
Dynamic Inference of Polymorphic Lock

Types

James Rose, Nikhil Swamy, and Michael Hicks 1

Computer Science Department
University of Maryland

College Park, Maryland 20742 USA

Abstract

We present an FindLocks, an approach for automatically proving the absence of
data races in multi-threaded Java programs, using a combination of dynamic and
static analysis. The program in question is instrumented so that when executed it
will gather information about locking relationships. This information is then used
to automatically generate annotations needed to type check the program using the
Race-Free Java type system. Programs that type check are sure to be free from races.
We call this technique dynamic annotation inference. We describe the design and
implementation of our approach, and our experience applying the tool to a variety
of Java programs. We have found that when using a reasonably comprehensive test
suite, which is easy for small programs but harder for larger ones, the approach
generates useful annotations.

Email addresses: rosejr@cs.umd.edu (James Rose), nswamy@cs.umd.edu
(Nikhil Swamy), mwh@cs.umd.edu (Michael Hicks).
1 Hicks is also affiliated with the University of Maryland Institute for Advanced
Computer Studies (UMIACS)

Preprint submitted to Elsevier Science 11 May 2005

1 Introduction

Writing correct multi-threaded programs is much more difficult than writ-
ing correct sequential programs. As Java’s language and library support has
brought multi-threaded programming into the mainstream, there has been
widespread interest in developing tools for detecting and/or preventing con-
currency errors in multi-threaded programs, such as data races and deadlocks.
There are two main approaches. Static approaches, such as those based on
type systems, take a program annotated with locking information and prove
that the program is free from certain multi-threaded programming errors. A
canonical example is the Race-Free Java type system [1]. Dynamic approaches
monitor the execution of the program to discover violations of locking proto-
cols based on observed execution history. A canonical example is Eraser [2].

On the face of it, these two techniques that address the same problems seem
very far apart.

• The static approach is appealing because static analysis can conservatively
model all paths through a program. When a sound static analysis can show
a fact, that fact must hold in all executions. 2 Thus static analysis can prove
the absence of errors such as data races and deadlocks without ever running
the program, and without requiring the overhead of run-time code moni-
toring. The downside is that because static analysis must be conservative,
it will incorrectly signal errors in correct programs. Such false alarms can
be reduced, but not eliminated, by employing sophisticated techniques—
e.g., context-, flow-, or path-sensitivity—but at the cost of scalability and
implementation complexity.

• The dynamic approach is appealing because run-time code monitors are
relatively easy to implement and are less conservative than static analyses
because they have precise information about the current execution state [5].
The downside of the dynamic approach is that dynamic systems see only
certain executions of the program, and so in general they can only conclude
facts based on those cases. This means that either the code monitor must be
packaged with the code permanently, or else run the risk of post-deployment
failures.

Because static analysis can reach sound conclusions and impose no runtime
overhead, we believe it to be the preferred approach whenever possible. How-
ever, as we have just discussed, the limitations of static analysis sometimes
make it “too hard.” Indeed, many static analyses require users to provide addi-
tional program annotations to guide the static analyzer. Experience has shown
that programmers are reluctant to provide any but the most minimal annota-

2 Not all static analyses are sound. Indeed, unsound “pattern detectors” have
proven to be quite useful for finding bugs [3,4].

2

tions. For example, the designers of ESC/Java [6] state that such reluctance
“has been a major obstacle to the adoption of ESC/Java. This annotation
burden appears particularly pronounced when faced with the daunting task
of applying ESC/Java to an existing (unannotated) code base.” [7].

An annotation inference tool can reduce or eliminate the need for annota-
tions. A typical approach is to use a whole-program, constraint-based anal-
ysis [8]. Unfortunately, a sufficiently expressive inference algorithm may not
scale: indeed, for our setting, context-sensitive annotation inference is known
to be NP-complete [9]. In contrast, a dynamic analysis has no trouble scal-
ing. Therefore, we propose to use a dynamic analysis to generate candidate
annotations [7] which can be checked for soundness by the static system. The
intuitive idea here is that, just like for problems in NP, it may be difficult
to (statically) generate correct statements about a program, but it is easy to
check them. We call this combination of dynamic and static analysis dynamic
annotation inference.

1.1 Contributions

In this paper, we describe a prototype system that employs an Eraser-like
dynamic analysis to generate candidate annotations for the original Race-Free
Java (RFJ) type system [1]. This paper makes the following contributions:

• We present a new algorithm (Section 2) for inferring race-checking annota-
tions. Our dynamic algorithm improves on prior static [7] and dynamic [10]
algorithms in being fully context-sensitive (polymorphic), and thus is able
to properly check more programs. Our approach provides a possibly lighter-
weight alternative (or complement) to traditional static inference.

