
Directed symbolic execution

Kin-Keung Ma, Khoo Yit Phang, Jeffrey S. Foster, and Michael Hicks

Computer Science Department, University of Maryland, College Park
{kkma,khooyp,jfoster,mwh}@cs.umd.edu

Abstract. In this paper, we study the problem of automatically find-
ing program executions that reach a particular target line. This prob-
lem arises in many debugging scenarios; for example, a developer may
want to confirm that a bug reported by a static analysis tool on a par-
ticular line is a true positive. We propose two new directed symbolic
execution strategies that aim to solve this problem: shortest-distance
symbolic execution (SDSE) uses a distance metric in an interprocedu-
ral control flow graph to guide symbolic execution toward a particular
target; and call-chain-backward symbolic execution (CCBSE) iteratively
runs forward symbolic execution, starting in the function containing the
target line, and then jumping backward up the call chain until it finds
a feasible path from the start of the program. We also propose a hybrid
strategy, Mix-CCBSE, which alternates CCBSE with another (forward)
search strategy. We compare these three with several existing strategies
from the literature on a suite of six GNU coreutils programs. We find
that SDSE performs extremely well in many cases but may fail badly.
CCBSE also performs quite well, but imposes additional overhead that
sometimes makes it slower than SDSE. Considering all our benchmarks
together, Mix-CCBSE performed best on average, combining to good
effect the features of its constituent components.

1 Introduction

In this paper, we study the line reachability problem: given a target line in the
program, can we find a realizable path to that line? Since program lines can
be guarded by conditionals that check arbitrary properties of the current pro-
gram state, this problem is equivalent to the very general problem of finding a
path that causes the program to enter a particular state [12]. The line reacha-
bility problem arises naturally in several scenarios. For example, users of static-
analysis-based bug finding tools need to triage the tools’ bug reports—determine
whether they correspond to actual errors—and this task often involves checking
line reachability. As another example, a developer might receive a report of an
error at some particular line (e.g., an assertion failure that resulted in an error
message at that line) without an accompanying test case. To reproduce the er-
ror, the developer needs to find a realizable path to the appropriate line. Finally,
when trying to understand an unfamiliar code base, it is often useful to discover
under what circumstances particular lines of code are executed.



Symbolic execution is an attractive approach to solving line reachability: by
design, symbolic executors are complete, meaning any path they find is realizable.
Symbolic executors work by running the program, computing over both concrete
values and expressions that include symbolic values, which are unknowns that
range over various sets of values, e.g., integers, strings, etc. [17, 2, 15, 29]. When a
symbolic executor encounters a conditional whose guard depends on a symbolic
value, it invokes a theorem prover (our implementation uses the SMT solver
STP [10]) to determine which branches are feasible. If both are, the symbolic
execution conceptually forks, exploring both branches.

However, symbolic executors cannot explore all program paths, and hence
must make heuristic choices to prioritize path exploration. Our work focuses on
finding paths that reach certain lines in particular, whereas most prior work
has focused on finding paths to increase code coverage [11, 5, 4, 24, 3, 34]. We are
aware of one previously proposed approach, execution synthesis (ESD) [36], for
using symbolic execution to solve the line reachability problem; we compare ESD
to our work in Section 3.

We propose two new directed symbolic execution search strategies for line
reachability. First, we propose shortest-distance symbolic execution (SDSE), which
prioritizes the path with the shortest distance to the target line as computed over
an interprocedural control-flow graph (ICFG). Variations of this heuristic can be
found in existing symbolic executors—in fact, SDSE is inspired by the heuristic
used in the coverage-based search strategy from KLEE [4]—but, as far as we
are aware, the strategy we present has not been specifically described nor has
it been applied to directed symbolic execution. In Section 2.2 we describe how
distance can be computed context-sensitively using PN grammars [32, 9, 30].

Second, we propose call-chain-backward symbolic execution (CCBSE), which
starts at the target line and works backward until it finds a realizable path
from the start of the program, using standard forward (interprocedural) sym-
bolic execution as a subroutine. More specifically, suppose the target line ` is
inside function f . CCBSE begins forward symbolic execution from the start of
f , yielding a set of partial interprocedural paths pf that start at f , possibly call
other functions, and lead to `; in a sense, these partial paths summarize selected
behavior of f . Next, CCBSE runs forward symbolic execution from the start
of each function g that calls f , searching for paths that end at calls to f . For
each such path p, it attempts to continue down paths p′ in pf until reaching `,
adding all feasible extended paths p + p′ to pg. The process continues backward
up the call chain until CCBSE finds a path from the start of the program to
`. Notice that by using partial paths to summarize function behavior, CCBSE
can reuse the machinery of symbolic execution to concatenate paths together.
This is technically far simpler than more standard approaches that use some for-
mal language to explicitly summarize function behavior in terms of parameters,
return value, global variables, and the heap (including pointers and aliasing).

The key insight motivating CCBSE is that the closer forward symbolic exe-
cution starts relative to the target line, the better the chance it finds paths to
that line. If we are searching for a line that is only reachable on a few paths



along which many branches are possible, then combinatorially there is a very
small chance that a standard symbolic executor will make the right choices and
find that line. By starting closer to the line we are searching for, CCBSE explores
shorter paths with fewer branches, and so is more likely to reach that line.

CCBSE imposes some additional overhead, and so it does not always perform
as well as a forward execution strategy. Thus, we also introduce mixed-strategy
CCBSE (Mix-CCBSE), which combines CCBSE with another forward search.
In Mix-CCBSE, we alternate CCBSE with some forward search strategy S. If S
encounters a path p that was constructed in CCBSE, we try to follow p to see if
we can reach the target line, in addition to continuing S normally. In this way,
Mix-CCBSE can perform better than CCBSE and S run separately—compared
to CCBSE, it can jump over many function calls from the program start to reach
the paths being constructed; and compared to S, it can short-circuit the search
once it encounters a path built up by CCBSE.

