
Cyclone: A Type-Safe Dialect of C∗

Dan Grossman Michael Hicks Trevor Jim Greg Morrisett

If any bug has achieved celebrity status, it is the
buffer overflow. It made front-page news as early
as 1987, as the enabler of the Morris worm, the first
worm to spread through the Internet. In recent years,
attacks exploiting buffer overflows have become more
frequent, and more virulent. This year, for exam-
ple, the Witty worm was released to the wild less
than 48 hours after a buffer overflow vulnerability
was publicly announced; in 45 minutes, it infected
the entire world-wide population of 12,000 machines
running the vulnerable programs.

Notably, buffer overflows are a problem only for the
C and C++ languages—Java and other “safe” lan-
guages have built-in protection against them. More-
over, buffer overflows appear in C programs written
by expert programmers who are security concious—
programs such as OpenSSH, Kerberos, and the com-
mercial intrusion detection programs that were the
target of Witty.

This is bad news for C. If security experts have
trouble producing overflow-free C programs, then
there is not much hope for ordinary C program-
mers. On the other hand, programming in Java is
no panacea; for certain applications, C has no com-
petition. From a programmer’s point of view, all the
safe languages are about the same, while C is a very
different beast.

Cyclone

Cyclone is an effort to bring safety to C, without
turning it into another Java. We can sum up why
we prefer C to Java in two words: transparency and
control. A few examples will make this clear.

∗This is preprint of an article that appeared in the C/C++
User’s Journal, January 2005.

• In C, an array of structs will be laid out contigu-
ously in memory, which is good for cache locality.
In Java, the decision of how to lay out an array
of objects is made by the compiler, and probably
has indirections.

• C has data types that match hardware data
types and operations. Java abstracts from the
hardware (“write once, run anywhere”).

• C has manual memory management, whereas
Java has garbage collection. Garbage collec-
tion is safe and convenient, but places little con-
trol over performance in the hands of the pro-
grammer, and indeed encourages an allocation-
intensive style.

In short, C programmers can see the costs of their
programs simply by looking at them, and they can
easily change data representations and fundamental
strategies like memory management. It’s easy for a
C programmer to tune their code for performance or
for resource constraints.

Cyclone is a dialect of C that retains its trans-
parency and control, but adds the benefits of safety
(i.e., no unchecked run-time errors.) In Cyclone,
buffer overflows and related bugs are prevented for
all programs, whether written by a security expert or
by a novice. The changes required to achieve safety
are pervasive, but Cyclone is still recognizably C; in
fact, a good way to learn 80% of Cyclone is to pick
up Kernighan and Ritchie.

Safety has a price. Figure 1 shows the performance
of Cyclone and Java code normalized to the perfor-
mance of C code for most of the micro-benchmarks
in the Great Programming Language Shootout (see
http://shootout.alioth.debian.org/.) Though
these micro-benchmarks should be taken with a large

1



ackermann

echo
fibo

nestedloop

random

sieve
sumcol

wc matrix
reversefile

ary3
hash

hash2
heapsort

moments

lists
spellcheck

strcat
wordfreq

regexmatch

prodcons

average

0

2

4

6

8

10

no
rm

al
iz

ed
 e

la
ps

ed
 ti

m
e

gcc
cyclone
java

Figure 1: Great Programming Language Shootout Performance for C, Cyclone, and Java

grain of salt, they do give a rough idea of the relative
performance of the different languages.

The benchmarks were run on a dual 2.8GHz/2GB
Red Hat Enterprise workstation. We used Cyclone
version 0.8.2 with the -O3 flag, Sun’s Java client
SDK build version 1.4.2 05-b04, and GCC version
3.2.3 with the -O3 flag. To avoid measuring start-
up and compilation time for the Java VM, we mea-
sured elapsed time after a warmup run. We also did
measurements using Sun’s server SDK and the GNU
Java compiler gcj, and the results were essentially
the same as the Sun client SDK results. Each re-
ported number in Figure 1 is the median of 11 trials;
there was little variance.

