At this point, the interpreter signals a local server process originally forked when

the interpreter started. This server process implements the secure computation using the

GMW library. This process reads in the circuit from disk and coordinates with other

parties’ GMW servers using network sockets. At the end of the circuit execution, the server

dumps the final output to a file, and signals back the interpreter. The interpreter then reads

in the result, converts it to the internal representation, and carries on with parallel mode

execution (or terminates if complete).

2.6.3 Secure computation extensions and optimizations

The GMW library did not originally support secret shares, but they were easy to add.

We extended the circuit representation to designate particular wires as making shares (due

to makesh(v) expressions) and reconstituting shares (due to combsh(v) expressions). For

the former, we modified the library to dump the designated (random) wire value to disk—

already a share—and for the latter we do the reverse, directing the result into the circuit.

60

0	
0.05	
0.1	
0.15	
0.2	
0.25	
0.3	
0.35	
0.4	

2	 3	 4	 5	 6	

El
ap

se
d	
)m

e	
(s
ec
s)
	

Number	 of	 principals	

GPS	

2-‐Round	 bidding	

Auc8on	

Richest	

0	
0.5	
1	

1.5	
2	

2.5	
3	

3.5	
4	

64	 128	 256	 512	 1024	

El
ap

se
d	
)m

e	
(s
ec
s)
	

Number	 of	 elements	 per	 principal	

Secure-‐only	

Mixed-‐mode	

0	
2	
4	
6	
8	
10	
12	
14	
16	

64	 96	 128	

El
ap

se
d	
)m

e	
(s
ec
s)
	

Number	 of	 elements	 per	 principal	

Secure-‐only	
Mixed-‐mode,	 0.5	
Mixed-‐mode,	 0.75	
Mixed-‐mode,	 0.95	

Figure 2.22: (a) n-party MPC examples. (b) Secure median vs mixed-mode median. (c)

Secure PSI vs mixed-mode PSI for different density.

We also optimized the library’s Oblivious Transfer (OT) extension implementation for the

mixed-mode setting.

2.7 Evaluation

We conduct two sets of experiments to study Wysteria’s empirical performance.

First we measure the performance of several n-party example programs of our own design

and drawn from the literature. We find that these programs run relatively quickly and scale

well with the number of principals. Second, we reproduce two experiments from the liter-

ature that demonstrate the performance advantage of mixed-mode vs. monolithic secure

computation.5 Finally, we use Wysteria to program an MPC card dealing application.

2.7.1 Secure computations for n parties

We have implemented several n-party protocols as Wysteria functions that are

generic in the participating principal set (whose identity and size can both can vary). The
5We ran all our experiments on Mac OS X 10.9, with 2.8 GHz Intel Core Duo processor and 4GB

memory. To isolate the performance of Wysteria from that of I/O, all the principals run on the same host,

and network communication uses local TCP/IP sockets.

61

Richest protocol computes the richest principal, as described in Section 2.1. The GPS pro-

tocol computes, for each participating principal, the other principal that is nearest to their

location; everyone learns their nearest neighbor without knowing anyone’s exact location.

The Auction protocol computes the high bidder among a set of participating principals,

as well as the second-highest bid, which is revealed to everyone; only the auction holder

learns who is the winning bidder. We have also implemented the two-round bidding game

from Section 2.1 for multiple principals. Recall that this example crucially relies on Wys-

teria’s notion of secret shares, a high-level abstraction that existing MPC languages lack.

Figure 2.22(a) shows, for varying numbers of principals, the elapsed time to compute

these functions. We can see each of these computations is relatively fast and scales well

with increasing numbers of parties.

2.7.2 Mixed-mode secure computations

To investigate the performance advantages of mixed-mode secure computations, we

study two functions that mix modes: two-party median computes the median of two prin-

cipals’ elements, and two-party intersect is a PSI protocol that computes the intersection of

two principals’ elements. In both cases, we compare the mixed-mode version of the pro-

tocol with the secure-only versions, which like FairPlayMP, only use a single monolithic

secure block. We chose these protocols because they have been studied in past literature

on secure computation [5,7,33]; both protocols enjoy the property that by mixing modes,

certain computation steps in the secure-only version can either be off-loaded to local com-

putation (as in median) or avoided altogether (as in intersect), while providing the same

62

let m =sec({A,B})=
let x1 = (fst w1[A]) in let x2 = (snd w1[A]) in
let y1 = (fst w2[B]) in let y2 = (snd w2[B]) in
let b1 = x1 ≤ y1 in
let x3 = if b1 then x2 else x1 in
let y3 = if b1 then y1 else y2 in
let b2 = x3 ≤ y3 in
if b2 then x3 else y3

in m

Figure 2.23: Monolithic median example in Wysteria

privacy guarantees.

Mixed-mode median. Figure 2.23 shows a simplified version of median that accepts

two numbers from each party.

The participating principals A and B store their (sorted, distinct) input pairs in wire

bundles w1 and w2 such that w1 contains A and B’s smaller numbers and w2 contains their

larger ones. First, the protocol compares the smaller numbers. Depending on this compar-

ison, the protocol discards one input for each principal. Then, it compares the remaining

two numbers and the smaller one is chosen as the median (thus preferring the lower-ranked

element when there is an even number).

Under certain common assumptions [33], the mixed-mode version from Figure 2.24

equivalently computes median with the same security properties.

The key difference compared with the secure-only version is that the conditional

assignments on lines 3 and 4 need not be done securely. Rather, the protocol reveals b1

and b2, allowing each principal to perform these steps locally. As we show in Chapter 4,

this change still preserves the final knowledge profile of each party, and is thus equally

secure in the semi-honest setting [33].

63

let w1 =par(A,B)= (wire {A} x1) ++(wire {B} y1) in
let b1 =sec(A B)= (w1[A] ≤ w1[B]) in
let x3 =par(A)= if b1 then x2 else x1 in
let y3 =par(B)= if b1 then y1 else y2 in
let w2 =par(A,B)= (wire {A} x3) ++(wire {B} y3) in
let b2 =sec(A,B)= (w2[A] ≤ w2[B]) in
let m =sec(A,B)= if b2 then w2[A] else w2[B] in
m

Figure 2.24: Mixed-mode median example in Wysteria

Figure 2.22(b) compares the performance of mixed-mode median over secure-only

median for varying sizes of inputs (generalizing the program above).

We can see that the elapsed time for mixed-mode median remains comparatively

fixed, even as input sizes increase exponentially. By comparison, secure-only median

scales poorly with increasing input sizes. This performance difference illustrates the (some-

times dramatic) benefit of supporting mixed-mode computations.

Private set intersection. In intersect, two principals compute the intersection of their

private sets. The set sizes are assumed to be public knowledge. As with median, the intersect

protocol can be coded in two ways: a secure-only pairwise comparison protocol performs

n1×n2 comparisons inside the secure block which result from the straight-line expansion

of two nested loops. Huang et al. [7] propose two optimizations to this naive pairwise

comparison protocol. First, when a matching element is found, the inner loop can be short

circuited, avoiding its remaining iterations. Second, once an index in the inner loop is

known to have a match, it need not be compared in the rest of the computation. We refer

the reader to their paper for further explanation. We note that Wysteria allows program-

mers to easily express these optimizations in the language, using built-in primitives for

64

expressing parallel-mode loops and arrays.

Figure 2.22(c) compares the secure-only and mixed-mode versions of intersect. For

the mixed-mode version, we consider three different densities of matching elements: 0.5,

0.75, and 0.95 (where half, three-quarters, and 95% of the elements are held in common).

For the unoptimized version, these densities do not affect performance, since it always

executes all program paths, performing comparisons for every pair of input elements. As

can be seen in the figure, as the density of matching elements increases, the mixed-mode

version is far more performant, even for larger input sizes. By contrast, the optimization

fails to improve performance at lower densities, as the algorithm starts to exhibit quadratic-

time behavior (as in the secure-only version).

2.7.3 MPC program for card dealing

We have implemented a generic n-party card dealing MPC application using Wys-

teria. In the application, each party maintains secret shares of already dealt cards in an

array. Secret shares ensure that no single-party can make sense of the cards on their own,

yet, the parties can combine their secret shares and recover the dealt cards in secure com-

putations. To deal a new card, parties enter a secure computation with a random number

as each party’s input. In the computation, the parties compute the sum of their random

numbers modulo 52. The computation returns secret shares of this value, which is the

potential new card, to each party. To ensure the freshness of the new card, parties enter a

loop where in the i-th loop iteration they perform a secure computation to check that the

previously dealt i-th card is different from the new card. If the new card is indeed unique,

65

it is returned in clear to the party it was dealt for (and every party stores secret shares of

this card), if the card is not unique, they repeat the algorithm.

To gain more experience with the usability of Wysteria, we also built a user inter-

face for the card dealing application. Since Wysteria is a standalone DSL with no GUI

libraries etc., we had to use some other language for GUI programming. We chose the

Racket language [45] for this purpose. We designed the Wysteria card dealing program

and the Racket GUI to run as separate processes communicating using UNIX pipes. We

first added a sysop functionality to Wysteria for invoking generic shell commands (us-

ing the UNIX command line). When Wysteria application is started, it starts the Racket

GUI as another process, and sends it the local principal’s name. It then waits for a message

from the Racket GUI indicating that the user has initiated the card dealing. The Racket

GUI sends this message to the Wysteria application when the user presses a Deal button

on the GUI. Once every user has pressed the button on their local ends, their correspond-

ing Wysteria program instances then deal five cards each using MPC, and send their own

cards to the local Racket GUI process, which then renders the cards.6

In building this application, it became clear to us that to make Wysteria more us-

able, we needed to embed it in a rich host language, so that the application code other

than the core MPC part (GUI etc.) can be programmed in the host language, and Wys-

teria code can be more seamlessly integrated with it. The next chapter presents such an

embedding of Wysteria in a more general-purpose programming language.

6The Racket code for this application was programmed by Rebecca MacKenzie, an undergraduate visit-

ing student at the time.

66

2.8 Concluding remarks

This chapter has presented Wysteria, a new MPC DSL for writing mixed-mode

secure multi-party computations. Wysteria provides high-level abstractions with a con-

ceptual single-threaded semantics that can be used to reason about the correctness and

security properties of the Wysteria programs.

We formalized the Wysteria syntax and type system. We also formalized two op-

erational semantics for Wysteria, a single-threaded specification semantics and an actual

multi-threaded protocol semantics. We proved several theorems about Wysteria, par-

ticularly a type soundness theorem and a forward simulation theorem that establishes the

correspondence between the two Wysteria semantics.

We presented an implementation of Wysteria, and its evaluation on several bench-

marks, including a novel card dealing MPC application. Our experiments show that Wys-

teria abstractions are high-level, easy-to-use, and enable writing rich applications.

In the next chapter, we enhance Wysteria capabilities to (a) enable formal reason-

ing about the correctness and security properties of MPC programs, (b) provide a partially

verified toolchain, and (c) include more language features such as datatypes and libraries

for I/O, GUIs, etc.

67

Chapter 3: Wys?: A Verified Language Extension for Mixed-mode MPC

Wysteria significantly advances the state-of-the-art of the MPC DSLs. With its

formalized conceptual single-threaded semantics, it enables the programmers to write and

reason about MPCs like a single-threaded program, while the Wysteria metatheory guar-

antees that the reasoning also applies to the actual protocol runs. Yet, Wysteria has its

limitations. Since an MPC program computes on parties’ sensitive, private data, it is de-

sirable for the parties to be able to formally reason that the program computes the correct

function and is sufficiently privacy preserving, i.e. it does not reveal more than the in-

tended information about their inputs. Wysteria provides only lightweight, informal rea-

soning capabilities. Furthermore, reasoning about the source MPC programs only is not

enough. Ultimately, the programs are executed by the MPC toolchain, and security bugs in

the toolchain can compromise the privacy of parties’ inputs. Formal verification [24–31]

significantly reduces the occurrence of correctness and security bugs in the software. Still,

the Wysteria toolchain is not verified. Finally, as we pointed out at the end of Chapter 2,

Wysteria, being a standalone DSL, lacks the elements of a full-featured programming

language such as datatypes, GUI libraries and so on. We also note that none of the exist-

ing MPC toolchains provide the verification of source MPC programs and (even partially)

verified toolchain.

68

This chapter presents Wys?, which addresses these problems. Wys? is an embed-

ding of Wysteria in F? [37], a verification-oriented, full-featured programming language.

Wys? solves the problems above in the following manner.

First, Wys? programs are essentially F? programs written against an MPC library

that exports the Wysteria API. And so, programmers can formally verify their Wys?

MPC programs by using the F?’s type-and-effect system to specify the correctness and se-

curity properties, and F?’s semi-automated verification facilities to prove that the programs

satisfy those properties. As an example, for the optimized PSI program [7] and the opti-

mized median program [5], we have proved that the extra rounds of secure computations

and message exchanges do not reveal anything more than the final result.

Second, Wys? provides a partially verified interpreter to run the MPC programs.

We implement the custom Wysteria semantics (the actual multi-threaded protocol se-

mantics) by defining an interpreter in F? that operates over Wys? abstract syntax trees

(ASTs), defined as a datatype; these trees are produced by running the F? compiler (in a

special mode) on the extended source program. We formalize the two operational seman-

tics for Wysteria (Section 2.4) in F? and mechanize the proofs that the single-threaded

semantics is sound with respect to the distributed semantics, and that the distributed se-

mantics is correctly implemented by our interpreter. As a result, we have verified that the

properties we prove about the Wysteria-extended F? source programs hold for the multi-

party programs that actually run. We have not yet verified the circuit library that compiles

Wys? ASTs to circuits and run them using the GMW protocol [11]. Formal verification

of GMW is an open problem, and we leave it for future work.

Finally, Wys? embedding allows MPC programs to use, with no extra effort, stan-

69

dard language features (such as datatypes) and libraries (such as for I/O) directly from F?.

Wys? provides a Foreign Function Interface (FFI) that enables MPC programs to seam-

lessly integrate with the F? code. As a pleasant side-effect, the embedding also simplifies

the Wysteria language design substantially making it more standard and streamlined, we

point out the simplifications as we present Wys? details.

We first present a primer on F? (Section 3.1), followed by an overview of Wys? with

the help of some examples (Section 3.2). We then formalize Wys? and its (mechanically

verified) metatheory (Section 3.3). Section 3.4 and Section 3.5 present implementation

and evaluation of Wys?.

3.1 F? primer

F? is an ML-like functional language, but with a more expressive type system based

on dependent refinement types and monadic effects. Programmers can use F? types to ex-

press precise and compact specifications, including the correctness and security properties

of their programs. The F? type checker then attempts to prove that the programs meet their

specifications by generating proof obligations (using a weakest precondition calculus) and

discharging them with the help of an SMT solver (e.g. Z3 [40]).

F? supports the verification of effectful code (e.g. code that uses State and Ex-

ceptions) by having a monadic type system where each monad is indexed with pre- and

post-conditions. F? has primitive support for commonly used effects such as State and

Exception, but the programmer can also define domain-specific effects and use them for

verifying domain-specific programs.

70

For example, to verify stateful code, F? provides an ST monad. The ST monad is

indexed with a return type – the return type of an ST computation, a pre-condition – a

predicate on the input state, and a post-condition – a predicate on the input state, the return

value, and the output state. Programmers can annotate stateful computations with types

in the ST monad, and the F? type checker can type-check the specifications. Consider a

function that increments the contents of an int reference:

let incr r = r := !r + 1

A possible type for the incr function is:

val incr: r:ref int→ST unit (fun s0→True) (fun s0 u s1→ sel s0 r ≥ 0 =⇒ sel s1 r ≥ 0)

The type says that the incr function takes a ref int as an argument and performs a state-

ful computation, we can see the ST monad indexed with the return type of the computation

(unit) and a pre- and post-condition. The function fun s0→True is the (trivial) pre-condition

predicate on the input state s0 (fun x→ e defines an anonymous function with argument x

and body e). (fun s0 u s1→ sel s0 r ≥ 0 =⇒ sel s1 r ≥ 0) is the post-condition predicate on the

input state s0, the return value u, and the final state s1. The specification states that if in the

input state, reference r contains a non-negative integer (sel s0 r ≥ 0), then in the final state

also r contains a non-negative integer (sel s1 r ≥ 0).

This specification is quite weak. Neither does it capture the precise relation between

the contents of r before and after the incr function, nor does it capture the fact that incr does

not change any other location in the input state. Indeed, we can give incr a stronger type

that captures these properties:

val incr: r:ref int→ST unit (fun s0→True) (fun s0 u s1→ s1 = upd s0 r (sel s0 r + 1))

71

Figure 3.1: Architecture of an Wys? deployment

This specification says that the output state s1 is same as the input state s0, except at

location r where the content of r is incremented by 1.

For both the specifications above, the F? type checker generates a verification con-

dition as a proof obligation, and proves it using the SMT solver.

3.2 Verified programming in Wys?

We now present an overview of Wys?. Wys? inherits the basic programming model

from Wysteria (Chapter 2). We will illustrate it using an example. Consider a dating

application that enables its users to compute their common interests without revealing all

their private interests to one another. This is an instance of the private set intersection (PSI)

problem. We illustrate the main concepts of Wys? by showing, in several stages, how to

program, optimize, verify and deploy this application—Figure 3.1 provides an overview.

72

3.2.1 Secure computations with as sec

Similar to Wysteria, in Wys?, an MPC is written as a single specification which

executes in one of two computation modes. The sec mode specifies a secure computation to

be carried out among multiple parties. Here is the private set intersection example written

in Wys?:

let psi a b input a input b =
as sec {a,b} (fun ()→

let r = List.intersect (reveal input a) (reveal input b)
give a r ++give b r)

The four arguments to psi are, respectively, principal identifiers for Alice and Bob,

and Alice and Bob’s inputs, expressed as lists. The as sec ps f construct indicates that thunk

f should be run in sec mode. Essentially as sec construct in Wys? plays the role of secure

delegation from Wysteria. In this mode, the code may jointly access the secrets of the

principals ps. In this case, we jointly intersect input a and input b, the inputs of a and b, and

then return the same result r to both a and b.

Outside of sec mode, Alice would not be permitted to see Bob’s input, and vice versa,

but inside both can be made visible using the reveal coercion. Note that we did not have

such a coercion in Wysteria, instead Wysteria type system prohibited using the private

inputs from other parties using a custom typing judgment form that tracked the access

mode of variables (Figure 2.3). F?, being a general-purpose language, has a more standard

typing judgment. Therefore, Wys? uses explicit coercions to enforce the access control.

Specifically, private values of parties are sealed, and need to be explicitly revealed before

use. During reveal, the Wys? API checks the current mode to ensure that it is allowed to

73

reveal the value. We provide more details on sealed values later in the section.

Coming back to the example, finally the code constructs a wire bundle, associating

a result for each principal (which in this case is the same)—give p v builds a singleton wire

bundle p 7→ v and ++ concatenates disjoint wire bundles. Again, the concept of wire

bundles is same as that in Wysteria.

Running this code requires the following steps. First, we run the F? compiler in a

special mode that extracts the above code, psi.fst, into the Wys? AST as a data structure in

psi.ml. Wys? has only a few constructs of its own, like as sec (the full syntax is in Figure 3.5

in Section 3.3), and these are extracted to Wys?-specific nodes. The rest of a program’s

code is extracted into FFI nodes that indicate the use of, or calls into, functionality pro-

vided by F? itself.

The next step is for each party, Alice and Bob, to run the extracted program using

the Wys? interpreter. This interpreter is written in F? and provably implements a deep

embedding of the F? semantics, also specified in F? (shown in Figures 3.7, 3.9, and 3.10

in Section 3.3). This interpreter is extracted to OCaml code by a standard F? process.

When each party reaches as sec ps f, the interpreter’s back-end compiles f, on-the-fly, for

particular values of the secrets in f’s environment, to a boolean circuit. First-order, loop-

free code can be compiled to a circuit; Wys? provides specialized support for several

common combinators (e.g., List.mem, List.nth etc.).

The circuit is handed to the GMW library, that we used in Chapter 2, by Choi et

al. [11]. Running the protocol at each party starts by confirming that they wish to run the

same circuit, and then proceeds by generating (XOR-based) secret shares [46] for each

party’s secret inputs. Running the GMW protocol involves evaluating the boolean circuit

74

for f over the secret shares, involving communication between the parties for each AND-

gate.

One obvious question is how both parties are able to get this process off the ground,

running this program of four inputs, when only three of the inputs are known to them (the

principals and their own input). In Wys?, values specific to each principal are sealed with

the principal’s name (which appears in the sealed container’s type). As such, the types

of input a and input b are, respectively, list (sealed {a} int) and list (sealed {b} int). When the

program is run on Alice’s host, the former will be a list of n of Alice’s values, whereas

the latter will be a list of n garbage values (which we denote as •). The reverse will be

true on Bob’s host. When the circuit is constructed, each principal links their non-garbage

values to the relevant input wires of the circuit. Likewise, they populate a local copy of

the output wire bundle with what is returned to them, with other principals’ components

absent from the wire bundle.

We would like MPC’s like psi to be called from normal F? programs. For example,

we would like the logic for a dating application, which involves reading inputs, displaying

results, etc. to be able to call into psi to compute common interests. To achieve this, Wys?

provides a way to compute a “single-party projection” of multi-party functions, i.e., a

version of psi that can be called with just a single party’s inputs. The other party’s inputs

are filled in with sealed garbage values, as described above. Calling this function from F?

code also kicks off the Wys? interpreter, so that it can run psi as described above. When

the interpreter completes, the result is returned and the F? program can continue. We note

that our Wysteria DSL implementation in Chapter 2 was standalone and lacked elements

of a full-featured programming language, such as datatypes and I/O libraries.

75

3.2.2 Optimizing PSI with as par

Although psi gets the job done, it turns out to be inefficient (as we have already seen

in Section 2.7). Better implementations of PSI involve performing a mixed-mode compu-

tation, where each participant evaluates some local computations in parallel (e.g., iterating

over the elements of their sets) interleaved with small amounts of jointly evaluated, cryp-

tographically secure computations. Wys?’s second computation mode, called par mode,

supports such mixed-mode computation. In particular, the construct as par ps f states that

each principal in ps should locally execute the thunk f, simultaneously (any principal not in

the set ps simply skips the expression). Within f, principals may engage in secure compu-

tations via as sec. Essentially as par construct in Wys? plays the role of parallel delegation

in Wysteria.

Figure 3.2 shows the optimized version of PSI [7], which uses as par. The function

psi opt (line 12) begins by using as par involving Alice and Bob. In the provided thunk, each

principal calls for each alice la lb, which in turn calls check each bob a lb, for each element a

of Alice’s list la. Secure computation occurs at the use of as sec at line 8. Within the

circuit, Alice and Bob securely compare their values ax and bx, and gather a list (list bool).

There is one outer list for each of Alice’s elements, the ith inner list contains comparisons

of Alice’s ith value with some of Bob’s values—rather than comparing each of Alice’s

elements with all of Bob’s, the code is optimized (as described below) to omit redundant

comparisons. At line 13, both parties build a matrix of comparisons from the boolean

lists. Alice inspects the rows of the matrix (line 14) to determine which of her elements

are in the intersection; Bob inspects the columns (line 15); and the joint function gives a

76

1 let rec for each alice a b la lb =
2 if la=[] then []
3 else let lb, r = check each bob a b (List.hd la) lb in
4 r::for each alice a b (List.tl la) lb
5 and check each bob a b ax lb =
6 if lb=[] then [], []
7 else let bx = List.hd lb in
8 let r = as sec {a,b} (fun ()→ reveal ax = reveal bx) in
9 if r then List.tl lb, [r]

10 else let lb’, r’ = check each bob a b ax (List.tl lb) in
11 bx::lb’, r::r’
12 let psi opt a b la lb = as par {a,b} (fun ()→
13 let bs = build matrix (for each alice la lb) in
14 let ia = as par {a} (fun ()→ filteri (contains true ◦ row bs) la) in
15 let ib = as par {b} (fun ()→ filteri (contains true ◦ col bs) lb) in
16 give a ia ++give b ib)

Figure 3.2: Optimized PSI example in Wys?

result to each principal (line 16).

The optimizations are at line 9. Once we detect that element ax is in the intersec-

tion, we return immediately instead of comparing ax against the remaining elements of lb.

Furthermore, we remove bx from lb, excluding it from any future comparisons with other

elements of Alice’s set la. Since la and lb are representations of sets (no repeats), all the

excluded comparisons are guaranteed to be false.

One might wonder whether we could have programmed most of this code normal

F?, relying on just sec mode for the circuit evaluation. However, recalling that our goal

is to formally reason about the code and prove it correct and secure, par mode provides

significant benefits. In particular, the SIMD model provided by Wys? (and Wysteria)

enables us to capture many invariants for free. For example, proving the correctness of

psi opt requires reasoning that both participants iterate their loops in lock step—Wys? as-

sures this by construction. Besides, the code would be harder to write (and read) if it were

77

split across multiple functions or files. As a general guideline, we use F? for code written

from the view of a single principal, and Wys? when programming for all principals at

once, and rely on the FFI to mediate between the two.

3.2.3 Embedding a type system for Wys? in F?

Using the abstractions provided by Wysteria, designing various high-level, multi-

party computation protocols is relatively easy. However, before deploying such protocols,

three important questions arise.

1. Is the protocol realizable? For example, does a computation that is claimed to be

executed only by some principals ps (e.g., using an as par ps or an as sec ps) only ever

access data belonging to ps?

2. Does the protocol correctly implement the desired functionality? For example, does

it correctly compute the intersection of Alice and Bob’s sets?

3. Is the protocol secure? For example, do the optimizations of the previous section that

omit certain comparisons inadvertently also release information besides the final

answer?

While Wysteria type system addresses the first of the three questions, it provides

only on-paper reasoning capabilities for the next two. By embedding Wysteria in F? and

leveraging its type system, we address each of these three questions.

Our strategy is to make use of F?’s extensible, monadic dependent type-and-effect

system to define a new indexed monad (called Wys) and use it to describe precise trace prop-

erties of Wysteria multi-party computations. Additionally, we make use of an abstract

78

type, sealed ps t, representing a value accessible only to the principals in ps. Combining the

Wys monad with the sealed type, we encode a form of information-flow control to ensure

that protocols are realizable.

The Wys monad provides several features. First, all DSL code is typed in this monad,

encapsulating it from the rest of F?. Within the monad, computations and their specifica-

tions can make use of two kinds of ghost state: modes and traces. The mode of a compu-

tation indicates whether the computation is running in an as par or in an as sec context. The

trace of a computation records the sequence and nesting structure of messages exchanged

between parties as they jointly execute as sec expressions—the result of a computation and

its trace constitute its observable behavior. The Wys monad is, in essence, the product of

a reader monad on modes and a writer monad on traces.

We note that while Wysteria (Chapter 2) had the same two computation modes, it

lacked the formal notion of traces.

Formally, we define the following types of modes and traces. A mode Mode m ps is

pair of a mode tag (either Par or Sec) and a set of principals ps. A trace is a forest of trace

element (telt) trees. The leaves of the trees record messages TMsg x that are received as the

result of executing an as sec block. The tree structure represented by the TScope ps t nodes

record the set of principals that are able to observe the messages in the trace t.

type mtag = Par | Sec
type mode = Mode: m:mtag→ ps:prins→mode
type telt =
| TMsg : x:α→ telt
| TScope: ps:prins→ t:list telt→ telt

type trace = list telt

Every Wys? computation e has a monadic computation type Wys t pre post (similar

79

to the ST monad from Section 3.1). The type indicates that e is in the Wys monad (so it

may perform multi-party computations); t is its result type; pre is a pre-condition on the

mode in which e may be executed; and post is a post-condition relating the computation’s

mode, its result value, and its trace of observable events. When run in a context with mode

m satisfying the pre-condition predicate pre m, e may send and receive message according

to some trace tr, and if and when it returns, the result is a t-typed value v validating the

post-condition predicate post m v tr. The style of indexing a monad with a computation’s

pre- and post-condition is a standard technique [37,47,48]—we focus on the specifications

of combinators specific to Wys?.

We now describe some of the Wysteria-specific combinators in Wys?, and how we

give them types in F?. The complete API is shown in Figure 3.4.

Defining as sec in Wys?.

1 val as sec: ps:prins→ f:(unit→Wys a pre post)→Wys a
2 (requires (fun m→m=Mode Par ps ∧ pre (Mode Sec ps)))
3 (ensures (fun m r tr→ tr=[TMsg r] ∧ post (Mode Sec ps) r [])))

The type of as sec captures the Wysteria type system invariants for secure delega-

tion, and provides post-condition invariants about the computation results and traces. It

is dependent on the first parameter, ps. Its second argument f is the thunk to be evaluated

in as sec mode. The result’s computation type has the form Wys a (requires φ) (ensures ψ), for

some pre-condition and post-condition predicates φ andψ, respectively. The free variables

in the type (a, pre and post) are implicitly universally quantified (at the front); we use the

requires and ensures keywords for readability—they are not semantically significant.

The pre-condition of as sec is a predicate on the mode m of the computation in whose

context as sec ps f is called. For all the ps to jointly execute f, we require all of them to transi-

80

tion to perform the as sec ps f call simultaneously, i.e., the current mode must be Mode Par ps.

We also require the pre-condition pre of f to be valid once the mode has transitioned to

Mode Sec ps—line 2 says just this.

The post-condition of as sec is a predicate relating the initial mode m, the result r:a,

and the trace tr of the computation. Line 3 states that the trace of a secure computation

as sec ps f is just a singleton [TMsg r], reflecting that its execution reveals only result r.1 It

also ensures that the result r is related to the mode in which f is run (Mode Sec ps) and the

empty trace [] (since f has no observables) according to post, the post-condition of f.

A limitation of our current embedding is that it does not enforce invariants related

to the first-order inputs, etc., that help ensure that at runtime the secure computation can

be successfully compiled to a boolean circuit (Section 2.3). Instead, Wys? toolchain gives

a runtime error.

Access control with sealed types. To ensure that a program never relies on computing

with data that it cannot access, we type secrets belonging to a set of principals ps using the

type sealed ps t. This is an abstract type manipulated only according to the interface shown

in Figure 3.3, a variation on a previous, translucent abstractions pattern used in F? [37].

The type sealed ps t encapsulates a t value. To extract the underlying value, on can

either call unseal or reveal. The unseal function is marked Ghost—meaning that it can only

be called in specifications. In their types, the first parameter ps is marked as an implicit

parameter, using the # notation. On the other hand, reveal can be called in concrete Wys-

teria programs, although with constraints on the mode. Its precondition says that when

executing in Mode Par ps’, all current participants must be listed in the seal, i.e., ps’ ⊆ ps.
1This is the “ideal functionality” ensured by the backend, e.g., GMW.

81

type sealed : prins→Type→Type

val unseal: #ps:prins→ sealed ps α→Ghost α

val seal: ps:prins→ x:α→Wys (sealed ps α)
(requires (fun m→ ps ⊆ m.ps))
(ensures (fun m r tr→ x=unseal r ∧ tr=[]))

val reveal: #ps:prins→ x:sealed ps α→Wys α
(requires (fun m→m.mode=Par =⇒ m.ps ⊆ ps ∧

m.mode=Sec =⇒ m.ps ∩ ps 6= ∅))
(ensures (fun m r tr→ r=unseal a ∧ tr=[]))

Figure 3.3: Access control with sealed types

However, when executing in Mode Sec ps’, only a subset of current participants is required:

ps’ ∩ ps 6= ∅. This is because the secure computation is executed for all of ps’, so it can

access any of their individual data. Creating sealed values using seal is straightforward.

In both cases, the post-condition says that there are no observable events and that

the returned value is the underlying value in the seal (produced by unseal). Recall that

Wysteria does not have corresponding constructs. There access control is implemented

using mode annotations in type environment bindings (Section 2.3).

We show the complete Wys? API in Figure 3.4 for reference. Wire bundle rules will

be explained in the context of single-threaded operational semantics in Section 3.3.3.

3.2.4 Correctness and security verification

Using the Wys monad and the sealed type, we can write down precise types for our psi

program, proving various useful properties. We discuss the statements of the main lemmas

we prove and the proof structure. By programming the protocols using the high-level

abstractions provided by Wys?, our proofs are relatively straightforward. In particular, we

82

val as sec: ps:prins→ f:(unit→Wys a pre post)→Wys a
(requires (fun m→m=Mode Par ps ∧ pre (Mode Sec ps)))
(ensures (fun m r tr→ tr=[TMsg r] ∧ post (Mode Sec ps) r [])))

val as par: ps:prins→ (unit→Wys a pre post)→Wys (sealed ps a)
(requires (fun m→m.mode=Par ∧ ps ⊆ m.ps ∧ can seal ps a ∧ pre (Mode Par ps)))
(ensures (fun m r tr→∃t. tr=[TScope ps t] ∧ post (Mode Par ps) (unseal r) t)))

type sealed : prins→Type→Type

val unseal: #ps:prins→ sealed ps α→Ghost α

val seal: ps:prins→ x:α→Wys (sealed ps α)
(requires (fun m→ ps ⊆ m.ps))
(ensures (fun m r tr→ x=unseal r ∧ tr=[]))

val reveal: #ps:prins→ x:sealed ps α→Wys α
(requires (fun m→m.mode=Par =⇒ m.ps ⊆ ps ∧ m.mode=Sec =⇒ m.ps ∩ ps 6= ∅))
(ensures (fun m r tr→ r=unseal a ∧ tr=[]))

type wire : prins→Type→Type

(∗ we omit the signatures and axioms for ghost select, contains, join, and const wire functions on wires ∗)

(∗ type eprins is also a set of principals, but unlike prins, it admits the empty set ∗)

val mkwire p: #ps1:prins→ eps:eprins→ x:sealed α ps1→Wys (wire α eps)
(requires (fun m→m.mode=Par ∧ eps ⊆ ps1 ∧ eps ⊆ m.ps))
(ensures (fun m r tr→ r = const wire eps (unseal x) ∧ tr = []))

val mkwire s: eps:eprins→ x:α→Wys (wire α eps)
(requires (fun m→m.mode=Sec ∧ eps ⊆ m.ps))
(ensures (fun m r tr→ r = const wire eps x ∧ tr = []))

val project: #eps:eprins→ p:prin→ x:wire α eps{contains p x} →Wys α
(requires (fun m→m.mode=Par =⇒ m.ps = singleton p ∧ m.mode=Sec =⇒ mem p m.ps))
(ensures (fun m r tr→ r = select p x ∧ tr = []))

val concat: #epsx:eprins→ #epsy:eprins→ x:wire α epsx→ y:wire α epsy →Wys (wire α (epsx ∪ epsy))
(requires (fun m→ disjoint (dom x) (dom y)))
(ensures (fun m r tr→ r = join x y ∧ tr = [])

Figure 3.4: Wys? API in F?