We implemented SDSE, CCBSE, and Mix-CCBSE in Otter, a C source code
symbolic executor we previously developed [31]. We also extended Otter with
two popular forward search strategies from KLEE [4] and SAGE [13], and for a
baseline, we implemented a random path search that flips a coin at each branch.
We evaluated the effectiveness of our directed search strategies on the line reach-
ability problem, comparing against the existing search strategies. We ran each
strategy on 6 different GNU Coreutils programs [6], looking in each program for
one line that contains a previously identified fault. We also compared the strate-
gies on synthetic examples intended to illustrate the strengths of SDSE and
CCBSE. We found that SDSE performs extremely well on many programs, but
it can fail completely under certain program patterns. CCBSE has performance
comparable to standard search strategies but is often somewhat slower due to
the overhead of checking path feasibility. Mix-CCBSE performs best of all across
all benchmarks, particularly when using KLEE as its forward search strategy,
since it exploits the best features of CCBSE and forward search. These results
suggest that directed symbolic execution is a practical and effective approach to
solving the line reachability problem.

2 Directed Symbolic Execution

In this section we present SDSE, CCBSE, and Mix-CCBSE. We will explain them
in terms of their implementation in Otter, our symbolic execution framework,
to make our explanations concrete (and to save space), but the ideas apply to
any symbolic execution tool [17, 11, 4, 16].

Figure 1 diagrams the architecture of Otter and gives pseudocode for its main
scheduling loop. Otter uses CIL [27] to produce a control-flow graph from the
input C program. Then it calls a state initializer to construct an initial symbolic
execution state, which it stores in worklist, used by the scheduler. A state includes
the stack, heap, program counter, and path taken to reach the current position.
In traditional symbolic execution, which we call forward symbolic execution,
the initial state begins execution at the start of main. The scheduler extracts a



program 

state

symbolic 
executorCIL

states/errors

STPschedulerstate 
initializer

state

1 scheduler()

2 while (worklist nonempty)

3 s0 = pick(worklist)

4 for s ∈ step(s0) do
5 if (s is incomplete)

6 put(worklist,s)

7 manage targets(s)

Fig. 1. The architecture of the Otter symbolic execution engine.

state from the worklist via pick and symbolically executes the next instruction by
calling step. As Otter executes instructions, it may encounter conditionals whose
guards depend on symbolic values. At these points, Otter queries STP [10],
an SMT solver, to see if legal, concrete representations of the symbolic values
could make either or both branches possible, and whether an error such as an
assertion failure may occur. The symbolic executor will return these states to
the scheduler, and those that are incomplete (i.e., non-terminal) are added back
to the worklist. The call to manage targets is just for guiding CCBSE’s backward
search (it is a no-op for other strategies), and is discussed further below.

2.1 Forward symbolic execution

Different forward symbolic execution strategies are distinguished by their imple-
mentation of the pick function. In Otter we have implemented, among others,
three search strategies described in the literature:

Random Path (RP) [3, 4] is a probabilistic version of breadth-first search.
RP randomly chooses from the worklist states, weighing a state with a path of
length n by 2−n. Thus, this approach favors shorter paths, but treats all paths
of the same length equally.

KLEE [4] uses a round-robin of RP and what we call closest-to-uncovered,
which computes the distance between the end of each state’s path and the closest
uncovered node in the interprocedural control-flow graph and then randomly
chooses from the set of states weighed inversely by distance. To our knowledge,
KLEE’s algorithm has not been described in detail in the literature; we studied
it by examining KLEE’s source code [18].

SAGE [13] uses a coverage-guided generational search to explore states in
the execution tree. At first, SAGE runs the initial state until the program termi-
nates by randomly choosing a state to run whenever the symbolic execution core
returns multiple states. It stores the remaining states into the worklist as the
first generation children. Next, SAGE runs each of the first generation children
to completion, in the same manner as the initial state, but separately grouping
the grandchildren by their first generation parent. After exploring the first gen-
eration, SAGE explores subsequent generations (children of the first generation,
grandchildren of the first generation, etc.) in a more intermixed fashion, using a
block coverage heuristic to determine which generations to explore first.



1 int main(void) {
2 int argc; char argv[MAX ARGC][1];

3 symbolic(&argc); symbolic(&argv);

4 int i, n = 0, b[4] = { 0, 0, 0, 0 };
5 for (i = 0; i < argc; i++) {
6 if (∗argv[i] == ’b’) {
7 assert(n < 4);

8 b[n++] = 1; /∗ potential buf. overflow ∗/

9 } else
10 foo(); /∗ some expensive function ∗/

11 }
12 while (1) {
13 if (getchar()) /∗ get symbolic input ∗/

14 /∗ ...do something... ∗/;

15 }
16 return 0;

17 }

entry

argc=0 argv[0]='b' argv[0]≠'b'

argc=1 argv[1]='b' argv[1]≠'b'

argc=4 argv[4]='b' argv[4]≠'b'

buffer overflow!

Fig. 2. Example illustrating SDSE’s potential benefit.

2.2 Shortest-distance symbolic execution

The basic idea of SDSE is to prioritize program branches that correspond to the
shortest path-to-target in the ICFG. To illustrate how SDSE works, consider the
code in Figure 2, which performs command-line argument processing followed
by some program logic, a pattern common to many programs. This program
first enters a loop that iterates up to argc times, processing the ith command-
line argument in argv during iteration i. If the argument is ’b’, the program sets
b[n] to 1 and increments n (line 8); otherwise, the program calls foo. A potential
buffer overflow could occur at line 8 when more than four arguments are ’b’; we
add an assertion on line 7 to identify when this overflow would occur. After the
arguments are processed, the program enters a loop that reads and processes
character inputs (lines 12 onward).