• We describe our experience applying our tool FindLocks to a number some
small (less than 2000 lines) and one medium-sized (55,000 lines) Java pro-
grams (Section 3). In our experience, dynamic inference imposes reasonably
little runtime overhead, and infers the annotations needed for typechecking,
assuming reasonably complete test suites.

• After comparing to related work (Section 4) we present two key lessons
learned, laying out a path for continuing work (Section 5). First, dynamic
analysis can frequently discover properties that typical type-based static
analyses cannot check. We must consider new, path-sensitive static analyses
that can take advantage of dynamically-discovered information. Second, the
larger the program being checked, the more difficult it is to write test cases
that cover all its code. In the end, we believe the most effective approach
will be to combine static, whole-program analysis [9] with dynamic traces
to improve the quality of the inferred types.

3

class C<ghost Object lp> {
int count guarded_by lp ;
int value guarded_by this ;
synchronized void set(int x) requires lp {

count++;
value = x;

} }
class D {

public void entry() {
C<this> o = new C<this> (); // D.entry.L1
synchronized(this) {
o.set(1);
o.count++;

} } }

Fig. 1. Example RFJ program (annotations are in italics)

2 Dynamic Lock Type Inference

To check for data races, most static and dynamic tools seek to infer or check
the guarded-by relation. This relation describes which memory locations are
guarded by which locks. Assuming that this relation is consistent, we can be
sure that a particular data object or operation will only be accessed when the
same lock is held, thus ensuring mutual exclusion. In a dynamic system like
Eraser [2], the guarded-by relationship is inferred at run-time. In static type
checking systems, types expressing what locks guard which locations must be
specified by the programmer as annotations, though well-chosen defaults can
make the task easier.

2.1 Race-Free Java

The RFJ type system requires that each field f of class C be guarded by either
an internal or an external lock for f. To prevent data races, this lock must
be held whenever f is accessed. An internal lock is any “field expression”
in scope within class C, i.e., an expression of the form this.f1.f2...fn or
D.f1.f2...fn, where f1 is a static field of D. An external lock is one that is
acquired outside the scope of C by users of C’s methods or fields. In RFJ, an
external lock is expressed as a class parameter called a ghost variable which
can be referred to in guarded-by annotations.

The class C in Figure 1 uses both internal and external locking: C’s field value

is guarded by this, an internal lock, while count is guarded by lp, an external
lock. The method set ensures these locks are always held when the fields are
accessed. In particular, the fact that set is synchronized means that the lock

4

this is held when it executes, and thus accessing value is legal. In addition,
the requires clause ensures that lp is held whenever set is called, and thus
accessing count is legal. The modification of count within entry is legal since
lock is held.

Whenever a parameterized class is mentioned in the program, its ghost vari-
ables must be instantiated with legal field expressions. This is shown in the
entry method in the figure. The code fragment new C<this> () creates a C

object, instantiating its external lock lp with the parameter this. Given this
instantiation, the call to x.set(1) is legal, because the external lock (this)
is held before the call.

During execution, the expression f in the annotation guarded_by f and in
the instantiation C<f> must always refer to the same object. Otherwise, even
if we always acquire the lock stored in f , it may not be the same lock every
time f is acquired, leading to possible data races. RFJ enforces consistent
synchronization by requiring f to be a field expression of the form mentioned
above, in which each field within the expression is declared final.

RFJ permits a class whose objects are never shared between threads to be
declared thread local, and thus no lock need be held to access its fields. As
this mechanism applies to entire classes, it is not possible for some objects of
a particular class to be checked as thread local but not others.

Recently, Flanagan and Freund have developed RFJ2, a type system that
improves upon RFJ [9]. RFJ2 can check thread-local fields, rather than just
thread-local classes. As with fields guarded by a lock, a thread-local field is
guarded by an implicit lock which is conceptually held by each thread that
“protects” thread-local data. The type system is augmented with an escape
analysis to ensure that fields declared as thread-local never become shared.
In addition, RFJ2 does not require field expressions to be final as long as
they can proven to be immutable (i.e., programmers often forget to add the
final annotation, and so RFJ2 infers it). As we show in Section 3, these two
improvements can eliminate a significant number of false alarms, and would
be easily exploited by our approach. Unfortunately, the implementation of the
RFJ2 checker was not available as of this writing.