83

rely heavily on the view that both parties execute (different fragments of) the same code.

In contrast, reasoning directly against the low-level message passing semantics would be

much more unwieldy. In Section 3.3, by formalizing the connection between the high- and

low-level semantics, we justify our source-level reasoning.

We present the structure of the security and correctness proof for psi opt by showing

the top-level specification for psi opt:

val psi opt : la:list (sealed Alice int)→ lb:list (sealed Bob int)
→Wys (wire {Alice,Bob} (list int))

(requires (fun m→m=Mode Par {Alice, Bob} ∧
no dups la ∧ no dups lb))

(ensures (fun m r tr→ let ia = as set (Wire.get r Alice) in
let ib = as set (Wire.get r Bob) in
ia = ib ∧ ia = (as set la ∩ as set lb) ∧
tr = psi opt trace la lb))

The signature above establishes that when Alice and Bob simultaneously execute

psi opt (they start together in Par mode), with lists la and lb containing their secrets (without

any duplicates), then if and when the protocol terminates, they both obtain that same re-

sults ia and ib corresponding to the intersection of their sets, i.e., the protocol is functionally

correct.

To prove properties beyond functional correctness, we also prove that the trace of

observable events from a run of psi la lb is described by the function psi opt trace la lb. This is

a purely specificational function that, in effect, records each of the boolean results of every

as sec comparison performed during a run of psi—it has the same structure as for each alice

and check each bob.

Given a full characterization of the observable behavior of psi opt trace la lb in terms

of its inputs, we can prove optimizations correct using relational reasoning [49] and we

84

can also prove security hyperproperties [50] by relating traces from multiple runs of the

protocol.

Our goal is to prove a noninterference with delimited release [51] property for psi opt.

Our attacker model is the “honest-but-curious” model where the attackers are the partici-

pants in the protocol themselves. That is, we assume that the participants in the protocol

play their roles faithfully, but they are motivated to deduce as much as they can about the

other participants’ secrets by observing the protocol. We do not aim to prove security

properties against a third-party network adversary.

For psi, from the perspective of Alice as the attacker, we aim prove that for two runs

of the protocol in which Alice’s input is constant but Bob’s varies, Alice learns no more by

observing the the protocol trace than what she is allowed to. Covering Bob’s perspective

symmetrically, we show that in two runs of psi la0 lb0 and psi la1 lb1 that satisfy formula Ψ

below, the traces observed by Alice and Bob are indistinguishable, up to permutation,

where la0, la1, lb0, lb1 have type lset int, the type of integer sets represented as lists.

Ψ la0 la1 lb0 lb1 = intersect la0 lb0 = intersect la1 lb1 ∧
length la0 = length la1 ∧ length lb0 = length lb1

In other words, Alice and Bob learns no more than the intersection of their sets and

the size of the other’s set; Ψ is the predicate that delimits the information released by the

protocol. As far as we are aware, this is the first formal proof of correctness and security

of Huang et al.’s optimized, private set-intersection protocol.2

The proof is in the style of a step-wise refinement, via psi, an inefficient variant
2 In carrying out this proof, it becomes evident that Alice and Bob learn the size of each other’s sets.

One can compose psi opt with other protocols to partially hide the size—Wys? makes it easy to compose

protocols simply by composing their functions.

85

of the psi opt program. Running psi la lb always involves doing exactly length la ∗ length lb

comparisons in two nested loops. We prove the following relational security property for

psi, relating the traces trace psi la0 lb0 and trace psi la1 lb1—the formal statement of the lemma

we prove in F? is shown below.

val psi is secure: la0: → lb0: → la1: → lb1: → Lemma
(requires (Ψ la0 la1 lb0 lb1))
(ensures (permutation (trace psi la0 lb0) (trace psi la1 lb1)))

We reason about the traces of psi only up to permutation. Given that Alice has no

prior knowledge of the choice of representation of Bob’s set (Bob can shuffle his list), the

traces Alice observes are equivalent up to permutation—we can formalize this observation

using a probabilistic, relational variant of F? [52], but have yet to do so.

As a next step, we prove that optimizing psi to psi opt is secure by showing that there

exists a function f, such that for any trace tr=trace psi la lb, the trace of psi opt, trace psi opt la lb,

can be computed by f (length la) tr. In other words, the trace produced psi opt la lb can be

computed using a function of information already available to Alice (or Bob) when she

(or he) observes a run of the secure, unoptimized version psi la lb. As such, the optimiza-

tions do not reveal further information.

3.2.5 Relating security proofs to cryptographic security

The security proofs in Wys? correspond to the idealized model, where the parties

directly see only the final output of a secure computation. This is evident from the specifi-

cation of the as sec API – only the final output is added to the trace of observable events. To

relate the proof to the actual implementation, we assume that the underlying cryptographic

protocol (e.g. GMW in our implementation) is secure, and then appeal to the composition

86

theorem by Canetti [53] to establish that the program securely realizes the mixed-mode

(also known as reactive) functionality given by the specification.

3.3 Wys? formalization

In the previous section, we presented examples of verifying properties about Wys?

programs using F?’s logic. However, these programs are not executed using the F? (single-

threaded) semantics; instead they have a distributed semantics carried out by multiple

parties. So, how do the properties that we verify using F? carry over to the actual runs?

In this section, we present the metatheory that answers this question. First, we for-

malize the Wys? single-threaded (ST) semantics, arguing that it faithfully realizes the F?

semantics, including the Wys? API presented in Section 3.2. Next, we formalize the dis-

tributed (DS) semantics that the multiple parties use to run Wys? programs. Our theorems

establish the correspondence between the two semantics, thereby ensuring that the prop-

erties that we verify using F? carry over to the actual protocol runs. We have mechanized

all the metatheory presented in this section in F?.

3.3.1 Comparison with Wysteria formalization

Many of the Wys? constructs are similar to Wysteria. As we have already seen,

as par and as sec in Wys? correspond to the parallel and secure delegations from Wysteria.

However, Wys? considerably simplifies the language design. To enforce access control,

as we have already seen, Wys? uses sealed values, an abstraction that is not present in

Wysteria. Since sealed values abstraction provides explicit access control, instead of

87

using non-standard runtime environments that carry a mode annotation with each vari-

able to value mapping (Section 2.4.1), Wys? uses standard environments with no mode

annotations. Wys? also introduces the formal notion of traces.

In Wys?, we have also considerably simplified the operational semantics rules re-

lated to the secure blocks entry and exit. Recall that in Wysteria, we modeled a two-phase

secure blocks entry and exit (Section 2.4.2). In Wys?, we instead model a single-phase

entry and exit, where each party simultaneously steps in and out of the secure block. We

also omit the wire combinators waps, wapp, and wfold in Wys?, and use general fix-points

instead.

In terms of metatheory, we have mechanically verified the Wys? metatheory (se-

mantics correspondence theorem, and a new theorem that relates the terminating runs in

the single-threaded semantics to terminating runs in the protocol semantics). In contrast,

Wysteria metatheoretic proofs were only “on-paper”.

Currently Wys? has certain limitations also. In terms of compilation to circuits, as

mentioned earlier, Wys? type system does not check prerequisite conditions for successful

circuit compilation (e.g. no private function inputs). Wys? circuit library also does not

perform general loop unrolling. In metatheory, Wys? does not provide a separate type

soundness theorem (as Wysteria did). Doing so would require us to formalize the F?

type system and operational semantics. We plan to pursue these in future (also see Sec-

tion 3.3.3).

88

Principal p Principal set s FFI constant c, f

Constant c ::= p | s | () | true | false | c

Expression e ::= as par e1 e2 | as sec e1 e2 | seal e1 e2 | reveal e | ffi f ē

| mkwire e1 e2 | project e1 e2 | concat e1 e2

| c | x | let x = e1 in e2 | λx.e | e1 e2 | fix f.λx.e | if e1 then e2 else e3

Figure 3.5: Wys? syntax

3.3.2 Syntax

Figure 3.5 shows the complete syntax of Wys?. Principal and principal sets are

first-class values, and are denoted by p and s respectively. Constants in the language also

include () (unit), booleans, and FFI constants c. Expressions e include the regular forms

for functions, applications, let bindings, etc. and the Wys?-specific constructs. Among

the ones that we have not seen in Section 3.2, expression mkwire e1 e2 creates a wire bundle

from principals in e1 (which is a principal set) to the value computed by e2. project e1 e2

projects the value of principal e1 from the wire bundle e2, and concat e1 e2 concatenates

the two wire bundles.

Host language (i.e., F?) constructs are also part of the syntax of Wys?, including

constants c include strings, integers, lists, tuples, etc. Likewise, host language function-

s/primitives can be called from Wys?—ffi f ē is the invocation of a host-language function

f with arguments ē. The FFI confers two benefits. First, it simplifies the core language

while still allowing full consideration of security relevant properties. Second, it helps the

language scale by incorporating many of the standard features, libraries, etc. from the host

language.

89

Wire m ::= · | m[p 7→ v]

Value v ::= p | s | () | true | false | sealed s v | m | v | (L, λx.e) | (L, fix f.λx.e) | •

Mode M ::= Par s | Sec s

Context E ::= 〈〉 | as par 〈〉 e | as par v 〈〉 | . . .

Frame F ::= (M,L,E, T)

Stack X ::= · | F,X

Environment L ::= · | L[x 7→ v]

Trace element t ::= TMsg v | TScope s T

Trace T ::= · | t, T

Configuration C ::= M ;X;L;T ; e

Par component P ::= · | P [p 7→ C]

Sec component S ::= · | S[s 7→ C]

Protocol π ::= P ;S

Figure 3.6: Runtime configuration syntax

90

S-let

X1 = (M ;L; let x = 〈〉 in e2;T), X

M ;X;L;T ; let x = e1 in e2 →M ;X1;L; ·; e1

S-app

M ;X;L;T ; (L1, λx.e) v →M ;X;L1[x 7→ v];T ; e

S-aspar
M = Par s1 s ⊆ s1 X1 = (M ;L; seal s 〈〉;T), X

M ;X;L;T ; as par s (L1, λx.e)→ Par s;X1;L1[x 7→ ()]; ·; e

S-asparret
can seal s v X = (M1;L1; seal s 〈〉;T1), X1 T2 = snoc T1 (TScope s T)

M ;X;L;T ; v →M1;X1;L1;T2; sealed s v

S-assec

M = Par s X1 = (M ;L; 〈〉;T), X

M ;X;L;T ; as sec s (L1, λx.e)→ Sec s;X1;L1[x 7→ ()]; ·; e

S-assecret

is sec M

X = (M1;L1; 〈〉;T), X1

T1 = snoc T (TMsg v)

M ;X;L; ·; v →M1;X1;L1;T1; v

S-seal

can seal s v M = s1 s ⊆ s1

M ;X;L;T ; seal s v →M ;X;L;T ; sealed s v

S-reveal

M = Par s1 ⇒ s1 ⊆ s

M = Sec s1 ⇒ s1 ∩ s 6= φ

M ;X;L;T ; reveal (sealed s v)→M ;X;L;T ; v

S-ffi
v = exec ffi f v̄

M ;X;L;T ; ffi f v̄ →M ;X;L;T ; v

Figure 3.7: Wys? ST semantics (selected rules)

91

3.3.3 Single-threaded semantics

The ST semantics is a model of the F? semantics and the Wys? API. The ST se-

mantics defines a judgment C → C ′ that represents a single step of an abstract machine.

Here, C is a configuration M ;X;L;T ; e. This five-tuple consists of a mode M , a stack

X , an environment L, a trace T , and an expression e. The syntax for these elements is

given in Figure 3.6. The stack and environment are standard; the trace T and mode M

were discussed in the previous section.

The ST semantics is formalized in the style of Hieb and Felleisen [54], where the

redex is chosen by (standard) evaluation contexts E, which prescribe left-to-right, call-

by-value evaluation order. A few of the core rules are given in Figure 3.7. In essence,

the semantics extends a standard reduction machinery for a call-by-value, lambda calcu-

lus (in direct correspondence with a pure fragment of F?), with several Wysteria-specific

constructs. We argue, by inspection, that the Wysteria-specific constructs are in 1-1 cor-

respondence with their specifications in the Wys monad. Despite the “eyeball closeness”,

there is room for formal discrepancy between the ST semantics and its static model within

F?’s Wys monad. We leave to future work formally proving a correspondence between the

ST semantics and µF?, the official semantics of F? in F? [37].

The standard constructs such as let bindings (let x = e1 in e2), applications (e1 e2),

etc. evaluate as usual (see rules S-let and S-app), where the mode and traces play no role.

Rules S-aspar and S-asparret reduce an as par expression once its arguments are fully

evaluated. S-aspar first checks that the current mode is Par and contains all the principals

from the set s. It then pushes a seal s 〈〉 frame on the stack, and starts evaluating e. The

92

rule S-asparret pops the frame and seals the result, so that it is accessible only to the

principals in s. The rule also creates a trace element TScope s T , essentially making

observations during the reduction of e (i.e., T) visible only to the principals in s.

To see that these rules faithfully model the F? API, consider the F? type of as par,

shown below.

1 val as par: ps:prins→ (unit→Wys a pre post)→Wys (sealed ps a)
2 (requires (fun m→m.mode=Par ∧ ps ⊆ m.ps ∧
3 can seal ps a ∧ pre (Mode Par ps)))
4 (ensures (fun m r tr→∃t. tr=[TScope ps t] ∧
5 post (Mode Par ps) (unseal r) t)))

Rule S-aspar implements the pre-condition on line 2. For the pre-condition on

line 3, rule S-asparret checks that the returned value can be sealed.3 The rule also gener-

ates a trace element TScope s T , as per the post-condition on line 4, and returns the sealed

value, as per the return type of the API and the post-condition on line 5.

Next consider the rules S-assec and S-assecret. Again, we can see that the rules

implement the type of as sec (shown in Section 3.2). The rule S-assec checks the precon-

dition of the API, and the rule S-assecret generates a trace observation TMsg v, as per

the postcondition of the API.

In a similar manner, we can easily see that the rule S-reveal implements the corre-

sponding pre- and postconditions as given in Section 3.2. The rule S-ffi implements the

FFI call by calling a host-language function exec ffi. As expected, calling a host-language

function has no effect on the Wys?-specific state. Concretely, this is enforced by F?’s

monadic encapsulation of effects. The remaining rules are straightforward.

We show rest of the β-reduction rules for the ST semantics in Figure 3.8. We leave
3For technical reasons, function closures may not be sealed; see the end of Section 3.3.4 for details.

93

S-mkwirep

M = Par s v = sealed s2 v1

can wire v1 s1 ⊆ s s1 ⊆ s2

M ;X;L;T ; mkwire s1 v →M ;X;L;T ; [s1 7→ v1]

S-mkwires

M = Sec s can wire v s1 ⊆ s

M ;X;L;T ; mkwire s1 v →M ;X;L;T ; [s1 7→ v]

S-projwirep

s = {p} m = m′[p 7→ v]

Par s;X;L;T ; project p m→ Par s;X;L;T ; v

S-projwires

p ∈ s m = m′[p 7→ v]

Sec s;X;L;T ; project p m→ Sec s;X;L;T ; v

S-concat

M ;X;L;T ; concat m1 m2 →M ;X;L;T ;m1]m2

S-letb

e = let x = v1 in e2

M ;X;L;T ; e→M ;X;L[x 7→ v1];T ; e2

S-fix

M ;X;L;T ; fix f.λx.e→M ;X;L;T ; (L, fix f.λx.e)

S-fun

M ;X;L;T ;λx.e→M ;X;L;T ; (L, λx.e)

S-fixapp

L2 = L1[f 7→ fix f.λx.e][x 7→ v]

M ;X;L;T ; (L1, fix f.λx.e) v →M ;X;L2;T ; e

S-if

v = true⇒ e = e1 v = false⇒ e = e2

M ;X;L;T ; if v then e1 else e2 →M ;X;L;T ; e

Figure 3.8: Wys? ST semantics (remaining β-reduction rules)

94

out the context rules that are standard and simply move around the evaluation contexts.

Rule S-mkwirep creates a wire bundle in the Par mode. To ensure that the parties in

the domain of the wire bundle have access to the mapped value, it requires the second

argument to be a sealed value accessible to the parties in the domain (s1 ⊆ s2). It also

checks the current mode party set is a superset of the domain (s1 ⊆ s). Rule S-mkwires

is similar except it does not require the mapped value to be a sealed value, as the secure

context has access to the inputs of all the parties. Both the rules use an auxiliary function

can wire that checks that the value being mapped is not itself a wire bundle or a function

closure. These checks are similar to what we had for Wysteria in Chapter 2. Rule S-

projwirep projects p’s mapping from a wire bundle in a Par context. As in Wysteria, the

rule requires s = {p}. Rest of the rules are straightforward.

3.3.4 Distributed semantics

The DS semantics implements judgments of the form π −→ π′, where a protocol

π is a tuple (P ;S) such that P maps each principal to its local configuration and S maps

a set of principals to the configuration of an ongoing, secure computation. Both kinds of

configurations (local and secure) have the form C (per Figure 3.6).

In the DS semantics, principals evaluate the same program locally and asynchronously

until they reach a secure computation, at which point they synchronize to jointly perform

the computation. This semantics is expressed with four rules, given in Figure 3.10, which

state that either: (1) a principal can take a step in their local configuration, (2) a secure

computation can take a step, (3) some principals can enter a new secure computation, and

95

L-aspar1
p ∈ s X1 = (M ;L; seal s 〈〉;T), X

M ;X;L;T ; as par s (L1, λx.e) ;M ;X1;L1[x 7→ ()]; ·; e

L-asparret
can seal s v X = (M ;L1; seal s 〈〉;T1), X1 T2 = append T1 T

M ;X;L;T ; v ;M ;X1;L1;T2; sealed s v

L-aspar2
p 6∈ s

M ;X;L;T ; as par s (L1, λx.e) ;M ;X;L;T ; sealed s •

L-seal

can seal s v

p ∈ s⇒ v1 = seal s v p 6∈ s⇒ v1 = seal s •

M ;X;L;T ; seal s v ;M ;X;L;T ; v1

L-reveal

p ∈ s

M ;X;L;T ; reveal (sealed s v) ;M ;X;L;T ; v

L-mkwire

v = sealed v1 can wire v1

p ∈ s⇒ m = [p 7→ v1] p 6∈ s⇒ m = ·

M ;X;L;T ; mkwire s v ;M ;X;L;T ;m

L-projwire

m = [p 7→ v]

M ;X;L;T ; project p m;M ;X;L;T ; v

L-concat

M ;X;L;T ; concat m1 m2 ;M ;X;L;T ;m1]m2

Figure 3.9: Distributed semantics, selected local rules (M is always Par {p})

96

P-par

C ; C ′

P [p 7→ C];S −→ P [p 7→ C ′];S

P-enter

∀p ∈ s. P [p].e = as sec s (Lp, λx.e) s 6∈ dom(S) L = combine L̄p

P ;S −→ P ;S[s 7→ Sec s; ·;L[x 7→ ()]; ·; e]

P-sec
C → C ′

P ;S[s 7→ C] −→ P ;S[s 7→ C ′]

P-exit
S[s] = Sec s; ·;L;T ; v P ′ = ∀p ∈ s. P [p 7→ P [p] / (slice v p v)] S′ = S \ s

P ;S −→ P ′;S′

Figure 3.10: Distributed semantics, multi-party rules

finally, (4) a secure computation can return the result to the (waiting) participants.

The first case is covered by rule P-par, which (non-deterministically) chooses a prin-

cipal’s configuration and evaluates it according to the local evaluation judgment C ; C ′,

which is given in Figure 3.9 (discussed below). The second case is covered by P-sec,

which evaluates using the ST semantics. The last two cases are covered by P-enter and

P-exit, also discussed below.

Local evaluation. The rules in Figure 3.9 present the local evaluation semantics.

These express how a single principal behaves while in par mode; as such, mode M will

always be Par {p}. Local evaluation agrees with the ST semantics for the standard language

constructs (not shown) and differs for Wys?-specific constructs.4

For an as par expression, a principal either participates in the computation, or skips
4Our formal development actually shares the code for both sets of rules, using an extra flag to indicate

whether a rule is “local” or “joint”.

97

it. Rules L-aspar1 and L-asparret handle the case when p ∈ s, and so, the principal p

participates in the computation. The rules closely mirror the corresponding ST semantics

rules. One difference in the rule L-asparret is that the trace T is not scoped. In the

DS semantics, traces only contain TMsg elements; i.e., a trace is the (flat) list of secure

computation outputs observed by that active principal. If p 6∈ s, then the principal skips

the computation with the result being a sealed value containing garbage • (rule L-aspar2).

The contents of the sealed value do not matter, since the principal will not be allowed to

unseal the value anyway.

Rule L-seal has the same intuition as above. Rule L-reveal allows principal p

to reveal the value sealed s v, only if p ∈ s. Rule L-mkwire creates a wire bundle. If

the current mode principal is in the domain of the wire bundle, then it simply maps the

contents of the sealed value in a singleton wire bundle, otherwise the rule creates an empty

wire bundle. Rule L-projwire projects current principal’s component from a wire bundle.

As mentioned earlier, rest of the rules for reducing standard constructs are similar to the

ST semantics and hence not shown here. As should be the case, there are no local rules

for as sec—to perform a secure computation parties need to combine their data and jointly

do the computation.

Entering/exiting secure computations. Returning to Figure 3.10, Rule P-enter han-

dles the case when principals enter a secure computation. It requires that all the principals

p ∈ s must have the expression form as sec s (Lp, λx.e), where Lp is their local environ-

ment associated with the closure. Each party’s local environment contains its secret values

(in addition to some public values). Conceptually, a secure computation combines these

environments, thereby producing a joint view, and evaluates e under the combination. We

98

define an auxiliary combine v function on values as follows:

combine v (•, v) = v
combine v (v, •) = v
combine v (p, p) = p
combine v (sealed s v1, sealed s v2) = sealed s (combine v v1 v2)
...

The first two rules handle the case when one of the values is garbage; in these cases,

the function picks the other value. For sealed values, if the set s is the same, the function

recursively combines the contents. The combine function for the environments combines

the mappings pointwise. The combine functions for n values and environments is a folding

of the corresponding function.

So now, consider the following code:

let x = as par alice (fun x→ 2) in
let y = as par bob (fun x→ 3) in
let z = as sec (alice, bob) (fun z→ (unseal x) + (unseal y)) in ...

In alice’s environment x will be mapped to sealed alice 2, whereas in bob’s environment

it will be mapped to sealed alice •. Similarly, in alice’s environment y will be mapped to

sealed bob •, whereas in bob’s environment it will be mapped to sealed bob 3. Before the

secure computation, their environments will be combined, producing an environment with

x mapped to sealed alice 2 and y mapped to sealed bob 3, and then, the secure computation

function will be evaluated in this new environment.

Although the combine v function as written is a partial function, our metatheory guar-

antees that at runtime, the function always succeeds. Since the principals are computing

the same program over their view of the data, these views are structurally similar.

So, the rule P-enter combines the principals’ environments, and creates a new entry

in the S map. The principals are now waiting for the secure computation to finish.

99

The rule P-exit applies when a secure computation has terminated and returns re-

sults to the waiting principals. If the secure computation terminates with value v, each

principal gets the value slice v p v. The slice v function is analogous to combine v, but in the

opposite direction—it strips off the parts of v that are not accessible to p. Some cases for

the slice v function are:

slice v p p’ = p’
slice v p (sealed s v) = sealed s •, if p 6∈ s
slice v p (sealed s v) = sealed s (slice v p v), if p ∈ s

As an example, consider the following code:

let x = as sec (alice, bob) (fun x→ let y = ... in seal alice y)

Since the return value of the secure computation is sealed for alice, bob will get a

sealed alice •, produced using the slice v function on the result of seal alice y.

In the rule P-exit, the / notation is defined as:

M ;X;L;T ; / v = M ;X;L; concat T [TMsg v]; v

That is, the returned value is also added to the principal’s trace to note their obser-

vation of the value.

We now return to the point of not allowing closures to be sealed. Consider the

following example:

let x = as par alice 2 in
let y = as par bob (fun z→ x) in
let z = as sec ab (fun z→

let a = reveal y in
let b = reveal (a ()) in
b) in

z

In the source semantics, the program returns 2 to both the parties. In the target

semantics, just before the call to the secure block, alice’s environment would map x to seal

100

alice 2 and y to seal bob •, whereas bob’s environment would map x to seal alice •, and y to the

closure (L, fun z→ x), where Lmaps x to seal alice •. Now, as per the target semantics, their

environments are combined, and in the combined environment y gets the value from bob’s

environment, but the closure for y has a garbage value for x. Thus, running this program

in the target semantics fails to make progress.

We found this problem during our effort of mechanizing the semantics. For now, we

do not allow closures to be boxed. We plan to fix the problem in future.

3.3.5 Metatheory

Our goal is to show that the ST semantics faithfully represents the semantics of Wys?

programs as they are executed by multiple parties, i.e., according to the DS semantics. We

do this by proving simulation of the ST semantics by the DS semantics, and by proving

confluence of the DS semantics.

Simulation. We define a slice s C function that returns the corresponding protocol

πC for an ST configuration C. In the P component of πC , each principal p ∈ s is mapped

to their slice of the protocol. For slicing values, we use the same slice v function as before.

Traces are sliced as follows:

slice tr p (TMsg v) = [TMsg (slice v p v)]
slice tr p (TScope s T) = slice tr p T, if p ∈ s
slice tr p (TScope s T) = [], if p 6∈ s

The slice of an expression (e.g., the source program) is itself. For all other compo-

nents of C, slice functions are defined analogously.

We say that C is terminal if it is in Par mode and is fully reduced to a value (i.e.,

C.e is a value and C.X is empty). Similarly, a protocol π = (P, S) is terminal if S is

101

empty and all the local configurations in P are terminal. The simulation theorem is then

the following:

Theorem 6 (Simulation of ST by DS). Let s be the set of all principals. If C1 →∗ C2, and

C2 is terminal, then there exists some derivation (slice s C1) −→∗ (slice s C2) such that

(slice s C2) is terminal.

Notably, each principal’s value and trace in protocol (slice s C2) is the slice of the

value and trace in C2.

Confluence. We say that a protocol π strongly terminates in the terminal protocol

πt, written as π ⇓ πt, if all possible runs of π terminate in some number of steps in πt.

Our confluence result then says:

Theorem 7 (Confluence of DS). If π −→∗ πt and πt is terminal, then π ⇓ πt.

Combining the two theorems, we get a corollary that establishes the soundness of

the ST semantics w.r.t. the DS semantics:

Corollary 8 (Soundness of ST semantics). Let s be the set of all principals. If C1 →∗ C2,

and C2 is terminal, then (slice s C1) ⇓ (slice s C2).

Now suppose that for a Wys? source program, we prove in F? a post-condition that

the result is sealed alice n, for some n > 0. By the soundness of the ST semantics, we

can conclude that when the program is run in the DS semantics, it may diverge, but if it

terminates, alice’s output will also be sealed alice n, and for all other principals their outputs

will be sealed alice •. Aside from the correspondence on results, our semantics also covers

correspondence on traces. Thus, via our embedding of Wysteria in F?, the correctness

102

and security properties that we prove about a Wys? program using F?’s logic, hold for the

program that actually runs.

Of course, this statement is caveated by how we produce an actual implementation

from the DS semantics; details are presented in the next section.

3.4 Implementation

This section describes our Wys? interpreter. We have proved that the core of this

interpreter implements our formal semantics, adding confidence that bugs have not been

introduced in the translation from formalism to implementation.

3.4.1 Wys? interpreter

The formal semantics presented in the prior section is mechanized as an inductive

type in F?. This style is useful for proving properties, but does not directly translate to

an implementation. Therefore, we implement an interpretation function step in F? and

prove that it corresponds to the rules; i.e., that for all input configurations C, step(C) =

C ′ implies that C ; C ′ according to the semantics. Then, the core of each principal’s

implementation is an F? stub function tstep that repeatedly invokes step on the AST of the

source program (produced by the F? extractor run in a custom mode), unless the AST

is an as sec node. Functions step and tstep are extracted to OCaml using the standard F?

extraction.

Local evaluation is not defined for as sec, so the stub implements what amounts to

P-enter and P-exit from Figure 3.10. When the stub notices the program has reached

103

an as sec expression, it calls into a circuit library we have written that converts the AST

of the second argument of as sec to a boolean circuit. This circuit and the encoded inputs

are communicated to a co-located server, written using a library due to Choi et al. [11]

that implements the GMW MPC protocol. The server evaluates the circuit, coordinating

with the GMW servers of the other principals, and sends back the result. The circuit

library decodes the result and returns it to the stub. The stub then carries on with the local

evaluation.

Our F? formalization of Wys? is 5000 lines of code, including all the metatheory.

It makes abundant use of F?’s dependent types to state and prove invariants. The im-

plementation of the (verified) step function is essentially a big switch-case on the current

expression, and is 60 lines of code. The tstep stub is another 15 lines. The size of the

(unverified) circuit library, not including the GMW implementation, is 836 lines.

The stub, the implementation of GMW, the circuit library, and the F? extractor (in-

cluding our custom Wys? mode for it) are part of our trusted computing base. As such,

bugs in them could constitute security holes. Verifying these components as well (espe-

cially the circuit library and the GMW implementation, which are open problems to our

knowledge) is interesting future work.

3.4.2 Secure server backend

We also provide a secure server backend for the alternative deployment scenarios

where the parties are willing to reveal their inputs to a trusted server (perhaps running

inside a secure enclave, such as Intel SGX [55]).

104

In this backend, when the (local) interpreter reaches an as sec expression, it sends its

inputs and the secure computation AST to a secure server. The secure server (written in

F?), implements the ST semantics directly. It receives the inputs (and the same AST) from

all the principals involved, combines their inputs (using the combine function extracted from

our F? development), and then interprets the AST in this combined environment using the

same semantics as our F? development. When the secure computation finishes, in addition

to sending the output to each party, the server also communicates a cryptographic proof of

its correctness using cryptographic signatures. We have verified the use of cryptography

using a technique similar to Fournet et al. [56]. The local interpreter instances receive

the output, verify the accompanying cryptographic signature, and carry on with the local

evaluation. We conjecture that such a server could be useful for a trusted hardware based

deployment scenario.

3.4.3 FFI

When writing a source Wys? program (in F?), the programmer can call functions

from an FFI module.5 During compilation, the FFI module is extracted to OCaml using

the regular F? extraction. The custom mode of the F? extraction that we have implemented,

identifies the FFI calls in the Wys? program, and extracts them to an E ffi AST form, which

is part of the AST expression type.

type exp = . . .
| E ffi: f:α→ args:list exp→ inj:β → exp

The f argument is extracted to be the name of the FFI function, that links to the
5How F? programs call into Wys? functions was described in Section 3.2.1.

105

extracted OCaml function. We explain the inj argument shortly.

When evaluating the Wys? AST, the interpreter may reach an E ffi f args inj node.

As we saw in Section 3.3.3, the interpreter calls a library function exec ffi with the list of

values, in addition it also passes the inj argument. The exec ffi function first un-embeds any

embedded host-language arguments. The un-embedding function is straightforward (the

values shown below are from the value AST form):

unembed V unit = ()
unembed (V ffi v) = v (∗ values in the host language ∗)
unembed (V seal s v) = V seal s v

Interpreter specific values, such as V seal, are passed as is. The FFI module does not

have access to the Wys? API in F?, and hence it can only use these values parametrically.

exec ffi then calls the OCaml function f with the un-embedded arguments. The OCaml

function returns some result, that needs to be embedded back to the AST. So, the question

is how can we embed the result at runtime? Inspecting the type of the result is not an

option. The custom F? extraction mode comes to our rescue.

When the extractor compiles an FFI call in the source program to an E ffi node,

it has the type information for the return value of the FFI call. Using this information,

it instruments the E ffi node with an injection, a function that can be used at runtime to

embed the FFI call result back to the AST. For example, if the result is (), the injection is

(an OCaml function) fun x→V unit. If the return value is an interpreter value (e.g. V seal),

the injection is the identity. If the return value is some host value (such as a list, tuple, or

int), the injection creates an V ffi node. exec ffi uses the injection to embed the result back

to the AST, and returns it to the interpreter.

Our interface essentially provides a form of monomorphic, first-order interoperabil-

106

Figure 3.11: Time to run (in secs) normal and optimized PSI for varying per-party set

sizes and intersection densities.

ity between the (dynamically typed) interpreter and the host language. We do not foresee

any problems extending our current work to higher order with coercions [57].