Suppose we would like to reason about a possible failure of the assertion.
Then we can run this program with symbolic inputs, which we identify with
the calls on line 3 to the special built-in function symbolic. The right half of the
figure illustrates the possible program paths the symbolic executor can explore
on the first five iterations of the argument-processing loop. Notice that for five
loop iterations there is only one path that reaches the failing assertion out of∑4

n=0 3× 2n = 93 total paths. Moreover, the assertion is not reachable once
exploration has advanced past the argument-processing loop.

In this example, RP would have only a small chance of finding the overflow,
spending most of its time exploring paths shorter than the one that leads to
the buffer overflow. A symbolic executor using KLEE or SAGE would focus on
increasing coverage to all lines, wasting significant time exploring paths through
the loop at the end of the program, which does not influence this buffer overflow.

In contrast, SDSE works very well in this example, with line 7 set as the tar-
get. Consider the first iteration of the loop. The symbolic executor will branch
upon reaching the loop guard, and will choose to execute the first instruction of
the loop, which is two lines away from the assertion, rather than the first instruc-



main

x = 1

)foo1)foo0(foo0 (foo1

entry call foo0 return foo0 exitcall foo1 return foo1

entry exit

foo

(a) Example PN -path in an interprocedural CFG.

PN → P N
P → S P

| )i P
| ε

N → S N
| (i N
| ε

S → (i S )i

| S S
| ε

(b) Grammar of PN paths.

Fig. 3. SDSE distance computation.

tion after the loop, which can no longer reach the assertion. Next, on line 6, the
symbolic executor takes the true branch, since that reaches the assertion itself
immediately. Then, determining that the assertion is true, it will run the next
line, since it is only three lines away from the assertion and hence closer than
paths that go through foo (which were deferred by the choice to go to the asser-
tion). Then the symbolic executor will return to the loop entry, repeating the
same process for subsequent iterations. As a result, SDSE explores the central
path shown in bold in the figure, and thereby quickly find the assertion failure.

Implementation. SDSE is implemented as a pick function from Figure 1. As
mentioned, SDSE chooses the state on the worklist with the shortest distance
to target. Within a function, the distance is just the number of edges between
statements in the control flow graph (CFG). To measure distances across function
calls we count edges in an interprocedural control-flow graph (ICFG) [21], in
which function call sites are split into call nodes and return nodes, with call edges
connecting call nodes to function entries and return edges connecting function
exits to return nodes. For each call site i, we label call and return edges by
(i and )i, respectively. Figure 3(a) shows an example ICFG for a program in
which main calls foo twice; here call i to foo is labeled fooi.

We define the distance-to-target metric to be the length of the shortest path
in the ICFG from an instruction to the target, such that the path contains
no mismatched calls and returns. Formally, we can define such paths as those
whose sequence of edge labels form a string produced from the PN nonterminal
in the grammar shown in Figure 3(b). In this grammar, developed by Reps [32]
and later named by Fähndrich et al [9, 30], S-paths correspond to those that
exactly match calls and returns; N -paths correspond to entering functions only;
and P -paths correspond to exiting functions only. For example, the dotted path
in Figure 3(a) is a PN -path: it traverses the matching (foo0 and )foo0 edges,
and then traverses (foo1 to the target. Notice that we avoid conflating edges
of different call sites by matching (i and )i edges, and thus we can statically
compute a context-sensitive distance-to-target metric.

PN -reachability was previously used for conservative static analysis [9, 30,
19]. However, in SDSE, we are always asking about PN -reachability from the
current instruction. Hence, rather than solve reachability for an arbitrary initial
P -path segment (which would correspond to asking about distances from the
current instruction in all calling contexts of that instruction), we restrict the ini-



1 void main() {
2 int m, n, i;

3 symbolic(&m, sizeof(m), ”m”);

4 symbolic(&n, sizeof(n), ”n”);

5

6 for (i=0;i<1000;i++)

7 if (m == i) f(m, n);

8 }

10 void f(int m, int n) {
11 int i, a, sum=0;

12 for (i=0;i<6;i++) {
13 a = n%2;

14 if (a) sum += a+1;

15 n/=2;

16 }
17 while(1) {
18 if (sum==0 && m==7)

19 assert(0);

20 }
21 }

entry

m==0 m==1 m==999

f(m, n)

sum==0 && m==7

a0

sum+=a0+1

a1

sum+=a1+1

a5

sum+=a5+1

assert(0)

Fig. 4. Example illustrating CCBSE’s potential benefit.

tial P -path segment to the functions on the current call stack. For performance,
we statically pre-compute N -path and S-path distances for all instructions to
the target and combine them with P -path distances on demand.

2.3 Call-chain-backward symbolic execution

SDSE is often very effective, but there are cases on which it does not do well—in
particular, SDSE is less effective when there are many potential paths to the
target line, but there are only a few, long paths that are realizable. In these
situations, CCBSE can sometimes work dramatically better.

To see why, consider the code in Figure 4. This program initializes m and
n to be symbolic and then loops, calling f(m, n) when m == i for i ∈ [0, 1000).
For non-negative values of n, the loop in lines 12–16 iterates through n’s least
significant bits (stored in a during iteration), incrementing sum by a+1 for each
non-zero a. Finally, if sum == 0 and m == 7, the failing assertion on line 19 is
reached. Otherwise, the program falls into an infinite loop, as sum and m are
never updated in the loop.

RP, KLEE, SAGE, and SDSE all perform poorly on this example. SDSE gets
stuck at the very beginning: in main’s for-loop, it immediately steps into f when
m == 0, as this is the “fastest” way to reach the assertion inside f according to
the ICFG. Unfortunately, the guard of the assertion is never satisfied when m is
0, and therefore SDSE gets stuck in the infinite loop. SAGE is very likely to get
stuck, because the chance of SAGE’s first generation entering f with the right
argument (m == 7) is extremely low, and SAGE always runs its first generation
to completion, and hence will execute the infinite loop forever. RP and KLEE
will also reach the assertion very slowly, since they waste time executing f where
m6= 7; none of these paths lead to the assertion failure.