2.2 Dynamic Annotation Inference

The goal of FindLocks is to automatically infer guarded_by and requires

annotations for unannotated Java programs. It proceeds in two steps, as shown
in Figure 2. First, the unannotated program is instrumented and executed to
collect a trace. Second, this trace is analyzed to infer lock types on program
variables, and the source of the program is annotated with the inferred types.

5

� � � � � � � � � � 	
 � � � � � � � � � � � � � � � � �� � � � � � � �
� 	 �

Fig. 2. Overview of FindLocks

The resulting annotated program is then checked using RccJava, which is
a type checker for RFJ. We describe instrumented execution first, and then
automatic annotation.

In the following, class names are denoted as C, D,E. Run time objects are
denoted o (and are either actual addresses or NULL). Field names are denoted
f, g, h; we sometimes treat this as a field for uniformity of notation. We use
L to refer to a path of fields, e.g. C.f.g.h. This is a static path when C.f is a
static field, and an instance path otherwise. Instantiation sites are denoted I;
these are program locations at which ghost variables of a class C may need to
be instantiated; in what follows we consider allocation sites of the form I =
new C(...), and field declaration sites) of the form I = C f. When I is a field
declaration, I.f is used to refer to the field, and when I is an allocation, I.C
is used to refer to the class of the allocated object. In general, ghost variables
may also need to be instantiated in the types of local variable declarations,
in method parameters, in casts, or as the supertype in a class declaration.
We ignore these cases in the following as the parameters used by a subclass to
instantiate ghost variables in its superclass can be inferred much like allocation
site parameters, method parameters can be treated much like fields, and local
variables can be inferred through a simple intraprocedural static analysis.

Instrumented Execution A program trace consists of three maps gath-
ered during execution: lockset , alloc, and storedin. These maps are generated
with the help of two auxiliary data structures, names and locksheld ; all are
illustrated in Figure 3. To generate a trace, we instrument the program to
perform some additional actions following certain instructions. In particular,
every field access (read or write), object allocation, and lock acquire or release
results in a call to our instrumentation code, whose actions are summarized
in Figure 4.

The acquire(o) instruction attempts to enter the monitor associated with
the object o. Once this instruction completes, we add o and its valid paths
to the locksheld set. Valid paths L are calculated by taking the closure of the
simple names of o, up to a fixed length k (since circular data structures may
admit an infinite number of paths) 3 . The closure is defined as follows (where

3 In our experiments we set this bound to 3. In our estimation, programmers rarely
acquire locks using paths much larger than this.

6

Trace Output:
lockset(o,C .f) : {(o1, {L11, ..., L1m}), ..., (on, {Ln1, ..., Lnm′})}
This is the set of locks—and their associated paths—that were held consis-
tently when o’s field f (defined in class C) was accessed.

alloc(o) : (o′, I)
This indicates that o was allocated at site I while this = o′ (which will be
recorded as NULL if I is in a static method).

storedin(o, C.f) : {o1, ..., on}
This set records all objects oi that were ever stored in o’s field f (defined
in class C).

Auxiliary Structures:
names(o) = {(o1, C1.f1), . . . , (on, Cn.fn)}
names maps each object o to all currently valid simple names for o, where
simple name (oi, Ci.fi) ∈ names(o) is a consequence of o being referenced
by oi.fi with the type of oi given by Ci (oi is NULL if fi is static).

locksheld = {(o1, {L11, . . . , L1n}), . . . , (om, {Lm1, . . . , Lmn′})}
This set records all locks that are currently held by the program; for each
lock we also record paths for the lock in scope at the time the lock was
acquired.

Fig. 3. Data structures used during instrumented execution

Instruction Action

acquire(o) locksheld := locksheld ∪ {o, closurek(o)}

release(o) locksheld := locksheld \ (o,)

read(o.fC) lockset(o,C .f) := lockset(o,C .f) ∩̂ locksheld

write(o1.fC := o2) lockset(o1 ,C .f) := lockset(o1 ,C .f) ∩̂ locksheld

names(o2) := names(o2) ∪ {(o1, C.f)}

names(o1.fC) := names(o1.fC) \ {(o1, C.f)}

storedin(o1, C.f) := storedin(o1, C.f) ∪ {o2}

alloc(o′,I)(o) alloc(o) := (o′, I)

names(o) := {(NULL, D.this) | D :> I.C}

Fig. 4. Actions of Execution Monitor

7

names(NULL) is the empty set):

closure0(o) = {C.f | (o′, C.f) ∈ names(o)}

closure i(o) = {C.f | (o′, C.f) ∈ names(o)} ∪

{L.f | (o′, C.f) ∈ names(o) ∧ L ∈ closure i−1(o
′)}

As locks in Java are reentrant, the release(o) instruction decrements a
counter on the lock, releasing the lock when the counter reaches 0; at this
point we remove (o,) from the locksheld set.