The average over all of the benchmarks (plot-
ted on the far right) shows that Cyclone is about
0.6 times slower than GCC, whereas Sun’s Java is
about 6.5 times slower. However, the moments and
lists benchmarks are outliers for which the Java
code has very bad performance (15× and 74× slow-
down respectively—so bad that we’ve had to clip the
graph.) If we assume these were poorly coded and
remove them from the averages, then we still see a
factor of 3 slowdown for the Java code, compared to
0.4 for Cyclone.

In addition to time, programmers may be worried
about space. We have found that, again, there are
overheads when using Cyclone as compared to C, but
these overheads are much less than for Java. For
instance, the C version of the heapsort benchmark
had a maximum resident working set size of 472 4KB
pages, the Cyclone version used 504 pages, and the
Java version used 2,471.

There is another cost to achieving safety, namely,
the cost of porting a program from C to a safe lan-
guage. Porting a program to Java essentially involves
a complete rewrite, for anything but the simplest pro-
grams. In contrast, most of the Shootout benchmarks
can be ported to Cyclone by touching 5 to 15 percent
of the lines of code. To achieve the best performance,
programmers may have to provide additional infor-
mation in the form of extended type qualifiers, which
we describe below. Of course, the number of lines
of code that changed tells us little about how hard
it is to make those changes. In all honesty, this can
still be a time-consuming and frustrating task. Nev-
ertheless, it is considerably easier than rewriting the
program from scratch in a new language.

Like Java, Cyclone gives strong safety guarantees.
There are some overheads, both in terms of run-time
performance and porting costs, but the overheads of

2



Cyclone compare quite favourably to Java. For the
rest of the article, we will describe some features of
Cyclone that allow us to achieve safety while mini-
mizing these costs.

Pointers

A common way of preventing buffer overruns in lan-
guages such as Java is to use dynamic bounds checks.
For example, in Java whenever you have an expres-
sion like arr[i], the VM may check at run time
whether i is within the bounds of the array arr.
While this check may get optimized away, the pro-
grammer has no way to be sure of this. Moreover, the
programmer has no control over the memory repre-
sentation of the array, e.g., to interact with hardware-
defined data structures in an operating system. Fi-
nally, Java does not allow pointer arithmetic for it-
erating over the array, which is quite common in C
code.

Cyclone provides a middle ground between C and
Java when it comes to pointers. On the one hand,
Cyclone will perform dynamic checks when it cannot
be sure that dereferences are in bounds, and throw
an exception when necessary. On the other hand,
the programmer can choose from a variety of pointer
qualifiers to have control over when such checks may
occur, and how pointers are represented in memory.
Cyclone basically supports three kinds of pointers:
fat pointers, thin pointers, and bounded pointers.

Fat Pointers

A fat pointer is similar to a Java array, in that it
might incur a dynamic bounds check. A fat pointer
is denoted by writing the qualifier @fat after the *.
For example, Figure 2 shows a program that echoes
its command-line arguments. Except for the decla-
ration of argv, which holds the command-line argu-
ments, the program looks just like you would write
it in C: pointer arithmetic (argv++) is used to move
argv to point to each argument in turn, so it can be
printed. The difference is that a @fat pointer comes
with bounds information and is thus “fatter” than a
traditional pointer. Each time a fat pointer is derefer-

#include <stdio.h>
int main(int argc, char *@fat *@fat argv) {
argc--; argv++; /* skip command name */
while (argc > 0) {
printf(" %s",*argv);
argc--; argv++;

}
printf("\n");
return 0;

}

Figure 2: Echoing command-line arguments

enced or its contents are assigned to, Cyclone inserts
a bounds check. This guarantees that a @fat pointer
can never cause a buffer overflow.