3.5 Applications

Private set intersection. We evaluate the performance of the psi (computing inter-

section in a single secure computation), and the psi opt (the optimized version) algorithms

from Section 3.2. The programs that we benchmark are slightly different than the ones

presented there, in that the local col and row functions are not the verified ones. The results

are shown in Figure 3.11. We measure the time (in seconds) for per party set sizes 96,

128, and 256, and intersection densities (i.e. the fraction of elements that are common)

0.5, 0.75, and 0.9.

The time taken by the unoptimized version is independent of the intersection den-

sity since it always compares all pairs of values. However, as the intersection density

increases, the optimized version performs far better – it is able to skip many comparisons.

For lower densities (< 0.35), the optimization does not improve performance, as the algo-

107

rithm essentially becomes quadratic, and the setup cost for each secure computation takes

over.

We note that our Wysteria evaluation resulted in a similar performance profile for

PSI (Section 2.7).

Joint median. We program unoptimized and optimized versions of the two-party

joint median (Section 2.7). The programs take two distinct, sorted inputs from alice, x1

and x2, and two distinct, sorted inputs from bob, y1 and y2 and return the median of all

four. In the unoptimized version, the whole computation takes place as a monolithic se-

cure computation, whereas the optimized version breaks the computation, revealing some

intermediate results, and off-loading some parts to the local hosts (much like PSI).

For both the versions, we prove functional correctness:

val median: x:sealed Alice (int ∗ int)→ y:sealed Bob (int ∗ int)→Wys int
(requires (fun m→m = Mode Par {Alice, Bob}))
(ensures (fun r t→ (pre (unseal x) (unseal x) =⇒

r = median spec (unseal x) (unseal y))))

where median spec is an idealized median specification. For the unoptimized version,

we prove that the trace is [TMsg r], where r is the result of the computation, basically re-

flecting that the principals only see the final result. We prove the optimized version to be

secure using a relational argument that the trace does not reveal more than the output.

Card dealing. We have implemented an MPC-based card dealing application in

Wys?. Such an application can play the role of the dealer in a game of online poker, thereby

eliminating the need to trust the game portal for card dealing. The application relies on

Wys?’s support for secret shares [46]. Using secret shares, the participating parties can

share a value in a way that none of the parties can observe the actual value individually

108

(each party’s share consists of some random-looking bytes), but they can recover the value

by combining their shares in a secure block.

In the application, the parties maintain a list of secret shares of already dealt cards

(the number of already dealt cards is public information). To deal a new card, each party

first generates a random number locally. The parties then perform a secure computation

to compute the sum of their random numbers modulo 52, let’s call it n. The output of the

secure block is secret shares of n. Before declaring n as the newly dealt card, the parties

needs to ensure that the card n has not already been dealt. To do so, they iterate over the

list of secret shares of already dealt cards, and for each element of the list, check that it

is different from n. The check is performed in a secure block that simply combines the

shares of n, combines the shares of the list element, and checks the equality of the two

values. If n is different from all the previously dealt cards, it is declared to be the new

card, else the parties repeat the protocol by again generating a fresh random number each.

Wys? exports the following API for secret shares:

type Sh: Type→Type
type can sh: Type→Type
assume Cansh int: can sh int

val v of sh: #a:Type→ sh:Sh a→Ghost a
val ps of sh: #a:Type→ sh:Sh a→Ghost prins

val mk sh: #a:Type→ x:a→Wys (Sh a)
(requires (fun m→m.mode = Sec ∧ can sh a))
(ensures (fun m r tr→ v of sh r = x ∧ ps of sh r = m.ps ∧ tr = [])

val comb sh: #a:Type→ x:Sh a→Wys a
(requires (fun m→m.mode = Sec ∧ ps of sh x = m.ps))
(ensures (fun m r tr→ v of sh x = r ∧ tr = [])

Type Sh a types the shares of values of type a. Our implementation currently sup-

ports shares of int values only; the can sh predicate enforces this restriction on the source

109

programs. Extend secret shares support for other types (such as pairs) should be straight-

forward. Functions v of sh and ps of sh are marked Ghost, meaning that they can only be

used in specifications for reasoning purposes. In the concrete code, shares are created and

combined using the mk sh and comb sh functions. Together, the specifications of these func-

tions enforce that the shares are created and combined by the same set of parties (through

ps of sh), and that comb sh recovers the original value (through v of sh). The Wys? inter-

preter transparently handles the low-level details of extracting shares from the GMW im-

plementation of Choi et al. (mk sh), and reconstituting the shares back (comb sh).

In addition to implementing the card dealing application in Wys?, we have formally

verified that the returned card is fresh. The signature of the function that checks for fresh-

ness of the newly dealt card is as follows (abc is the set of parties):

val check fresh:
l:list (Sh int){∀ s’. mem s’ l =⇒ ps of sh s’ = abc} → s:Sh int{ps of sh s = abc}
→Wys bool (requires (fun m→m = Mode Par abc))

(ensures (fun r → r⇐⇒ (∀ s’. mem s’ l =⇒
not (v of sh s’ = v of sh s))))

The specification says that the function takes two arguments: l is the list of secret

shares of already dealt cards, and s is the secret shares of the newly dealt card. The function

returns a boolean r that is true iff the concrete value (v of sh) of s is different from the con-

crete values of all the elements of the list l. Using Wys?, we verify that the implementation

of check fresh meets this specification.

Other applications and secure server. We have implemented some more applica-

tions in Wys?, including a geo-location sharing application. At the moment, we have only

run these applications using a secure server backend. In this backend, as sec works by liter-

ally sending code and inputs to a separate server that implements the ST semantics directly.

110

The server returns the result with a cryptographic proof of correctness to each party (we

have verified the use of cryptography using a technique similar to [56]). We conjecture

that such a server could be useful for a trusted hardware based deployment scenario.

3.6 Concluding remarks

In this chapter we have presented Wys?, a Verified, Domain-specific Integrated Lan-

guage Extension hosted in F?. Wys? advances Wysteria on three fronts: (a) It enables

the programmers to formally verify the correctness and security properties of their MPC

programs using F?’s expressive type-and-effect system, (b) It provides a partially verified

toolchain to run the MPC programs, thereby significantly reducing the risk of security-

critical bugs in the toolchain, and (c) It enables MPC programs to use standard language

constructs and libraries directly from F?, thereby enhancing the usability and scalability

of the language. Wys? also simplifies the Wysteria language, making it more standard.

Wys? also has certain limitations as compared to Wysteria. In particular, the Wys?

API does not perform checks that are prerequisite for successful circuit compilation at

runtime (such as no private functions as input). Currently, such errors manifest in Wys?

at runtime.

We presented an implementation of Wys? with two backends for secure computa-

tion. One that is based on the circuit library of Choi et al. [11], and one that uses a trusted

server. We presented several examples that we have implemented using Wys?.

In the next chapter, we present static analyses that help optimize a monolithic MPC

into a mixed-mode MPC with same privacy characteristics.

111

Chapter 4: Knowledge Inference for Optimizing Secure Multi-party Com-

putations

In the previous chapters, we have seen that decomposing a monolithic secure multi-

party computation into a mixed-mode secure multi-party computation sometimes provides

big performance gains. We experimentally demonstrated such gains specifically for the

private set intersection and joint median computation in Section 2.7. Indeed, other re-

searchers have observed similar results [5, 7].

While Wysteria and Wys? provide language abstractions that enable programmers

to program and formally verify the mixed-mode MPCs, in this chapter we consider the

problem of optimizing a monolithic MPC into a mixed-mode MPC, providing similar

privacy guarantees as the monolithic version.

A key observation underlying such optimizations is that while MPC protocols typ-

ically only reveal the final output to each party, a party may be able to infer the results

of intermediate computations given the final output, their inputs, and the function being

computed. When such inference is possible, the inferable intermediate results need not be

cryptographically concealed. Revealing inferable results does not change the knowledge

profile of the protocol: If the party will eventually know the intermediate result (e.g., given

112

the final output), then revealing it earlier does not change what is known to whom.1 De-

composing monolithic protocols into smaller protocols that explicitly reveal intermediate

results can significantly improve their performance.

Within the context of MPCs, we formally define notions of knowledge (of a pro-

gram variable y to a party p), and the problems of knowledge inference and constructive

knowledge inference. A solution to the knowledge inference problem states which parties

can learn which additional variables, if any, from a cooperative run of the unoptimized

protocol. We call a knowledge inference solution constructive if, in addition to correctly

asserting that a party p knows a variable y, the solution also gives an evidence of party

p’s knowledge of y in the form of a program that computes y from p’s private data and the

final output.

We present algorithms that solve these problems, prove their soundness, and char-

acterize the conditions under which they are also complete (Section 4.2). We implement

our solutions and evaluate them experimentally (Section 4.4). While previous work has

explored techniques for optimizing MPCs using knowledge inference [5], ours is the first

to formalize the problem and its solutions, in addition to experimentally measure their

performance. We begin with an overview of the problem as applied to the joint median

computation MPC.
1 As mentioned in Section 1.2, we assume the semi-honest threat model.

113

4.1 Overview

Consider the joint median computation between two parties Alice and Bob.2

1 (∗ assume a1 < a2, b1 < b2, distinct (a1, a2, b1, b2) ∗)
2

3 let median a1 a2 b1 b2 =
4 let x1 = a1 ≤ b1 in
5 let a3 = if x1 then a2 else a1 in
6 let b3 = if x1 then b1 else b2 in
7 let x2 = a3 ≤ b3 in
8 let m = if x2 then a3 else m = b3 in
9 m

Let a1 and a2 be Alice’s inputs and b1 and b2 be Bob’s. We also assume that these

numbers are distinct, with a1 < a2 and b1 < b2. At the end of the computation, both parties

share the joint median output m.

In the unoptimized version of secure computation for this example, the whole pro-

gram is computed as a single secure computation. However, one can show that, with the

knowledge of a1, a2, and m, Alice can always infer the values of x1 and x2, no matter what

Bob’s input values are [4]. Similarly, Bob can also infer the values of x1 and x2 from the

knowledge of b1, b2, and m. Therefore, declassifying values of x1 and x2 explicitly to Al-

ice and Bob during the computation would not compromise privacy, since they can infer

them anyway, and it turns out that doing so it enables the following, more efficient MPC

protocol:

Alice and Bob compute a1 ≤ b1 using secure computation and share the output x1

(line 4). Alice locally computes a3 (line 5). Bob locally computes b3 (line 6). Alice and
2While we show the example using a functional language syntax, our implementation operates on C++

programs.

114

Bob compute a3 ≤ b3 using secure computation and share the output x2 (line 7). If x2 is

true, Alice sends a3 to Bob as the final median, else if x2 is false, Bob sends Alice b3 as

the final median (line 8 and 9).

Thus, in the optimized version, only the two comparisons, need to be done securely.

Moreover, Alice and Bob do not learn anything more than they did in the unoptimized

version. For median computation on a joint set with 64 elements, Kerschbaum [5] shows

30x performance improvement using this optimization. We have also seen similar gains

in Wysteria evaluation (Section 2.7).

More generally, in our setting, party p knows the (deterministic) program (call it S),

his own input set I , and his outputO.3 We say party p can infer the value of local variable

y ∈ S if there exists a function F such that y = F (I, O) in all runs of S. Another way

of putting it is that no matter the values of p’s inputs or those of other participants of the

MPC, p can always compute y given knowledge of only his inputs and the final result. Our

goal to find all those variables in S that p can infer. We can do this by either showing

merely that the required function F exists, without saying what it is, or we can produce

F directly, thus constituting a constructive proof. In this paper we present approaches to

both tasks.

4.1.1 Knowledge inference

To show that an intermediate variable can be expressed as a function of one party’s

inputs and outputs, we can attempt to prove that given any pair of runs ofS that agree on the
3Some MPCs may have different outputs for different parties; in the median example, there is a single

output O = m known to both parties.

115

ϕ1
def
=a1 < b1 ∧ x1 = true ∧ a3 = a2 ∧ b3 = b1 ∧ a3 < b3 ∧ x2 = true ∧m = a3 ∧ φpre

ϕ2
def
=a1 < b1 ∧ x1 = true ∧ a3 = a2 ∧ b3 = b1 ∧ a3 ≥ b3 ∧ x2 = false ∧m = b3 ∧ φpre

ϕ3
def
=a1 ≥ b1 ∧ x1 = false ∧ a3 = a1 ∧ b3 = b2 ∧ a3 < b3 ∧ x2 = true ∧m = a3 ∧ φpre

ϕ4
def
=a1 ≥ b1 ∧ x1 = false ∧ a3 = a1 ∧ b3 = b2 ∧ a3 ≥ b3 ∧ x2 = false ∧m = b3 ∧ φpre

Figure 4.1: Path conditions for secure median

valuations of variables in I and O (but may not agree on the input and output variables of

other parties), the valuations of y on those two runs must also agree. In other words, y can

be determined uniquely from I andO, and thus a function F exists such that F (I, O) = y.

We can construct such a proof in two steps.

First we use a program analysis to produce a formula φpost that soundly approxi-

mates the final state of the program S (that is, the final values of all program variables)

for all possible program runs. So that the meaning of a variable y mentioned in φpost is

unambiguous, we assume that a variable is assigned at most once during a program run.

One program analysis we might use to produce φpost is symbolic execution [58].

Each feasible program path is characterized by a path condition ϕi, which is a set of pred-

icates relating the program variables. The path conditions can be combined to provide a

complete description of the program’s behavior: φpost
def
=
∨
i

ϕi. For the median program

above, there are four possible paths, having the path conditions given in Figure 4.1.

Consider the first path condition ϕ1. Conceptually, it describes the program path

in which then branch of both conditionals (lines 5 and 8) is taken. The remaining three

paths constitute the other three possible branching combinations. Note that each path also

requires φpre. This formula defines the publicly-known constraints on all inputs; in the

case of the median program we have φpre
def
= a1 < a2∧ b1 < b2∧ a1 6= b1∧ a1 6= b2∧ a2 6=

116

b1 ∧ a2 6= b2.

The next step is to prove that any two runs of the program S that agree on variables

known to p will also agree on the value of y. This statement is a 2-safety property [59],

and we can prove it using a technique called self-composition [60]. The idea is to reduce

this two-run condition on program S to a condition on a single run of a self-composed

program Sc, which is the sequential composition of S with itself, with the second copy of

S’s variables renamed, e.g., so that x is renamed to x′. Given the formula φscpost for this

self-composed program, we can ask whether, under the assumption that the normal and

primed versions of p-visible variables are equal, that the normal and primed version of y

is also equal.

As an example, Figure 4.2 shows self composition of the median function. We write

median’ for the function median but with the local variables renamed to x1’, x2’, The self-

composed program effectively runs median twice, on two separate spaces of variables. We

can express the question of knowledge inference as a question on the relationship between

the two copies of the variables. Namely, Alice can infer x1 if and only if for every feasible

final state of the composed program, when the two copies of a1,a2,m agree on their values

then the copies of x1 agree on their value. More formally we need to check the validity of

the following formula for any feasible final state.

φscpost ∧ (a1 = a1’ ∧ a2 = a2’ ∧ m = m’)⇒ (x1 = x1’)

Here, the formulaφscpost will involve sixteen path conditions (self-composition squares

117

(∗ a1 < a2, b1 < b2, distinct (a1, a2, b1, b2) ∗)
m = median a1 a2 b1 b2;

(∗ a1’< a2’, b1’< b2’, distinct (a1’, a2’, b1’, b2’) ∗)
m’ = median’ a1’ a2’ b1’ b2’

Figure 4.2: Median computation composed with itself.

the number of paths). For example, among them will be:

ϕsc1
def
=a1 < b1 ∧ x1 = true ∧ a3 = a2 ∧ b3 = b1 ∧ a3 < b3 ∧ x2 = true ∧ m = a3 ∧ φpre ∧

a1’ < b1’ ∧ x1’ = true ∧ a3’ = a2’ ∧ b3’ = b1’ ∧ a3’ < b3’ ∧ x2’ = true ∧ m’ = a3’

∧ φ′pre

The formula ϕsc1 is actually the conjunction of ϕ1 with a version of ϕ1 that has all

its variables renamed to the primed versions. We can think of the entire post condition

φscpost = ϕsc1 ∨ ... ∨ ϕsc16 as the conjunction of the post condition φpost with its primed

version.

Being a quantifier-free formula in the theory of integer linear arithmetic, the final

formula poses no problem for an SMT solver such as Z3 [40], which can indeed verify its

validity. Additionally, the same can be said for Alice’s knowledge of x2 and a3, and Bob’s

knowledge of x1, x2 and b3.

The knowledge inference question bears a close resemblance to deciding the prop-

erty of delimited release [51]. We explore this connection in more detail in Section 4.3.

4.1.2 Constructive Knowledge Inference

The technique just described can establish that there exists some function F such

that y = F (I, O), where y is an intermediate variable in S, and I and O are variables

118

known to party p. However, this technique cannot say what F actually is. To construct F

we can leverage ideas from template-based program verification.

Program verification generally aims at inferring invariants in a program that are

strong enough to verify some assertions of interest. Template-based program verification

[38, 39] requires programmers to specify the structure of these invariants in the form of

a template. The algorithm then generates verification constraints for the assertions, to

be solved by an SMT solver (e.g. Z3 [40]). A solution to the constraints yields a valid

proof of the correctness of the assertions as well as a solution to the template unknowns.

Gulwani et al. [38] present constraint-based verification techniques over the abstraction of

linear arithmetic and Srivastava et al. [39] present these techniques over the abstraction of

predicates.

To infer p’s knowledge of a variable y, our algorithm tries to infer a formula φ s.t. (a)

at the end of the program y = φ, and (b) φ only mentions the input and output variables

known to p. If we add an assertion y = φ at the end of the program, and provide a

template structure for φ (limited to formulae over variables known to p) this becomes a

template-driven verification problem where the assertion and the invariant are the same.

A successful verification of the assertion y = φ establishes p’s knowledge of y, and also

the solution for φ yields a formula for y in terms of input and output variables of p.

The template structure for this problem is defined as follows. Suppose y is a boolean

variable. Then the template for φ requires it to be in disjunctive normal form (DNF) such

that there are exactly d disjuncts each consisting of c conjuncts, with each conjunct drawn

from a set of predicates Q. This set contains predicates over linear expressions involving

I and O. In the median example, for Alice, one choice of Q is {v1 � v2 | v1, v2 ∈

119

{a1, a2,m},� ∈ {>,≥, <,≤,=, 6=}}. For Bob, similar Q would be {v1 � v2 | v1, v2 ∈

{b1, b2,m},� ∈ {>,≥, <,≤,=, 6=}}.

Our algorithm searches for a φ conforming to the prescribed template. For example,

if (c = 2, d = 2), then the search space for φ is all the boolean formulae (q1 ∧ q2) ∨ (q3 ∧

q4), q1, q2, q3, q4 ∈ Q. We denote this search space for formulae as DNF(c, d,Q). A naive

search algorithm would make O(|Q|cd) queries to the SMT solver, one for every possible

formula in DNF(c, d,Q). This algorithm is complete in the sense that if there exists a

solution for φ in DNF(c, d,Q) then the naive search algorithm finds it. Our algorithm,

on the other hand, makes O(|Q|c + |Q|d) queries to the SMT solver, and still guarantees

completeness, provided the existence of solution in DNF(c, d,Q).

Consider variable x1 from the median example. With QAlice and QBob as above, and

(c = 1, d = 1), we are able to establish knowledge of x1 for both Alice and Bob as: x1 =

m > a1 for Alice, and x1 = m ≤ b1 for Bob. Interestingly, (c = 1, d = 1) is insufficient to

discover invariants describing Alice’s and Bob’s knowledge of x2. With (c = 1, d = 2),

we are able to establish Alice’s knowledge of x2 as x2 = (m = a1 ∨ m = a2). And with

(c = 2, d = 1), we are able to establish Bob’s knowledge of x2 as x2 = (m 6= b1∧m 6= b2).

In general, starting with (c = 1, d = 1), we can increment (c, d) in steps until either we

find a solution or we leave x as being unknown to p.

We can also infer formulae for integer variables. In this case we use a different

template structure, and leverage ideas from Gulwani et al. [38]. We discuss the algorithm

further in the next section.

Constructive knowledge inference problem is closely related to the problem of infer-

ring output function in required release [61], a connection we explore more in Section 4.3.

120

Value v ::= n | true | false

Exprn./Formula e, φ ::= v | x | e1 � e2

Binary operator � ∈ {≤,≥, >,<,=, 6=} ∪ {∧,∨,¬,⇒} ∪ {+,−}

Statement S ::= x := e | S1;S2 | skip | if e then S1 else S2

Figure 4.3: Syntax.

4.2 Formal development

In this section, we formally describe our knowledge inference algorithm. We first

give the language syntax, operational semantics, and formal definition of knowledge in

Section 4.2.1. We then present inference in Section 4.2.2, and constructive inference in

Section 4.2.3.

4.2.1 Language Syntax

Let parties p1, . . . , pn want to compute a secure computationS whose syntax is given

in Figure 4.3. The language is standard aside from the omission of a looping construct;

this makes sense in our setting since most MPC methods forbid dynamic looping (rather,

they require a static loop unrolling). Our methods support loops as well, but we elide

them nevertheless to keep the formalization simpler. We also assume, for simplicity, that

each program path is in single assignment form, i.e. in an execution of a program, every

variable is assigned at most once.

The semantics of computations is given in Figure 4.4. The judgments have the form

〈σ, S〉 ⇓ σ′, meaning, statement S executed in state σ results in new state σ′. States σ are

121

(E-Var)

〈σ, x〉 ⇓ σ[x]

(E-Val)

〈σ, v〉 ⇓ v

(E-BinOp)

〈σ, e1〉 ⇓ v1 〈σ, e2〉 ⇓ v2

〈σ, e1 � e2〉 ⇓ v1 � v2

(E-Assign)

x 6∈ dom(σ) 〈σ, e〉 ⇓ v

〈σ, x := e〉 ⇓ σ[x 7→ v]

(E-Seq)

〈σ, S1〉 ⇓ σ′ 〈σ′, S2〉 ⇓ σ′′

〈σ, S1;S2〉 ⇓ σ′′

(E-IfTrue)

〈σ, e〉 ⇓ true 〈σ, S1〉 ⇓ σ′

〈σ, if e then S1 else S2〉 ⇓ σ′

(E-IfFalse)

〈σ, e〉 ⇓ false 〈σ, S2〉 ⇓ σ′

〈σ, if e then S1 else S2〉 ⇓ σ′

(E-Skip)

〈σ, skip〉 ⇓ σ

(φ-Valid)

〈σ, φ〉 ⇓ true

σ |= φ

Figure 4.4: Semantics.

maps from variables x to values v; we write σ[x] to look up x in σ, and we write σ[x 7→ v]

to define a map identical to σ except that x maps to v. The figure also defines an auxiliary

judgment for expressions having the form 〈σ, e〉 ⇓ v, meaning, expression e evaluated in

state σ results in value v. The rules are standard, with one exception. The rule (E-Assign)

checks that x 6∈ dom(σ) to enforce single assignment form for the current program path.

When an expression is viewed as a formula φ, we write σ |= φ to mean that in σ the

formula φ evaluates to true. We also write predicate to mean a boolean valued formula.

Let V be a set of variables. We define two states as being equivalent on a set of

variables as follows:

Definition 9 (Equivalence of States). Two states, σ1 and σ2, are equivalent on a set of

variables V , written as σ1
V≡ σ2, iff ∀x ∈ V , σ1[x] = σ2[x].

Let φpre denote the precondition for a secure computation program S. It represents

the assumptions that S makes about parties’ inputs. In the median example, φpre = a1 <

122

a2 ∧ b1 < b2 ∧ a1 6= b1 ∧ a1 6= b2 ∧ a2 6= b1 ∧ a2 6= b2. We are interested in executions

〈σ, S〉 ⇓ σ′ when σ |= φpre.

We now define knowledge of a variable y to a party p in S, written as K(S, p, y).

Informally, y is known to p, if, whenever two final states of S are equivalent on the set of

input and output variables of p, they are also equivalent on {y}.

Definition 10. [Knowledge of a Variable] Let S be a secure computation program with

precondition φpre. For a party p in the computation, let I be the set of input variables of p,

and O be the set of output variables of p. Then, a variable y in S is known to p, written as

K(S, p, y), if for all initial states σ1, σ2 s.t. σ1 |= φpre, σ2 |= φpre, and σ1
I≡ σ2, whenever

〈σ1, S〉 ⇓ σ′1 and 〈σ2, S〉 ⇓ σ′2 s.t. σ′1
O≡ σ′2, we have σ′1

{y}
≡ σ′2.

The definition models the 2-safety property discussed in the Section 4.1. It says

that the value of y can be uniquely determined from the knowledge of input and output

variables of p, independent of the inputs of other parties in the computation. We should

be careful when defining knowledge for extensions of the language in Figure 4.3. For

example, although an RSA modulus N uniquely identifies the two primes p and q in the

information-theoretic sense, it is computationally hard to infer p and q from N . We now

give the formal description of knowledge inference algorithm.

4.2.2 Knowledge Inference

The problem of knowledge inference is as follows. For a secure computation pro-

gram S, we want to know whether a party p knows a program variable y according to

Definition 10. We present our knowledge inference algorithm in Figure 4.7, but before

123

ς(skip, φ) = φ

ς(x := e, φ) = φ ∧ (x = e)

ς(S1; S2, φ) = ς(S2, ς(S1, φ))

ς(if e then S1 else S2, φ) = (e ∧ ς(S1, φ)) ∨ (¬e ∧ ς(S2, φ))

Figure 4.5: Postcondition of a predicate φ w.r.t. statement S.

that we give some auxiliary definitions.

Definition 11 (Validity of a Predicate). A predicate φ is valid at the end of a program S

with precondition φpre, if ∀σ s.t. σ |= φpre, 〈σ, S〉 ⇓ σ′, we have σ′ |= φ.

We define the postcondition of a predicate φ w.r.t. statement S, written as ς(S, φ),

in Figure 4.5. The following theorem states the properties of ς(S, φ).

Theorem 12 (Soundness and Completeness of Postcondition). For a program S with

precondition φpre, ς(S, φpre) is valid at the end of program S (Soundness). Moreover, for

any other predicate φ s.t. φ is valid at the end of S, ς(S, φpre)⇒ φ (Completeness).

Proof. Soundness – Structural induction on S. Completeness – Structural induction on S

and using following lemma for each case. Let σ |= ς(S, φpre). Then, ∃σ′ s.t. σ′ |= φpre,

〈σ′, S〉 ⇓ σ, and dom(σ′) = dom(σ) − Def(S), where Def(S) is the set of variables

defined by S.

The theorem depends on the program paths being in single assignment form. Specif-

ically, the postcondition rule for assignment statement assumes that x does not occur in

φ.

We now define a variable renaming translation on predicates. The idea is to replace

every variable in the predicate with a copy of the variable. Let θ be a mapping from

124

(T-Var1)

x ∈ θ

〈θ, x〉 〈θ, θ[x]〉

(T-Var2)

x 6∈ dom(θ) x′ is fresh

〈θ, x〉 〈θ[x 7→ x′], x′〉

(T-BinOp)

〈θ, φ1〉 〈θ′, φ′1〉 〈θ′, φ2〉 〈θ′′, φ′2〉

〈θ, φ1 � φ2〉 〈θ′′, φ′1 � φ′2〉

(T-Val)

〈θ, v〉 〈θ, v〉

Figure 4.6: Variable renaming translation for a predicate.

1 InferKnowledge(S, φpre)

2 for each party p

3 let I be the set of p’s input variables.

4 let O be the set of p’s output variables.

5 φpost := ς(S, φpre);

6 〈ε, φpost〉 〈θ, φ′post〉.
7 φk :=

∧
x∈I∪O

(x = θ[x]);

8 for each program variable y

9 φ := (φpost ∧ φ′post ∧ φk)⇒ (y = θ[y]);

10 if (`alg φ)
11 output y is known to p.

12 else

13 output y is not known to p.

Figure 4.7: Knowledge inference algorithm

variables to variables. The translation judgment is shown in Figure 4.6. We define similar

translation judgments for statements and states and refer to them in the theorem proofs

later on, however we do not show them here for lack of space.

Our algorithm is parameterized by an SMT solver (e.g. Z3 [40], STP [62]), that we

denote as alg. We use alg to determine whether a given predicate is a tautology (always

true). We write `alg φ as the query to alg for predicate φ.

The knowledge inference algorithm is shown in Figure 4.7. It takes as input the

secure computation program S and its precondition φpre. For each party p and program

125

variable y, it outputs whether p knows y or not.

The algorithm first computes the postcondition of φpre w.r.t. S (φpost). It then per-

forms variable translation on φpost to generate φ′post. Essentially φpost and φ′post model two

different runs of the program. φk then asserts that ∀x ∈ I ∪ O, x has same value across

these two runs. Under these assumptions, if a program variable y also has same value

across these two runs, the variable y is known to p.

The soundness theorem of our algorithm is as follows:

Theorem 13 (Soundness of Knowledge Inference). Let S be a secure computation pro-

gram with the precondition φpre. If InferKnowledge(S, φpre) outputs variable y is known

to party p, then K(S, p, y).

Proof. We want to prove that for two states σ and σ′ s.t. σ
I∪O≡ σ′, σ[y] = σ[y′] (see

Definition 10). If we translate σ according to θ to yield σ′ (dom(σ) ∩ dom(σ′) = ε),

then we can see that σ ∪ σ′ |= φpost, σ ∪ σ′ |= φ′post (soundness of postcondition), and

σ ∪ σ′ |= φk (using above equivalence). Thus, it follows from line 9 in Figure 4.7 that

σ ∪ σ′ |= (y = θ[y]).

Moreover, we can also state a completeness theorem.

Theorem 14 (Completeness of Knowledge Inference). Let S be a secure computation

program with precondition φpre. For a program variable y and party p, if K(S, p, y), then

InferKnowledge(S, φpre) outputs variable y is known to party p.

Proof. For a program S, let S ′ be the translation of S. Then, we can see that φpost∧φ′post∧

φk = ς(S;S ′, φpre ∧ φ′pre ∧ φk). By completeness of postcondition, if y = θ[y] is valid at

the end of S;S ′, line 9 in Figure 4.7 must be true.

126

1 ConstructKnowledgeB (S, φpre)

2 for each party p

3 construct the predicate set Q.

4 for each boolean program variable y

5 c = 1; d = 1;

6 do

7 φ := CFormula(y, c, d,Q);

8 increment (c, d) in lockstep.

9 while (φ is failure and c < cmax, d < dmax);

10 if (φ = failure)

11 output y is not known to p.

12 else

13 output y is known to p by φ.

Figure 4.8: Constructive knowledge inference for boolean variables

4.2.3 Constructive Knowledge Inference

The knowledge inference algorithm from Figure 4.7 establishes whether p knows y

or not, however it does not give a formula for y in terms of p’s input and output variables.

In this section, we present constructive knowledge inference algorithms, that output such

a formula.

Constructive knowledge inference for boolean variables. Define the verification

condition of a predicate φ w.r.t. a statement S with precondition φpre, VC(S, φpre, φ), as

ς(S, φpre)⇒ φ. Then, if `alg VC(S, φpre, φ), the predicate φ is valid at the end of S.

Recall that to construct knowledge of variable y for a party p, we want to infer a

formula φ, s.t. at the end of the program y = φ holds. For boolean variables, the search

space for φ is DNF(c, d,Q), where Q is a set of predicates constructed from input and

output variables of p.

The algorithm for boolean variables is shown in Figure 4.8. For each party p, it first

127

1 CFormula(y, c, d,Q) ## construct φ s.t. y ⇔ φ

2 let L be the lattice (2Q,⇒,> = {},⊥ = Q).

3 φL := CFormulaL(y, c,L); φR := CFormulaR(y, d,Q);

4 if (φL = failure || φR = failure)

5 return failure ;

6 φ := VC(S, φpre, φR ⇒ φL);

7 if (`alg φ)
8 return φR;

9 else

10 return failure ;

11

12 CFormulaR(y, d,Q) ## construct φR s.t. y ⇒ φR
13 N := {}; ## set of tuples that satisfy y ⇒ φR
14 for all (q1, . . . , qd) ∈ (Q×1 Q · · · ×d−1 Q)

15 φ := VC(S, φpre, y ⇒
d∨

i=1
qi);

16 if (`alg φ)
17 N := N ∪ {(q1, . . . , qd)};
18 if (N = {})
19 return failure ;

20 else

21 return
∧

(q1,...,qd)∈N
(

d∨
i=1

qi);

1 CFormulaL(y, c,L) ## construct φL s.t. φL ⇒ y

2 N := {}; ## set of lattice nodes that satisfy φL ⇒ y

3 visit lattice L nodes in BFS order,

4 when node N is visited, do

5 if (N = {})
6 φN := true;

7 else

8 let N be {q1, . . . , qn}.

9 φN :=
n∧

i=1
qi;

10 φ := VC(S, φpre, φN ⇒ y);

11 if (`alg φ)
12 N := N ∪ {N};
13 truncate sublattice rooted at N from BFS.

14 else

15 for each child M of N in L
16 if (|M | ≤ c && M is unvisited)

17 add M to BFS worklist.

18 if (N = {})
19 return failure ;

20 else

21 return
∨

{q1,...,qn}∈N
(

n∧
i=1

qi);

Figure 4.9: Routines CFormula, CFormulaL, and CFormulaR

constructs a predicate set Q. As mentioned earlier, this can either be provided as input by

the programmer, or it can be mined from the expressions appearing in the program. For

each boolean program variable y, starting with (c = 1, d = 1) and incrementing (c, d)

in lockstep until (cmax, dmax), it tries to find φ. It uses an auxiliary routine CFormula,

defined in Figure 4.9.