The read(o.fC) instruction denotes a read from object o’s field f , where f
is defined by o’s class (or superclass) C; this information is present in the
bytecode. For a read we refine lockset(o,C .f) by intersecting it with the cur-
rent set of locks held. Intersection between an uninitialized lockset and the
locksheld set is simply locksheld ; intersection with a pre-existing lockset l is
defined as follows:

l ∩̂ locksheld ≡ {(o, z) | (o, x) ∈ l ∧ (o, y) ∈ locksheld ∧ z = x ∩ y}

When o.fC is written, we update its lockset , modify the names map for both
the old and new contents of o.fC , and update storedin(o, C.f) to record the
new object stored there.

Finally, we record for each allocated object o the site I at which it is instan-
tiated, and the current this object o′ (which is NULL if I is within a static
method). We also update the names to add D.this as a valid name for o for
all classes D that are superclasses of o’s class I.C (which includes I.C itself).

Note that we do not instrument reads and writes of local variables: their names
are not generally important, because they cannot be shared, either as a lock
or a value.

Annotation Inference Given the output trace (Figure 3), the resolve_locks
procedure shown in Figure 5 infers the guarded by clause for each field in the
program, one at a time. It first attempts to find an internal lock for C.f by
calculating resolve(R(C.f), C.f). Here, R(C.f) is the result set for field C.f ,
which is simply an aggregation of all lockset information about that field:

R(C.f) ≡ {(o, ls) | lockset(o,C .f) = ls}

Given this information, we wish to find a consistent path for those locks
held whenever f was accessed in some instance of C. Since we are looking

8

proc resolve_locks
for each field C.f

N = resolve(R(C.f), I) where I is the declaration of C.f
if N is not empty then

annotate C.f with choose(N)
else
add fresh ghost parameter α to C, annotate C.f with α
resolve_polymorphic(R(C.f), C, α)

proc resolve_polymorphic(Rold, C, α)
for each instantiation site I of C

NI = resolve(RI(Rold), I)
if NI is empty then
if I is static then fail
add fresh ghost parameter β to Class(I)
instantiate α at I with β
resolve_polymorphic(RI(Rold), Class(I), β)

else
instantiate α at I with choose(NI)

Fig. 5. Lock Resolution Algorithm

for an internal lock, this path must be in scope at the declaration of C.f
(resolve_locks sets I to be C.f):

resolve(R, I) ≡ {L | L ∈ ⋂
(o,ls)∈R ls ∧ L in scope at I}

If the resulting set is defined and non-empty, we choose a path with which to
annotate the field declaration. This is typically this or a field of C (i.e., an
internal lock), but it may be a static field of another class.

If the set was empty, resolve_locks parameterizes C with a ghost variable α
and declares that f is guarded by α. Every time a ghost variable is added to
a class C, it must be instantiated wherever the type C occurs. This is done by
the procedure resolve_polymorphic. Instantiation site I of C are allocation
sites new C<α>() or a field declaration sites C<α> f; resolve_polymorphic
aims to find legal paths with which to instantiate α. To do this, it refines the
result set to consider the locksets of the objects in Rold allocated (or stored)
at site I:

RI(Rold) ≡ {(o′, ls) | (o, ls) ∈ Rold ∧ o′ ∈ ext(o, I)}

where we have

ext(o, I) ≡

 {o′ | (o′, I) = alloc(o)} I is an allocation site

{o′ | o ∈ storedin(o′, I.f)} I is a field declaration

9

Then it applies the resolution procedure as before on this set for instantiation
site I. If a valid path is found, then α is instantiated with that path. Otherwise,
a parameter β is added to the class in which site I is defined, α is instantiated
with β, and the process is repeated: result sets are created and solved at
the allocation sites and field declarations of type Class(I). Notice that o is
replaced by o′ in the definition of ext(o, I)—this is what permits the recursion.
If the instantiation site I is an allocation occurring in a static method or a
field declaration, then no further parameterization is possible, and this part
of the program will not be typable.