Because of the bounds information contained in
@fat pointers, argc is superfluous: you can get the
size of argv by writing numelts(argv). We’ve kept
argc as an argument of main for backwards com-
patibility. Because @fat pointers are common, one
can abbreviate * @fat as ? (question mark). So we
could write char *@fat *@fat as simply char ??.
Quite often, porting C code to Cyclone merely means
changing some *’s to ?’s.

Thin Pointers

Many times, there is no need to include bounds in-
formation on a pointer. For example, if we declare

int x = 3;
int *y = &x;

then it is clear that y is a pointer to a single integer
3 (the contents of x). Just as in C, y is represented
by a memory address (namely, the address of x); this
is why we call it a thin pointer. A dereference of a
thin pointer (e.g., with syntax *y) will never incur a
bounds check. To ensure that a dereference is always
in bounds, you can’t do pointer arithmetic on a *
pointer.

3



Bounded Pointers

You can also define thin pointers to buffers containing
more than one element using the @numelts qualifier;
we call these bounded pointers. For instance, we can
write:

int x[4] = {1,2,3,4};
int *@numelts(4) arr = x;

Here, the variable arr is a pointer to a sequence
of four integer values. In fact, the type “int *” is
just short-hand for “int *@numelts(1)”. Accessing
a bounded pointer like arr via the expression arr[i]
may incur a bounds check if i cannot be proven in-
bounds by the compiler. However, because the bound
is known to the compiler, the representation of the
pointer is still a single memory address.

Bounded pointers can also be used to correlate a
pointer to an array whose length is not known to the
compiler with a variable that defines it. For example,
C programmers often write code like the following:

int sum(int num, int *p) {
int a = 0;
for (unsigned i = 0; i < num; i++)
a += p[i];

}

Here, num is the length of the array pointed at by p.
In Cyclone, this relationship can be expressed by giv-
ing sum the following type (the body of the function
is the same):

int sum(tag_t num, int p[num])

The type of num is specified as tag t, which is simply
a const unsigned int that may appear as an array
bound, in this case for p. A bounded pointer paired
with a tag t is quite similar to a fat pointer. In
general, the programmer can convert freely between
the different kinds of pointers to balance the needs of
representation, performance, and ease-of-use.

Initialization and NULL

In the above discussion, we have assumed that thin
and bounded pointers address legal memory locations

Form *f;
switch (event->eType) {
case frmOpenEvent:
f = FrmGetActiveForm(); ...

case ctlSelectEvent:
i = FrmGetObjectIndex(f, field); ...

}

Figure 3: Incorrect initialization in C

and that fat pointers have correct bounds informa-
tion. We ensure this using two techniques: definite
initialization and NULL-checking.

Definite initialization is a guarantee that a pointer
variable will not be dereferenced before it is initial-
ized; this is ensured by source code analysis. For
example, the compiler will flag the code in Figure 3
as illegal: the second case possibly uses f before it
is initialized. Java (and indeed many C compilers)
include a similar analysis to check that variables are
initialized before they are used, but the analysis does
not extend to members of objects. Rather, in the
case of Java, the VM automatically initializes mem-
bers with a default value (e.g., NULL). In contrast,
Cyclone’s analysis extends to struct, union members,
and pointer contents to ensure everything is initial-
ized before it is used. This has two benefits: First, we
tend to catch more bugs this way, and second, pro-
grammers don’t pay for the overhead of automatic
initialization on top of their own initialization code.