Figure 4.9 consists of the subroutine CFormula and two other subroutines, that it

invokes, CFormulaL and CFormulaR. We divide the problem of constructing φ into sub-

problems of constructing φL and φR s.t. (a) φL and φR consist only of predicates from Q,

and (b) at the end of the program, φL ⇒ y, y ⇒ φR, and φR ⇒ φL hold. Then, we have

φ = φR. CFormulaL constructs φL and CFormulaR constructs φR.

Construction of φL. To construct φL (CFormulaL in Figure 4.9), we perform breadth

first search on the lattice of subsets ofQ ordered by implication (i.e. M v N,M,N ∈ 2Q,

128

iff `alg (
∧
q∈M

p)⇒ (
∧
q′∈N

q′)) with > = {} and ⊥ = Q, and collect all nodes of the lattice

that form a solution to φL ⇒ y. A node N in the lattice is a solution to φL ⇒ y if

`alg VC(S, φpre, (
∧
q∈N

q) ⇒ y). When we find a node N that is a solution, we delete the

subtree rooted at N from the lattice, since any node in the subtree is a “weaker” solution

thanN (i.e. for any nodeM in the subtree underN , we have `alg (
∧
q∈M

q)⇒ (
∧
q′∈N

q′), and

since `alg (
∧
q′∈N

q′) ⇒ y, we already have `alg (
∧
q∈M

q) ⇒ y). Moreover, we also prune

any subtree rooted at a node (including the node itself) whose size is greater than c (since

the current search space is DNF(c, d,Q), we need not consider lattice nodes with more

than c elements). Let N be the set of lattice nodes that are found as solutions. We assign

φL =
∨

N∈N
(
∧
q∈N

q). IfN = {}, the algorithm fails to infer p’s knowledge of y (under input

values of c and d). Construction of φL makes O(|Q|c) queries to the SMT solver.

Construction of φR. To construct φR (CFormulaR in Figure 4.9), we consider all

possible (q1, . . . , qd) ∈ (Q ×1 Q · · · ×d−1 Q) , and collect all such tuples that form a

solution to y ⇒ φR. (q1, . . . , qd) is a solution to y ⇒ φR if `pre VC(S, φpre, y ⇒
d∨
i=1

qi).

LetN be the set of such solutions. Then, we assignφR =
∧

(q1,...,qd)∈N
(
d∨
i=1

qi). IfN = {}, the

algorithm fails to infer P ’s knowledge of y (under input values of c and d). Construction

of φR makes O(|Q|d) queries to the SMT solver.

Construction of φ. We now check that φR ⇒ φL is valid at the end of the program

using the formulae for φL and φR constructed above (CFormula in Figure 4.9). If it is, y

is known to p using the formula φR, otherwise our algorithm returns y is not known to p

(under input values of c and d).

Constructive knowledge inference for integer variables. For integer variables in the

129

1 ConstructKnowledgeI(S, φpre)

2 for each party p

3 let {xi}i∈1...n be input and output variables of p.

4 for each integer program variable y

5 let ai, i ∈ 1 . . . n be n integer unknowns.

6 φ := −y +
n∑
i=1
aixi ≥ 0 ∧ y +

n∑
i=1
− aixi ≥ 0;

7 verify φ at the end of S.

8 if verification fails

9 output y is not known to p.

10 else

11 output y is known to p by
n∑
i=1
aixi.

Figure 4.10: Constructive knowledge inference for integer variables

program S, constructive knowledge inference algorithm is shown in Figure 4.10. To verify

φ on line 6, we use the algorithm given by Gulwani et al. [38]. Their algorithm uses Farka’s

lemma to convert φ into SAT solver constraints, the solution of which returns a solution

for the template unknowns ai s.t. φ holds true at the end of S, and thus, y =
n∑
i=1

aixi.

We state soundness theorems for constructive knowledge inference algorithms as

follows:

Theorem 15 (Soundness of Constructive Knowledge Inference). Let S be a secure compu-

tation program with precondition φpre. If ConstructKnowledgeB(S, φpre) (Figure 4.8)

and ConstructKnowledgeI(S, φpre) (Figure 4.10) output variable y is known to party

p, then K(S, p, y).

Proof. If the algorithms infer y = φ for a party p, then y = φ is valid at the end of S.

Moreover, since only variables in φ are variables from I ∪ O (input and output variables

of p), p knows y by Definition 10.

Moreover, constructive knowledge inference algorithms are also complete, provided

130

a solution exists in the template form they consider.

Theorem 16 (Completeness of Constructive Knowledge Inference for Boolean Variables).

Let S be a secure computation program. For a party p, let Q be a set of predicates, where

the only variables appearing in each predicate in Q are input and output variables of p.

Let y be a boolean program variable in S. If ∃φ s.t. x = φ at the end of S, and φ is in

DNF(c, d,Q) form, for some values of (c, d), then CFormula(y, c, d,Q) returns a solution

(and not failure).

Proof. We give an outline for (c = 2, d = 2), the proof for general case follows similarly.

Let y = φ at the end of S s.t. φ is in DNF(c, d,Q) form. Then, for some q1, q2, q3, q4 ∈ Q,

y = (q1∧q2)∨(q3∧q4), equivalently, y = (q1∨q3)∧(q1∨q4)∧(q2∨q3)∧(q2∨q4). Since

CFormulaR considers all elements inQ×Q, it would construct φR = (q1∨q3)∧(q1∨q4)∧

(q2∨q3)∧(q2∨q4)∧φ′, for someφ′ (possibly just true). On the other hand, since CFormulaL

considers all lattice nodes up to size c, it would construct φL = (q1 ∧ q2) ∨ (q3 ∧ q4) ∨ φ′′

for some φ′′ (possibly just false). We can see that φR ⇒ φL, and hence CFormula returns

φR.

The following theorem of completeness for integer variables follows from the com-

pleteness of the algorithm by Gulwani et al. [38]4.

Theorem 17 (Completeness of Constructive Knowledge Inference for Integer Variables).

Let S be a secure computation program. Let y be an integer variable in S. For a party p,

let {xi}i∈1...n be the set of input and output variables of p. If ∃ai, i ∈ 1 . . . n s.t. y =
n∑
i=1

aixi

4Similar to the restriction in [38], the theorem holds if checking the invariant y = φ does not require

integral reasoning.

131

at the end of S, then ConstructKnowledgeI(S, φpre) (Figure 4.10) outputs y is known

to p.

Proof. Follows from the completeness of [38].

4.3 Discussion

This section considers some aspects of our approach, including the possible use

of type-based information flow analysis for knowledge inference, and the application of

knowledge inference to allowing MPC computations with loops.

Applying information flow analysis. In the limit, we can use a grossly over-approximating

language-based information flow analysis [63] for knowledge inference. Following the for-

mulation relating knowledge inference to delimited release given above, we can label each

of party p’s input variables as L and all other input variables as H , restricting valid flows

in the program as L v H as usual, while explicitly declassifying the final output when it

is returned. Then we can do type inference [64, 65] to determine whether any unlabeled,

local variables can safely be given labelL, and if so then we know these can be determined

solely from knowledge of p’s inputs.

Such a type-based analysis is less precise than the semantic analysis we have given to

this point. It cannot, for example, infer the knowledge of x1 and x2 in the median example.

As soon as it sees x1 = a1≤ b1 in the median example, it assumes that there is information

flow from both a1 and b1 to x1, and hence, neither Alice nor Bob can determine x1 alone.

However, it is far less expensive than a semantic analysis, and there are some useful

examples where such an analysis is enough to establish knowledge facts. Consider the

132

1 ## variables with suffix A are Alice ’ s inputs ,
2 ## with suffix B are Bob’s. yd is known to both.
3 int lot size (int fvA, int cA, int hvA, int fbB, int hbB, int yd)
4

5 int a, b, c, d, e, f , g, h, i ;
6

7 a = 2 ∗ yd;
8 b = a ∗ fvA;
9 c = yd / cA;

10 d = c ∗ hvA;
11

12 e = 2 ∗ yd;
13 f = e ∗ fbB;
14

15 g = f + b;
16 h = hbB + d;
17 i = g / h;
18

19 return sqrt (i); ## integer square root

Figure 4.11: Joint economic lot size example

joint economic lot size computation example from Kerschbaum [5], shown in Figure 4.11.

The program computes an order quantity (or lot size) between a buyer (Bob) and vendor

(Alice). The buyer’s private inputs include the holding cost per item (hbB) and the fixed

ordering costs per order (fbB). The vendor’s private inputs include the holding cost per item

(hvA), the fixed setup costs per order (fvA), and the capacity (cA). Both parties know the

yearly demand of the buyer (yd). For vendor Alice, if we label yd, fvA, cA, hvA as L, fbB, hbB

asH , and do type inference in an information flow type system, it can infer that a, b, c, d can

have label L and are thus known to Alice. Similarly, it can infer that e, f are known to Bob.

Using these knowledge facts, the MPC protocol can be optimized to compute lines 7-10

locally on Alice’s host, and lines 12-13 locally on Bob’s host, leaving only lines 15-17,

and 19 to be computed securely.

133

Adding loops to the programs. MPC programs do not admit loop constructs because

in many cases the execution of a loop, specifically the number of times it iterates, can

potentially reveal information about parties’ input values beyond what is revealed by the

output. However, if we can prove that using their own input and output variables, all

parties in the secure computation can infer the number of loop iterations, we can allow

MPC programs to have loops in them, without compromising security. For example, for a

loop .. i = 0; while(i < n) { ... ++i;} .. , if n is already known to all the parties in the computation,

they can infer the number of loop iterations, and hence running this loop in MPC does not

compromise security.

Constructive knowledge inference can be useful in this situation. In particular, we

can use it to infer loop invariants in terms of known variables for a party, and if we can do

so for all the parties, we can admit the loop in MPC.

4.4 Experiments

In this section, we present an experimental evaluation of our approach. We provide

performance measurements for our algorithms on several example programs.

4.4.1 Implementation

We present evaluation of three implementations of our algorithms – two for the

knowledge inference algorithm from Figure 4.7 that handle linear and non-linear arith-

metic respectively, and one for the constructive knowledge inference algorithm from Fig-

134

ures 4.8 and 4.9. 5

Convex polyhedra based implementation. We have implemented the knowledge in-

ference algorithm from Figure 4.7 using the polyhedra powerset domain as implemented

in Parma Polyhedra Library (PPL, v0.11.2) [66]. This approach represents the program

postcondition, φpost, as a set of convex polyhedra (each of which is a conjunction of linear

inequalities), interpreted over real-valued variables. We use polyhedra in the implemen-

tation to avoid reasoning about integers as much as possible. To verify the validity of φ

(line 9 in Figure 4.7), we check if the negation of φ has an integer solution. This corre-

sponds to checking, for every polyhedron/disjunct ϕ in φpost∧φ′post∧φk, that the formulae

ϕ ∧ (y > y′) and ϕ ∧ (y < y′) define convex regions with no real points (quick check)

and no integer points (slower check). If so, φ is valid. This implementation only handles

programs that use linear arithmetic.

Bitvectors based implementation. Our second implementation of the algorithm from

Figure 4.7 uses a bitvector representation of program variables via the Simple Theorem

Prover [62] (STP, revision 1671). This implementation handles non-linear arithmetic. It

represents formulae (postcondition, φ) using logical and arithmetic expressions over fixed-

width bit vectors. The validity of φ is checked using STP. In addition, STP allows us to

construct formulas that relate individual bits of the integer variables, which means we can

construct for every 1 ≤ i ≤ x (for bit width x) the formula φpost ∧ φ′post ∧ φk ⇒ (yi = y′i)

where yi designates bit i of variable y. Checking validity of such formulas lets us conclude

that parties can potentially infer individual bits, even if they cannot infer whole variables.
5The implementation and evaluation of the non-constructive knowledge inference algorithm was done

by Piotr Mardziel, who was also a co-author on the related PLAS 2013 publication [33].

135

 0.01

 0.1

 1

 10

 100

 1000

median median2 median3 median4 median5 lot_size masked_average

in
fe

re
nc

e
tim

e
[s

]
nu

m
be

r
of

 [v
ar

ia
bl

es
]

nu
m

be
r

of
 [d

is
ju

nc
ts

]

POLY
BV8

BV16
BV32

CONS

|Q|=12

|Q|=18
|Q|=24

|Q|=30

 0

 5

 10

 15

 20

 25

 30

 0

 50

 100

 150

 200

 250

 300

in
fe

re
nc

e
tim

e
[s

]
nu

m
be

r
of

 [v
ar

ia
bl

es
]

nu
m

be
r

of
 [d

is
ju

nc
ts

]variables
disjuncts

Figure 4.12: Results

Constructive algorithm for boolean variables. We have implemented the construc-

tive knowledge inference algorithm for boolean variables (Figure 4.8 and Figure 4.9) using

the LLVM compiler infrastructure [67]. We use the Z3 SMT solver [40] for the validity

queries.

4.4.2 Results

We have conducted the experiments on a Mac Pro with two 2.26 GHz quad-core

Xeon processors, 16 GB RAM, and running OS X v10.8. The results are in Figure 4.12.

The top chart shows time taken (in log-scale) by our three implementations, POLY

(convex polyhedra based), BVx (bit-vector based, for x as 8, 16, and 32), and CONS (con-

structive algorithm), on several example programs (discussed later). We evaluated BVx

on all programs, whereas other implementations only on the (linear) median examples. In

all programs, we try to infer all variables for both the parties. Additionally, in the case of

136

BVx, we also try to infer every intermediate bit.

The bottom chart provides some characteristics of the test cases that contribute to

the running times above: the total number of variables in the test cases, and for the linear

programs, the number of convex disjuncts in program postcondition (see POLY imple-

mentation description).

Median example. We consider the joint median computation for 2, 3, 4, and 5 inputs

per party. Unsurprisingly, the time taken by non-constructive implementations increases

with the number of inputs. POLY is especially susceptible to the large number of disjuncts

in the program postcondition (due to the large number of paths), taking around 24 seconds

for analyzing median5, up from as little as 0.044 seconds for analyzing median2.

For CONS, we consider the set Q for Alice as {m � ai} and for Bob as {m �

bi}, where � ∈ {<,≤, >,≥,=, 6=}, and ai and bi range over inputs of Alice and Bob

respectively. We used (c = 2, d = 2) for all input sizes. It is able to infer knowledge of all

comparisons for all the median programs. However, as the number of candidate predicates

(|Q|) increases, the algorithm takes more time. For median with 4 inputs, for example,

|QAlice| = |QBob| = 24, and it takes ∼41 seconds to infer all the variables for both parties,

as compared to ∼2 seconds in the case of 2 inputs per party and |QAlice| = |QBob| = 12.

We note that at present, our implementation does not aggressively optimize the use

of the SMT solver (like caching query responses etc.) that can potentially bring down the

inference time since there are lots of redundant validity queries. Moreover, the CONS

implementation computes ς for every to-be-inferred variable, something that can be opti-

mized as well.

Lot size example. The joint computation of economic lot size in Figure 4.11 is a

137

non-linear arithmetic example. As described in Section 4.3, information flow analysis

infers that Alice knows a, b, c, d and Bob knows e, f. Using BVx, for x as 8, 16,

and 32, we infer the same conclusions. In addition, various bits of some other variables

are inferred. For example, Alice knows bit 1 of f and g, while Bob knows bit 1 of b and g.

These are due to the multiplications by 2 on lines 9 and 15, resulting in null bits of lowest

order. The performance of BVx for this test case naturally decreases as x is increased. For

x as 8, the analysis takes around 2.4 seconds, while for x as 32, it takes 165 seconds. Note

that a significant portion of this additional time is spent checking a much larger number

of bits for partial inference (when complete variables cannot be inferred).

1 ## assume 0 ≤ a, b < 0x0fff
2 int masked average (int a, int b)
3 int sum = a + b;
4 int avg = sum / 2;
5 return (avg & 0xfff0);

Figure 4.13: Masked average example

Masked average example. Our final example serves to better demonstrate the infer-

ence of bits of variables that cannot be inferred completely. Inference on the scale of bits

lets us determine bit-width requirements of a circuit implementing some computation, as

well as determine which bits can be revealed ahead of time due to the output of the com-

putation. Consider a masked average function in Figure 4.13. The function outputs the

high-order bits of the average of two 16 (or 32) bit inputs, which are assumed to be 12

bits big. BVx implementations for x as 16 and 32, analyzes this function in 0.25 and 0.50

seconds respectively.

If we only consider the input assumptions (view the program as outputting nothing),

138

then both parties can infer the null values of sum at bits 14-16 and of avg at bits 13-16 .

Additionally, since the function returns all but the lower 4 bits of the average, knowledge

inference lets us conclude that bits 6-13 of sum and bits 5-12 of avg can be inferred given

the output. An optimized circuit for this function would (a) reduce the size of sum and avg

to 13 and 12 bits respectively, and (b) reveal bits 6-13 of sum after computing it, so that

the final division circuit can be performed with just 5 bits.

4.5 Concluding remarks

This chapter has presented algorithms for knowledge inference in MPC programs,

that can be used to optimize a monolithic MPC program into a mixed-mode MPC pro-

gram, with formal guarantee that the mixed-mode version does not reveal more than the

monolithic version. Such an optimization can result in big performance gains in some

cases, as we have demonstrated in previous chapters for the PSI program and the joint

median computation program.

We formalized the notion of knowledge in an MPC program, and the problem of

knowledge inference that asks whether a party knows a variable in the MPC program. We

formulated a related constructive knowledge inference problem, that in addition demands

a witness of a party’s knowledge of a variable. We then presented algorithms for solv-

ing the knowledge inference and constructive knowledge inference problems, formalized

them, and proved their soundness and (conditional) completeness. We also presented an

implementation and empirical evaluation of our algorithms.

139

Chapter 5: Related Work

5.1 Circuit libraries

VMCrypt [12] and FastGC [13] are frameworks for building and executing Yao’s

garbled circuits [1] directly. They employ several techniques, such as free XOR gates [68],

pipelined execution, and so on, that improve the running time and memory requirements

of the garbled circuits protocol.

Mood et al. [14] port the garbled circuits protocol execution to mobile phones. They

control the memory requirements by using a novel intermediate language, called PAL. Cir-

cuits are generated from PAL by using a database of pre-generated circuits matching in-

structions to their circuit representations. They port the Fairplay compiler [15] to Android,

and generate circuits that were previously infeasible to create in the mobile environment.

Huang et al. [69] also demonstrate MPC applications, such as common contacts, running

on the smartphones. They use custom, hand-optimized circuits for this purpose.

While these frameworks have presented generic techniques that make Yao’s protocol

practical even for larger circuits, it is arguably hard to program large MPC application

directly using these libraries. As such, they can be easily used as a backend for Wysteria

and Wys?.

140

5.2 High-level DSLs for MPC

Fairplay [15] was the first high-level MPC DSL. It compiles a garbled circuit from

a Pascal-like imperative program. The entry point to this program is a function whose

two arguments are players, which are records defining each participant’s expected input

and output type. More recently, Holzer et al. [16] developed a compiler for programs

with similarly specified entry points, but written in (a subset of) ANSI C. The TASTY

compiler produces secure computations that may combine homomorphic encryption and

garbled circuits [70]. Its input language, TASTYL, requires explicit specification of com-

munication between parties, as well as the means of secure computation. More recently,

OblivC [71] is an extension to C for two-party MPC that annotates variables and condi-

tionals with an obliv qualifier to identify private inputs; these programs are compiled by

source-to-source translation. All these languages are however limited to two-parties, have

limited support for mixed-mode, and do not have a formalized specification.

Laud et al. [21] present a DSL for programming low-level MPC protocols related to

efficient integer and floating-point operations. They formalize their language, type system,

and semantics. The DSLs that we have presented in this dissertation are meant for higher-

level applications, and it should be possible to use the techniques from Laud et al. in the

backend for such applications.

FairplayMP [18] supports n > 2 parties. Its programs are similar to those of Fair-

Play, but now the entry point can contain many player arguments, including arrays of play-

ers, where the size of the array is statically known. The wire bundles in Wysteria and

Wys? have a similar feel to arrays of players. Just as FairPlayMP programs can iterate over

141

(arbitrary-but-known-length) arrays of players in a secure computation, we provide con-

structs for iterating over wire bundles. Unlike the arrays in FairplayMP, however, our wire

bundles have the possibility of representing different subsets of principals’ data, rather

than assume that all principals are always present; moreover, in Wysteria and Wys?,

these subsets can themselves be treated as variable.

5.2.1 Support for mixed-mode computations

L1 [34] is an intermediate language for mixed-mode SMC, but is limited to two

parties. Compared to L1, Wysteria provides more generality and ease of use. Further,

Wysteria programmers need not be concerned with the low-level mechanics of inter-

party communication and secret sharing, avoiding entire classes of potential misuse (e.g.,

when two parties wait to receive from each other at the same time, or when they attempt

to combine shares of distinct objects).

Kreuter et al. [17] present PCF, a circuit format language for expressing mixed-mode

secure computations for two parties. They implement an interpreter to load and execute

PCF programs. Their interpreter uses online circuit compression and lazy gate generation

for more efficient circuit compilation. However, compared to our DSLs, it is (by design)

very low level, in that it lacks abstractions for supporting multiple parties, as well as a

formal semantics.

SMCL [35] is a language for secure computations involving a replicated client and

a shared “server” which represents secure multiparty computations. Our DSLs are less

rigid in their specification of roles: we have secure and parallel computations involving

142

arbitrary numbers of principals, rather than all of them, or just one, as in SMCL. SMCL

provides a type system that aims to enforce some information flow properties modulo

declassification. SMCL’s successor, VIFF [72], reflects the SMCL computational model

as a library/DSL in Python.

Liu et al. [73] define a typed intermediate language for mixed-mode SMC protocols.

They support stateful secure computations using an ORAM-based [74] backend. They

build a compiler that aims to provide instruction-trace obliviousness [75] and memory-

trace obliviousness [76] properties. Their source programs do not have computation mode

annotations. Instead the programs contain simple annotations identifying the private data

of the parties, while the compiler performs an information-flow based analysis to assign

code blocks to either local computations (Par blocks) or secure computations (Sec blocks).

However, such an information-flow based analysis is often inadequate in identifying

the optimal placement of secure blocks. For example, their type system would not be able

to identify that in the joint median computation example, only the comparisons need to

be done securely. In terms of language design, their language is simplistic as compared to

Wysteria, e.g. it lacks function abstractions and is limited to two parties only. Another

implication of their design choice is that the programmer has to explicitly put declassify

annotations for the secure block outputs.

On the other hand, in Wysteria, the programmer has to provide the computation

mode annotations and the secure blocks outputs are implicitly declassified. Arguably,

Wysteria provides the programmers more flexibility in terms of secure blocks place-

ment, allowing them to express any well-typed code structure. In future, we would like to

enhance Wysteria with computation mode inference based on the analyses developed in

143

Chapter 4. Wysteria also does not have an ORAM backend and does not support state-

ful secure computations (the type system prohibits state manipulation in secure blocks).

If we were to provide oblivious array accesses without ORAM, the complexity for each

access would be O(log n), which would clearly not scale. But Wysteria does provide

the instruction-trace obliviousness property – the circuit compiler hoists the then and else

branches of an if conditional in a secure block, using a multiplexer circuit to select the

branch.

5.2.2 DSLs for cloud-based MPC

Another line of research in MPCs deals with a client-server setting, where client

wants to run a function over his private input using untrusted servers (e.g. in a cloud). To

protect confidentiality of his data, the client distributes secret shares of his input among

the servers. The servers run the same function, but use their own shares. Finally they

send the output shares to the client, who then recovers the clear output value. Launch-

bury et al. [77] present a table-lookup based optimization for such MPC protocols, that

aims at minimizing the cost incurred by expensive operations such as multiplication and

network communication between servers. Mitchell et al. [78] give an expressive calculus

for writing such functions. Their calculus is mixed-mode, but only in terms of data – the

programs can use both encrypted (private) and non-encrypted (public) values. They give

an extended information flow type system that rejects programs that cannot be run on a

secure computation platform (such as homomorphic encryption). In Wysteria, the above

client-server setting can be expressed as a monolithic secure block to be run by the servers,

144

each of which holds secret shares of client’s input. As we have shown in the dissertation,

we can express more general mixed-mode MPCs.

5.2.3 Other MPC languages

Kerschbaum et al. [79] explore automatic selection of mixed protocols consisting

of garbled circuits and homomorphic encryption. They provide an extended cost model

for mixed protocols, and present two algorithms for automatically selecting mixed pro-

tocols with (near-) optimal performance based on this model. Jif/Split enables writing

multi-party computations in Java as (conceptually) single-threaded programs [80]. It of-

fers compiler support for dividing Java programs into pieces to run on different hosts, based

on information-flow analysis and explicit declassifications. Unlike our work, Jif/Split does

not have support for collaborative computations, such as two parties looping in-parallel

performing a secure computation every loop iteration. It depends on actual trusted third

parties, and lacks language abstractions and run-time techniques for employing secure

computations without a trusted third party. On the other hand, Jif/Split automatically par-

titions the program, while in our DSLs, the programmer has to provide computation mode

annotations.

5.3 Crypto DSLs

Similar to Wysteria, researchers have proposed other DSLs for making cryptogra-

phy more accessible to programmers. λ• is a DSL for generic authenticated data-structures

(ADS) [81]. ADS aim to minimize the amount of client storage by allowing the client to

145

store a hash digest of their data, while the actual data is stored on a server. A prover and

verifier protocol between client and server guarantees that the client can query the data,

with formal guarantees that the server sends the correct result. A λ• source program, like

Wysteria, is for the most part a typical functional language program except for certain

types designated as authenticated types, and coercions auth and unauth. The compiler

then compiles a function f that uses authenticated types to two variations fP and fV for

prover and verifier respectively, while the type system guarantees the correctness and secu-

rity of the generated code. This is similar to Wysteria where the source program contains

computation mode annotations, and the interpreter interprets them accordingly.

ZQL [82] is a query language for expressing simple computations over private data in

scenarios such as smart meters. Given a ZQL source program, the compiler produces code

to perform the computation, and verify the correctness of its result. Behind the scenes, it

generates zero-knowledge protocols that guarantee both the privacy of the data and correct-

ness of the computation result. Pinocchio [83] is a framework for efficiently verifying the

results of outsourced (such as to the cloud) computations. It provides a compiler that con-

verts C code into verifiable arithmetic circuits, and tools for running the actual verification

protocol. As with Wysteria, these languages make cryptographic protocols accessible to

the application programmers with no cryptography expertise.

5.4 Verification of source MPC programs

None of the DSLs that we mentioned above provides formal reasoning about the cor-

rectness and the security properties of the source MPC programs, or a verified toolchain.

146

While the verification of the underlying crypto protocols has received some atten-

tion [84], the verification of the MPC source programs has remained largely unexplored.

The only previous work that we know of is Backes et al. [85] who devise an applied pi-

calculus [86] based abstraction for MPC, and use it for formal verification. For an auction

protocol that computes the min function, their abstraction comprises about 1400 lines of

code. In contrast, Wys? permits direct verification of higher-level MPC source programs

and provides a verified toolchain.

5.5 DSL implementation strategies

Similar to Wys?, other researchers have also embedded DSLs in verification-oriented

host languages. Chlipala [87] presents design and implementation of an extensible macro-

system in Coq [88], intended for verified low-level programming. In his system, every

macro, in addition to a compilation rule to the Bedrock IL, comes with a proof rule, and

the system requires the macro designers to prove that the macro definition satisfies the

proof rule. The macros can then be assembled to build applications that can be verified

by modular composition of the macro proof rules. The semantics of the BedRock IL is

trusted, but small enough to be audited manually.

Similar to the Bedrock IL, Wys? defines the deep embedding of Wysteria AST

in F? and formalizes its semantics. However, instead of taking the macro approach, we

have taken the API approach, with modifications to the F? compiler for producing those

ASTs from the F? source. Also, the API specifications (pre- and post-conditions) are

trusted in Wys?. As we mentioned in Section 3.3.3, verifying these is future work. Wys?

147

additionally has a notion of multi-party with distributed target semantics, while Bedrock IL

has a straightforward compilation to the assembly code. Wys? API (and formal semantics)

also provides a notion of observable traces that can be used to verify the security properties

of the MPC programs.

Wys?’s language-integrated syntax bears relation to the approach taken in LINQ [89],

which embeds a query language in normal C# programs, and implements these programs

by extracting the query syntax tree and passing it to a custom-provider that implements a

particular backend.

5.6 Knowledge inference for MPC

Huang et al. [13, 69] identify the need for knowledge based MPC optimizations,

while leaving the automatic generation of optimized MPC protocols to future work. Ker-

schbaum [5] solves the knowledge inference problem using a custom program analysis

based on epistemic modal logic inference rules. He shows that his approach works on the

median example (Section 4.1), and the lot size computation example (Figure 4.11). Our

work in Chapter 4 can be viewed as a generalization and improvement of his approach,

making several advances. First, we formally define the notion of knowledge in SMC, and

the problem of knowledge inference. In addition, we also formally define and solve the

related constructive knowledge inference problem. Second, we prove our algorithms are

sound and (relatively) complete. Moreover, our algorithms are built on top of the SMT

solvers, thus leveraging recent advances in SMT solving techniques. Indeed, we present

experimental measurements to characterize the performance of our algorithms, while he

148

does not.

5.6.1 Self-composition and noninterference

This section considers some aspects of our approach to knowledge inference, includ-

ing the relationship of knowledge inference to the property of delimited release [51], the

relationship of constructive knowledge inference to required release [61], and the effect

of using a different program analysis to determine a program’s final states.

Relating knowledge inference to noninterference. As mentioned in Section 4.1.1, the

knowledge inference problem bears some resemblance to the problem of proving noninter-

ference, as evidenced by the similarity of our use of self-composition with its previous use

in proving noninterference [60]. More precisely, knowledge inference is closely related

Sabelfeld and Myers’ delimited release [51] property. Next we define delimited release,

and then show how a method for proving a program satisfies delimited release can be

applied to knowledge inference.

In the setting of normal delimited release, we suppose there exists a security labeling

Γ, which maps each program variable in S to one of two security labels, L (low) and

H (high). We say that memories σ1 and σ2 are low-equivalent, written σ1 ∼Γ σ2, if

σ1(x) = σ2(x) for all variables x such that Γ(x) = L. We also suppose that the program

S may contain expressions declassify(e), which signal that e’s security label should

be considered L, even if its contents may otherwise suggest its label should be H . (In

an MPC, we can think of the output as being declassified; e.g., in the median example,

we would change the last line to be return declassify(m).) We say that S enjoys

149

delimited release with respect to Γ iff for all memories σ1, σ2, σ
′
1, σ

′
2 such that if σ1 ∼Γ σ2,

and 〈S, σ1〉 ⇓ σ′1 and 〈S, σ2〉 ⇓ σ′2 where 〈σ′1, ei〉 ⇓ v ⇔ 〈σ′2, ei〉 ⇓ v for some v for

all declassification expressions ei ∈ S, then σ′1 ∼Γ σ′2. In short, all pairs of program

evaluations that agree on the results of declassified expressions ei should also agree on

other low-visible outputs. Satisfying this condition means that nothing is leaked via low

outputs beyond what the declassification expressions already reveal.

We can describe knowledge inference for p in terms of delimited release. Let Γp

map p-visible variables to L and all remaining variables to H . The set of declassification

expressions is the set of output variables (e.g., m in the median example). Now, to see

whether local variable y can be inferred by p, we simply label y with L and see whether S

still satisfies delimited release. If so, revealing y to p provides no additional information.

The self-composition algorithm described in Section 4.1.1 is basically checking de-

limited release. For example, consider the condition presented for the median example:

φscpost ∧ (a1 = a1’ ∧ a2 = a2’ ∧ m = m’)⇒ (x1 = x1’)

The φscpost part captures the semantics of the two executions. The next two equalities are

establishing σ1 ∼Γ σ2, since they require Alice’s two input variables to be equal. The third

equality establishes the equality of the declassified output variable m. The final equality

x1 = x1’ establishes that σ′1 ∼Γ σ
′
2 (where the other low-security variables are known to be

equal by virtue of them appearing to the left of the implication, and the program respecting

single-assignment semantics).

Constructive knowledge inference is related to required release [61]. In this setting,

a program S satisfies required release of an input expression e to user p using output

150

expression F if p can evaluate F (i.e. F only uses variables visible to p) and F evaluates

to the same value as e, i.e. for all final states σ of S, 〈σ, e〉 ⇓ v ⇔ 〈|σ|p, F 〉 ⇓ v where |σ|p

denotes the state visible to p. The problem of constructive knowledge inference then is to

infer the function F for a party p and program variable y such that the program S satisfies

required release of y to party p using F .

As far as we are aware, we are the first to observe that knowledge inference can be

reduced to the question of deciding delimited release [51], and we are the first to show

how to decide this property using self-composition. Moreover, in the form of constructive

knowledge inference, we are the first to propose inference algorithms for inferring the

output function to decide the problem of required release [61].

Alternatives to ς(S, φ). The role of ς(S, φ) (Figure 4.5) is to provide a sound approx-

imation of final states of executing the program S starting from an initial state that satisfies

φ. We can use other program analyses to get such an approximation. In Section 4.1.1 we

used symbolic execution for this purpose; for our language (Figure 4.3), which lacks loops,

symbolic execution generates equivalent formula as ς .

While ς(S, φ) as defined in Figure 4.5 provides a complete approximation of final

program states (Theorem 12), for large programs the formula can become prohibitively

large. In such cases, we can always trade completeness of the approximation, and use

abstract interpretation [90] to provide a sound approximation. With such analyses, our

knowledge inference algorithms are still sound, in that if they output y is known to p then

K(S, p, y), but they lose completeness.