In contrast, CCBSE begins by running f with both parameters m and n set
to symbolic, as CCBSE does not know what values might be passed to f. Hence,
CCBSE will potentially explore all 26 paths induced by the for loop, and one of
them, say p, will reach the assertion. When p is found, CCBSE will jump to main

and explore various paths that reach the call to f. At the call to f, CCBSE will



8 manage targets (s)

9 (sf,p) = path(s)

10 if pc(p) ∈ targets

11 update paths(sf, p)

12 else if pc(p) = callto(f) and has paths(f)

13 for p′ ∈ get paths(f)

14 if (p+ p′ feasible)

15 update paths(sf, p+ p′)

16 update paths (sf, p)

17 if not(has paths(sf))

18 add callers(sf,worklist)

19 add path(sf, p);

Fig. 5. Target management for CCBSE.

follow p to short-circuit the evaluation through f (in particular, the 26 branches
induced by the for-loop), and thus quickly find a realizable path to the failure.

Implementation. CCBSE is implemented in the manage targets and pick functions
from Figure 1. Otter states s, returned by pick, include the function f in which
symbolic execution started, which we call the origin function. Thus, traditional
symbolic execution states always have main as their origin function, while CCBSE
allows different origin functions. In particular, CCBSE begins by initializing
states for functions containing target lines.

To start symbolic execution at an arbitrary function Otter must initialize
symbolic values for the function’s inputs (parameters and global variables).
Integer-valued inputs are initialized to symbolic words, and pointers are repre-
sented using conditional pointers, manipulated using Morris’s general axiom of
assignment [1, 26]. To support recursive data structures, Otter initializes point-
ers lazily—we do not actually create conditional pointers until a pointer is used,
and we only initialize as much of the memory map as is required. When ini-
tialized, pointers are set up as follows: for inputs p of type pointer to type T ,
we construct a conditional pointer such that p may be null or p may point to a
fresh symbolic value of type T . If T is a primitive type, we also add a disjunct
in which p may point to any element of an array of 4 fresh values of type T .
This last case models parameters that are pointers to arrays, and we restrict its
use to primitive types for performance reasons. In our experiments, we have not
found this restriction to be problematic. This strategy for initializing pointers
is unsound in that CCBSE could miss some targets, but final paths CCBSE
produces are always feasible since they ultimately connect back to main.

The pick function works in two steps. First, it selects the origin function to
execute and then it selects a state with that origin. For the former, it picks the
function f with the shortest-length call chain from main. For non-CCBSE the
origin will always be main. At the start of CCBSE with a single target, the origin
will be the one containing the target; as execution continues there will be more
choices—picking the “shortest to main” ensures that we move backward from
target functions toward main. After selecting the origin function f , pick chooses
one of f ’s states according to some forward search strategy. We write CCBSE(S)
to denote CCBSE using forward search strategy S.



1 void main() {
2 int m, n;

3 symbolic(&m, sizeof(m), ”m”);

4 symbolic(&n, sizeof(n), ”n”);

5 foo(); // Some work

6 if (m >= 30) g(m, n);

7 }
8 void g(int m, int n) {
9 int i;

10 for (i=0;i<1000;i++) {
11 if (m == i) f(m, n);

12 }
13 }

14 void f(int m, int n) {
15 int i, a, sum=0;

16 for (i=0;i<6;i++) {
17 a = n%2;

18 if (a) sum += a+1;

19 n/=2;

20 }
21 while (1) {
22 if (sum==0 && m==37)

23 assert(0);

24 }
25 }

entry

m==0 m==1 m==30

f(m, n)

m>=30 exit

m==999

sum==0 && m==37

a0

sum+=a0+1

a1

sum+=a1+1

a5

sum+=a5+1

assert(0)

Fig. 6. Example illustrating Mix-CCBSE’s potential benefit.

The manage targets(s) function is given in Figure 5. Recall from Figure 1
that s has already been added to the worklist for additional, standard forward
search; the job of manage targets is to record which paths reach the target line
and to try to connect s with path suffixes previously found to reach the target.
The manage targets function extracts from s both the origin function sf and the
(interprocedural) path p that has been explored from sf to the current point.
This path contains all the decisions made by the symbolic executor at condition
points. If path p’s end (denoted pc(p)) has reached a target (line 10), we associate
p with sf by calling update paths; for the moment one can think of this function
as adding p to a list of paths that start at sf and reach targets. Otherwise, if the
path’s end is at a call to some function f, and f itself has paths to targets, then
we may possibly extend p with one or more of those paths. So we retrieve f’s
paths, and for each one p′ we see whether concatenating p to p′ (written p + p′)
produces a feasible path. If so, we add it to sf’s paths. Feasibility is checked by
attempting to symbolically execute p′ starting in p’s state s.

Now we turn to the implementation of update paths. This function simply
adds p to sf’s paths (line 19), and if sf did not previously have any paths, it will
create initial states for each of sf’s callers (pre-computed from the call graph)
and add these to the worklist (line 17). Because these callers will be closer to
main, they will be subsequently favored by pick when it chooses states.

2.4 Mixing CCBSE with forward search

While CCBSE may find a path more quickly, it comes with a cost: its queries
tend to be more complex than in forward search, and it can spend significant
time trying paths that start in the middle of the program but are ultimately
infeasible. Consider Figure 6, a modified version of the code in Figure 4. Here,
main calls function g, which acts as main did in Figure 4, with some m >= 30

(line 6), and the assertion in f is reachable only when m == 37 (line 22). All
other strategies fail in the same manner as they do in Figure 4.