Example We describe the execution of FindLocks on the sample program
in Figure 1. Consider an execution of a single threaded program on a single
instance od of the class D, with the public method entry as the only entry point
to the class. Let 0x1 and 0x2 denote the addresses of od and o, respectively. An
execution of this program would result in program trace structures as follows.

alloc(0x2) = (0x1, D.entry.L1)

lockset(0x2, C.value) = {(0x1, {D.this}), (0x2, {C.this})}

lockset(0x2, C.count) = {(0x1, {D.this}), (0x2, {C.this})}⋂̂{(0x1, {D.this})}
= {(0x1, {D.this})}

From this trace, the resolve_locks considers each field of the class C sepa-
rately, beginning with C.value:

resolve(R(C.value), C.value) =

resolve({(0x2, {(0x1, {D.this}), (0x2, {C.this})})}, C.value) = {C.this}

Candidate path D.this is eliminated since it is not in scope at the declaration
of C.value, so we indicate that C.value is guarded by this. By the same
reasoning, D.this cannot guard C.count either:

resolve(R(C.count), C.count) =

resolve({(0x2, {(0x1, {D.this})})}, C.count) = {}

Therefore, we and indicate that count is guarded by lp (where lp is a
fresh name), and invoke resolve_polymorphic({(0x2, {(0x1, {D.this})})}, C,
lp). The only instantiation site of C in our program is the allocation site at
D.entry.L1, and we have that ext(0x2, D.entry.L1) = {0x1}. Resolution dis-
covers D.this as a candidate lock name since it is in scope at the instantiation

10

site D.entry.L1: 4

resolve(RD.entry.L1({(0x2, {(0x1, {D.this})})}), D.entry.L1)

= resolve({(0x1, {(0x1, {D.this})})}, D.entry.L1) = {D.this}

Thus, the parameter lp at site D.entry.L1 is instantiated with the name this.
Finally, a simple static analysis adds the requires clause to C.set based on
the added annotations.

Refinements Various refinements of the above algorithm were found to be
helpful in the implementation of FindLocks. On the instrumentation side,
we use the same approach as Eraser [2] to track whether a field is thread-local,
read-only, or handed off between threads; this requires a simple modification to
the lockset(,) map and its maintenance, and is useful for diagnosing warnings,
as described in the next section.

On the inference side, we make two refinements. First, because the annota-
tor resolves the lock for each field separately, a class could end up with as
many parameters as it has externally-locked fields. FindLocks merges two
parameters if, at every instantiation site, the parameters are the same.

Second, we do not infer polymorphically-recursive external lock parameters,
as such inference is known to be undecidable [11]. Rather, we require every
instantiation site of class C within C’s instance methods and instance field
declarations to be instantiated with C’s ghost variables. For example, within
the instance methods of public class C<a,b> { ... }, allocations of C will
be expressed new C<a,b>(...).

To do this, we change the way that we resolve external locks to consider the
class of an external object. In particular, within resolve_polymorphic, we
ignore all internal instantiation sites—those for class C that occur within
instance methods or field initializers of C itself. Instead, we just instantiate
them with α.

Consider the example in Figure 6. Executing this program will cause 10 List

elements to be created, nine at site List.add.L1, and one at A.go.L1. When
performing polymorphic resolution, we instantiate internal site List.add.L1

with ghost variable lp. External site A.go.L1 is instantiated as described in
Figure 5.

4 Note how the object address 0x1 associated in the result set refers to the allocator
of the original object 0x2. If it was necessary to extend resolution to another level,
this would cause the algorithm to examine the scope of the allocators of 0x1.

11

class List<ghost Object lp> {
Object val guarded_by lp ;
List<lp> tail guarded_by lp ; // List.tail
void add(Object o) requires lp {

tail = new List<lp> (); // List.add.L1
tail.val = o;

} }
class A {

void go(Object o) {
List<this> head = new List<this> (); // A.go.L1
synchronized (this) {
head.val = o;
for (int i = 0; i<9; i++) head.add(o);

} } }

Fig. 6. External Locking on a Recursive List Class

Note that this approach will rule out some programs that would otherwise be
type correct in RFJ. For example, it will not allow you to have a list in which
alternating elements are protected by different locks. We expect these cases
to be rare in practice.

Finally, we note that FindLocks currently generates annotations from a sin-
gle trace, but that it would be useful to generate annotations from multiple
traces, for better coverage. This can be implemented by simply merging the
traces prior to annotation inference, resolving any clashes of object references
through α-conversion. More precisely, given two traces t1 and t2, if the set O
defines those object addresses mentioned in both traces, then we define a set
of fresh object addresses O′ of size |O| where ∀o ∈ O′.o 6∈ t1, o 6∈ t2. Let ς
define a substitution that maps each o ∈ O to a distinct o′ ∈ O′, and is the
identity otherwise. Then the merged trace is simply ς(t1) ∪ t2, where union is
the intuitive merging of the maps and sets in the traces.