Using information flow. Inferring local variables known to p via information flow

analysis, as described earlier, is similar to the splitting algorithm employed by Jif/Split [65],

151

which partitions a program to run on multiple hosts. As mentioned before, Jif/Split does

not employ MPCs, but rather relies on trusted third parties, and employs a simple syntactic

algorithm incapable of inferring deeper relationships, e.g., it would not be able to deduce

that the parties can infer the two booleans in the median example

5.6.2 Template based program verification

Our constructive knowledge inference algorithms (Figure 4.8, Figure 4.9, and Fig-

ure 4.10) are inspired by template driven program verification techniques [38, 39]. How-

ever, our algorithms take advantage of features specific to our problem. Our templates,

instead of having arbitrary structure, have restricted form of φL ⇒ y ∧ y ⇒ φR. For

negative variables (i.e., variables on the left side of an implication), independent of c and

d, we never have to consider more than one lattice, since we always have only one template

variable on the left of implication. Second, as mentioned in the inference of φL earlier, in

addition to pruning the subtree of a solution node, we also prune subtrees whose root node

has size greater than c. Finally, we infer φL independent of φR, i.e. solve φL ⇒ y sepa-

rately from y ⇒ φR, which is different from [39], where negative variables are inferred

for every permutation of positive variables (variables on the right side of an implication).

Again, the simple structure of our templates enables us to do so.

152

Chapter 6: Looking back and going forward

MPC eliminates the need for a trusted third party and replaces it with a crypto-

graphic protocol. It provides a general-purpose solution to address growing data privacy

concerns – users do not have to trust a third-party with their data, instead they can retain

control of their data while using MPC for computing useful information with other users.

Cryptographic protocols for evaluating arbitrary functions as MPC have existed since the

1980s [1]. More recent developments have enabled the use of MPC in real-world applica-

tions [9, 10, 91].

6.1 Looking back

We began this dissertation with the vision of rich, practical, and provably secure

MPC applications. To attain this goal, the advances in the MPC cryptographic protocols

are necessary, but not sufficient – we also need to make MPC accessible to the application

programmers in an easy-to-use manner. This dissertation has applied techniques from

programming language design and program verification to do so.

We have followed a three pronged strategy. Firstly, we have designed high-level,

modular abstractions for MPC that enjoy a conceptual single-threaded interpretation. We

have embedded these abstractions inside a general purpose, verification-oriented program-

153

ming language, so that the application programmers can build upon them while prov-

ing useful correctness and security properties about their programs. Secondly, we have

formally verified parts of our MPC toolchain, thereby considerably reducing the risk of

security-critical bugs that can compromise the privacy of parties’ data. Finally, we have de-

signed algorithms to optimize monolithic MPC programs to mixed-mode MPC programs,

with formal guarantees that the mixed-mode versions do not reveal more information about

the parties’ data than their monolithic counterparts.

6.1.1 Wysteria

Wysteria is the first mixed-mode MPC DSL that provides a formalized type system

and a conceptual single-threaded semantics, with theorems that prove the type system to

be sensible, and establish the correspondence between the single-threaded and the actual

distributed semantics. Wysteria also provides high-level support for secret shares (secure

state), while the Wysteria interpreter transparently handles the low-level cryptography

and message passing details.

We have experimentally demonstrated that Wysteria makes significant advances

towards our goal of practical and rich secure computations. We have built several novel

MPC applications using Wysteria, including, for the first time, a card dealing application.

Crucially, this application relies on multiple rounds of secure computations, that manip-

ulate the deck of cards in the form of secure state. Wysteria’s easy-to-use, high-level

abstractions simplify the programming task, reducing the risks of programmer mistakes,

while the Wysteria interpreter handles cryptography behind-the-scenes. Wysteria’s

154

conceptual, single-threaded semantics also simplifies the reasoning about the programs.

6.1.2 Wys?

Wys? is the first language to provide formal verification capabilities for the mixed-

mode MPC programs. It is also the first DSL to provide a partially verified MPC toolchain.

Wys? enhances the Wysteria semantics with observable traces, with which the program-

mers can state and verify security properties of their programs. Wys? also enhances the

usability of Wysteria – Wys? programs can directly use the standard language constructs

and libraries from the host language F?.

Wys? makes advances towards more reliable and trustworthy MPCs. Using Wys?,

we have shown that tricky MPC programs that use multiple rounds of secure computations

and message exchanges, such as PSI and the joint median computation, can be formally

verified for correctness and security. At the same time, we have used F?’s extraction facil-

ities to extract an executable, verified interpreter for Wys? programs, that we have shown

to be practical and usable.

6.1.3 Knowledge inference

Unlike previous approaches for knowledge inference for MPC programs, we have

taken a more formal approach. We have formally defined the notion of knowledge, the

knowledge inference problem, and a novel constructive notion of knowledge inference. We

have then developed sound and (relatively) complete algorithms to solve these problems.

We have also implemented and empirically evaluates these algorithms, showing them to

155

be practical.

6.2 Going forward

This dissertation has made important contributions towards the goal of rich, practi-

cal, and trustworthy MPC applications. Yet, we still have a way to go. Below we discuss

limitations of our work and several avenues of future work.

Inferring computation mode annotations. Wysteria requires the programmer to

annotate computation modes, i.e. the programmer needs to decide which parts of the code

are executed locally and which parts are executed securely (the knowledge inference anal-

yses that we developed in Chapter 4 can guide this decision). This can, sometimes, be

onerous for the programmer. SCVM [73], on the other hand, only requires the program-

mers to annotate private data of the parties, while the compiler performs a lightweight,

information-flow based analysis to allocate code blocks to local or secure computations.

However, the information-flow based analysis can miss several opportunities for optimiza-

tions. For example, for the joint median computation example, their analysis would fail to

identify that only the two comparisons need to be done securely. It would be an interest-

ing future work to integrate our knowledge inference analysis directly into the compiler

for inferring computation modes.

Support for stateful secure blocks. Our current Wysteria development lacks the

support of stateful secure computations, the Wysteria type system forbids updating state

inside secure blocks. Recent work [73, 92] has used ORAM-based backends for support-

ing stateful MPCs. One of the key properties that such frameworks aim for is that of

156

memory trace obliviousness [76]. Extending Wysteria with an ORAM backend would

enable writing, for example, big-data applications. Interestingly, we can perhaps provide

the memory traces in the Wys? API (adding to the observation traces), and the program-

mers would be able to prove that their programs enjoy the memory trace obliviousness

property, rather than rely on a one-size-fits-all type system.

Supporting the malicious adversary threat model. Our work assumes a semi-honest

adversary, i.e. the parties are honest (they follow the prescribed protocol) but curious (they

want to learn about other parties’ data). However, in some settings this model may not be

applicable. One difficulty in extending mixed-mode MPCs to the malicious setting is that

parties would need to be able to verify the local computations of other parties (secure

computation protocols for malicious settings are already known [93, 94]). One possibil-

ity is to leverage recent advances in verifiable computation [83], where with every local

computation, a party generates a proof about the computation that other parties can verify.

The practicality of such an approach could be an issue.

Eliminating trust from the API specification and the source semantics. As we noted

previously, the Wys? single-threaded semantics that we have formalized in F?, is a trusted

model of the embedded Wysteria API in F?. Although the API and the semantics are

quite small and can be easily audited, there is still a chance of bugs. Formally connecting

the two would require us to formalize the F?’s monadic type system, and connect the Wys?

source semantics to the official F? semantics [37]. Our circuit library is also unverified.

While verifying the circuit compiler that converts Wys? ASTs to boolean circuits seems

straightforward, verifying the GMW protocol is an open and interesting problem. Previous

work on verifying Yao’s garbled circuits protocol [84] provides a starting point.

157

Security policies for MPC. Wys? makes observation traces accessible to program-

mers. As we have seen, these traces can be used to reason about the security of the MPC

programs. In particular, we have seen the use of these traces in verifying the security of

the mixed-mode versions of the median and PSI programs. However, users might want to

verify other types of security policies for their MPC programs. For example, Mardziel et

al. [95] present abstract interpretation-based analysis for quantifying adversary knowledge

during an MPC. As they demonstrate, a party can use such an analysis to decide whether

to participate in an MPC depending on if the participation would lead to unacceptable

knowledge increase of the other parties. As another example, for the card dealing applica-

tion, we might want to verify that the dealt cards are from a randomized deck (verifying

freshness of the newly dealt card should be easier). In short, future work might investigate

what other security policies users want to enforce for their MPC programs, and whether

those policies can be formalized in our Wys? framework. Since such policies typically

involve probabilistic reasoning, we would probably use the probabilistic relational version

of F? [52].

Cloud computing. In addition to joint computations over private data, MPC also

opens up new opportunities for cloud computations [78, 96]. Untrusted cloud servers can

obliviously compute a function on a client’s private data using secret shares-based MPC

protocol (such as GMW) or homomorphic encryption. For better performance, the com-

putations could involve both secret and public data, and secure and local computations

(mixed-mode). We can express and verify such computations easily in Wysteria. One

way would be to write the MPC program as a multi-party program betweenn cloud servers,

with some secret-share inputs provided by the client. Moreover, the Wys? interpreter pro-

158

vides a generic way to run such computations on the cloud servers. However, to realize

practical cloud applications, we would need to enhance the Wys? toolchain with support

for state (so that applications such as those related to the databases can be programmed),

and a way to bootstrap the computation using client data’s input shares. To handle the

malicious cloud servers, we would need enhancements similar to those for the malicious

model (discussed above).

Building rich MPC applications. Wys? enables the programmers to write the MPC

specific code only in Wys?, while the rest of the application code can be written in the host

language F?. Wys? provides a Foreign Function Interface (FFI) to seamlessly integrate

the MPC code and the rest of the application code. We have, for example, used standard

datatypes such as lists, tuples, and options, and I/O libraries from F? in our example Wys?

applications. However, we leave it for future work to build a more complete, rich MPC

application using Wys?.

Some example applications that we could target are the email client and web browser

plug-in based applications that we discussed at the beginning of Chapter 1. One way to

go forward is to enhance F? with a JavaScript backend (previous F? version used to have

it), and extract the Wys? interpreter and source programs to JavaScript. Building these

applications might also require us to enhance the Wys? FFI interface to handle higher-

order data, it is currently first-order. We can use standard techniques of function wrappers

for this purpose [57]. Such JavaScript applications can then be easily executed using a

web-browser, or a JavaScript engine such as node.js [97]. To run native C/C++ based im-

plementations of the cryptographic protocols (such as GMW), we can look into the Native

Client technology [98].

159

One potential concern with JavaScript-based MPC could be the presence of mali-

cious scripts (such as ads) on the same page. Since all the scripts on a webpage run in

the same security sandbox, such malicious scripts can easily access the private data in the

MPC programs. To protect the MPC code and data from the malicious JavaScript context,

we can use recently developed type-based sandboxing techniques [99, 100].

160

Appendix A: Formal definitions for Wysteria

In this appendix, we present several formal definitions for Wysteria that were elided

from Chapter 2.

161

Γ ` v : τ (Value typing with no mode)

tn-var

x : τ ∈ Γ Γ ` τ

Γ ` x : τ

tn-unit

Γ ` () : unit

tn-inj

Γ ` v : τi j ∈ {1, 2}

τj IsFlat Γ ` τj

Γ ` inji v : τ1 + τ2

tn-prod

Γ ` vi : τi

Γ ` (v1, v2) : τ1 × τ2

tn-princ

Γ ` p : ps (ν = {p})

tn-psone

Γ ` w : ps (singl(ν))

Γ ` {w} : ps (ν = {w})

tn-psunion

Γ ` wi : ps φi

Γ ` w1 ∪ w2 : ps (ν = w1 ∪ w2)

tn-psvar

Γ ` x : ps φ

Γ ` x : ps (ν = x)

tn-sub

Γ ` v : τ ′

Γ ` τ ′ <: τ Γ ` τ

Γ ` v : τ

Figure A.1: Value typing with no mode

Γ `M � ε (Effects delegation)

effdel-empty

Γ `M � ·

effdel-mode

Γ `M � ε Γ `M �N

Γ `M � ε,N

Figure A.2: Effects delegation

162

τ IsFO (First order types)

f-unit

unit IsFO

f-sum

τ1 IsFO τ2 IsFO

τ1 + τ2 IsFO

f-prod

τ1 IsFO τ2 IsFO

τ1 × τ2 IsFO

f-princs

ps φ IsFO

f-wire

τ IsFO

Ww τ IsFO

f-array

τ IsFO

Array τ IsFO

f-share

τ IsFO

Shw τ IsFO

τ IsSecIn (Valid input types for secure blocks)

sin-fo

τ IsFO

τ IsSecIn

sin-arrow

τi IsSecIn

x :τ1
ε→ τ2 IsSecIn

τ IsFlat (Wire and Share free types)

w-unit

unit IsFlat

w-sum

τ1 IsFlat τ2 IsFlat

τ1 + τ2 IsFlat

w-prod

τ1 IsFlat τ2 IsFlat

τ1 × τ2 IsFlat

w-arr

τ1 IsFlat τ2 IsFlat

x :τ1
ε→ τ2 IsFlat

w-princs

ps φ IsFlat

w-array

τ IsFlat

Array τ IsFlat

Figure A.3: Auxiliary judgements used in the type system

163

Γ ` ε (Well formed effect)

wfeff-empty

Γ ` ·

wfeff-mode

Γ ` ε Γ `M

Γ ` ε,M

Γ ` φ (Well formed refinement)

wfref-true

Γ ` true

wfref-singl

Γ ` singl(ν)

wfref-sub

Γ ` w : ps φ

Γ ` ν ⊆ w

wfref-eq

Γ ` w : ps φ

Γ ` ν = w

wfref-conj

Γ ` φi

Γ ` φ1 ∧ φ2

Γ ` τ (Well formed type)

wf-unit

Γ ` unit

wf-sum

Γ ` τi τi IsFlat

Γ ` τ1 + τ2

wf-prod

Γ ` τi

Γ ` τ1 × τ2

wf-princ

Γ ` φ

Γ ` ps φ

wf-arrow

Γ ` τ1 Γ, x : τ1 ` ε

Γ, x : τ1 ` τ2

Γ ` x :τ1
ε→ τ2

wf-wire

Γ ` w : ps φ

Γ ` τ τ IsFlat

Γ `Ww τ

wf-array

Γ ` τ

Γ ` Array τ

wf-share

Γ ` w : ps φ Γ ` τ

τ IsFO τ IsFlat

Γ ` Shw τ

Γ `M (Well formed place)

wfpl-top

Γ ` >

wfpl-other

Γ ` w : ps φ

Γ ` m(w)

Figure A.4: Well-formedness judgements

164

ψJv1KΓ
M = v2 (Closing value)

vl-var1

x 7→N v ∈ ψ

Γ ` N �M

ψJxKΓ
M = v

vl-var2

x 7→ v ∈ ψ

ψJxKΓ
M = v

vl-var3

x /∈ dom(ψ)

ψJxKΓ
M = x

vl-unit

ψJ()KΓ
M = ()

vl-prod

ψJ(v1, v2)KΓ
M = (ψJv1KΓ

M , ψJv2KΓ
M)

vl-inj

ψJinji vKΓ
M = inji (ψJvKΓ

M)

vl-princ

ψJpKΓ
M = p

vl-singl

ψJ{v}KΓ
M = {ψJvKΓ

M}

vl-union

ψJv1 ∪ v2KΓ
M = ψJv1KΓ

M ∪ ψJv2KΓ
M

ψJv1K = v2 (Closing value)

vlt-var1

x 7→ v ∈ ψ

ψJxK = v

vlt-var2

x /∈ dom(ψ)

ψJxK = x

vlt-unit

ψJ()K = ()

vlt-prod

ψJ(v1, v2)K = (ψJv1K, ψJv2K)

vlt-inj

ψJinji vK = inji (ψJvK)

vlt-princ

ψJpK = p

vlt-singl

ψJ{v}K = {ψJvK}

vlt-union

ψJ(v1 ∪ v2)K = (ψJv1K) ∪ (ψJv2K)

ψJφ1K = φ2 (Closing refinement)

rl-true

ψJtrueK = true

rl-singl

ψJsingl(ν)K = singl(ν)

rl-sub

ψJν ⊆ wK = ν ⊆ ψJwK

rl-eq

ψJν = wK = ν = ψJwK

rl-conj

ψJ(φ1 ∧ φ2)K = (ψJφ1K) ∧ (ψJφ2K)

Figure A.5: Environment closing judgements

165

ψJτ1K = τ2 (Closing type)

tl-unit

ψJunitK = unit

tl-sum

ψJ(τ1 + τ2)K = (ψJτ1K) + (ψJτ2K)

tl-prod

ψJ(τ1 × τ2)K = (ψJτ1K)× (ψJτ2K)

tl-princs

ψJ(ps φ)K = ps ψJφK

tl-wire

ψJ(Ww τ)K = W (ψJwK)ψJτK

tl-array

ψJArray τK = ArrayψJτK

tl-share

ψJShw τK = ShψJwKψJτK

tl-arrow

ψJx :τ1
ε→ τ2K = x :ψJτ1K

ψJεK→ ψJτ2K

ψJM1K = M2 (Closing place)

pl-top

ψJ>K = >

pl-pc

ψJm(w)K = m(ψJwK)

ψJε1K = ε2 (Closing effect)

el-empty

ψJ·K = ·

el-pl

ψJNK = ψJNK

el-seq

ψJ(ε1, ε2)K = (ψJε1K), (ψJε2K)

ψJΓ1K = Γ2 (Closing type environment)

tel-emp

ψJ.K = .

tel-bnd1

ψJΓK = Γ′

ψJΓ, x : τK = Γ′, x : ψJτK

tel-bnd2

ψJΓK = Γ′

ψJΓ, x :M τK = Γ′, x :ψJMK ψJτK

Figure A.6: Environment closing judgements

166

slicep(ψ) ; ψ′ (Environment slicing: “Environment ψ sliced for p is ψ′. ”)

sliceEnv-emp

slicep(·) ; ·

sliceEnv-Bind1

p ∈ w slicep(ψ) ; ψ′

slicep(ψ{x 7→p(w) v}) ; ψ′{x 7→p({p}) slicep(v)}

sliceEnv-Bind2

p 6∈ w slicep(ψ) ; ψ′

slicep(ψ{x 7→p(w) v}) ; ψ′

sliceEnv-Bind3

slicep(ψ{x 7→ v}) ; ψ′{x 7→ slicep(v)}

sliceEnv-Bind4

slicep(ψ) ; ψ′

slicep(ψ{x 7→s(w) v}) ; ψ′

slicep(κ) ; κ′ (Stack slicing: “Stack κ sliced for p is κ′. ”)

sliceStk-Par1

slicep(κ) ; κ′

slicep(ψ) ; ψ′

slicep(κ :: 〈p({p} ∪ w);ψ; x .e〉) ; κ′ :: 〈ψ′; x .e〉

sliceStk-Par2

slicep(κ) ; κ′

slicep(ψ) ; ψ′

slicep(κ :: 〈ψ; x .e〉) ; κ′ :: 〈ψ′; x .e〉

slicep(σ) ; σ′ (Store slicing: “Store σ sliced for p is σ′. ”)

sliceStr-Par1

p ∈ w slicep(σ) ; σ′

slicep(vi) = v ′i

slicep(σ{` :p(w) v1, .. , vk}) ; σ′{` :p({p}) v
′
1, .. , v

′
k}

sliceStr-Par2

p 6∈ w slicep(σ) ; σ′

slicep(σ{` :p(w) v1, .. , vk}) ; σ′

Figure A.7: Slicing judgements

167

slicew (C) ; π (Configuration slicing: “Configuration C sliced for w is π. ”)

sliceCfg-Emp

slice·(C) ; ε

sliceCfg-Union

slicew1(C) ; π1

slicew2
(C) ; π2

slicew1∪w2(C) ; π1 · π2

sliceCfg-Par

p ∈ w slicep(σ) ; σ′

slicep(κ) ; κ′

slicep(ψ) ; ψ′

slice{p}(p(w){σ;κ;ψ; e}) ; p {σ′;κ′;ψ′; e}

sliceCfg-Abs1

p 6∈ w

slice{p}(m1(w1){σ;κ;ψ2; e1}) ; p {σ′;κ′;ψ′; e ′}

ψ2 = ψ1{x 7→m1(w) ©}

slice{p}(m(w){σ;κ :: 〈m1(w1);ψ1; x .e1〉 ;ψ; e}) ; p {σ′;κ′;ψ′; e ′}

sliceCfg-Abs2

p 6∈ w

slice{p}(m(w){σ;κ;ψ2; e1}) ; p {σ′;κ′;ψ′; e ′}

ψ2 = ψ1{x 7→ ©}

slice{p}(m(w){σ;κ :: 〈ψ1; x .e1〉 ;ψ; e}) ; p {σ′;κ′;ψ′; e ′}

sliceCfg-Sec

π = s(ww)
{
◦
w
σw ;κ′; ◦

w
ψw ; e

}
· p {σ′;κ1; ·; wait}

p ∈ w

slicep(κ :: 〈p(w);ψ1; x .e1〉) ; κ1

slicep(σ) ; σ′ κ′smallest

slice{p}(s(w){σ;κ :: 〈p(w);ψ1; x .e1〉 :: κ′;ψ; e}) ; π

Figure A.8: Configuration slicing judgements

168

slicep(v) ; v ′ (Value slicing: “Value v sliced for p is v ′. ”)

sliceVal-Unit

slicep(()) ; ()

sliceVal-Inj

slicep(v) ; v ′

slicep(inji v) ; inji v ′

sliceVal-Prod

slicep(vi) ; v ′i

slicep((v1, v2)) ; (v ′1, v
′
2)

sliceVal-Ps

slicep((w1 ∪ w2)) ; (w1 ∪ w2)

sliceVal-Wire

slicep(({p : v} ++ v1)) ; {p : v}

sliceVal-WireAbs

p 6∈ dom((v1 ++ v2))

slicep((v1 ++ v2)) ; ·

sliceVal-Loc

slicep(`) ; `

sliceVal-Clos

slicep(clos (ψ;λx .e)) ; clos (ψ′;λx .e)

sliceVal-FixClos

slicep(clos (ψ; fix x .λy .e)) ; clos (ψ′; fix x .λy .e)

sliceVal-Sh

slicep(v) ; v ′

slicep(shw v) ; shw v ′

ψ1 ◦ ψ2 ; ψ3 (Environment composing: “Environment ψ1 composed with ψ2 is ψ3. ”)

compEnv-Emp

· ◦ ψ ; ψ

compEnv-Bind1

ψ1 ◦ ψ2 ; ψ

ψ1{x 7→p({p}) v1} ◦ ψ2{x 7→p(w) v2}; ψ{x 7→p({p}∪w) (v1 ◦ v2)}

compEnv-Bind2

ψ1 ◦ ψ2 ; ψ

ψ1{x 7→s(w) v1} ◦ ψ2{x 7→s(w) v2}; ψ{x 7→s(w) (v1 ◦ v2)}

compEnv-Bind3

ψ1 ◦ ψ2 ; ψ

ψ1{x 7→ v1} ◦ ψ2{x 7→ v2}; ψ{x 7→ v1 ◦ v2}

Figure A.9: Slicing and composing judgments

169

v1 ◦ v2 ; v3 (Value composing: “Value v1 composed with v2 is v3. ”)

compVal-Unit

() ◦ () ; ()

compVal-Inj

v1 ◦ v2 ; v ′

inji v1 ◦ inji v2 ; inji v ′

compVal-Prod

vi ◦ v ′i ; v ′′i

(v1, v2) ◦ (v ′1, v
′
2) ; (v ′′1 , v

′′
2)

compVal-Ps

(w1 ∪ w2) ◦ (w1 ∪ w2) ; (w1 ∪ w2)

compVal-Wire

{p : v} ◦ v1 ; {p : v} ++ v

compVal-Loc

` ◦ `; `

compVal-Clos

ψ1 ◦ ψ2 ; ψ

clos (ψ1;λx .e) ◦ clos (ψ2;λx .e) ; clos (ψ;λx .e)

compVal-FixClos

ψ1 ◦ ψ2 ; ψ

clos (ψ1; fix x .λy .e) ◦ clos (ψ2; fix x .λy .e) ; clos (ψ; fix x .λy .e)

compVal-Sh

v1 ◦ v2 ; v

shw v1 ◦ shw v2 ; shw v

σ1 ◦ σ2 ; σ3 (Store composing: “Store σ1 composed with σ2 is σ3. ”)

compStr-Emp

· ◦ ·; ·

compStr-Par

σ1 ◦ σ2 ; σ

σ1{` :p({p}) v1, .. , vk} ◦ σ2{` :p(w) v
′
1, .. , v

′
k}; σ{` :p({p}∪w) v1 ◦ v ′1, .. , vk ◦ v ′k}

Figure A.10: Value and store composing judgements

170

Γ `M v : τ (Runtime value typing)

t-ps-emp

Γ `M · : ps (ν = ·)

t-emp

. ` τ

Γ `M · : W · τ

t-singlwire

M = m(w1)

m = s⇒ N = s(w1)

m = p⇒ N = p({p})

. `N v : τ

. ` τ τ IsFlat

Γ′ `M {p : v} : W {p} τ

t-wirecat

. `M v1 : Ww1 τ

. `M v2 : Ww2 τ

Γ′ `M v1 ++ v2 : W (w1 ∪ w2) τ

t-loc

Σ(`) = τ . ` τ

Γ′ `M ` : Array τ

t-sh

. `M v : τ . ` τ

τ IsFO τ IsFlat

Γ′ `M shw v : Shw τ

t-clos

Σ ` ψ ; Γ

Γ, x : τ1 `M e : τ2; ε

. ` (x :τ1
ε→ τ2)

Γ′ `M clos (ψ;λx .e) : x :τ1
ε→ τ2

t-fixclos

Σ ` ψ ; Γ

Γ, f : y :τ1
ε→ τ2 `M λx .e : y :τ1

ε→ τ2; ·

. ` (y :τ1
ε→ τ2)

Γ′ `M clos (ψ; fix f .λx .e) : y :τ1
ε→ τ2

Γ `M e : τ ; ε (Runtime expression typing)

t-secblk

Γ ` w : ps (ν = w ′)

Γ `s(w) e : τ ; ε

Γ `m(w ′) securew (e) : τ ; ε

Figure A.11: Runtime value and expression typing

171

Σ ` σwf (Store typing)

tstore-emp

Σ ` ·wf

tstore-loc

Σ ` σwf Σ; . `M vi : τ

Σ, ` :M τ ` σ{` :M v1, .. , vk}wf

Σ `M κ : τ1 ↪→ τ2 (Stack typing)

tstk-emp

. ` τ w is all parties

Σ `p (w)· : τ ↪→ τ

tstk-frame1

M = (w) N = m()

Σ ` ψ ; Γ Γ ` τ1

Σ; Γ, x :m(w) τ1 `N e : τ2; ε

Σ `N κ : ψJτ2K ↪→ τ3

Σ `M κ :: 〈N ;ψ; x .e〉 : ψJτ1K ↪→ τ3

tstk-frame2

Σ ` ψ ; Γ Γ ` τ1

Σ; Γ, x : τ1 `M e : τ2; ε

Σ `M κ : ψJτ2K ↪→ τ3

Σ `M κ :: 〈ψ; x .e〉 : ψJτ1K ↪→ τ3

Σ ` ψ ; Γ (Environment typing)

tenv-emp

Σ ` ·; .

tenv-mapp

Σ ` ψ ; Γ

Σ; . `M v : ψJτK

Σ ` ψ{x 7→M v}; Γ, x :M τ

tenv-mapp2

Σ ` ψ ; Γ

Σ; . ` v : ψJτK

Σ ` ψ{x 7→ v}; Γ, x : τ

tenv-munk

Σ ` ψ ; Γ Γ ` τ

Σ ` ψ{x 7→M ©}; Γ, x :M τ

tenv-munk2

Σ ` ψ ; Γ Γ ` τ

Σ ` ψ{x 7→ ©}; Γ, x : τ

Figure A.12: Typing for store, stack, and environment

172

Σ ` C : τ (Configuration typing)

tconfig-config

Σ ` σwf . `M

Σ `M κ : ψJτ1K ↪→ τ2

Σ ` ψ ; Γ

Σ; Γ `M e : τ1; ε

Σ `M{σ;κ;ψ; e} : τ2

C halted (Configuration halt states)

halted-answer

w is all parties

p(w){σ; ·;ψ; v}halted

halted-error

M{σ;κ;ψ; error}halted

C st (Stack structure invariants)

stok-sec

κ = κ′ :: 〈p(w);ψ′; x .e2〉 :: κ1

s(w){σ;κ;ψ; e} st

stok-sece

κ = κ′ :: 〈p(w);ψ′; x .e2〉

p(w){σ;κ;ψ; securew ′(e)} st

stok-par1

p(w){σ; ·;ψ; e} st

stok-par2

w ⊆ w ′

p(w){σ;κ;ψ; e} st

p(w){σ;κ :: 〈p(w ′);ψ′; x .e ′〉 ;ψ; e} st

stok-par3

p(w){σ;κ;ψ; e} st

p(w){σ;κ :: 〈ψ′; x .e ′〉 ;ψ; e} st

Figure A.13: Runtime configuration typing

173

Appendix B: Wysteria Proofs

We first present several auxiliary lemmas. Main theorems are proved towards the

end. This section is best read electronically, as it has several hyperlinks to aid navigation

(such as for skipping long proofs, etc.).

Lemma 18 (Weakening of type environment).
Let x /∈ dom(Γ) and Γ1 = Γ, x :M1 τ

′.

1. If Γ `M v : τ , then Γ1 `M v : τ .

2. If Γ ` v : τ , then Γ1 ` v : τ .

3. If Γ ` τ , then Γ1 ` τ .

4. If Γ ` φ, then Γ1 ` φ.

5. If Γ ` τ1 <: τ2, then Γ1 ` τ1 <: τ2.

6. If Γ ` N , then Γ1 ` N .

7. If Γ `M �N , then Γ1 `M �N .

8. If Γ ` ε, then Γ1 ` ε.

Proof. (Skip) By simultaneous induction.
(1.) Induction on derivation of Γ `M v : τ , case analysis on the last rule used.
Rule t-var. We have,
(a) v = y
(b) y :M τ ∈ Γ ∨ y : τ ∈ Γ
(c) Γ ` τ
((b) means y is different from x)
From (b) we have,
(d) y :M τ ∈ Γ1 ∨ y : τ ∈ Γ1

Use I.H. (3.) on (c) to get,
(e) Γ1 ` τ
With (d) and (e), use rule t-var to derive Γ1 `M v : τ .

174

Rule t-unit. Use rule t-unit with Γ1.
Rule t-inj. We have,
(a) Γ `M v : τi
(b) τj IsFlat
(c) Γ ` τj
Use I.H. (1.) on (a), I.H. (3.) on (c), and with (b) use rule t-inj.
Rule t-prod. Use I.H. (1.) on premises.
Rule t-princ. Use rule t-princ with Γ1.
Rule t-psone. Use I.H. (1.) on rule premise, and then use rule t-psone.
Rule t-psunion. Use I.H. (1.) on rule premises, and then use rule t-psunion.
Rule t-psvar. Use I.H. (1.) on rule premise, and then rule t-psvar (note that v = y ,

different from x).
Rule t-msub. Use of I.H. (6.), (1.), and (7.), and then use rule t-msub.
Rule t-sub. use of I.H. (1.), (5.), and (3.), and then use rule t-sub.
Rule t-singlwire. given premises, use rule t-singlwire with Γ1.
Rule t-wirecat. given premises, use rule t-wirecat with Γ1.
Rule t-loc. given premises, use rule t-loc with Γ1.
Rule t-sh. given premises, use rule t-sh with Γ1.
Rule t-clos. given premises, use rule t-clos with Γ1.
Rule t-fixclos. given premises, use rule t-fixclos with Γ1.
(2.) Similar to proof above.
(3.) Induction on derivation of Γ ` τ , case analysis on the last rule used.
Rule wf-unit. use rule wf-unit with Γ1.
Rule wf-sum. use I.H. (3.) on premises, and then use rule wf-sum.
Rule wf-prod. use I.H. (3.) on premises, and then use rule wf-prod.
Rule wf-princ. use I.H. (4.) on rule premise, and then use rule wf-princ.
Rule wf-arrow. we have,
(a) τ = y :τ1

ε→ τ2

(b) Γ ` τ1

(c) Γ, y : τ1 ` ε
(d) Γ, y : τ1 ` τ2

Use I.H. (3.) on (b), I.H. (8.) on (c), and I.H. (3.) on (d) to get
(e) Γ1 ` τ1

(f) Γ, y : τ1, x :M1 τ
′ ` ε

(g) Γ, y : τ1, x :M1 τ
′ ` τ2

Use type environment permutation lemma on (f) and (g) and then use rule wf-arrow
with (e) to get the derivation.

Rule wf-wire. use I.H. (2.) and (3.), and then use rule wf-wire.
Rule wf-array. use I.H. (3.), and then use rule wf-array.
Rule wf-share. use I.H. (2.) and (3.), and then use rule wf-share.
(4.) Induction on derivation of Γ ` φ, case analysis on the last rule used.
Rule wfref-true. use rule wfref-true with Γ1.
Rule wfref-singl. use rule wfref-singl with Γ1.
Rule wfref-sub. use I.H. (2.) on the premise, and then use rule wfref-sub.
Rule wfref-eq. use I.H. (2.) on the premise, and then use rule wfref-eq.