However, CCBSE also fails to perform well here, as it does not realize that m

is at least 30, and therefore considers ultimately infeasible conditions 0 ≤ m ≤



36 in f. With Mix-CCBSE, however, we conceptually start forward symbolic
execution from main at the same time that CCBSE (“backward search”) is run.
As before, the backward search will gets stuck in finding a path from g’s entry
to the assertion. However, in the forward search, g is called with m ≥ 30, and
therefore f is always called with m ≥ 30, making it hit the right condition m == 37

very soon thereafter. Notice that, in this example, the backward search must find
the path from f’s entry to the assertion before f is called with m == 37 in the
forward search in order for the two searches to match up (e.g., there are enough
instructions to run in line 5). Should this not happen, Mix-CCBSE degenerates
to its constituents running independently in parallel, which is the worst case.

Implementation. We implement Mix-CCBSE with a slight alteration to pick. At
each step, we decide whether to use regular forward search or CCBSE next,
splitting the strategies 50/50 by time spent. We compute time heuristically as
50×(no. of solver calls)+(no. of instructions executed), taking into account the
higher cost of solver queries over instruction executions.1

3 Experiments

We evaluated our directed search strategies by comparing their performance on
the small example programs from Section 2 and on bugs reported in six programs
from GNU Coreutils version 6.10. These bugs were previously discovered by
KLEE [4]. All experiments were run on a machine with six 2.4Ghz quad-core
Xeon E7450 processors and 48GB of memory, running 64-bit Linux 2.6.26. We
ran 16 tests in parallel, observing minimal resource contention. The tests required
less than 2 days of elapsed time. Total memory usage was below 1GB per test.

The results are presented in Table 1. Part (a) of the table gives the results
for our directed search strategies. For comparison, we also implemented an in-
traprocedural variant of SDSE that ignores call-chains: if the target is not in
the current function, then the distance-to-target is ∞. We refer to the intrapro-
cedural variant as IntraSDSE, and to standard SDSE as InterSDSE. This table
lists three variants of CCBSE, using RP, InterSDSE, or IntraSDSE as the for-
ward strategy. In the last two cases, we modified Inter- and IntraSDSE slightly
to compute shortest distances to the target line or to the functions reached in
CCBSE’s backward search. This allows those strategies to take better advantage
of CCBSE (otherwise they would ignore CCBSE’s search in determining which
paths to take).

Part (b) of the table gives the results from running KLEE version r130848 [18],
and part (c) gives the results for forward search strategies implemented in Ot-
ter, both by themselves and mixed with CCBSE(RP). We chose CCBSE(RP)
because it was the best overall of the three from part (a), and because RP is the
fastest of the forward-only strategies in part (c). We write Mix-CCBSE(S) to de-
note the mixed strategy where S is the forward search strategy and CCBSE(RP)
1 We could also use wall-clock time, however, this leads to non-deterministic, non-

reproducible results. We opted to use our heuristic for reproducibility.



Inter- Intra- CCBSE(X) where X is
SDSE SDSE RP InterSDSE IntraSDSE

Figure 2 0.4 0.0(0) 0.4 0.0(5) 16.2 2.4(6) 0.5 0.0(1) 0.4 0.0(3)

Figure 4 ∞ ∞ 60.8 7.8(4) 7.3 1.2(3) 7.2 1.0(4)

Figure 6 ∞ ∞ ∞ ∞ ∞

mkdir 34.7 19.7(10) ∞ 163.0 42.5(0) 150.3 93.4(0) 150.7 93.9(0)

mkfifo 13.1 0.4(0) ∞ 70.2 17.3(0) 49.7 21.8(0) 49.3 23.2(1)

mknod ∞ ∞ 216.5 60.7(0) ∞ ∞

paste 12.6 0.5(0) 56.4 5.4(0) 26.0 0.5(1) 31.0 4.8(0) 32.1 4.0(0)

ptx 18.4 0.6(4) 103.5 19.7(1) 24.2 0.7(1) 24.5 0.9(3) 24.1 1.1(2)

seq 12.1 0.4(1) ∞ 30.9 1.4(0) 369.3 425.9(6) 391.8 411.1(6)

Total 1891.0 7360.0 530.9 2424.8 2448.0
(a) Directed search strategies

KLEE

2.6 0.0(7)

∞
∞
∞

274.2 315.6(9)

851.6 554.2(8)

30.6 9.7(8)

93.8 81.7(7)

38.2 14.5(8)

3088.55
(b) KLEE

Otter-KLEE Otter-SAGE Random Path
Pure w/CCBSE Pure w/CCBSE Pure w/CCBSE

Figure 2 101.1 57.5(4) 104.8 57.3(5) ∞ ∞ 15.3 2.2(6) 16.1 2.6(6)

Figure 4 579.7 ∞ 205.5 133.1(9) ∞ ∞ 160.1 6.4(11) 80.6 177.2(9)

Figure 6 587.8 ∞ 147.6 62.6(7) ∞ ∞ 169.8 9.1(8) 106.8 11.2(4)

mkdir 168.9 31.0(0) 124.7 12.1(2) 365.3 354.2(5) 1667.7 ∞ 143.5 5.3(0) 136.4 7.9(0)

mkfifo 41.7 5.2(1) 38.2 4.6(0) 77.6 101.1(2) 251.9 257.0(8) 59.4 3.7(0) 52.7 1.8(1)

mknod 174.8 24.1(0) 93.1 12.7(0) 108.5 158.7(5) 236.4 215.0(5) 196.7 3.9(2) 148.9 11.8(0)

paste 22.6 0.5(4) 28.6 0.9(3) 54.9 36.2(5) 60.4 52.1(3) 22.1 0.6(0) 27.3 1.0(1)

ptx 33.2 3.9(0) 27.1 2.7(0) ∞ ∞ 28.9 0.8(0) 28.1 1.1(2)

seq 354.8 94.3(1) 49.3 5.1(1) ∞ 288.8 ∞ 170.8 3.7(3) 35.9 1.4(1)

Total 795.8 360.9 4206.4 4305.3 621.3 429.4

(c) Undirected search strategies and their mixes with CCBSE(RP)

Table 1. Statistics from benchmark runs. For each coreutils program and for the total,
the fastest two times are highlighted. Key: Median SIQR(Outliers) ∞ : time out

is the backward strategy. We did not directly compare against execution synthe-
sis (ESD) [36], a previously proposed directed search strategy; at the end of this
section we relate our results to those reported in the ESD paper.