A pointer variable may be NULL, and if it’s deref-
erenced, this could result in a crash. Again, like
Java, Cyclone inserts a NULL check to ensure that
a pointer can be safely dereferenced. However, the
programmer can prevent such a check in two ways.
One way is to perform a manual NULL check, as in

if (y != NULL) {
*y = 1; // no check
*y = 2; // no check

}

The second way is to prevent a pointer from ever hav-
ing NULL as a legal value, using Cyclone’s @notnull
qualifier. For example, consider the getc function:

4



int getc(FILE *fp);

Most implementations of getc assume that fp will
not be NULL, so if you call getc(NULL) you are likely
to get a segmentation fault. To prevent this, we can
declare

int getc(FILE *@notnull fp);

indicating that getc expects a non-NULL FILE
pointer as its argument. This simple change tells Cy-
clone that it does not need to insert NULL checks into
the body of getc. If getc is called with a possibly-
NULL pointer, Cyclone will insert a NULL check at
the call :

extern FILE *f;
getc(f); // NULL check here

Never-NULL pointers are a perfect example of Cy-
clone’s design philosophy: safety is guaranteed, auto-
matically if possible, and the programmer has control
over where any needed checks are performed. The
same philosophy applies to initialization: safety is
guaranteed, but programmers retain control over how
the initialization is accomplished.

Unions and Tagged Unions

To ensure safety, Cylone must prevent the program-
mer from treating an arbitrary value as if it were a
pointer. Thus, the language rules out code such as:

int i = 0xbad;
int *p = (int *)i;
*p = 42;

But there are other ways in C to convert integers
to pointers. In particular, we can use a union to
accomplish this:

union U { int i; int *p; };

union U x;
x.i = 0xbad;
*x.p = 42;

In fact, the C standard says that if you read out any
member of a union other than the last one written,
the result is undefined. To ensure safety, Cyclone
makes a stronger requirement that you can’t read out
a value from an ordinary union that might contain
pointers. However, the language does allow code such
as:

int j = 42;

int jaddress() {
union U x;
x.p = &j;
return x.i;

}

because this converts a pointer to an integer.
Unfortunately, this restriction rules out a lot of C

code that uses unions. However, most well-structured
code uses some extra information to record what type
of value was last written into the union. For instance,
it’s not uncommon to see definitions similar to:

enum tag { Int, Ptr };
union U { int i; int *p; };
struct S { enum tag t; union U u; };

void pr(struct S x) {
if (x.tag == Int)
printf("int(%d)",x.u.i);

else
printf("ptr(%d)",*x.u.p);

}

Here, struct S values include a tag indicating which
member was last written into the union. A consumer
of S values, such as the pr function, checks the tag to
see which member was last written. The problem is
that, of course, nothing in C prevents us from having
a tag and union that are out of sync.

To avoid this problem, Cyclone provides a built-
in form of tagged union and always ensures that the
tag is correlated with the last member written in the
union. In particular, whenever a tagged union mem-
ber is updated, the compiler inserts code to update
the tag associated with the union. Whenever a mem-
ber is read, the tag is consulted to ensure that the

5



member was the last one written. If not, an excep-
tion is thrown.

Thus, the example above can be re-written in Cy-
clone as follows:

@tagged union U { int i; int *p; };

void pr(union U x) {
if (tagcheck(x.i))
printf("int(%d)",x.i);

else
printf("ptr(%d)",*x.p);

}

The @tagged qualifier indicates to the compiler
that U should be a tagged union. The operation
tagcheck(x.i) returns true when i was the last
member written so it can be used to extract the value.
(Alternatively, one can use an extension of switch
that supports pattern matching to test a large num-
ber of tags at once.)

Why did we provide both tagged and untagged
unions? In part, we didn’t want to force the over-
head of tags onto programmers when they weren’t
necessary to support safety. Additionally, we wanted
to make it clear that, like fat pointers, tagged unions
include additional run-time information.

Cyclone also provides other run-time type mech-
anisms that can be used to support functions such
as printf that need to test the type of some value.
In essence, when you call printf, the compiler auto-
matically constructs a fat pointer to stack-allocated,
tagged values representing the list of arguments.
These facilities ensure that vararg functions such as
printf don’t end up “trusting” the format string to
accurately describe the arguments. Instead, we can
dynamically compare the format string against the
run-time type information and throw an exception if
there is a mismatch. This ensures that certain format
string attacks cannot be used to take over a machine.