175

Rule wfref-conj. use I.H. (4.) on the premises, and then use rule wfref-conj.
(5.) Induction on derivation of Γ ` τ1 <: τ2, case analysis on the last rule used.
Rule s-refl. use rule s-refl with Γ1.
Rule s-trans. use I.H. (5.) on premises, and then use rule s-trans.
Rule s-sum. use I.H. (5.) on premises, and then use rule s-sum.
Rule s-prod. use I.H. (5.) on premises, and then use rule s-prod.
Rule s-princs. we have,
(a) JΓK � φ1 ⇒ φ2

We can derive
(b) JΓ1K � φ1 ⇒ φ2

Use rule s-princs again.
Rule s-wire. use I.H. (2.) and (5.) on premises, and then use rule s-wire.
Rule s-array. use I.H. (5.) on premises, and then use rule s-array.
Rule s-share. use I.H. (2.) and (5.) on premises, and then use rule s-share.
Rule s-arrow. use I.H. (5.) on premises, permutation lemma, and then use rule s-

arrow.
(6.) Induction on derivation of Γ ` N , case analysis on the last rule used.
Rule wfpl-top. use rule wfpl-top with Γ1.
Rule wfpl-other. use I.H. (2.) on premise, and then use rule wfpl-other.
(7.) Induction on derivation of Γ `M �N , case analysis on the last rule used.
Rule d-refl. use I.H. (2.) on premise, and then use rule d-refl.
Rule d-top. use I.H. (2.) on premise, and then use rule d-top.
Rule d-par. use I.H. (2.) on premise, and then use rule d-par.
Rule d-sec. use I.H. (2.) on premise, and then use rule d-sec.
(8.) Induction on derivation of Γ ` ε, case analysis on the last rule used.
Rule wfeff-empty. use rule wfeff-empty with Γ1.
Rule wfeff-mode. use I.H. (8.) and I.H. (6.) on premises, and then use rule wfeff-

mode.

Lemma 19 (Weakening of type environment).
Let x /∈ dom(Γ) and Γ1 = Γ, x : τ ′.

1. If Γ `M v : τ , then Γ1 `M v : τ .

2. If Γ ` v : τ , then Γ1 ` v : τ .

3. If Γ ` τ , then Γ1 ` τ .

4. If Γ ` φ, then Γ1 ` φ.

5. If Γ ` τ1 <: τ2, then Γ1 ` τ1 <: τ2.

6. If Γ ` N , then Γ1 ` N .

7. If Γ `M �N , then Γ1 `M �N .

8. If Γ ` ε, then Γ1 ` ε.

176

Proof. Similar to the proof of Lemma 18.

Lemma 20 (Weakening of type environment under subtyping).
Let Γ ` τ ′ <: τ and Γ ` τ ′. Let Γ1 = Γ, x :M τ . For Γ2 = Γ, x :M τ ′,

1. If Γ1 `N v : τ , then Γ2 `N v : τ .

2. If Γ1 ` v : τ , then Γ2 ` v : τ .

3. If Γ1 ` τ1 <: τ2, then Γ2 ` τ1 <: τ2.

4. If Γ1 ` τ , then Γ2 ` τ .

5. If Γ1 ` φ, then Γ2 ` φ.

6. If Γ1 ` N �M1, then Γ2 ` N �M1.

7. If Γ1 `M1, then Γ2 `M1.

8. If Γ1 ` ε, then Γ2 ` ε.

9. If Γ1 `N e : τ ; ε, then Γ2 `N e : τ ; ε.

Proof. (Skip)
By simultaneous induction.
(1.) Induction on derivation of Γ1 `N v : τ , case analysis on the last rule used.
Rule t-var. We have,
(a) v = y
(b) y :N τ ∈ Γ1 ∨ y : τ ∈ Γ1

(b’) Γ1 ` τ
We have two cases now,
(i) y = x
This means,
(c) M = N
With lemma premise Γ ` τ ′, use Lemma 18 to get,
(d) Γ1 ` τ ′
Use I.H. (4.) on (d) to get,
(e) Γ2 ` τ ′
With (d), use rule t-var on Γ2 to get,
(f) Γ2 `M x : τ ′

With Γ ` τ ′ <: τ , use Lemma 18 to get
(g) Γ2 ` τ ′ <: τ
Use I.H. (4.) on (b’) to get,
(h) Γ2 ` τ (M = N)
With (f), (g) and (h), use rule t-sub.
(ii) y is different from x , in which case rule t-var still holds on Γ2 (with use of I.H.

(4.)).
Rule t-unit. Use rule t-unit with Γ2.

177

Rule t-inj. Use I.H. (1.) and (4.) on premises, and then use rule t-inj.
Rule t-prod. Use I.H. (1.) on premises, and then use rule t-prod.
Rule t-princ. Use rule t-Princ with Γ2.
Rules t-psone, t-psunion, and t-psvar. Use I.H. (1.) on premises, and then use

respective rule again.
Rule t-msub. We have,
(a) v = y
(b) Γ1 `M1

(c) Γ1 `M1 y : τ
(d) Γ1 `M1 �N
Use I.H. (7.) on (b),
(f) Γ2 `M1

Use I.H. (1.) on (c)
(g) Γ2 `M1 y : τ
Use I.H. (6.) on (d)
(h) Γ2 `M1 �N
With (f), (g), (h), use rule t-msub (the fact about τ IsSecIn carries)
Rule t-sub. Use I.H. (1.), (3.), and (4.) on premises, and then use rule t-sub.
Runtime value typing rules are similar to proof of Lemma 18 (they don’t depend on

Γ).
(2.) Induction on derivation of Γ ` v : τ , case analysis on the last rule used.
Rule tn-var. We have,
(a) v = y
(b) y : τ ∈ Γ1

(c) Γ1 ` τ
From (b) it follows that y is different from x , and so,
(d) y : τ ∈ Γ2

Use I.H. (4.) on (c) and with (b), use rule tn-var.
Other cases are similar to (1.).
(3.) Induction on derivation of Γ1 ` τ1 <: τ2, case analysis on the last rule used.
Rule s-refl. Use rule s-refl with Γ2.
Rules s-trans, s-sum, and s-prod. Use I.H. (3.) on premises, and the use respective

rule.
Rule s-princs. We have,
(a) JΓ1K � φ1 ⇒ φ2

We need to prove JΓ2K � φ1 ⇒ φ2. Informally, only principal types in Γ matter
when deciding logical implications. And, a more precise type in the typing environment
means stronger assumption.

Rule s-wire. Use I.H. (2.) and I.H. (3.) on premises, and then use rule s-wire.
Rule s-array. Use I.H. (3.) on premises, and then use rule s-array.
Rule s-share. Use I.H. (2.) and I.H. (3.) on premises, and then use rule s-share.
Rule s-arrow. Use I.H. (3.) on premises with permutation lemma for second

premise, and then use rule s-arrow.
(4.) Induction on derivation of Γ1 ` τ , case analysis on the last rule used.
Rule wf-unit. Use rule wf-unit with Γ2.

178

Rule wf-sum. Use I.H. (4.) on premises, and then use rule wf-sum.
Rule wf-prod. Use I.H. (4.) on premises, and then use rule wf-prod.
Rule wf-princ. Use I.H. (5.) on premise, and then use rule wf-princ.
Rule wf-arrow. Use I.H. (4.) and (8.) with permutation lemma on typing environ-

ment, and then use rule wf-arrow.
Rule wf-wire. Use I.H. (2.) and (3.) on premises, and then ise rule wf-wire.
Rule wf-array. Use I.H. (4.) on premise, and then use rule wf-array.
Rule wf-share. Use I.H. (2.) and (4.) on premises, and then use rule wf-share.
(5.) Induction on derivation of Γ1 ` φ, case analysis on the last rule used.
Rule wfref-true. Use rule wfref-true with Γ2.
Rule wfref-singl. Use rule wfref-singl with Γ2.
Rules wfref-sub and wfref-eq. Use I.H. on premises, and then use respective

rule.
Rule wfref-conj. Use I.H. on premises, and then use rule wfref-conj.
(6.) Induction on derivation of Γ1 ` N �M1, case analysis on the last rule used.
Rule d-refl. Use I.H. on premise, and then use rule d-refl.
Rule d-top. Use I.H. on premise, and then use rule d-top.
Rules d-par and d-sec. Similar use of I.H. and then respective rule.
(7.) Induction on derivation of Γ1 `M1, case analysis on the last rule used.
Rule wfpl-top. Use rule wfpl-top with Γ2.
Rule wfpl-other. Use I.H. on premise, and then use rule wfpl-other.
(8.) Induction on derivation of Γ1 ` ε, case analysis on the last rule used.
Rule wfeff-empty. Use rule wfeff-empty with Γ2.
Rule wfeff-mode. Use I.H. on premises, and then use rule wfeff-mode.
(9.) Proof by induction on derivation of Γ1 `N e : τ ; ε.

Lemma 21 (Can derive self equality in refinements).
If Γ ` v : ps φ, then Γ ` v : ps (ν = v).

Proof. Structural induction on v .
v = x . We have,
(a) Γ ` x : ps φ
With (a) use rule tn-psvar to get Γ ` x : ps (ν = x).
v = p. Use rule tn-princ.
v = {w}. Use rule tn-psone.
v = w1 ∪ w2. Use rule tn-psunion.
No other form of v is possible.

Lemma 22 (Can derive self subset refinements).
If Γ ` v : ps φ, then Γ ` v : ps (ν ⊆ v).

Proof. Using Lemma 21, we have
(a) Γ ` v : ps (ν = v)
Also,

179

(b) JΓK � (ν = v)⇒ (ν ⊆ v)
With (b) use rule s-princs to get
(c) Γ ` ps (ν = v) <: ps (ν ⊆ v)
With lemma premise Γ ` v : ps φ, we can use rule wfref-sub and rule wf-princ

to get,
(d) Γ ` ps (ν ⊆ v)
With (a), (c), and (d), use rule t-sub.

Lemma 23 (Transitivity of Delegation).
If Γ `M �M1, and Γ `M1 �M2, then Γ `M �M2.

Lemma 24 (Secure place can only delegate to self).
If Γ ` s(w1) �m(w2), then

1. m = s

2. Γ ` w2 : ps (ν = w1)

3. Γ ` p(w1) �m(w2)

Proof. Γ ` s(w1) � m(w2) can only be derived using rule d-refl, which immediately
gives us (1.) and (2.). For (3.), use rule d-sec and then Lemma 23.

Lemma 25 (Delegation implies well-formedness).
If Γ `M , Γ `M �N , then Γ ` N .

Proof. Proof by induction on derivation of Γ `M�N , case analysis on the last rule used.
Rule d-refl. We have,
(a) M = m(w1)
(b) N = m(w2)
(c) Γ ` w2 : ps (ν = w1)
With (c), use rule wfpl-other on m(w2).
Rule d-top. We have,
(a) M = >
(b) N = m(w)
(c) Γ `> w : ps φ
With (c), use rule wfpl-other to get Γ ` m(w).
Rules d-par and d-sec. Similar to rule d-top.

Lemma 26 (Effect delegation implies well-formedness).
If Γ `M , Γ `M � ε, then Γ ` ε.

Proof. Straightforward extension of Lemma 25.

Lemma 27 (Typing results in well-formed types).
Let Γ `M .

180

1. If Γ `M v : τ , then Γ ` τ .

2. If Γ ` v : τ , then Γ ` τ .

3. If Γ `M e : τ ; ε, then Γ ` τ and Γ `M � ε.

Proof. (Skip)
Proof by induction on derivation of Γ `M v : τ , case analysis on the last rule used.
Rule t-var. Follows from rule premise.
Rule t-unit. Use rule wf-unit.
Rule t-inj. With rule premises, use rule wf-sum.
Rule t-prod. Use I.H. on rule premises, and then rule wf-prod.
Rule t-princ. We have
(a) Γ `M p : ps (ν = {p})
With (a), use rule wfref-eq and rule wf-princ.
Rules t-psone, t-psunion, and t-psvar. Use rule premise in rule wfref-eq and

rule wf-princ.
Rule t-msub. We have,
(a) Γ `N x : τ
(b) Γ ` N �M
Use I.H. on (a) to get Γ ` τ
Rule t-sub. Follows from rule premise.
Rule t-singlwire. We have,
(a) v = {p : v ′}
(c) τ = W {p} τ
(d) . ` τ
(d’) τ IsFlat
Use rule tn-princ to get,
(e) . ` p : ps (ν = {p})
With (e), use rule t-psone to get,
(f) . ` {p} : ps (ν = {p})
Use weakening on (d) and (f), and then with (d’) use rule wf-wire.
Rule t-wirecat. We have,
(a) v = v1 ++ v2

(b) τ = W (w1 ∪ w2) τ
(c) . `M v1 : Ww1 τ
(d) . `M v2 : Ww2 τ
Use I.H. on (c) and (d) to get,
(e) . `Ww1 τ
(f) . `Ww2 τ
Invert rule wf-wire on (e) and (f) to get,
(g) . ` τ
(h) . ` wi : ps φi

Use weakening on (g) and (h) (with Γ), and then use rule wf-wire.
Rule t-loc. Follows from the premise.
Rule t-sh. We have,

181

(a) . `M
(b) M = (w)
(c) . ` τ
With (a) and (b), invert rule wfpl-other to get,
(d) . ` w : ps φ
Use weakening on (c) and (d), and then use rule wf-sh.
Rules t-clos and t-fixclos. Follows from the premises (with weakening).
(2.) Induction on derivation of Γ `M e : τ ; ε, case analysis on the last rule used.
Rule t-fst. We have,
(a) e = fst (v)
(b) ε = ·
(c) Γ `M v : τ1 × τ2 (rule premise)
(d) τ = τ1

With (c), use I.H. to get
(e) Γ ` τ1 × τ2

With (e), invert rule rule wf-prod to get,
(f) Γ ` τ1

With (f), and rule effdel-empty, we have the proof.
Rule t-snd. Similar to rule T-Fst.
Rule t-case. Follows from the premises.
Rule t-app.
Rules t-let1, t-let2, and t-fix. Follows directly from rule premises.
Rule t-array. We have,
(a) e = array(v1, v2)
(b) τ = Array τ2

(c) Γ `M v2 : τ2 (rule premise)
With (c), use Lemma 27, to get
(d) Γ ` τ2

With (d), use rule wf-array to get Γ ` Array τ2. Γ ` M � · follows from
rule effdel-empty.

Rule t-select. Use inversion on Γ ` Array τ (from rule premise and I.H.).
Rule t-update. Use rule wf-unit and rule effdel-empty.
Rule t-wire. We have,
(a) Γ ` w1 : ps (ν ⊆ w2)
(b) Γ `N v : τ
Use I.H. on (b) and then with (a) use rule wf-wire.
Rule t-wproj. Use I.H. on premise Γ `m(w1) v : Ww2 τ , and then invert rule wf-

wire.
Rule t-wireun. Use I.H. on premises and then rule wf-wire.
Rule t-wfold. Follows from rule premise Γ `M v2 : τ2.
Rule t-wapp. We have,
(a) e = wappw(v1, v2)
(b) τ = Ww τ2

(c) M = p()
(d) Γ `M v1 : Ww τ1

182

(e) Γ `M v2 : Ww (τ1
·→ τ2)

With (d) and (e), use I.H., to get,
(f) Γ `Ww (τ1

·→ τ2)
(g) Γ ` w : ps φ
Inverting rule wf-wire on (f),
(h) Γ ` τ1

·→ τ2

(i) τ1
·→ τ2 IsFlat

Inverting rule wf-arrow on (h) to get
(j) Γ ` τ2

Inverting rule w-arr on (i),
(k) τ2 IsFlat

With (g), (j), (k), use rule wf-wire to get Γ `Ww τ2.
Rule t-waps. We have,
(a) e = wapsw(v1, v2)
(b) M = s()
(c) τ2 IsFlat

(d) Γ `M v1 : Ww τ1

(e) Γ `M λx .e : τ1
·→ τ2; ·

Invert rule wf-wire on (d) to get,
(f) Γ ` w : ps φ
Invert rule wf-arr on (e) to get,
(g) Γ ` τ2

With (b), (f), (g), (c), use rule wf-wire, to get Γ `Ww τ2.
Rule w-copy. Use I.H. on premise.
Rule t-makesh. Invert rule wfpl-other with lemma premise Γ ` M , use I.H. on

Γ `M v : τ , and then use rule wf-sh.
Rule t-combsh. Invert rule wf-share on rule premise.

Lemma 28 (Subtyping inversion).

1. If Γ ` τ <: unit, then τ = unit.

2. If Γ ` τ <: τ1 × τ2, then τ = τ3 × τ4 s.t. Γ ` τ3 <: τ1 and Γ ` τ4 <: τ2.

3. If Γ ` τ <: τ1 + τ2, then τ = τ3 + τ4 s.t. Γ ` τ3 <: τ1 and Γ ` τ4 <: τ2.

4. If Γ ` τ <: ps φ, then τ = ps φ2 s.t. JΓK � φ2 ⇒ φ.

5. If Γ ` τ <: Ww2 τ2 and Γ ` w2 : ps φ, then τ = Ww1 τ1 s.t. Γ ` w2 : ps (ν ⊆ w1)
and Γ ` τ1 <: τ2.

6. If Γ ` τ <: Array τ2, then τ = Array τ1 s.t. Γ ` τ1 <: τ2 and Γ ` τ2 <: τ1.

7. If Γ ` Shw2 τ2 and Γ ` w2 : ps φ, then τ = Shw1 τ1 s.t. Γ ` w1 : ps (ν = w2),
Γ ` τ1 <: τ2, and Γ ` τ2 <: τ1.

183

8. If Γ ` τ <: x :τ1
ε→ τ2, then τ = x :τ3

ε→ τ4 s.t. Γ ` τ1 <: τ3 and Γ, x : τ1 ` τ4 <:
τ2.

Proof. (Skip)
(1.) Only possible last rules in derivation of Γ ` τ <: unit are rule s-refl (imme-

diate) and rule s-trans (Use I.H. twice)
(2.) Induction on derivation of Γ ` τ <: τ1× τ2, case analysis on the last rule used.
Rule s-refl. We get τ = τ1× τ2, use rule s-refl on τ1 and τ2 to complete the proof.
Rule s-trans. We have,
(a) Γ ` τ <: τ ′

(b) Γ ` τ ′ <: τ1 × τ2

Use I.H. on (b) to get,
(c) τ ′ = τ ′1 × τ ′2
(d) Γ ` τ ′1 <: τ1

(e) Γ ` τ ′2 <: τ2

Substitute τ ′ from (c) in (a), and then use I.H. on (a) to get,
(f) τ = τ3 × τ4

(g) Γ ` τ3 <: τ ′1
(h) Γ ` τ4 <: τ ′2
Use rule s-trans on (g) and (d), and then (h) and (e), with (f) this completes the

proof.
Rule s-prod. Read from the rule.
(3.) Similar to (2.)
(4.) Induction on derivation of Γ ` τ <: ps φ, case analysis on the last rule used.
Rule s-refl. τ = ps φ, and JΓK � φ⇒ φ is trivially true.
Rule s-trans. We have,
(a) Γ ` τ <: τ1

(b) Γ ` τ1 <: ps φ
Use I.H. on (b), we get
(c) τ1 = ps φ1

(d) JΓK � φ1 ⇒ φ
Substitute (c) in (a) to get
(e) Γ ` τ <: ps φ1

Use I.H. on (e), we get
(f) τ = ps φ2

(g) JΓK � φ2 ⇒ φ1

From (f) and transitivity of implication on (g) and (d), we have the proof.
Rule s-princs. Read from the rule.
(5.) Proof by induction on derivation of Γ ` τ <: Ww2 τ2, case analysis on the last

rule used.
Rule s-refl. We have τ = Ww2 τ2, thus τ1 = τ2 and w1 = w2. To prove Γ `

τ1 <: τ2, use rule s-refl. To prove Γ `M w2 : ps (ν ⊆ w2), use Lemma 22 (we have
Γ ` w2 : ps φ from premise.)

Rule s-trans. We have,
(a) Γ ` τ <: τ ′

184

(b) Γ ` τ ′ <: Ww2 τ2

Using I.H. (6.) on (b) to get,
(c) τ ′ = Ww3 τ3

(d) Γ ` w2 : ps (ν ⊆ w3)
(e) Γ ` τ3 <: τ2

Using Lemma 27 on (d), we get
(f) Γ ` ps (ν ⊆ w3)
Inverting rule wf-princ on (f),
(g) Γ ` ν ⊆ w3

Inverting rule wf-sub, we get
(h) Γ ` w3 : ps φ
Use I.H. on (a) (now that we have (h)) (substitute τ ′ from (c))
(i) τ = Ww1 τ1

(j) Γ ` w3 : ps (ν ⊆ w1)
(k) Γ ` τ3 <: τ1

From (j), we can use rule s-princs to derive:
(l) Γ ` ps (ν ⊆ w3) <: ps (ν ⊆ w1)
From (j), use Lemma 27 and inversions on rule wf-princ and rule wf-sub to get
(m) Γ ` w1 : ps φ
With (d), (l), and (m), use rule t-sub to derive
(n) Γ ` w2 : ps (ν ⊆ w1)
With (e) and (k), use rule s-trans to complete the proof.
Rule s-wire. Read from the rule.
(6.) Straightforward using I.H.
(7.) Similar to (5.)
(8.) Interesting case is rule s-trans. We have,
(a) Γ ` τ <: τ ′

(b) Γ ` τ ′ <: x :τ1
ε→ τ2

Using I.H. (9.) on (b),
(c) τ ′ = x :τ ′1

ε→ τ ′2
(d) Γ ` τ1 <: τ ′1
(e) Γ, x : τ1 ` τ ′2 <: τ2

Using I.H. on (a) now (with (c))
(f) τ = x :τ3

ε→ τ4

(g) Γ ` τ ′1 <: τ3

(h) Γ, x : τ ′1 ` τ4 <: τ ′2
With (d), (h), use Lemma 20, to get
(i) Γ, x : τ1 ` τ4 <: τ ′2
Use rule s-trans on (d) and (g), and then on (i) and (e) to complete the proof.

Lemma 29 (Canonical forms).

1. If . `M v : unit, then v = ().

2. If . `M v : τ1 × τ2, then v = (v1, v2) s.t. . `M v1 : τ1 and . `M v2 : τ2.

185

3. If . `M v : τ1 + τ2, then v = inji v ′ s.t. . `M v ′ : τi .

4. If . `M v : ps φ, then v = w1 ∪ w2 s.t. J.K � φ[w1 ∪ w2/ν].

5. If . `p(w ′) v : Ww τ , then v = v1 ++ v2 s.t. w ⊆ dom(v1 ++ v2) and for all
p ∈ dom(v1 ++ v2), . `p({p}) v [p] : τ .

6. If . `s(w1) v : Ww τ , then v = v1 ++ v2 s.t. w ⊆ dom(v1 ++ v2) and for all
p ∈ dom(v1 ++ v2), . `s(w1) v [p] : τ .

7. If . `M v : Array τ , then v = ` s.t. Σ(`) = τ1, . ` τ1 <: τ , and . ` τ <: τ1.

8. If . `M v : Shw τ , then v = shw v ′ s.t. . `M v ′ : τ .

9. If . `M v : x :τ1
ε→ τ2, then either v = clos (ψ;λx .e) s.t. Σ ` ψ ; Γ and

Γ, x : τ1 `M e : τ2; ε, or v = clos (ψ; fix f .λx .e) s.t. Σ ` ψ ; Γ and Γ, f : y :τ1
ε→

τ2 `M λx .e : y :τ1
ε→ τ2; ·.

10. If . ` N , then N = > or N = m(w1 ∪ w2).

Proof. (Skip) By simultaneous induction.
(1.) Proof by induction on derivation of . `M v : unit, case analysis on the last rule

used.
Rule t-unit. Follows from the rule.
Rule t-sub. We have,
(a) . `M v : τ
(b) . ` τ <: unit
With (b), use Lemma 28 to get
(c) τ = unit
Use I.H. on (a).
(2.) Proof by induction on derivation of . `M v : τ1 × τ2, case analysis on the last

rule used.
Rule t-prod. We have,
(a) v = (v1, v2)
(b) . `M vi : τi
Proof follows.
Rule t-sub. We have,
(a) . `M v : τ
(b) . ` τ <: τ1 × τ2

(c) . ` τ1 × τ2

With (b), use Lemma 28 to get,
(d) τ = τ3 × τ4

(e) . ` τ3 <: τ1

(f) . ` τ4 <: τ2

Use I.H. on (a) (subtituting from (d)) to get,
(g) v = (v1, v2)
(h) . ` v1 : τ3

186

(i) . ` v2 : τ4

Inverting rule wf-prod on (c),
(k) . ` τ1

(l) . ` τ2

Use rule t-sub on (h), (e) and (k), and then (i), (f), and (l) to get rest of the proof.
(3.) Similar to rule t-prod.
(4.) Induction on derivation of . `M v : ps φ, case analysis on the last rule used.
Rule t-princ. We have,
(a) v = p
(b) φ = (ν = {p})
Choose w1 = {p}, w2 = ·, and J.K � (ν = {p})[{p}/ν].
Rule t-psone. We have,
(a) v = {w}
(b) φ = (ν = {w})
Choose w1 = {w}, w2 = ·, and then similar to rule t-princ.
Rule t-psunion. Follows similarly.
Rule t-sub. We have,
(a) . `M v : τ
(b) . ` τ <: ps φ
With (b), use Lemma 28 to get,
(c) τ = ps φ1

(d) J.K � φ1 ⇒ φ
Use I.H. on (a) (substituting from (c)),
(e) v = w1 ∪ w2

(f) φ1[v/ν]
With (e), (d), and (f), we have the proof.
(5.) Induction on derivation of . `p(w ′) v : Ww τ , case analysis on the last rule

used.
Rule t-singlwire. We have,
(a) v = {p : v ′}
(b) w = {p}
Choose v1 = {p : v ′}, v2 = ·, clearly w ⊆ dom(v1 ∪ v2). We need to show

. `p({p}) v
′ : τ , it follows from premise of the rule.

Rule t-wirecat. We have,
(a) v = v1 ++ v2

(b) w = w1 ∪ w2

(c) . `p(w ′) v1 : Ww1 τ
(d) . `p(w ′) v2 : Ww2 τ
Use I.H. on (c) to get,
(e) w1 ⊆ dom(v1)
(f) for all p ∈ dom(v1), . `p({p}) v1[p] : τ
Use I.H. on (d) to get,
(g) w2 ⊆ dom(v2)
(h) for all p ∈ dom(v2), . `p({p}) v2[p] : τ
From (e) and (g), we get

187

(g) w1 ∪ w2 ⊆ dom(v1 ++ v2)
From (f) and (h), we get
(i) for all p ∈ dom(v1 ++ v2), . `p({p}) (v1 ++ v2)[p] : τ
From (a), (g), and (i), we have the proof.
Rule t-sub. We have,
(a) . `p(w ′) v : τ ′

(b) . ` τ ′ <: Ww τ
(c) . `Ww τ
Invert rule wf-wire on (c) to get,
(c’) . ` τ
(d) . ` w : ps φ
With (b) and (d) use Lemma 28 to get,
(e) τ ′ = Ww1 τ1

(f) . ` w : ps (ν ⊆ w1)
(g) . ` τ1 <: τ
Use I.H. (5.) on (a) (substituting τ from (c)) to get,
(h) v = v1 ++ v2

(i) w1 ⊆ dom(v1 ++ v2)
(j) for all p ∈ dom(v1 ++ v2), . `p({p}) v [p] : τ1

Use I.H. (f) to get,
(k) J.K � (ν ⊆ w1)[w/ν]
From (i) and (k) we get,
(l) w ⊆ dom(v1 ++ v2)
Use rule t-sub with (j), (g) and (c’), we have the proof.
(6.) Induction on derivation of . `s(w1) v : Ww τ , case analysis on the last rule.
Rule t-singlwire. We have,
(a) v = {p : v ′}
(b) w = {p}
(c) . `s(w1) v

′ : τ
Choose v1 = {p : v ′}, v2 = ·. We have w ⊆ dom(v1 ++ v2), and (c) completes rest

of the proof.
Rule t-wirecat. We have,
(a) v = v1 ++ v2

(b) . `s(w1) v1 : Ww ′1 τ
(c) . `s(w1) v2 : Ww ′2 τ
(d) w = w1 ∪ w2

Use I.H. (6.) on (b), and on (c) to get,
(e) w ′1 ⊆ dom(v1)
(f) w ′2 ⊆ dom(v2)
(g) for all p ∈ dom(v1), . `s(w1) v1[p] : τ .
(h) for all p ∈ dom(v2), . `s(w1) v2[p] : τ .
Using (d), (e), and (f), we get,
(i) w ⊆ dom(v1 ++ v2)
(g), and (h) complete rest of the proof.
Rule t-sub. We have,

188

(a) . `s(w1) v : τ ′′

(b) . ` τ ′′ <: Ww τ
(c) . `Ww τ
With (b), use Lemma 28 to get,
(d) τ ′′ = Ww ′ τ ′

(e) . ` w : ps (ν ⊆ w ′)
(f) . ` τ ′ <: τ
Use I.H. (6.) on (a) (substituting (d) in (a)),
(g) v = v1 ++ v2

(h) w ′ ⊆ dom(v1 ++ v2)
(i) for all p ∈ dom(v1 ++ v2), . `s(w1) v [p] : τ ′.
Use I.H. on (e) to get,
(j) J.K � (ν ⊆ w ′)[w/ν]
Use (h) and (j) to get,
(k) w ⊆ dom(v1 ++ v2)
Invert rule wf-wire on (c) to get,
(l) . ` τ
With (i), (f), and (l), use rule t-sub to complete rest of the proof.
(7.) Induction on derivation of . `M v : Array τ , case analysis on the last rule.
Rule t-loc. Read from the rule, use rule s-refl.
Rule t-sub. We have,
(a) . `M v : τ ′

(b) . ` τ ′ <: Array τ
(c) . ` Array τ
With (b) use Lemma 28 to get,
(d) τ ′ = Array τ ′′
(e) . ` τ ′′ <: τ
(f) . ` τ <: τ ′′

Use I.H. (7.) on (a) (substituting τ ′ from (d)),
(g) v = `
(h) Σ(`) = τ1

(i) . ` τ1 <: τ ′′

(j) . ` τ ′′ <: τ1

Use rule s-trans on (i) and (e), and then (f) and (j) to complete the proof.
(8.) Induction on derivation of . `M v : Shw τ , case analysis on the last rule used.
Rule t-sh. Read from the rule.
Rule t-sub. We have,
(a) . `M v : τ ′

(b) . ` τ ′ <: Shw τ
(c) . ` Shw τ
With (b), use Lemma 28 to get,
(d) τ ′ = Shw2 τ2

(e) . ` w2 : ps (ν = w)
(f) . ` τ2 <: τ
(g) . ` τ <: τ2

189

Use I.H. (8.) on (a) (substituting τ ′ from (d)),
(h) v = shw v ′

(j) . `M v ′ : τ2

Invert rule wf-sh on (c) to get,
(l) . ` τ
With (j), (f), and (l), use rule s-trans to complete rest of the proof.
(9.) Induction on derivation of . `M v : x :τ1

ε→ τ2, case analysis on the last rule
used.

Rule t-clos. Read from the rule.
Rule t-fixclos. Read from the rule.
Rule t-sub. We have,
(a) . `M v : τ ′

(b) . ` τ ′ <: x :τ1
ε→ τ2

(c) . ` (x :τ1
ε→ τ2)

With (b), use Lemma 28 to get,
(d) τ ′ = x :τ ′1

ε→ τ ′2
(e) . ` τ1 <: τ ′1
(f) ., x : τ1 ` τ ′2 <: τ2

Use I.H. on (a) (substituting τ ′ from (d)), we have 2 cases,
(i) v = clos (ψ;λx .e)
(g) Σ ` ψ ; Γ
(h) Γ, x : τ ′1 `M e : τ ′2; ε
Use weakening and permutation of type environment on (f) and (e) to get,
(i) Γ, x : τ1 ` τ ′2 <: τ2

(j) Γ ` τ1 <: τ ′1
With (h) and (j), use Lemma 20 to get (well-formedness of τ1 follows from Lemma 27

applied on typing of v).
(k) Γ, x : τ1 `M e : τ ′2; ε
With (k) and (i), use rule t-sube to complete the proof.
Second case is,
(ii) v = clos (ψ; fix f .λx .e)
(g) Σ ` ψ ; Γ
(h) Γ, f : y :τ ′1

ε→ τ ′2 `M λx .e : y :τ ′1
ε→ τ ′2; ·.

Use weakening of type environment on (b) to get,
(i) Γ ` y :τ ′1

ε→ τ ′2 <: x :τ1
ε→ τ2

With (h) and (i), use Lemma 20, and then rule t-sube to complete the proof (similar
to above).

(10.) Induction on derivation of . ` N , case analysis on the last rule used.
Rule wfpl-global. Follows.
Rule wfpl-pc. Use I.H. on premise.

Lemma 30 (Delegation among closed places).
Let w be a closed principal set. Let . ` m(w) �N . Then, N = m1(w1) s.t. one of

the following holds:

190

1. m1 = m and w1 = w .

2. m = p, m1 = p, and w1 ⊆ w .

3. m = p, m1 = s, and w1 = w .

Proof. Induction on derivation of . ` m(w)�N , case analysis on the last rule used, using
Lemma 29.

Lemma 31 (Environment lookup same across delegation).
If Γ `M �N , then ψJxKΓ

N = ψJxKΓ
M .

Proof. Case analysis on ψJxKΓ
M .

Rule vl-var1. We have,
(a) ψJxKΓ

M = v
(b) x 7→M1 v ∈ ψ
(c) Γ `M1 �M
With (c) use Lemma 23 to get,
(d) Γ `M1 �N
With (b) and (d), we get ψJxKΓ

N = v
Rule vl-var2. Use rule vl-var2 again with N .
Rule vl-var3. Use rule vl-var3 again with N .