We found that the randomness inherent in most search strategies and in the
STP theorem prover introduces tremendous variability in the results. Thus, we
ran each strategy/target condition 41 times, using integers 1 to 41 as random
seeds for Otter. (We were unable to find a similar option in KLEE, and so sim-
ply ran it 41 times.) The main numbers in Table 1 are the medians of these
runs, and the small numbers are the semi-interquartile range (SIQR). The num-
ber outliers—which fall 3×SIQR below the lower quartile or above the upper
quartile, if non-zero—is given in parentheses. We ran each test for at most 600
seconds for the synthetic examples, and at most 1,800 seconds for the Coreutils
programs. The median is ∞ if more than half the runs timed out, while the



SIQR is ∞ if more than one quarter of the runs timed out. We highlight the
fastest two times in each row.

3.1 Synthetic programs

The first three rows in Table 1 give the results from the examples in Figures 2,
4, and 6. In all cases the programs behaved as predicted.

For the program in Figure 2, both InterSDSE and IntraSDSE performed very
well. Since the target line is in main, CCBSE(*SDSE) is equivalent to *SDSE, so
those variants performed equally well. Otter-KLEE took much longer to find the
target, with more than a quarter of the runs timing out, whereas Otter-SAGE
timed out for more than half the runs. RP was able to find the target, but it
took much longer than *SDSE. Note that CCBSE(RP) degenerates to RP in
this example, and runs in about the same time as RP. Lastly, KLEE performed
very well also, although it was still slower than *SDSE in this example.

For the program in Figure 4, CCBSE(InterSDSE) and CCBSE(IntraSDSE)
found the target line quickly, while CCBSE(RP) did so in reasonable amount of
time. CCBSE(*SDSE) were much more efficient, because with these strategies,
after each failing verification of f(m,n) (when 0 ≤ m < 7), the *SDSE strategies
chose to try f(m+1,n) rather than stepping into f, as f is a target added by CCBSE
and is closer from any point in main than the assertion in f is.

For the program in Figure 6, Mix-CCBSE(RP) and Mix-CCBSE(Otter-KLEE)
performed the best among all strategies, as expected. However, Mix-CCBSE(Otter-
SAGE) performed far worse. This is because its forward search (Otter-SAGE)
got stuck in one value of m in the very beginning, and therefore it and the
backward search did not match up.

3.2 GNU Coreutils

The lower rows of Table 1 give the results from the Coreutils programs. The six
programs we analyzed contain a total of 2.4 kloc and share a common library of
about 30 kloc. For each bug, we manually added a corresponding failing asser-
tion to the program, and set that as the target line. For example, the Coreutils
program seq has a buffer overflow in which an index i accesses outside the bounds
of a string fmt [25]. Thus, just before this array access, we added an assertion
assert(i<strlen(fmt)) to indicate the overflow. Each assertion has a call-chain dis-
tance from main ranging from two to seven. Note that Otter does have built-in
detection of buffer overflows and similar errors, but for our experiments we do
not use this feature to identify valid targets for line reachability.

The Coreutils programs receive input from the command line and from stan-
dard input. We initialized the command line as in KLEE [4]: given a sequence of
integers n1, n2, · · · , nk, Otter sets the program to have (excluding the program
name) at least 0 and at most k arguments, where the ith argument is a symbolic
string of length ni. All of the programs we analyzed used (10, 2, 2) as the input
sequence, except mknod, which used (10, 2, 2, 2). Standard input is modeled as
an unbounded stream of symbolic values.



1 int main(int argc, char∗∗ argv) {
2 while ((optc = getopt long (argc, argv, opts, longopts, NULL)) != −1) { ... } ...

3 if (/∗ some condition ∗/) quote(...);

4 ...

5 if (/∗ another condition ∗/) quote(...);

6 }

Fig. 7. Code pattern in mkdir, mkfifo and mknod

Coreutils programs make extensive use of the C standard library. To support
them, we implemented a partial model of POSIX system calls on top of an
in-memory file system, and combined this with the newlib C standard library
implementation [28]. All this code is written in C, so Otter executes it as it
would any other source code.

Analysis. We can see clearly from the shaded boxes in Table 1 that InterSDSE
performed extremely well, achieving the fastest running times on five of the six
programs. However, InterSDSE timed out on mknod. Examining this program,
we found it shares a similar structure with mkdir and mkfifo, sketched in Figure 7.
These programs parse their command line arguments with getopt long, and then
branch depending on those arguments; several of these branches call the same
function quote(). In mkdir and mkfifo, the target is reachable within the first call
to quote(), and thus SDSE can find it quickly. However, in mknod, the bug is
only reachable in a later call to quote()—but since the first call to quote() is a
shorter path to the target line, InterSDSE takes that call and then gets stuck
inside quote(), never returning to main() to find the path to the failing assertion.

The last row in Table 1 sums up the median times for the Coreutils pro-
grams, counting time-outs as 1,800s. These results show that mixing a forward
search with CCBSE can be a significant improvement—for Otter-KLEE and
Random Path, the total times are notably less when mixed with CCBSE. One
particularly interesting result is that Mix-CCBSE(Otter-KLEE) runs dramati-
cally faster on mknod than either of its constituents (93.1s for the combination
versus 174.8s for Otter-KLEE and 216.5s for CCBSE(RP)). This case demon-
strates the benefit of mixing forward and backward search: in the combination,
CCBSE(RP) found the failing path inside of quote() (recall Figure 7), and Otter-
KLEE found the path from the beginning of main() to the right call to quote().
We also observe that the SIQR for Mix-CCBSE(Otter-KLEE) is generally lower
than either of its constituents, which is a further benefit.