We inject run-time type tags of this sort only when
the callee demands it for safety. In all other cases, we
use the same data representation as C.

Memory Management

In most type-safe languages, programmers do not
have direct control over memory management. For
instance, a Java programmer cannot force an array
to be stack-allocated, nor can she choose to deallo-
cate a heap object with a call to free. Instead, all
the memory management decisions are handled by
the compiler and run-time system (i.e., the garbage
collector). This avoids a class of nasty problems that
can break type safety. Consider this contrived ex-
ample which GCC happily compiles, but has a nasty
problem:

void g(int **zptr) {
int a = 0;
*zptr = &a;

}

void poke(int *z) {
int *q = NULL;
*z = 0xbad;
*q = 42;

}

int main() {
int i = 0;
int *z = &i;
g(&z);
poke(z);

}

In this program, main calls g passing it a pointer to
z. Then g creates a local variable a and assigns a
pointer to a into z. So, after returning from the call
to g, z no longer points to i but rather to some stack
space that used to hold a. At this point, we invoke
poke passing it z.

Notice that poke declares a new local variable q
which is likely to be stored in the stack location where
a was previously. That is, we could very easily end
up with z == &q, yet z is supposed to be a pointer to
an integer, not a pointer to a pointer to an integer!
Nonetheless, the C type system has failed to signal
an error, so we are able to assign an arbitrary integer
value to *z, thereby changing the value of q to point

6



to an arbitrary location in memory. Then attempting
to write to *q results in a core dump.

This example can be easily transformed to allow
reading or writing arbitrary values to arbitrary loca-
tions, thereby violating type safety. Of course, we
could just rule out stack allocation (as in Java) but
that would introduce overheads and make porting
more difficult.

Instead, we use a region-based type system to avoid
these problems. Each object in Cyclone lives in a con-
ceptual container called a region. For instance, the
variables of a function f live in a region corresponding
to the function’s stack frame.

Internally, the type-checker keeps track of the re-
gion for each object, and the region into which a
pointer value points. For example, when checking
the function g, the type-checker knows that a lives in
g’s region and thus &a is a pointer into g’s region. In-
deed, the full type of &a is written int*‘g reflecting
the region of the pointer into the type.

The type system rejects programs that either (a)
try to let a pointer escape the scope if its region or
(b) try to assign a pointer value to a variable with an
incompatible region type. In the example above, Cy-
clone rejects the program at the assignment of *zptr
= &a. Informally, the reasoning is that since &a is a
pointer into g, the contents of zptr, namely z, must
be a pointer into region g. But since the pointer to
z was passed in to g, z’s region type had to be de-
fined outside of g. Thus, *z cannot have a type that
mentions g! In short, the Cyclone type-checker has
discovered that the assignment is inconsistent, sig-
nalling a problem with a dangling pointer.

In general, the region type system does an excel-
lent job of allowing programmers to pass pointers to
stack-allocated objects into functions, but success-
fully prevents them from leaking back out either ex-
plicitly via return, or implicitly through assignments.
However, it is sometimes necessary for programmers
to provide explicit region annotations to convince the
type-checker that an assignment is okay. For exam-
ple, consider:

void f(int **z, int *a) {
*z = a;

}

The type-checker cannot tell whether the assignment
would cause a region violation so it rejects the pro-
gram. If we instead tell the compiler that *z and a
are meant to point into the same region, then the
type-checker can validate the code. This can be ac-
complished as follows:

void f(int *‘r* z, int *‘r a) {
*z = a;

}

Here, the types of a and *z are given as int *‘r
reflecting that they must be pointers into the same
(unknown) region r.

Of course, stack allocation is only part of the story.
How does Cyclone handle dynamically-allocated stor-
age? There are actually a number of options pro-
vided by the language, ranging from a garbage-
collected heap region, to Apache-style arena regions,
to reference-counted objects and regions, and objects
that live in their own unique region. Like the stack-
allocated regions, each of these mechanisms has cer-
tain restrictions that ensure safety, but they all live
in the same conceptual region framework as far as
the type-checker is concerned. This makes it possi-
ble to write re-usable libraries that are independent
of the particular kind of region used to hold a data
structure.