Lemma 32 (Well-formedness of runtime environment).
Let Σ ` ψ ; Γ and Γ,Γ′ `M . Also, let dom(Γ) ∩ dom(Γ′) = φ.

1. If Γ,Γ′ `M v : τ , then ψJΓ′K `ψJMK ψJvKψJΓ′K
ψJMK : ψJτK.

2. If Γ,Γ′ ` v : τ , then ψJΓ′K ` ψJvK : ψJτK.

3. If Γ,Γ′ ` τ1 <: τ2, then ψJΓ′K ` ψJτ1K <: ψJτ2K.

4. If Γ,Γ′ ` τ , then ψJΓ′K ` ψJτK.

5. If Γ,Γ′ ` φ, then ψJΓ′K ` ψJφK.

6. If Γ,Γ′ ` N , then ψJΓ′K ` ψJNK.

7. If Γ,Γ′ ` ε, then ψJΓ′K ` ψJεK.

8. If Γ,Γ′ ` N1 �N2, then ψJΓ′K ` ψJN1K � ψJN2K.

Proof. (Skip) By simultaneous induction.
(1.) By induction on derivation of Γ,Γ′ `M v : τ , case analysis on the last rule

used.
Rule t-var. We have two cases here,
(a) x :M τ ∈ Γ,Γ′

191

(b) Γ,Γ′ ` τ
If x :M τ ∈ Γ, then using rule tenv-mapp,
(c) x 7→M v ∈ ψ
(d) . `M v : τ
(e) M is closed.
Since M is closed,
(f) ψJMK = M
(g) ψJΓ′K `M �M
Use Lemma 27 on (e),
(h) . ` τ
Since τ is closed,
(i) ψJτK = τ
With (c) and (g) use rule vl-var1 to get,
(j) ψJxKψJΓ′K

M = v
We want to prove,
(k) ψJΓ′K `ψJMK ψJxKψJΓ′K

ψJMK : ψJτK.
i.e. (substitute using (f)),
(l) ψJΓ′K `M ψJxKψJΓ′K

M : ψJτK.
i.e. (substitute using (j) and (i)),
(m) ψJΓ′K `M v : τ .
which is true by weakening (d).
If x :M τ ∈ Γ′, then
(c) x :ψJMK ψJτK ∈ ψJΓ′K
Using I.H. on (b), we get,
(d) ψJΓ′K ` ψJτK
Since dom(Γ) ∩ dom(Γ′) = φ, we have
(e) x /∈ dom(ψ)
And so,
(f) ψJxKψJΓ′K

ψJMK = x
We want to prove,
(g) ψJΓ′K `ψJMK ψJxKψJΓ′K

ψJMK : ψJτK
Substitute (f), we want
(h) ψJΓ′K `ψJMK x : ψJτK
Derive using rule t-var on (c) and (d).
The second case is,
(a) x : τ ∈ Γ,Γ′

(b) Γ ` τ
Split on two cases Γ and Γ′ as above.
Rule t-unit. We have,
(a) v = ()

(b) τ = unit
Using rule vl-unit and rule tl-unit,
(c) ψJ()KψJΓ′K

ψJMK = ()

(d) ψJunitK = unit

192

So, now we need to prove ψJΓ′K `ψJMK () : unit.
Follows from rule t-unit.
Rules t-inj and t-prod. Use I.H. on premises and then correponding typing rule.
Rule t-princ. Similar to rule t-unit.
Rules t-psone, t-psunion, and t-psvar. Use I.H. on premises and then correspond-

ing typing rule.
Rule t-msub. We have,
(a) Γ,Γ′ ` N
(b) Γ,Γ′ ` N �M
(c) Γ,Γ′ `N x : τ
Use I.H. on (a) and (c) to get,
(d) ψJΓ′K `ψJNK ψJxKψJΓ′K

ψJNK : ψJτK.
Use I.H. on (b),
(e) ψJΓ′K ` ψJNK � ψJMK
Use I.H. on (a),
(f) ψJΓ′K ` ψJNK
With (d), (e), and (f), use rule t-msub to get,
(g) ψJΓ′K `ψJMK ψJxKψJΓ′K

ψJNK : ψJτK
With (e), use Lemma 31 to get,
(h) ψJxKψJΓ′K

ψJMK = ψJxKψJΓ′K
ψJMK

Substitute in (g) to get the proof.
(2.) Similar to proof of (1.)
(3.) Induction on derivation of Γ,Γ′ ` τ1 <: τ2, case analysis on the last rule.
Rule s-refl. Use Rule s-refl on ψJτK
Rule s-trans. Use I.H. on premises, and then rule s-trans.
Rule s-sum. Use I.H. on premises, and then rule s-sum.
Rule s-prod. Use I.H. on premises, and then rule s-prod.
Rule s-princs.
Rules s-wire, s-array, and s-share. Use I.H. on premises and then corresponding

rule.
Rule s-arrow. We have,
(a) Γ,Γ′ ` τ ′1 <: τ1

(b) Γ,Γ′, x : τ ′1 ` τ2 <: τ ′2
Use I.H. on (a),
(c) ψJΓ′K ` ψJτ ′1K <: ψJτ1K
Use I.H. on (b),
(d) ψJΓ′K, x : ψJτ ′1K ` ψJτ2K <: ψJτ ′2K
With (c) and (d), use rule s-arrow.
(4.) By induction on derivation of Γ,Γ′ ` τ , case analysis on the last rule used.
Rule wf-unit. Since ψJunitK = unit, use rule wf-unit.
Rule wf-sum. Use I.H. on the premises, and then use rule wf-sum.
Rule wf-prod. Use I.H. on the premises, and then use rule wf-prod.
Rule wf-princ. Use I.H. on the premise, and then use rule wf-princ.
Rule wf-arrow. We have,

193

(a) τ = x :τ1
ε→ τ2

(b) Γ,Γ′ ` τ1

(c) Γ,Γ′, x : τ1 ` ε
(d) Γ,Γ′, x : τ1 ` τ2

Using I.H. on (b), (c), and (d), we get,
(e) ψJΓ′K ` ψJτ1K
(f) ψJΓ′K, x : ψJτ1K ` ψJεK
(g) ψJΓ′K, x : ψJτ1K ` ψJτ2K
Use rule wf-arrow on (e), (f), and (g).
Rule wf-wire. Use I.H. on the premises, and then use rule wf-wire.
Rule wf-array. Use I.H. on the premise, and then use rule wf-array.
Rule wf-share. Similar to rule wf-wire.
(5.), (6.), (7.), (8.): Induction on respective derivations.

Lemma 33 (Well-formedness of runtime environment).
Let Σ ` ψ ; Γ and Γ `M .

1. If Γ `M v : τ , then . `ψJMK ψJvK.ψJMK : ψJτK.

2. If Γ ` v : τ , then . ` ψJvK : ψJτK.

3. If Γ ` τ1 <: τ2, then . ` ψJτ1K <: ψJτ2K.

4. If Γ ` τ , then . ` ψJτK.

5. If Γ ` φ, then . ` ψJφK.

6. If Γ ` N , then . ` ψJNK.

7. If Γ ` ε, then . ` ψJεK.

8. If Γ ` N1 �N2, then . ` ψJN1K � ψJN2K.

Proof. Corollary of Lemma 32 with Γ′ = .

Lemma 34 (Subset of environment).
If ψ1 ⊆ ψ2, Σ1 ` ψ1 ; Γ1, Σ1 ` ψ2 ; Γ2, Γ1 ` τ , and Γ2 ` τ , then ψ1JτK =

ψ2JτK.

Lemma 35 (Value and Environment Slicing Always Exists).
For all v and ψ, slicep(v) ; v ′ and slicep(ψ) ; ψ′.

Proof. Structural induction on v and ψ.

Lemma 36 (Going up the stack for slicing retains config well-typedness).

1. If Σ ` m(w){σ;κ :: 〈m1(w1);ψ1; x .e1〉 ;ψ; e} : τ , then
Σ ` m1(w1){σ;κ;ψ1{x 7→m1(w) ©}; e1} : τ

194

2. If Σ ` m(w){σ;κ :: 〈ψ1; x .e1〉 ;ψ; e} : τ , then Σ ` m(w){σ;κ;ψ1{x 7→ ©}; e1} :
τ

Lemma 37 (Existence of Slice).
If Σ ` C : τ and C st, then slicew(C) ; π.

Proof. Let C = M{σ;κ;ψ; e}. We consider slice{p}(C). If M = p(w) s.t. p ∈ w ,
then use slicecfg-par with rules stok-par1, stok-par2, and stok-par3. If M = s(w)
s.t. p ∈ w , then use slicecfg-sec with rule stok-sec(we have C st. When p 6∈ w ,
stack cannot be empty (empty stack is well typed only in a context when all parties are
present, rule tstk-emp). Then, use slicecfg-abs1 or slicecfg-abs2 with Lemma 36 for
well-typedness of inductive configurations.

Lemma 38 (Lookup in sliced environment).

1. If ψJvKp(w) = v ′, p ∈ w , slicep(ψ) ; ψ′, and slicep(v ′) ; v ′′, then ψ′JvKp({p}) =
v ′′.

2. If ψJvKs(w) = v ′, ∀ p ∈ w slicep(ψ) ; ψp , slicep(v ′) ; vp , then ◦
p
ψpJvKs(w) = ◦

p
vp .

Lemma 39 (Unique local transitions).
If p {σ;κ;ψ; e} −→ p {σ′;κ′;ψ′; e ′}, then there exists no other rule by which

p {σ;κ;ψ; e} can step (and σ′, κ′, ψ′ are unique).

Proof. Proof sketch: By structural induction on e, and verifying that every syntactic form
corresponds to one semantics rule. Moreover the unique rule is also algorithmic: the
input configuration uniquely determines the output configuration, including the rule stpl-
array, where the fresh location is chosen by the function nextM(σ).

Theorem 40 (Progress).
If Σ ` C : τ , then either C halted or C −→ C ′. Moreover if C st, then C ′ st.

Proof. (Skip) We have C = M{σ;κ;ψ; e}, Σ ` σwf, . ` M , Σ `M κ : τ1 ↪→ τ2,
Σ ` ψ ; Γ, and Σ; Γ `M e : τ1; ε. We proceed by induction on derivation of Σ; Γ `M
e : τ1; ε, case analysis on the last rule used.

Since . `M , ψJMK = M .
Rule t-fst. We have,
(a) e = fst (v)
(b) Γ `M v : τ1 × τ2

With (b), use Lemma 33 to get,
(c) . `M ψJvK.M : (ψJτ1K)× (ψJτ2K)
With (c), use Lemma 29 to get,
(d) ψJvK.M = (v1, v2)
C can now take step using stpc-local and stpl-fst to M{σ;κ;ψ; v1}.
Rule t-snd. Similar to rule t-fst.

195

Rule t-case. We have,
(a) e = case (v , x1.e2, x2.e2)
(b) Γ `M v : τ1 + τ2

(c) Γ, xi : τi `M ei : τ ; εi
(d) Γ ` τ
(e) Γ `M � εi
With (b), use Lemma 33 to get,
(d) . `M ψJvK.M : (ψJτ1K) + (ψJτ2K)
With (d), use Lemma 29 to get,
(e) ψJvK.M = inji v ′
C can now take a step using stpc-local and stpl-case toM{σ;κ;ψ{xi 7→ v ′}; ei}.
Rule t-lam. We have,
(a) e = λx .e
C can take a step using stpc-local and stpl-lambda.
Rule t-app. We have,
(a) e = v1 v2

(b) Γ `M v1 : x :τ1
ε→ τ2

(c) Γ ` v2 : τ1

With (b) and (c) use Lemma 33 to get,
(d) . `M ψJv1K.M : x :ψJτ1K

ψJεK→ ψJτ2K
(e) . ` ψJv2K : ψJτ1K
With (d) use Lemma 29 to get,
Case 1: ψJv1K.M = clos (ψ;λx .e)
C can take a step using stpc-local and stpl-apply.
Case 1: ψJv1K.M = clos (ψ; fix x .λy .e)
C can take a step using stpc-local and stpl-fixapply.
Rule t-let1. We have,
(a) e = let x N

= e1 in e2

(b) M = m()
(c) N = (w)
(d) Γ `M �N
(e) Γ `N e1 : τ1; ε1
(f) Γ, x :m(w) τ1 `M e2 : τ2; ε2
(g) Γ ` τ2

(h) Γ `M � ε2
With (d), use Lemma 25 to get,
(i) Γ ` N
With (i), use Lemma 33 to get,
(j) . ` ψJNK
With (d), use Lemma 33 to get,
(k) . `M � ψJNK
With (k), use Lemma 30 to get,
Either
(l) M = p(w), N = p(w1), and w1 ⊆ w

196

In this case, C can take a step using stpc-delpar to p(w1){σ;κ :: 〈p(w);ψ; x .e2〉 ;ψ; e1}
Or
(l) M = p(w) and N = s(w).
In this case, C can take a step using stpc-delssec to

p(w){σ;κ :: 〈p(w);ψ; x .e2〉 ;ψ; securew(e1)}
Or
(l) M = m(w) and N = m(w).
Depending on m, one of the above applies.
Rule t-let2. We have,
(a) e = let x = e1 in e2

(b) Γ `M e1 : τ1; ε1
(c) Γ, x : τ1 `M e2 : τ2; ε2
(d) Γ ` τ2

(e) Γ `M � ε2
C can take a step using stpc-local to M{σ;κ :: 〈ψ; x .e2〉 ;ψ; e1}.
Rule t-fix. C can take a step using stpc-local and stpl-fix.
Rule t-array. We have,
(a) e = array(v1, v2)
(b) Γ `M v1 : nat
(c) Γ `M v2 : τ
With (b) and (c), use Lemma 33 to get,
(d) . `M ψJv1K.M : nat
(e) . `M ψJv2K.M : (ψJτK)
C can take a step using stpc-local and stpl-array toM{σ{` :M { ¯ψJv2K.M}k};κ;ψ; `}.
Rule t-select. We have,
(a) e = select(v1, v2)
(b) Γ `M v1 : Array τ
(c) Γ `M v2 : nat
With (b) and (c), use Lemma 33 to get,
(d) . `M ψJv1K.M : ArrayψJτK
(e) . `M ψJv2K.M : nat
With (d) use Lemma 29 to get,
(f) ψJv1K.M = `
(g) Σ(`) = ψJτK
Since Σ ` σwf, ` ∈ dom(σ)
C can take a step using stpc-local with stpl-select or stpl-sel-err.
Rule t-update. Similar to rule t-select.
Rule t-wire. We have,
(a) e = wirew1(v)
(b) M = m(w2)
(c) Γ ` w1 : ps (ν ⊆ w2)
(d) m = s⇒ N = M and m = p⇒ N = p(w1)
(e) Γ `N v : τ
With (c), use Lemma 33 to get,
(f) . ` ψJw1K : ps (ν ⊆ w2)

197

Case 1: m = s⇒ N = s(w2)
With (e), use Lemma 33 to get,
(g) . `M ψJvK.M : ψJτK
C can now take step using stpc-local and stpl-wire toM{σ;κ;ψ; {|(ψJvKN)|}wiresψJw1K}.
Case 2: m = p⇒ N = p(w1)
With (e), use Lemma 33 to get,
(g) . `p(ψJw1K) ψJvK.p(ψJw1K) : (ψJτK)
C can now take step using stpc-local and stpl-wire toM{σ;κ;ψ; {|(ψJvKN)|}wiresψJw1K}.
Rule t-wproj. We have,
(a) e = v [w2]
(b) M = m(w1)
(c) m = p⇒ φ = ν = w1 and m = s⇒ φ = ν ⊆ w1

(d) Γ `M v : Ww2 τ
(e) Γ ` w2 : ps (φ ∧ singl(ν))
Case 1: m = p⇒ φ = ν = w1

With (e), use Lemma 33 to get,
(f) . ` (ψJw2K) : ps ((ψJ(ν = w1)K) ∧ (singl(ν)))
With (f), use Lemma 29 to get,
(g) ψJw2K = p, w1 = p, and M = p({p})
With (d), use Lemma 33 to get,
(h) . `M ψJvK.M : WψJw2KψJτK
With (h), use Lemma 29 to get,
(i) ψJvK.M = v1 ++ v2 and p ∈ dom(v1 ++ v2).
C can now take a step using stpc-local and stpl-parproj.
Case 2: m = s⇒ φ = ν ⊆ w1

With (e), use Lemma 33 to get,
(f) . ` (ψJw2K) : ps ((ψJ(ν ⊆ w1)K) ∧ (singl(ν)))
With (f), use Lemma 29 to get,
(g) ψJw2K = p, w1 = p ∪ w ′′, and M = s({p ∪ w ′′})
With (d), use Lemma 33 to get,
(h) . `M ψJvK.M : WψJw2KψJτK
With (h), use Lemma 29 to get,
(i) ψJvK.M = v1 ++ v2 and p ∈ dom(v1 ++ v2).
C can now take a step using stpc-local and stpl-parproj.
Rule t-wireun. We have,
(a) e = v1 ++ v2

(b) Γ `M v1 : Ww1 τ
(c) Γ `M v2 : Ww2 τ
With (b) and (c) use Lemma 33, and then Lemma 29, and then C can take a step

using stpc-local and stpc-wireun.
Rule t-wfold. We have,
(a) e = wfoldw(v1, v2, v3)
(b) M = s()
(c) φ = ν ⊆ w ∧ singl(ν)

198

(d) Γ `M v1 : Ww τ
(e) Γ `M v2 : τ2

(f) Γ `M v3 : τ2
·→ ps φ ·→ τ

·→ τ2

With (d) use Lemma 27 to get,
(g) Γ `Ww τ
With (g) invert rule wf-wire to get,
(h) Γ ` w : ps φ
With (h) use Lemma 33 to get,
(i) . ` ψJwK : ps (ψJφK)
With (i) use Lemma 29 to get,
(j) ψJwK = w1 ∪ w2

C can take a step using stpc-local and either stpl-wfold1 or stpl-wfold2.
Rule t-wapp. We have,
(a) e = wappw(v1, v2)
(b) M = p()
(c) Γ `M v1 : Ww τ1

(d) Γ `M v2 : Ww (τ1
·→ τ2)

Similar to rule t-wfold now.
Rule t-waps. Similart to rule t-wfold.
Rule t-wcopy. C can take a step using stpc-local with stpl-wcopy.
Rule t-makesh. We have,
(a) e = makesh(v)
(b) M = s(w)
(c) Γ `M v : τ
With (c) use Lemma 33 we get,
(d . `M ψJvK.M : ψJτK
C can take a step using stpc-local with stpl-makesh.
Rule t-combsh. We have,
(a) e = combsh(v)
(b) M = s(w) (therefore w is closed)
(c) Γ `M v : Shw τ
With (c) use Lemma 33 we get,
(d) . `M ψJvK.M : Shw ψJτK
With (d) use Lemma 29 we get,
(e) ψJvK.M = shw v ′

C can take a step using stpc-local with stpl-combsh.
Rule t-secblk. We have,
(a) e = securew(e)
(b) M = m(w ′)
(c) Γ ` w : ps (ν = w ′)
Use Lemma 33 and then Lemma 29 on (c). C can take a step using stpc-secenter.
Rule t-value. We consider case when
(a) e = v
(b) Γ `M v : τ
If κ is empty then by rule halted-answer C is empty.

199

If κ is not empty, then depending on top frame, C can take a step using stpc-popstk1
or stpc-popstk2.

(After applying Lemma 33 and then Lemma 29 on (b).)

Theorem 41 (Preservation). If Σ1 ` C1 : τ and C1 −→ C2, then there exists Σ2 ⊇ Σ1

s.t. Σ2 ` C2 : τ .

Proof. (Skip) Case analysis on C1 −→ C2.
stpl-case. We have,
(a) C1 = M{σ;κ;ψ; case (v , x1.e1, x2.e2)}
(b) C2 = M{σ;κ;ψ{xi 7→ v ′}; ei}
(c) ψJvK.M = inji v ′
(d) Σ1 ` σwf
(e) . `M
(f) Σ1 `M κ : τ1 ↪→ τ
(g) Σ1 ` ψ ; Γ
(h) Σ1; Γ `M case (v , x1.e1, x2.e2) : τ1; ε
(i) Γ `M � ε
Inverting rule t-case on (h), we get,
(j) Γ `M v : τ ′1 + τ ′2
(k) Γ, xi : τ ′i `M ei : τ1; εi
(l) Γ ` τ
(m’) ε = ε, ε1, ε2
(m) Γ `M � εi
With (j) use Lemma 33 to get,
(n) . `M ψJvK.M : (ψJτ ′1K) + (ψJτ ′2K)
Substitute (c) in (n) to get,
(o) . `M inji v ′ : (ψJτ ′1K) + (ψJτ ′2K)
Inverting rule t-inj on (o) we get,
(p) . `M v ′ : ψJτ ′i K
With (p) and (g), use rule tenv-mapp2 to get,
(q) Σ1 ` ψ{xi 7→ v ′}; Γ, xi : τ ′i
Choose Σ2 = Σ1

With (d), (e), (f), (q), (k), (m), use rule tconfig-config to get
Σ2 `M{σ;κ;ψ{xi 7→ vi}; ei} : τ
stpl-fst. We have, (a) C1 = M{σ;κ;ψ; fst (v)}
(b) C2 = M{σ;κ;ψ; v1}
(c) ψJvK.M = (v1, v2)
(d) Σ1 ` σwf
(e) . `M
(f) Σ1 `M κ : ψJτ1K ↪→ τ
(g) Σ1 ` ψ ; Γ
(h) Σ1; Γ `M fst (v) : τ1; ·
(i) Γ `M � ε
Invert rule t-fst on (h) to get,

200

(j) Γ `M v : τ1 × τ2

With (j) and (c) use Lemma 33 to get,
(k) . `M v1 : ψJτ1K
Choose Σ2 = Σ1

With (d), (e), (f), (g), (k) (after weakening), we get,
Σ2 `M{σ;κ;ψ; v1} : τ
stpl-snd. Similar to stpl-fst.
stpl-lambda. There is no change in the stack andenvironment, and the closure has

same type as lambda.
stpl-apply. We have, (a) C1 = M{σ;κ;ψ1; v1 v2}
(b) C2 = M{σ;κ;ψ2{x 7→ v ′}; e}
(c) ψ1Jv1K.M = clos (ψ2;λx .e)
(d) ψ1Jv2K.M = v ′

(e) Σ `M κ : ψJτ1K ↪→ τ
(f) Γ `M v1 v2 : τ1; ε
(g) Γ `M � ε
Invert rule t-app on (f) to get,
(h) Γ `M v1 : τ2

ε1→ τ1

(i) Γ `M v2 : τ2

(j) Γ `M � ε1[v2/x]
(k) ε = ε1[v2/x]
With (h) and (c) use Lemma 33 to get,
(l) . `M clos (ψ2;λx .e) : (ψJτ2K)

(ψJε1K)→ (ψJτ1K)
Invert rule t-clos on (l) to get,
(m) Σ1 ` ψ2 ; Γ2

(n) Γ2, x : ψJτ2K `M e : ψJτ1K;ψJε1K
With (i) and (d) use Lemma 33 to get,
(o) . `M v ′ : ψJτ2K
i.e.
(p) . `M v ′ : ψ2J(ψJτ2K)K
From (m) and (o), use rule tenv-mapp2 to derive,
(q) Σ1 ` ψ2{x 7→ v ′}; Γ2, x : ψJτ2K
(e) can also be written as,
(r) Σ `M κ : ψ2J(ψJτ1K)K ↪→ τ
With (q), (n), (r), we get Σ1 `M{σ;κ;ψ2{x 7→ v ′}; e} : τ (effect delegation comes

from Lemma 33 on (j).)
stpl-fix. Similar to stpl-lambda.
stpl-fixapply. Similar to stpl-apply.
stpl-array. Standard proof, choose Σ2 as Σ1 with new `. Other array cases are

also standard.
stpl-makesh. We have, (a) C1 = s(w){σ;κ;ψ; makesh(v)}
(b) C2 = s(w){σ;κ;ψ; shw v ′}
(c) ψJvK.s(w) = v ′

(d) Σ1 `s (w)κ : ψJτ1K ↪→ τ2

201

(e) Σ1 ` ψ ; Γ
(f) Γ `s(w) makesh(v) : τ1; ε
Invert rule t-makesh on (f) to get,
(g) τ1 = Shw τ2

(g’) Γ `s(w) v : τ2

Use Lemma 33 on (g’) and (c) to get,
(h) . `s(w) v

′ : ψJτ2K
Use rule t-sh on (h) to get,
(i) . `s(w) shw v ′ : Shw ψJτ2K
Observe that ψJ(Shw ψJτ2K)K = ψJ(Shw τ2)K
Therefore, stack typing (d) still holds, and new configuration is well-typed.
stpl-combsh. Similar to stpl-makesh.
stpl-wire. We have, (a) C1 = M{σ;κ;ψ; wirew(v)}
(b) C2 = M{σ;κ;ψ; {|v ′|}wiresw ′ }
(c) ψJwK = w ′

(d) ψJvK.N = v ′

(e) M = m(w1)
(f) m = p⇒ N = p(w ′) and m = s⇒ N = M
(g) Σ1 `M κ : ψJτ1K ↪→ τ
(e) Σ1 ` ψ ; Γ
(f) Γ `M wirew(v) : Ww τ2; ·
(g) τ1 = Ww τ2

Invert rule t-wire on (f) to get,
(h) Γ ` w : ps (ν ⊆ w1)
(i) m = p⇒ N1 = p(w) and m = s⇒ N1 = M
(j) Γ `N1 v : τ2

Case 1: m = p
Use Lemma 33 on (j) to get,
(k) . `p(w ′) v

′ : ψJτ2K
Using rule t-singlwire and rule t-wirecat, we can derive:
(l) . `p(w1) {|v ′|}wiresw ′ : Ww ′ (ψJτ2K)
Observe that ψJWw ′ (ψJτ2K)K = ψJτ1K.
Hence, stack typing (g) still holds, therefore C2 is well-typed.
Case 2: m = s
Use Lemma 33 on (j) to get,
(k) . `M v ′ : ψJτ2K
Using rule t-singlwire and rule t-wirecat, we can derive:
Observe that ψJWw ′ (ψJτ2K)K = ψJτ1K.
Hence, stack typing (g) still holds, therefore C2 is well-typed.
(l) . `M {|v ′|}wiresw ′ : Ww ′ (ψJτ2K)
stpl-parproj. We have, (a’) M = p({p})
(a) C1 = M{σ;κ;ψ; v1[v2]}
(b) C2 = M{σ;κ;ψ; v ′}
(c) ψJv1K.M = {p : v ′} ++ w ′

(d) ψJv2K.M = p

202

(e) Σ1 `M κ : ψJτ1K ↪→ τ
(f) Γ `M v1[v2] : τ1; ε
Inverting rule t-wproj with M = p() we get,
(g) Γ `M v1 : W v2 τ1

(h) Γ ` v2 : ps (ν = {p} ∧ singl(ν))
Applying Lemma 33 on (h) we get,
(i) ψJv2K = {p}
Applying Lemma 33 on (g) we get,
(j) . `M {p : v ′} ++ w ′ : W {p}ψJτ1K
Inverting rule t-wirecat and rule t-singlwire on (j) we get,
(k) . `M v ′ : ψJτ1K
Observe that ψJ(ψJτ1K)K = ψJτ1K
Hence, stack typing (e) still holds and C2 is well-typed.
stpl-secproj. We have, (a’) M = s({p} ∪ w)
(a) C1 = M{σ;κ;ψ; v1[v2]}
(b) C2 = M{σ;κ;ψ; v ′}
(c) ψJv1K.M = {p : v ′} ++ w ′

(d) ψJv2K.M = p
(e) Σ1 `M κ : ψJτ1K ↪→ τ
(f) Γ `M v1[v2] : τ1; ε
Similar to stpl-parproj.
stpl-wireun. We have, (a) C1 = M{σ;κ;ψ; v1 ++ v2}
(b) C2 = M{σ;κ;ψ; v ′1 ++ v ′2}
(c) ψJv1K.M = v ′1
(d) ψJv2K.M = v ′2
(e) Σ1 `M κ : ψJτ1K ↪→ τ
(f) Γ `M v1 ++ v2 : τ1; ε
Inverting rule t-wireun on (f), we get,
(g) τ1 = W (w1 ∪ w2) τ2

(h) Γ `M v1 : Ww1 τ2

(i) Γ `M v2 : Ww2 τ2

Applying Lemma 33 on (h) and (i), we get,
(j) . `M v ′1 : WψJw1KψJτ2K
(k) . `M v ′2 : WψJw2KψJτ2K
Using rule t-wirecat with (j) and (k) we get,
(l) . `M v ′1 ++ v ′2 : W (ψJw1K) ∪ (ψJw2K)ψJτ2K
Proof now follows by showing that stack typing holds.
stpl-wapp1. We have, (a) C1 = M{σ;κ;ψ; wappw(v1, v2)}
(b) C2 = M{σ;κ;ψ; ·}
(c) ψJwK = ·
(d) Γ `M wappw(v1, v2) : Ww τ2; ·
(e) Σ1 `M κ : ψJ(Ww τ2)K ↪→ τ
Rewriting (e),
(f) Σ1 `M κ : W · (ψJτ2K) ↪→ τ
We have,

203

(g) Γ `M · : W · (ψJτ2K)
Also,
(h) ψJ(W · (ψJτ2K))K = W · (ψJτ2K)
With (h) and (f), we can derive stack typing in C2.
stpl-wapp2. We have, (a) C1 = M{σ;κ;ψ; wappw(v1, v2)}
(b) C2 = M{σ;κ;ψ; e}
(b’) M = p(({p} ∪ w ′) ∪ w1)
(c) ψJwK = {p} ∪ w ′

(d) ψJv1K.M = v ′1
(e) ψJv2K.M = v ′2

(f) e = let z1
p({p})

= let z2 = v ′1[p] in let z3 = v ′2[p] in z2 z3 in
let z4 = wappw ′(v

′
1, v
′
2) in (wire{p}(z1 ++ z4))

(g) Γ `M wappw(v1, v2) : Ww τ2; ·
(h) Γ `M v1 : Ww τ1

(i) Γ `M v2 : τ1
·→ τ2

(j) Σ1 `M κ : ψJ(Ww τ2)K ↪→ τ
Using Lemma 33 on (h) and (i) we get,
(k) . `M v ′1 : W {p} ∪ w ′ ψJτ1K
(l) . `M v ′2 : W ({p} ∪ w ′) ((ψJτ1K)

·→ (ψJτ2K))
We now consider typing of e from (f).
Using rule t-wproj we get,
(m) . `p({p}) v

′
1[p] : ψJτ1K; ·

(n) . `p({p}) v
′
2[p] : ((ψJτ1K)

·→ (ψJτ2K)); ·
Using rule t-app we get,
(o) . `p({p}) z2 z3 : ψJτ2K; ·
Using rule t-wire we get,
(p) . `M wire{p}(z1) : W {p}ψJτ2K; ·
Using rule t-wapp we get,
(q) . `M wappw ′(v

′
1, v
′
2) : Ww ′ ψJτ2K; ·

Using rule t-wireun we get,
(r) . `M (wire{p}(z1 ++ z4)) : W ({p} ∪ w ′)ψJτ2K; ·
We also have,
(s) ψJ(W ({p} ∪ w ′)ψJτ2K)K = ψJ(Ww τ2)K
and hence stack typing from (j) holds for C2 as well.
stpl-waps1. Similar to stpl-wapp1.
stpl-waps2. We have,
(a) C1 = M{σ;κ;ψ; wapsw(v1, v2)}
(b) C2 = M{σ;κ;ψ; e}
(b’) e = let z1 = v ′1[p] in let z2 = v ′2 z1 in let z3 = wapsw ′(v ′1, v ′2) in (wire{p}(z2 ++

z3))
(c) M = s(({p} ∪ w ′) ∪ w1)
(d) ψJwK = {p} ∪ w ′

(e) ψJv1K.M = v ′1
(f) ψJv2K.M = v ′2

204

(g) Γ `M wapsw(v1, v2) : Ww τ2; ·
(h) Σ1 `M κ : ψJ(Ww τ2)K ↪→ τ
Inverting rule t-waps on (g) we get,
(i) Γ `M v1 : Ww τ1

(j) Γ `M v2 : τ1
·→ τ2

Using Lemma 33 on (i) and (j),
(k) . `M v ′1 : W ({p} ∪ w ′) (ψJτ1K)
(l) . `M v ′2 : (ψJτ1K)

·→ (ψJτ2K)
We now consider typing of e from (b’)
Using rule t-wproj we get,
(m) . `M v ′1[p] : ψJτ1K; ·
Using rule t-app we get,
(n) . `M v ′2 z1 : ψJτ2K; ·
Using rule t-wire we get,
(o) . `M wire{p}(z2) : W {p} (ψJτ2K); ·
Using rule t-waps we get,
(p) . `M wapsw ′(v ′1, v ′2) : Ww ′ (ψJτ2K); ·
Using rule t-wireun we get,
(q) . `M (wire{p}(z2 ++ z3)) : W ({p} ∪ w ′) (ψJτ2K); ·
Also,
(r) ψJ(W ({p} ∪ w ′) (ψJτ2K))K = ψJ(Ww τ2)K
and hence stack typing (h) holds for C2 also.
stpl-wfold1. Immediate from typing of wfold andLemma 33.
stpl-wfold2. We have, (a) C1 = M{σ;κ;ψ; wfoldw(v1, v2, v3)}
(b) C2 = M{σ;κ;ψ; e}
(c) ψJwK = {p} ∪ w ′