Implementation Dynamic instrumentation is performed using the BCEL [12]
bytecode manipulation library, and our annotator is written in Java. BCEL
uses a special class loader to add instrumentation as classes are loaded, thus
making it easier to instrument existing programs. While convenient, on-demand
instrumentation is challenging for standard library classes. For example, much
of the interesting synchronization performed by programs revolved around the
data structures in the java.util library, which includes classes used by the
virtual machine (VM) itself. Therefore, we created an uninstrumented version
of the classes under the package umd.util for use by the instrumentation code.
Then, we created an instrumented version of java.util and prepended it to
the bootclasspath, for use by the target code. Because the VM initialization
process is sensitive, we use a layer of indirection between the hooks inserted

12

into the bytecode and the actual instrumentation library; this allows the boot-
strap classloader to load the instrumented java.util without requiring all of
the dependencies of the instrumentation library. This strategy should work for
any subset of library classes, barring those that are implemented inside the
VM or in native code.

3 Experimental Results

In this section, we describe our experience using FindLocks on a number
of small Java programs. We present the resources required over four stages of
execution: program execution (with and without instrumentation), annotation
resolution, source code annotation, and type-checking with RccJava. Next
we address the accuracy, expressiveness and completeness of the annotations
emitted by FindLocks. Finally, we describe our experience using our tool on
a larger program.

3.1 Sample Programs

Table 1 lists our benchmark programs, with relevant statistics in the first two
columns. Class refers to the number of classes that were instrumented (the
152 classes in the java.util library are instrumented in all cases). LOC is
the number of non-comment non-blank lines of code in the application alone.
The java.util package contains 23741 non-comment non-blank lines of code.

The programs Elevators 1, Elevators 2, and Java-Server were written
for a course in object-oriented programming at the University of Maryland;
the former two simulate the scheduling of elevators in a building, and the
latter is a small, dynamically-configurable HTTP server. Each was packaged
with test cases, the former were simply command-line arguments to drive the
simulation, the latter had a script that placed about 50 requests to the server.
Proxy-Cache is an HTTP proxy that provides content caching, adapted
from a program developed at the Technion, Israel Institute of Technology.
Our test cases consisted of stressing Proxy-Cache with concurrent requests
using httperf [13]. Weblech is a small web-crawler that was adapted from
a program developed at MIT. To test Weblech we had it perform a depth 1
crawl from the University of Maryland home page.

13

Table 1
Memory Overhead

Program Class LOC Memory (MB)

(+152) (+23741) Orig Inst Ann

Elevators1 4 567 8.8 21.1 110

Elevators2 4 408 8.7 13.4 112

Proxy-Cache 7 1218 9.7 30.8 112

Weblech 12 1306 14.1 52.1 127

Java-Server 32 1768 10.3 26.5 126

Table 2
Time Overhead

Program Time (sec)

Orig Inst Res Annot Rcc

Elevators1 8.8 10.2 1.4 23.0 3.8

Elevators2 9.5 9.7 0.7 22.6 4.1

Proxy-Cache 12.5 19.9 1.9 14.9 4.3

Weblech 6.7 30.3 3.1 20.3 4.2

Java-Server 12.8 20.6 2.1 15.2 3.8

Table 3
Trace Sizes

Program Tot Max Ave %-Empty Name Store Alloc

Elevators1 2742 14 6.35 93.16 2253 3008 356

Elevators2 2362 8 6.42 93.17 2050 2821 316

Proxy-Cache 9456 11 6.12 99.54 19387 21288 4954

Weblech 25500 38 17.8 97.51 24800 31009 4470

Java-Server 10340 1 1 99.94 25363 17801 3008

14

3.2 Peformance

Tables 1 and 2 quantify the cost of FindLocks, in terms of instrumentation
overhead and annotation inference. For the former, the columns Orig and
Inst refer to the resources consumed during the execution of the program
without and with instrumentation, respectively. Inst includes both the time
to instrument and execute the program.

For annotation inference, the memory usage is given in column Ann while the
time taken is broken down in columns Res and Annot. Here, Res is the time
to run resolve_locks (Figure 5), not including the time to annotate the orig-
inal source code; this time is broken out in column Annot. The annotation
phase is not intrinsically expensive; an inefficient (but convenient) parse-tree
construction tool is used which may create many objects for a single nonter-
minal in the parse tree. We report these numbers only for completeness; they
could be dramatically reduced by integrating annotation into the RccJava
framework or by writing the parsing code more efficiently.