For most applications, the combination of stack
allocation and garbage-collected heap allocation has
proven to be simple and effective. However, the other
facilities make it possible to fine-tune the storage
management strategy to achieve significant wins in
space, throughput, and latency.

Other Features

There are a few other features in Cyclone that make
programming in the language easier, some of which
are close to features in C++. For instance, the lan-
guage provides support for exceptions, namespaces,
subtyping and parametric polymorphism (i.e., gener-
ics). The support for subtyping and generics makes it
possible to write re-usable data structures (e.g., hash-
tables) and algorithms. However, in keeping with

7



the spirit of C, the Cyclone approach supports sepa-
rate type-checking and compilation of generic defini-
tions from their uses (which is important for shared
libraries that may be dynamically linked). In partic-
ular, the implementations of generics do not show up
in interfaces, and thus a change to the implementa-
tion does not require a client to be re-compiled.

On the other hand, Cyclone generics do not provide
the full expressive power of C++ templates. Rather,
the support for generics in Cyclone is closer to what
is found in languages such as ML, Haskell and does
not require the implementation to duplicate gener-
ated code for different instantiations. Cyclone does
not provide classes or objects. Instead, the other fea-
tures in the language can be used to encode or sim-
ulate these features, just as in C. Unlike C or C++,
these orthogonal features combine in a way that con-
tinues to enjoy type safety.

Interoperability and Portability

One other important feature in Cyclone is that it
provides an escape hatch. It is possible to mix C
code into a Cyclone program, just as it is possible to
add native code to the Java VM. And in both set-
tings, the safety of the system can be compromised
by bad “native” code. However, real applications
need to link against legacy libraries and talk with
other languages. We have taken great pains to en-
sure that Cyclone code can call into C code and vice
versa with a minimum of hassle. Since every C type
is also a Cyclone type, there is no need for a sepa-
rate foreign function interface. Futhermore, Cyclone
retains the same calling conventions and data rep-
resentations for those types that it has in common
with C. This helps to minimize coercions as we cross
the C/Cyclone boundary. Finally, by using a conser-
vative garbage collector that is compatabile with C,
we avoid the need for registering pointers or many of
the other headaches needed to interface C code with
other safe languages.

The Cyclone compiler generates C code that is then
fed into GCC which makes the language relatively
portable. We have developed a separate tool, called
buildlib to make it easier to port system-specific

header files and libraries to the language. At this
point, we have ports for a number of platforms in-
cluding Linux, Mac OS X, Win32/Cygwin, and even
a few embedded systems such as the Lego Mindstorm
platform.

The Cyclone distribution includes the full sources
of the compiler (which is itself written in Cyclone) as
well as a number of libraries and tools. For instance,
we ported Bison and Flex to Cyclone so that we could
use them to construct the front-end of the compiler.

We have also ported a number of other systems
applications, such as web and ftp servers or Linux
kernel modules to Cyclone. A small number of third
parties are using the language in their own research
projects.

Summary and Conclusions

At this point, you might be wondering whether Cy-
clone is suitable for your project. If you’re committed
to safety, or simply curious, then the answer is defi-
nitely! On the other hand, the language is a research
project and as a result is still evolving. So if you’re
trying to get a product out the door, you might be
better served going a more traditional route.

Our current research goals are to make it easier
to port existing C code to Cyclone, to provide even
stronger safety and security guarantees, and to elim-
inate as much performance overhead as possible. To
that end, we would appreciate your feedback and crit-
icisms.

Learning More

We have mailing lists, documentation, license in-
formation, benchmarks, technical papers, etc. at
www.research.att.com/projects/cyclone/.

8