(d) M = s(({p} ∪ w ′) ∪ w1)
(e) ψJv1K.M = v ′1
(f) ψJv2K.M = v ′2
(g) ψJv3K.M = v ′3
(h) e = let z1 = v ′1[p] in let z2 = v ′3 v

′
2 p z1 in wfoldw ′(v

′
1, z2, v

′
3)

(i) Γ `M wfoldw(v1, v2, v3) : τ2; ·
(j) Σ1 `M κ : ψJτ2K ↪→ τ
Inverting rule t-wfold on (i) we get,
(k) Γ `M v1 : Ww τ
(l) Γ `M v2 : τ2

(m) Γ `M v3 : τ2
·→ ps (ν ⊆ w ∧ singl(ν))

·→ τ
·→ τ2

Using Lemma 33 on (k), (l), and (m), we get,
(n) . `M v ′1 : W ({p} ∪ w ′) (ψJτK)
(o) . `M v ′2 : ψJτ2K
(p) . `M v ′3 : (ψJτ2K)

·→ ps (ν ⊆ ({p} ∪ w ′) ∧ singl(ν))
·→ (ψJτK) ·→ (ψJτ2K)

We now consider typing of e from (h).
Using rule t-wproj, we get,
(q) . `M v ′1[p] : ψJτK; ·

205

Using rule t-app we get,
(r) . `M v ′3 v

′
2 p z1 : ψJτ2K; ·

Using rule t-wfold we get,
(s) . `M wfoldw ′(v

′
1, z2, v

′
3) : ψJτ2K; ·

And,
(t) ψJ(ψJτ2K)K = ψJτ2K
and hence stack typing (j) remains valid for C2.
stpc-let. We have, (a) C1 = M{σ;κ;ψ; let x = e1 in e2}
(b) C2 = M{σ;κ :: 〈ψ; x .e2〉 ;ψ; e1}
(c) Σ1 ` σwf
(d) . `M
(e) Σ1 `M κ : ψJτ1K ↪→ τ
(f) Σ1 ` ψ ; Γ
(g) Σ1; Γ `M let x = e1 in e2 : τ1; ε
Invert rule t-let on (g) to get,
(h) Γ `M e1 : τ ′1; ε1
(i) Γ, x : τ ′1 `M e2 : τ1; ε2
(j) ε = ε1, ε2
To prove Σ2 `M{σ;κ :: 〈ψ; x .e2〉 ;ψ; e1} : τ ,
we need to prove
(e) Σ2 `M κ :: 〈ψ; x .e2〉 : ψJτ ′1K ↪→ τ
i.e. (from rule rule tstk-frame2) we need to prove,
(f) Γ, x : τ ′1 `M e : τ1; ε2
and
(g) Σ2 `M κ : ψJτ1K ↪→ τ
Choose Σ2 = Σ1, then (f) is same as (i) and (g) is same as (e)
Thus (e) holds.
With (c), (d), (e), (f), (h) (effect delegation follows from Lemma 27 on (h)), we have
Σ2 `M{σ;κ :: 〈ψ; x .e2〉 ;ψ; e1} : τ
stpc-delpar. We have, (a’) M = p(w1 ∪ w2)

(a) C1 = M{σ;κ;ψ; let x p(w ′)
= e1 in e2}

(b) C2 = p(w2){σ;κ :: 〈M ;ψ; x .e2〉 ;ψ; e1}
(c) ψJw ′K = w2

(d) Σ1 `M κ : ψJτ1K ↪→ τ

(e) Γ `M let x p(w ′)
= e1 in e2 : τ1; ε

(f) Γ `M � ε
Inverting rule t-let1 on (e) we get,
(g) Γ `p(w2) e1 : τ2; ε1
(h) Γ, x :p(w2) τ2 `M e2 : τ1; ε2
(i) ε = p(w2), ε2
(j) Γ ` p(w1 ∪ w2) � ε2
To prove C2 is well-typed, we need to prove:
(k) Γ `p(w2) e1 : τ2; ε1
(l) Σ1 `p (w2)κ :: 〈M ;ψ; x .e2〉 : ψJτ2K ↪→ τ

206

(k) follows from (g)
To prove (l), we need to prove:
(m’) Γ ` τ2 (follows from Lemma 27 on (g).
(m) Γ, x :p(w2) τ2 `M e2 : τ1; ε
(n) Σ1 `M κ : ψJτ1K ↪→ τ
(m) follows from (h), (n) follows from (d).
stpc-delssec. We have, (a) C1 = m(w){σ;κ;ψ; let x s(w ′)

= e1 in e2}
(b) C2 = m(w){σ;κ :: 〈m(w);ψ; x .e2〉 ;ψ; securew ′(e1)}
(c) Σ1 `m (w)κ : ψJτ1K ↪→ τ

(d) Γ `m(w) let x s(w ′)
= e1 in e2 : τ1; ε

(d’) Γ ` m(w) � s(w ′)
Inverting rule t-let1 on (d) we get,
(e) Γ `s(w ′) e1 : τ2; ε1
(f) Γ, x :m(w ′) τ2 `m(w) e2 : τ1; ε2
(g) ε = s(w ′), ε2
Inverting rule d-refl or rule d-sec on (d’) we get,
(h) Γ ` w ′ : ps (ν = w)
Using rule t-secblk on (h) and (e) we get,
(i) Γ `m(w) securew ′(e) : τ2; ε1
To prove C2 is well-typed, we need to prove,
(j) Σ1 `m (w)κ :: 〈m(w);ψ; x .e2〉 : ψJτ2K ↪→ τ
i.e.
(l) Γ, x :m(w) τ2 `m(w) e2 : τ1; ε2
and
(m) Σ1 `m (w)κ : ψJτ1K ↪→ τ
(l) follows from (f) and (h), (m) follows from (c).
stpc-secenter. We have, (a) C1 = m(w){σ;κ;ψ; securew ′(e)}
(b) C2 = s(w){σ;κ;ψ; e}
(c) ψJw ′K = w
(d) Γ `m(w) securew ′(e) : τ1; ε
(e) Σ1 `m (w)κ : ψJτ1K ↪→ τ
Inverting rule t-secblk on (d) we get,
(f) Γ ` w ′ : ps (ν = w)
(g) Γ `s(w ′) e : τ1; ε
Proof now follows from (g), (f), and (e).
stpc-popstk1. We have, (a) C1 = N{σ;κ :: 〈M ;ψ1; x .e〉 ;ψ2; v}
(b) C2 = M{σ;κ;ψ1{x 7→m(w) v

′}; e}
(c) N = (w)
(d) M = m()
(e) ψ2JvK.N = v ′

(f) Σ1 `N κ :: 〈M ;ψ1; x .e〉 : ψ2Jτ1K ↪→ τ
(g) Γ2 `N v : τ1

Inverting rule tstk-frame1 on (f) we get,
(h’) Γ1 ` τ1

207

(h) Γ1, x :m(w) τ1 `M e : τ2; ε
(i) Σ1 `M κ : ψ2Jτ2K ↪→ τ
Using Lemma 33 on (g) to get,
(j) . `N v ′ : ψ2Jτ1K
Using Lemma 34,
(j’) . `N v ′ : ψ1Jτ1K
Use rule tenv-mapp2 with (j’) to get,
(k) Σ1 ` ψ1{x 7→m(w) v

′}; Γ1, x :m(w) τ1

With (k), (h), and (i), we have the proof.
stpc-popstk2. Similar to stpc-popstk1.

Theorem 42 (Sound simulation).
Let Σ ` C : τ , C1 −→ C2, C st, and slicew(C1) ; π1, where w is the set of all

parties. Then, there exists π2 s.t. π1 −→∗ π2 and slicew(C2) −→ π2.

Proof. Case analysis on C1 −→ C2.
stpc-delpar. We have,
(a) C1 = p(w1 ∪ w2){σ;κ;ψ; let x p(w ′)

= e1 in e2}
(b) C2 = p(w2){σ;κ :: 〈p(w1 ∪ w2);ψ; x .e2〉 ;ψ; e1}
(c) ψJw ′K = w2

(d) slicep(C1) ; p

{
σ′;κ′;ψ′; let x p(w ′)

= e1 in e2

}
, where slicep(σ) ; σ′, slicep(κ) ;

κ′, and slicep(ψ) ; ψ′ when p ∈ w1 ∪ w2

(e) slicep(C1) ; slicep(m(w){σ;κ′;ψ′{x 7→m(w1∪w2) ©}; e ′}) when κ = κ′ ::
〈m(w);ψ′; x .e ′〉 or slicep(C1) ; slicep(p(w1 ∪ w2){σ;κ′;ψ′{x 7→ ©}; e ′}) when κ =
κ′ :: 〈ψ′; x .e ′〉

Consider p ∈ w1 ∪ w2. By Lemma 38,
(f) ψ′JwK = w2

Case 1. p ∈ w2

Then it can take step using stpp-present to p {σ′;κ′ :: 〈p({p});ψ′; x .e2〉 ;ψ′; e1}
which is slice of C2.

Case 2. {p} not in w2

Then it takes step using stpp-absent to p {σ′;κ′;ψ′; e2} which is slice of C2 using
slicecfg-abs1.

Consider {p} not in w1∪w2. These parties do not take a step, and their slice remains
same via slicecfg-abs1.

stpc-delssec. In the protocol only secure agent takes a step per rule stpp-secstep
and stpc-delssec. All other parties remain as is.

stpc-secenter. We have,
(a) C1 = p(w){σ;κ;ψ; securew ′(e)}
(b) C2 = s(w){σ;κ;ψ; e}
(c) ψJw ′K = w
(d) slicep(C1) ; p {σ′;κ′;ψ′; securew ′(e)} when p ∈ w
(e) For {p} not in w slice is by slicecfg-abs1 or slicecfg-abs2.

208

For parties not in w , they do not take any step and easy to see that their slice holds
in C2 as well.

For parties in w , we first note that κ = κ1 :: 〈p(w);ψ′; x .e ′〉 (rule stok-sece).
Their slice in C2 is p {σ′;κ1; ·; wait}, where slicep(κ) ; κ1.
The execution goes as: stpp-begin, followed by stpp-secenter for each p ∈ w .
stpc-popstk1. We have,
(a) C1 = N{σ;κ :: 〈M ;ψ1; x .e〉 ;ψ2; v}
(b) C2 = M{σ;κ;ψ1{x 7→m(w) ψJvKN}; e}
(c) M = m()
(d) N = (w)
If p ∈ w , slicing in C2 follows easily (since parties in N must be there in M , parties

remain same or grow up the stack).
If {p} not in w .
Depending on whether {p} in M or not, we can prove the slicing relation on C2 (if

{p} in M but not in N , it cannot be the case that either M or N is secure).
stpc-let, stpc-local, stpc-delpsec. Similar to stpc-delpar. In protocol, parties

in w take same step, while others do not.

Theorem 43 (Confluence).
Suppose that π1 −→ π2 and π1 −→ π3, then there exists π4 such that π2 −→ π4

and π3 −→ π4.

Proof. Proof sketch: From Lemma 39, if same agent (a party or secure agent) takes step
in π1 −→ π2 and π1 −→ π3, then π2 = π3.

If different agents take step, then they can take corresponding steps in π2 and π3 to
reach π4.

A complete formal proof can be derived using case analysis on π1 −→ π2 and
π1 −→ π3.

209

Bibliography

[1] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Proceedings of
the 27th Annual Symposium on Foundations of Computer Science, SFCS ’86, pages
162–167, Washington, DC, USA, 1986. IEEE Computer Society.

[2] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
STOC ’87, pages 218–229, New York, NY, USA, 1987. ACM.

[3] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols.
In Proceedings of the Twenty-second Annual ACM Symposium on Theory of Com-
puting, STOC ’90, pages 503–513, New York, NY, USA, 1990. ACM.

[4] Gagan Aggarwal, Nina Mishra, and Benny Pinkas. Secure computation of the k
th-ranked element. In Advances in Cryptology - EUROCRYPT 2004, International
Conference on the Theory and Applications of Cryptographic Techniques, Inter-
laken, Switzerland, May 2-6, 2004, Proceedings, pages 40–55, 2004.

[5] Florian Kerschbaum. Automatically optimizing secure computation. In Proceed-
ings of the 18th ACM Conference on Computer and Communications Security, CCS
’11, pages 703–714, New York, NY, USA, 2011. ACM.

[6] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching
and set intersection. In Advances in Cryptology - EUROCRYPT 2004, Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Interlaken, Switzerland, May 2-6, 2004, Proceedings, pages 1–19, 2004.

[7] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled
circuits better than custom protocols? In 19th Annual Network and Distributed
System Security Symposium, NDSS 2012, San Diego, California, USA, February
5-8, 2012, 2012.

[8] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler, Thomas
Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt

210

Nielsen, Jakob Pagter, Michael Schwartzbach, and Tomas Toft. Secure multiparty
computation goes live. In Roger Dingledine and Philippe Golle, editors, Finan-
cial Cryptography and Data Security, pages 325–343, Berlin, Heidelberg, 2009.
Springer-Verlag.

[9] Dan Bogdanov, Marko JÃţemets, Sander Siim, and Meril Vaht. How the estonian
tax and customs board evaluated a tax fraud detection system based on secure multi-
party computation. In Rainer BÃűhme and Tatsuaki Okamoto, editors, Financial
Cryptography and Data Security, volume 8975 of Lecture Notes in Computer Sci-
ence, pages 227–234. Springer Berlin Heidelberg, 2015.

[10] F. Kerschbaum, A. Schroepfer, A. Zilli, R. Pibernik, O. Catrina, S. de Hoogh,
B. Schoenmakers, S. Cimato, and E. Damiani. Secure collaborative supply-chain
management. Computer, 2011.

[11] SeungGeol Choi, Kyung-Wook Hwang, Jonathan Katz, Tal Malkin, and Dan
Rubenstein. Secure multi-party computation of boolean circuits with applica-
tions to privacy in on-line marketplaces. In Orr Dunkelman, editor, Topics in
CryptologyâĂŞCT-RSA 2012, volume 7178 of Lecture Notes in Computer Science,
pages 416–432. Springer Berlin Heidelberg, 2012.

[12] Lior Malka. Vmcrypt: Modular software architecture for scalable secure computa-
tion. In Proceedings of the 18th ACM Conference on Computer and Communica-
tions Security, CCS ’11, pages 715–724, New York, NY, USA, 2011. ACM.

[13] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party
computation using garbled circuits. In Proceedings of the 20th USENIX Conference
on Security, SEC’11, pages 35–35, Berkeley, CA, USA, 2011. USENIX Associa-
tion.

[14] Benjamin Mood, Lara Letaw, and Kevin R. B. Butler. Memory-efficient garbled
circuit generation for mobile devices. In Financial Cryptography and Data Security
- 16th International Conference, FC 2012, Kralendijk, Bonaire, Februray 27-March
2, 2012, Revised Selected Papers, pages 254–268, 2012.

[15] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay—a secure
two-party computation system. In Proceedings of the 13th Conference on USENIX
Security Symposium - Volume 13, SSYM’04, pages 20–20, Berkeley, CA, USA,
2004. USENIX Association.

[16] Andreas Holzer, Martin Franz, Stefan Katzenbeisser, and Helmut Veith. Secure
two-party computations in ANSI C. In the ACM Conference on Computer and
Communications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages
772–783, 2012.

[17] Benjamin Kreuter, Abhi Shelat, Benjamin Mood, and Kevin R. B. Butler. PCF: A
portable circuit format for scalable two-party secure computation. In Proceedings

211

of the 22th USENIX Security Symposium, Washington, DC, USA, August 14-16,
2013, pages 321–336, 2013.

[18] Assaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp: a system for se-
cure multi-party computation. In Proceedings of the 2008 ACM Conference on
Computer and Communications Security, CCS 2008, Alexandria, Virginia, USA,
October 27-31, 2008, pages 257–266, 2008.

[19] Michael Furr and Jeffrey S. Foster. Checking type safety of foreign function calls.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’05, pages 62–72, New York, NY, USA, 2005.
ACM.

[20] Piotr Mardziel, Michael Hicks, Jonathan Katz, Matthew Hammer, Aseem Rastogi,
and Mudhakar Srivatsa. Knowledge inference for optimizing and enforcing secure
computations. In Proceedings of the Annual Meeting of the US/UK International
Technology Alliance, 2013. This short paper consists of coherent excerpts from
several prior papers.

[21] Peeter Laud and Jaak Randmets. A domain-specific language for low-level secure
multiparty computation protocols. In Proceedings of the 22Nd ACM SIGSAC Con-
ference on Computer and Communications Security, CCS ’15, pages 1492–1503,
New York, NY, USA, 2015. ACM.

[22] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Ben-
jamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie
Weirich, and Steve Zdancewic. Mechanized metatheory for the masses: The
PoplMark Challenge. In Proceedings of the 18th International Conference on The-
orem Proving in Higher Order Logics, TPHOLs’05, pages 50–65, Berlin, Heidel-
berg, 2005. Springer-Verlag.

[23] Casey Klein, John Clements, Christos Dimoulas, Carl Eastlund, Matthias Felleisen,
Matthew Flatt, Jay A. McCarthy, Jon Rafkind, Sam Tobin-Hochstadt, and
Robert Bruce Findler. Run your research: On the effectiveness of lightweight mech-
anization. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’12, pages 285–296, New York,
NY, USA, 2012. ACM.

[24] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding
bugs in C compilers. In Proceedings of the 32Nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’11, pages 283–294,
New York, NY, USA, 2011. ACM.

[25] Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 2009.

[26] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, and
Pierre-Yves Strub. Implementing TLS with verified cryptographic security. In IEEE
Symposium on Security & Privacy (Oakland), pages 445–462, 2013.

212

[27] PolarSSL verification kit. http://trust-in-soft.com/

polarssl-verification-kit/, 2015.

[28] Jean Yang and Chris Hawblitzel. Safe to the last instruction: Automated verification
of a type-safe operating system. In Proceedings of the 31st ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’10, pages
99–110, New York, NY, USA, 2010. ACM.

[29] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Nor-
rish, Thomas Sewell, Harvey Tuch, and Simon Winwood. sel4: Formal verification
of an os kernel. In Proceedings of the ACM SIGOPS 22Nd Symposium on Oper-
ating Systems Principles, SOSP ’09, pages 207–220, New York, NY, USA, 2009.
ACM.

[30] Galen C. Hunt and James R. Larus. Singularity: Rethinking the software stack.
ACM SIGOPS Operating Systems Review, 41(2):37–49, April 2007.

[31] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno, Dan-
feng Zhang, and Brian Zill. Ironclad apps: End-to-end security via automated full-
system verification. In USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI). USENIX âĂŞ Advanced Computing Systems Association,
October 2014.

[32] Aseem Rastogi, Matthew A. Hammer, and Michael Hicks. Wysteria: A program-
ming language for generic, mixed-mode multiparty computations. In 2014 IEEE
Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21,
2014, pages 655–670, 2014.

[33] Aseem Rastogi, Piotr Mardziel, Michael Hicks, and Matthew A. Hammer. Knowl-
edge inference for optimizing secure multi-party computation. In Proceedings of
the Eighth ACM SIGPLAN Workshop on Programming Languages and Analysis for
Security, PLAS ’13, pages 3–14, New York, NY, USA, 2013. ACM.

[34] Axel Schröpfer, Florian Kerschbaum, and Günter Müller. L1 - an intermediate
language for mixed-protocol secure computation. In Proceedings of the 35th Annual
IEEE International Computer Software and Applications Conference, COMPSAC
2011, Munich, Germany, 18-22 July 2011, pages 298–307, 2011.

[35] Janus Dam Nielsen and Michael I. Schwartzbach. A domain-specific programming
language for secure multiparty computation. In Proceedings of the 2007 Workshop
on Programming Languages and Analysis for Security, PLAS ’07, pages 21–30,
New York, NY, USA, 2007. ACM.

[36] Aseem Rastogi, Nikhil Swamy, and Michael Hicks. Wys*: A verified language
extension for secure multi-party computations, Nov. 2015.

213

http://trust-in-soft.com/polarssl-verification-kit/
http://trust-in-soft.com/polarssl-verification-kit/

[37] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub,
Markulf Kohlweiss, Jean-Karim Zinzindohoue, and Santiago Zanella-Béguelin.
Dependent types and multi-monadic effects in F*. In 43nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pages 256–270.
ACM, January 2016.

[38] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. Program anal-
ysis as constraint solving. In Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’08, pages 281–292,
New York, NY, USA, 2008. ACM.

[39] Saurabh Srivastava and Sumit Gulwani. Program verification using templates over
predicate abstraction. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’09, pages 223–234,
New York, NY, USA, 2009. ACM.

[40] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
Proceedings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[41] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, New York, NY, USA, 2004.

[42] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In
Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’99, pages 214–227, New York, NY, USA, 1999.
ACM.

[43] Hongwei Xi. Applied type system (extended abstract. In In post-workshop Pro-
ceedings of TYPES 2003, pages 394–408, 2004.

[44] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence
of compiling with continuations. In Proceedings of the ACM SIGPLAN 1993 Con-
ference on Programming Language Design and Implementation, PLDI ’93, pages
237–247, New York, NY, USA, 1993. ACM.

[45] Matthew Flatt, Robert Bruce Findler, and John Clements. Gui: Racket graph-
ics toolkit. Technical Report PLT-TR-2010-3, PLT Design Inc., 2010. http:

//racket-lang.org/tr3/.

[46] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November
1979.

[47] Robert Atkey. Parameterised notions of computation. J. Funct. Program., 19(3-
4):335–376, July 2009.

214

http://racket-lang.org/tr3/
http://racket-lang.org/tr3/

[48] Aleksandar Nanevski, J. Gregory Morrisett, and Lars Birkedal. Hoare type theory,
polymorphism and separation. J. Funct. Program., 18(5-6):865–911, 2008.

[49] Nick Benton. Simple relational correctness proofs for static analyses and program
transformations. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’04, pages 14–25, New York, NY,
USA, 2004. ACM.

[50] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput. Secur.,
18(6):1157–1210, September 2010.

[51] Andrei Sabelfeld and AndrewC. Myers. A model for delimited information release.
In Kokichi Futatsugi, Fumio Mizoguchi, and Naoki Yonezaki, editors, Software Se-
curity - Theories and Systems, volume 3233 of Lecture Notes in Computer Science,
pages 174–191. Springer Berlin Heidelberg, 2004.

[52] Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub, Nikhil
Swamy, and Santiago Zanella-Béguelin. Probabilistic relational verification for
cryptographic implementations. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, pages
193–205, New York, NY, USA, 2014. ACM.

[53] Ran Canetti. Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology, 13(1):143–202, 2000.

[54] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of
sequential control and state. Theoretical computer science, 103(2):235–271, 1992.

[55] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innovative instructions and soft-
ware model for isolated execution. In Proceedings of the 2Nd International Work-
shop on Hardware and Architectural Support for Security and Privacy, HASP ’13,
pages 10:1–10:1, New York, NY, USA, 2013. ACM.

[56] Cédric Fournet, Markulf Kohlweiss, and Pierre-Yves Strub. Modular code-based
cryptographic verification. In Proceedings of the 18th ACM Conference on Com-
puter and Communications Security, CCS ’11, pages 341–350, New York, NY,
USA, 2011. ACM.

[57] Fritz Henglein. Dynamic typing: Syntax and proof theory. Sci. Comput. Program.,
22(3):197–230, 1994.

[58] James C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, 1976.

[59] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer
Security, 18(6):1157–1210, 2010.

215

[60] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow by
self-composition. In 17th IEEE Computer Security Foundations Workshop, (CSFW-
17 2004), 28-30 June 2004, Pacific Grove, CA, USA, pages 100–114, 2004.

[61] Stephen Chong. Required information release. Journal of Computer Security,
20(6):637–676, 2012.

[62] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and arrays. In
Proceedings of the 19th International Conference on Computer Aided Verification,
CAV’07, pages 519–531, Berlin, Heidelberg, 2007. Springer-Verlag.

[63] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE
J.Sel. A. Commun., 21(1):5–19, September 2006.

[64] François Pottier and Vincent Simonet. Information flow inference for ml. ACM
Trans. Program. Lang. Syst., 25(1):117–158, January 2003.

[65] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers. Un-
trusted hosts and confidentiality: Secure program partitioning. In Proceedings of
the Eighteenth ACM Symposium on Operating Systems Principles, SOSP ’01, pages
1–14, New York, NY, USA, 2001. ACM.

[66] PPL: Parma polyhedral library. www.cs.unipr.it/ppl.

[67] LLVM. http://llvm.org.

[68] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free xor
gates and applications. In Proceedings of the 35th International Colloquium on Au-
tomata, Languages and Programming, Part II, ICALP ’08, pages 486–498, Berlin,
Heidelberg, 2008. Springer-Verlag.

[69] Yan Huang, Peter Chapman, and David Evans. Privacy-preserving applications
on smartphones. In Proceedings of the 6th USENIX Conference on Hot Topics in
Security, HotSec’11, pages 4–4, Berkeley, CA, USA, 2011. USENIX Association.

[70] Wilko Henecka, Stefan K ögl, Ahmad-Reza Sadeghi, Thomas Schneider, and Immo
Wehrenberg. TASTY: Tool for automating secure two-party computations. In Pro-
ceedings of the 17th ACM Conference on Computer and Communications Security,
CCS ’10, pages 451–462, New York, NY, USA, 2010. ACM.

[71] Samee Zahur and David Evans. Obliv-c: A language for extensible data-oblivious
computation. Unpublished, 2015. http://oblivc.org/downloads/oblivc.

pdf.

[72] Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. Asyn-
chronous multiparty computation: Theory and implementation. In Proceedings of
the 12th International Conference on Practice and Theory in Public Key Cryptog-
raphy: PKC ’09, Irvine, pages 160–179, Berlin, Heidelberg, 2009. Springer-Verlag.

216

www.cs.unipr.it/ppl
http://llvm.org
http://oblivc.org/downloads/oblivc.pdf
http://oblivc.org/downloads/oblivc.pdf

[73] Chang Liu, Yan Huang, Elaine Shi, Jonathan Katz, and Michael Hicks. Automating
efficient ram-model secure computation. In Proceedings of the 2014 IEEE Sym-
posium on Security and Privacy, SP ’14, pages 623–638, Washington, DC, USA,
2014. IEEE Computer Society.

[74] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on obliv-
ious rams. J. ACM, 43(3):431–473, May 1996.

[75] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The program
counter security model: Automatic detection and removal of control-flow side
channel attacks. In Proceedings of the 8th International Conference on Informa-
tion Security and Cryptology, ICISC’05, pages 156–168, Berlin, Heidelberg, 2006.
Springer-Verlag.

[76] Chang Liu, Michael Hicks, and Elaine Shi. Memory trace oblivious program ex-
ecution. In Proceedings of the 2013 IEEE 26th Computer Security Foundations
Symposium, CSF ’13, pages 51–65, Washington, DC, USA, 2013. IEEE Computer
Society.

[77] John Launchbury, Iavor S. Diatchki, Thomas DuBuisson, and Andy Adams-Moran.
Efficient lookup-table protocol in secure multiparty computation. In Proceedings
of the 17th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’12, pages 189–200, New York, NY, USA, 2012. ACM.

[78] John C. Mitchell, Rahul Sharma, Deian Stefan, and Joe Zimmerman. Information-
flow control for programming on encrypted data. In 25th IEEE Computer Secu-
rity Foundations Symposium, CSF 2012, Cambridge, MA, USA, June 25-27, 2012,
pages 45–60, 2012.

[79] Florian Kerschbaum, Thomas Schneider, and Axel Schröpfer. Automatic proto-
col selection in secure two-party computations. In 20th Annual Network and Dis-
tributed System Security Symposium, NDSS 2013, San Diego, California, USA,
February 24-27, 2013, 2013.

[80] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers. Se-
cure program partitioning. ACM Trans. Comput. Syst., 20(3):283–328, August
2002.

[81] Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi. Authenticated data
structures, generically. In Proceedings of the 41st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’14, pages 411–423, New
York, NY, USA, 2014. ACM.

[82] Cédric Fournet, Markulf Kohlweiss, George Danezis, and Zhengqin Luo. Zql:
A compiler for privacy-preserving data processing. In Proceedings of the 22Nd
USENIX Conference on Security, SEC’13, pages 163–178, Berkeley, CA, USA,
2013. USENIX Association.

217

[83] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In Proceedings of the 2013 IEEE Symposium on
Security and Privacy, SP ’13, pages 238–252, Washington, DC, USA, 2013. IEEE
Computer Society.

[84] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Guillaume Davy, François
Dupressoir, Benjamin Grégoire, and Pierre-Yves Strub. Verified implementations
for secure and verifiable computation. IACR Cryptology ePrint Archive, 2014:456,
2014.

[85] Michael Backes, Matteo Maffei, and Esfandiar Mohammadi. Computationally
sound abstraction and verification of secure multi-party computations. In IARCS
Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS 2010, December 15-18, 2010, Chennai, India, pages 352–
363, 2010.

[86] Martı́n Abadi and Cédric Fournet. Mobile values, new names, and secure com-
munication. In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’01, pages 104–115, New York, NY,
USA, 2001. ACM.

[87] Adam Chlipala. The bedrock structured programming system: Combining gen-
erative metaprogramming and hoare logic in an extensible program verifier. In
Proceedings of the 18th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’13, pages 391–402, New York, NY, USA, 2013. ACM.

[88] The Coq development team. The Coq proof assistant.

[89] Erik Meijer, Brian Beckman, and Gavin Bierman. Linq: Reconciling object, rela-
tions and xml in the .net framework. In Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’06, pages 706–706,
New York, NY, USA, 2006. ACM.

[90] Patrick Cousot and Radhia Cousot. Static determination of dynamic properties
of generalized type unions. In Proceedings of an ACM Conference on Language
Design for Reliable Software, pages 77–94, New York, NY, USA, 1977. ACM.

[91] Liina Kamm. Privacy-preserving statistical analysis using secure multi-party com-
putation. PhD thesis, University of Tartu, 2015.

[92] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. Oblivm:
A programming framework for secure computation. In 2015 IEEE Symposium on
Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 359–
376, 2015.

[93] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party com-
putation in the presence of malicious adversaries. In Proceedings of the 26th Annual
International Conference on Advances in Cryptology, EUROCRYPT ’07, pages 52–
78, Berlin, Heidelberg, 2007. Springer-Verlag.

218

[94] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Ad-
vances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2012. Proceedings, pages 681–700, 2012.

[95] Piotr Mardziel, Michael Hicks, Jonathan Katz, and Mudhakar Srivatsa. Knowledge-
oriented secure multiparty computation. In Proceedings of the 7th Workshop on
Programming Languages and Analysis for Security, PLAS ’12, pages 2:1–2:12,
New York, NY, USA, 2012. ACM.

[96] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast
privacy-preserving computations. In Proceedings of the 13th European Symposium
on Research in Computer Security: Computer Security, ESORICS ’08, pages 192–
206, Berlin, Heidelberg, 2008. Springer-Verlag.

[97] Node.js. https://nodejs.org/en/.

[98] Native client. https://developer.chrome.com/native-client.

[99] Nikhil Swamy, Cedric Fournet, Aseem Rastogi, Karthikeyan Bhargavan, Juan
Chen, Pierre-Yves Strub, and Gavin Bierman. Gradual typing embedded securely
in javascript. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, pages 425–437, New York, NY,
USA, 2014. ACM.

[100] Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis
Vekris. Safe & efficient gradual typing for typescript. In Proceedings of the 42Nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’15, pages 167–180, New York, NY, USA, 2015. ACM.

219

https://nodejs.org/en/
https://developer.chrome.com/native-client

	List of Figures
	List of Abbreviations
	Introduction
	Overview
	Wysteria: A programming language for mixed-mode MPC
	Wys: A verified language extension for MPC
	Knowledge inference for optimizing MPC

	Threat model
	Summary

	Wysteria: A Programming Language for Mixed-mode MPC
	Wysteria overview
	Computation modes for secure and local computations
	Wires for inputs and outputs
	Delegation effects
	First-class principals and n-party computation
	Secret shares

	Formal syntax
	Type system
	Value typing
	Delegations typing judgments
	Subtyping judgments
	Expression typing

	Operational semantics
	Single-threaded semantics
	Multi-threaded semantics

	Metatheory
	Implementation
	Type checker
	Interpreter
	Secure computation extensions and optimizations

	Evaluation
	Secure computations for n parties
	Mixed-mode secure computations
	MPC program for card dealing

	Concluding remarks

	Wys: A Verified Language Extension for Mixed-mode MPC
	F primer
	Verified programming in Wys
	Secure computations with assec
	Optimizing PSI with aspar
	Embedding a type system for Wys in F
	Correctness and security verification
	Relating security proofs to cryptographic security

	Wys formalization
	Comparison with Wysteria formalization
	Syntax
	Single-threaded semantics
	Distributed semantics
	Metatheory

	Implementation
	Wys interpreter
	Secure server backend
	FFI

	Applications
	Concluding remarks

	Knowledge Inference for Optimizing Secure Multi-party Computations
	Overview
	Knowledge inference
	Constructive Knowledge Inference

	Formal development
	Language Syntax
	Knowledge Inference
	Constructive Knowledge Inference

	Discussion
	Experiments
	Implementation
	Results

	Concluding remarks

	Related Work
	Circuit libraries
	High-level DSLs for MPC
	Support for mixed-mode computations
	DSLs for cloud-based MPC
	Other MPC languages

	Crypto DSLs
	Verification of source MPC programs
	DSL implementation strategies
	Knowledge inference for MPC
	Self-composition and noninterference
	Template based program verification

	Looking back and going forward
	Looking back
	Wysteria
	Wys
	Knowledge inference

	Going forward

	Formal definitions for Wysteria
	Wysteria Proofs
	Bibliography