The time taken by RccJava to typecheck the annotated program is reported
in the column labeled Rcc.

Table 3 shows statistics related to the trace data structures used by the in-
strumented programs. Unless otherwise stated, each figure is the largest value
ever attained over the entire execution of the program. Tot refers to the size
of the lockset(,) map; Max refers to the largest number of names in a sin-
gle lockset; Ave refers to the average number of names in a single non-empty
lockset at the end of program execution; %-Empty refers to the proportion of
fields that had empty locksets at the end of program execution; Name refers
to the names() map; Store refers to the storedin(,) map; and Alloc refers to
the alloc() map. The locksheld set was typically an order of magnitude smaller
than the alloc() map.

In each case, the numbers represent the median value from ten trials. The
variation is not appreciable. These measurements were performed on a 2 GHz
Pentium 4 with 750MB of RAM, running linux 2.4.21, and the Sun JRE 1.4.2.

3.3 Quality of Inferred Annotations

Table 4 describes the results of running RccJava on the annotated programs
generated by FindLocks. The column Classes shows the number of classes
that were actually annotated including the libraries. Classes contain no anno-
tations if either the test cases did not cover the class, or sometimes if the class
contains no fields. The column Num refers to the number of annotations that

15

Table 4
Checking Annotated Programs

Program Annotations Rcc Warnings

Classes Num Thl/RO Final Race Oth

Elevators1 3 26 5 0 1 1

Elevators2 6 27 1 0 0 0

Proxy-Cache 7 69 15 0 0 4

Weblech 11 52 30 10 0 5

Java-Server 18 59 5 0 0 2

were added automatically by FindLocks. The section of the table labeled
Rcc Warnings classifies the type of warnings issued by RccJava when run
on the annotated programs. Thl/RO represents spurious data race warnings
about fields that are in fact thread local, or are read-only. The column Final
records RccJava warnings about the use of locks that are not final expres-
sions. These are spurious warnings too since, in each case, the lock expressions
though not final expressions are actually constants. The column Race records
warnings about real data races.

Of all our test programs, only Elevators1 fails to typecheck under RccJava
because it contains a real data race. This data race is also dynamically detected
by FindLocks which adds a comment to the field noting the problem. In
short, up to the limits of the RFJ type system, FindLocks correctly inferred
all needed annotations.

In all, three of our test programs used external locking, for which FindLocks
inferred correct polymorphic lock types: Elevators 2, Java-Server, and
Weblech. In the latter two cases, the programmer defined externally-locked
classes, while Elevators 2 uses external synchronization to guard instances
of java.util.HashSet. In particular, there is a field of type HashSet and each
access to this field is protected by obtaining a lock external to the scope of
the HashSet. FindLocks infers that HashSet has a type that is polymorphic
in the type of the lock and correctly annotates the java.util.HashMap field
of the HashSet class as being guarded by the lock parameter. Furthermore,
an inner class of HashMap, HashMap.Entry is also parameterized by the same
lock parameter.

Many of the warnings issued by RccJava refer to fields determined to be
thread-local or read-only by the dynamic analysis in the observed execution.
In general, this information cannot be used by RFJ to prove accesses to these
fields are safe; therefore FindLocks annotates the source with comments
(invisible to RccJava) that can help the user classify RccJava warnings

16

as spurious or genuine. For example, RccJava warns about non-final ex-
pressions used as locks; the read-only comments added by FindLocks help
the user to confirm that lock expressions are constant. As mentioned in Sec-
tion 2.1, RFJ2 [9] and other type systems [14,15] would be able to use this
information to check more idioms.

Various other warnings were classified as spurious by hand. For instance, Rcc-
Java (optionally) assumes that the this lock is held during object construc-
tion in order to allow for common initialization patterns; this is sound if the
constructor does not allow this to escape. In the constructor of an object
that synchronizes on a mutex different from this, RccJava issues warnings
about the mutex not being held, since it only assumes that constructors hold
only the this lock.

3.4 Annotation Quality and Test Coverage

We also ran FindLocks on HSQL, an open-source, JDBC-compliant database. 5

HSQL consists of 260 classes and about 55,000 lines of code. We did not have
access to a test suite for the application, so we devised a simple test program
that spawned a large number of threads and repeatedly performed simple
queries on the database.