Overall, Mix-CCBSE(Otter-KLEE) has the fastest total running time across
all strategies, including InterSDSE (because of its time-out); and although it is
not always the fastest search strategy, it is subjectively fast enough on these ex-
amples. Thus, our results suggest that the best single strategy option for solving
line reachability is Mix-CCBSE(Otter-KLEE), or perhaps Mix-CCBSE(Otter-
KLEE) in round-robin with InterSDSE to combine the strengths of both.

Execution synthesis. ESD [36] is a symbolic execution tool that also aims to
solve the line reachability problem. It uses a proximity-guided path search that is



similar to our IntraSDSE algorithm, and an interprocedural reaching definition
analysis to find intermediate goals for directing the search. The published results
show that ESD works very well on five Coreutils programs, four of which (mkdir,
mkfifo, mknod, and paste) we also analyzed. Since ESD is not publicly available,
we were unable to include it in our experiment directly, and we found it difficult
to replicate from the description in the paper. One thing we can say for certain
is that the interprocedural reaching definition analysis in ESD is clearly critical,
as our implementation of IntraSDSE by itself performed quite poorly.

Comparing published numbers, if we run InterSDSE and Mix-CCBSE(Otter-
KLEE) simultaneously on two machines and return whichever returns first, we
obtain a strategy which performs in the same ballpark as ESD, which took 15s for
mkdir, 15s for mkfifo, 20s for mknod, and 25s for paste. The ESD authors informed
us that they did not observe variability in their experiment, which consists of
5 runs per test program [35]. However, we find this somewhat surprising, since
ESD employs randomization in its search strategy, and is implemented on top
of KLEE whose performance we have found to be highly variable (Table 1).

Clearly this comparison should be taken with a grain of salt due to major
differences between Otter and ESD as well as in the experimental setups. These
include the version of KLEE evaluated (we used the latest version of KLEE as
of April 2011, whereas the ESD paper is based on a pre-release 2008 version of
KLEE), symbolic parameters, default search strategy, processor speed, memory,
Linux kernel version, whether tests are run in parallel or sequentially, the number
of runs per test program, and how random number generators are seeded. These
differences may also explain a discrepancy between our evaluations of KLEE:
the ESD paper reported that KLEE was not able to find the target bugs within
an hour, but in our experiments KLEE was able to find them (note that nearly
one-third of the runs for mkdir returned within half an hour, which is not reflected
by its median).

3.3 Threats to validity

There are several threats to the validity of our results. First, we were surprised
by the wide variability in our running times: the SIQR can be very large—
in some cases for CCBSE(*SDSE), KLEE and Otter-SAGE, the SIQR exceeds
the median—and there are many outliers.2 This indicates the results are not
normally distributed, and suggests that randomness in symbolic execution can
greatly perturb the results. To our knowledge, this kind of significant variability
has not been reported well in the literature, and we recommend that future efforts
on symbolic execution carefully consider it in their analyses. That said, the vari-
ation in results for CCBSE(Otter-KLEE) and InterSDSE, the best-performing
strategies, was generally low.

Second, our implementation of KLEE and SAGE unavoidably differs from
the original versions. The original KLEE is based on LLVM [22], whereas Otter

2 See the companion technical report, Appendix A for beeswarm distribution plots for
each cell in the table [23].



is based on CIL, and therefore they compute distance metrics over different
control-flow graphs. Also, Otter uses newlib [28] as the standard C library, while
KLEE uses uclibc [33]. These may explain some of the difference between KLEE
and Otter-KLEE’s performance in Table 1.

Finally, the original SAGE is a concolic executor, which runs programs to
completion using the underlying operating system, while Otter-SAGE emulates
the run-to-completion behavior by not switching away from the currently exe-
cuting path. There are other differences between SAGE and Otter, e.g., SAGE
only invokes the theorem prover at the end of path exploration, whereas Otter
invokes the theorem prover at every conditional along the path. Also, SAGE suf-
fers from divergences, where a generated input may not follow a predicted path
(possibly repeating a previously explored path) due to mismatches between the
system model and the underlying system. Otter does not suffer from divergences
because it uses a purely symbolic system model. These differences may make the
SAGE strategy less suited to Otter.

4 Other related work

Several other researchers have proposed general symbolic execution search strate-
gies, in addition to the ones discussed in Section 2. Hybrid concolic testing mixes
random testing with symbolic execution [24]. Burnim and Sen propose several
such heuristics, including a control-flow graph based search strategy [3]. Xie et al
propose Fitnex, a strategy that uses fitness values to guide path exploration [34].
It would be interesting future work to compare against these strategies as well;
we conjecture that, as these are general rather than targeted search strategies,
they will not perform as well as our approach for targeted search.

Researchers have also used model checkers to solve the line reachability prob-
lem by specifying the target line as the target state in the model. Much like our
work, directed model checking [7] focuses on scheduling heuristics to quickly dis-
cover the target. Edelkamp et al proposed several heuristics based on minimizing
the number of transitions from the current program state to the target state in
the model defined by a finite-state automata [8] or Büchi automata [7]. Groce
et al suggested using structural heuristics such as maximizing code coverage or
thread interleavings [14]. Kupferschmid et al borrowed an AI technique based
on finding the shortest distance through a monotonic relaxation of the model
in which states are sets whose successors increase monotonically under set in-
clusion [20]. In contrast, SDSE prioritizes exploration based on distance in the
ICFG, and CCBSE explores backwards from the target.

5 Conclusion

In this paper, we studied the problem of line reachability, which arises in au-
tomated debugging and in triaging static analysis results, among other applica-
tions. We introduced two new directed search strategies, SDSE and CCBSE, that
use two very different approaches to solve line reachability. We also discussed



a method for combining CCBSE with any forward search strategy, to get the
best of both worlds. We implemented these strategies and a range of state-of-
the-art forward search strategies (KLEE, SAGE, and Random Path) in Otter,
and studied their performance on six programs from GNU Coreutils and on two
synthetic programs. The results indicate that both SDSE and mixed CCBSE
and KLEE outperformed the other strategies. While SDSE performed extremely
well in many cases, it does perform badly sometimes, whereas mixing CCBSE
with KLEE achieves the best overall running time across all strategies, includ-
ing SDSE. In summary, our results suggest that directed symbolic execution is
a practical and effective approach to line reachability.

Acknowledgments

This research was supported in part by National Science Foundation grants CCF-
0346982, CCF-0541036, and CCF-0915978. We would also like to thank Elnatan
Reisner and Jonathan Turpie for their help developing the POSIX library.

References

1. Richard Bornat. Proving pointer programs in Hoare logic. In MPC, pages 102–126,
2000.

2. Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. SELECT–a formal system for
testing and debugging programs by symbolic execution. In ICRS, pages 234–245,
1975.

3. Jacob Burnim and Koushik Sen. Heuristics for scalable dynamic test generation.
In ASE, pages 443–446, 2008.

4. Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs. In
OSDI, pages 209–224, 2008.

5. Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.
Engler. EXE: automatically generating inputs of death. In CCS, pages 322–335,
2006.

6. Coreutils - GNU core utilities. http://www.gnu.org/software/coreutils/.

7. Stefan Edelkamp, Stefan Leue, and Alberto Lluch-Lafuente. Directed explicit-state
model checking in the validation of communication protocols. Software Tools for
Technology Transfer, 5(2):247–267, 2004.

8. Stefan Edelkamp, Alberto Lluch-Lafuente, and Stefan Leue. Trail-directed model
checking. Electrical Notes Theoretical Computer Science, 55(3):343–356, 2001.

9. Manuel Fähndrich, Jakob Rehof, and Manuvir Das. Scalable context-sensitive flow
analysis using instantiation constraints. In PLDI, pages 253–263, 2000.

10. Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and arrays.
In CAV, pages 519–531, 2007.

11. Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated
random testing. In PLDI, pages 213–223, 2005.

12. Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Active property check-
ing. In EMSOFT, pages 207–216, 2008.



13. Patrice Godefroid, Michael Y. Levin, and David A Molnar. Automated whitebox
fuzz testing. In NDSS, 2008.

14. Alex Groce and Willem Visser. Model checking Java programs using structural
heuristics. In ISSTA, pages 12–21, 2002.

15. William E. Howden. Symbolic testing and the DISSECT symbolic evaluation
system. IEEE Transactions on Software Engineering, 3(4):266–278, 1977.

16. Yit Phang Khoo, Bor-Yuh Evan Chang, and Jeffrey S. Foster. Mixing type checking
and symbolic execution. In PLDI, pages 436–447, 2010.

17. James C. King. Symbolic execution and program testing. CACM, 19(7):385–394,
1976.

18. The KLEE Symbolic Virtual Machine. http://klee.llvm.org.
19. John Kodumal and Alex Aiken. The set constraint/CFL reachability connection

in practice. In PLDI, pages 207–218, 2004.
20. Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd Behrmann.

Adapting an AI planning heuristic for directed model checking. In Antti Valmari,
editor, SPIN, volume 3925 of LNCS, pages 35–52. Springer Berlin / Heidelberg,
2006.

21. William Landi and Barbara G. Ryder. Pointer-induced aliasing: a problem taxon-
omy. In POPL, pages 93–103, 1991.

22. Chris Lattner and Vikram Adve. LLVM: a compilation framework for lifelong
program analysis transformation. In CGO, pages 75–86, 2004.

23. Kin-Keung Ma, Yit Phang Khoo, Jeffrey S. Foster, and Michael Hicks. Directed
symbolic execution. Technical Report CS-TR-4979, UMD-College Park, Apr 2011.

24. Rupak Majumdar and Koushik Sen. Hybrid concolic testing. In ICSE, pages
416–426, 2007.

25. Jim Meyering. seq: give a proper diagnostic for an invalid –format=%
option, 2008. http://git.savannah.gnu.org/cgit/coreutils.git/commit/
?id=b8108fd2ddf77ae79cd014f4f37798a52be13fd1.

26. Joe M. Morris. A general axiom of assignment. Assignment and linked data struc-
ture. A proof of the Schorr-Waite algorithm. In M Broy and G. Schmidt, editors,
Theoretical Foundations of Programming Methodology, pages 25–51, 1982.

27. George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. CIL:
Intermediate language and tools for analysis and transformation of C programs.
In CC, pages 213–228, 2002.

28. The Newlib Homepage. http://sourceware.org/newlib/.
29. Leon J. Osterweil and Lloyd D. Fosdick. Program testing techniques using simu-

lated execution. In ANSS, pages 171–177, 1976.
30. Jakob Rehof and Manuel Fähndrich. Type-base flow analysis: from polymorphic

subtyping to CFL-reachability. In PLDI, pages 54–66, 2001.
31. Elnatan Reisner, Charles Song, Kin-Keun Ma, Jeffrey S. Foster, and Adam Porter.

Using symbolic evaluation to understand behavior in configurable software systems.
In ICSE, pages 445–454, 2010.

32. Thomas W. Reps. Program analysis via graph reachability. In ILPS, pages 5–19,
1997.

33. µClibc. http://www.uclibc.org/.
34. Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte. Fitness-

guided path exploration in dynamic symbolic execution. In DSN, pages 359–368,
2009.

35. Cristian Zamfir. Personal communication, May 2011.
36. Cristian Zamfir and George Candea. Execution synthesis: a technique for auto-

mated software debugging. In EuroSys, pages 321–334, 2010.