We found both the runtime overhead as well as the annotation overhead to be
similar to that incurred by the smaller programs. The uninstrumented program
ran our test case in 31 seconds, using 48MB of memory; running it under
FindLocks took 117 seconds and consumed 160MB of memory. RccJava
issued 208 warnings when checking the annotated program. These warnings
arose from two sources. First, our extremely simple test case only managed
to cover some 90 out of the 260 classes, so many fields lacking annotations
and were flagged. Second, a large number of the warnings issued mentioned
fields marked as thread local by FindLocks. On the one hand, while some or
all of these warnings might be spurious due to the limitations of RFJ, it may
also be that they just happened to be thread local for our particular trace;
we cannot know for sure without a sound checking system that can handle
them (like RFJ2). Our suspicion after inspecting the source is that for some
of these fields, thread locality was a function of the particular execution and
not of the program in general.

In light of this experience, it becomes clear that dynamic annotation infer-
ence is most likely to succeed when it complements a thorough testing regime.
Achieving a good degree of code coverage is essential to inferring correct lock

5 http://hsqldb.sourceforge.net/

17

relationships from program traces. We do not view this as a significant limi-
tation, as testing for correctness is commonplace—existing tests can be used
for annotation inference with little trouble.

4 Related Work

There are two ways that static and dynamic analysis are traditionally com-
bined. Most common is what we refer to as static-dynamic analysis: Dynamic
analysis (in the form of run-time checks) is used to enforce properties that are
too hard to check statically. A canonical example is the property that a pointer
will not be NULL when it is dereferenced; when this fact cannot be proven
statically, it is checked dynamically with an inserted check. This technique
has been used to check for data races in Java programs [16,17]. Its drawback
is that it imposes run time overhead in all but the most simple cases, and if
a data race is discovered dynamically, the only recourse may be to terminate
the program.

The converse is dynamic-static analysis, in which runtime profiling data in-
forms a static analysis; FindLocks is an example of a dynamic-static anal-
ysis. Ernst’s Daikon tool [18] infers simple invariants between variables in a
program through run-time profiling. Nimmer and Ernst [19,20] showed that
many of the inferred invariants could be proven sound using a theorem prover.
In their approach, dynamically-determined invariants are part of a candidate
set, and the theorem prover removes those invariants that it cannot prove.
Specification mining [21] is a technique for automatically discovering sequenc-
ing and data constraints on API calls. The information may be useful for a
static verification tool. The most common example of dynamic-static analysis
is profile-directed compilation [22–25]. In this case, generated code is improved
by considering run-time profiles. This is a matter of performance, not correct-
ness, so poor profiling information will not cause the program to produce the
wrong answers.

A wide variety of type-checking systems have been developed for preventing
possible data races. However, we know of only three approaches that infer
types for such systems, to relieve the annotation burden on the programmer:
Houdini [7], Agarwal and Stoller [10], and RFJ2 [9].

Houdini [7] is a self-described annotation assistant that statically generates
sets of candidate annotations based on domain knowledge. Houdini was ap-
plied to a simplified version of race-free Java [26] that does not support ex-
ternal (polymorphic) locking. Recall that three of our test programs and the
standard libraries use external locks, so Houdini could not infer annotations
in these cases.

18

Concurrently with us, Agarwal and Stoller [10] developed a dynamic annota-
tion inference algorithm for Parameterized Race-Free Java (PRFJ) [14]. Their
algorithm is similar to ours in many respects. One difference is that it is less
context-sensitive: it handles polymorphic instantiation, but not polymorphic
generalization. In particular, it assumes that either a class has a single lock
parameter, or if the class has multiple parameters then the user has anno-
tated it as such. In contrast, our approach infers the need for lock parameters
(ghost variables) automatically. Agarwal and Stoller’s algorithm handles some
advanced features of PRFJ not present in RFJ, such as unique and read-only
objects.

RFJ2 is a recent refinement to the Race-Free Java system that includes sup-
port for static annotation inference [9]. RFJ2 supports thread-local fields and
parameterized method declarations, and infers when non-final fields are in fact
constant. These improvements would eliminate many of the false alarms we
had with RFJ, as mentioned above. The problem of annotation inference in
RFJ2 is proved to be NP-complete by a reduction to propositional satisfiabil-
ity. This reduction naturally led to the idea of using a SAT-solver to perform
inference; the approach is called Rcc/Sat. Program annotations are obtained
from the model of a boolean formula that represents the locking requirements
of the program. The search space of the SAT-solver for this problem is pre-
cisely the space of abstract program locations; a space that is complicated by
the aliasing properties of the program. As SAT-solving takes exponential time
in the worst case, this approach could have trouble scaling. As one data point,
inference of a 11K line program took roughly 2 minutes, while inference of 30K
line program took roughly 45 minutes. However, it is likely that our dynamic
approach can assist in the reduction of this search space, as we propose below.

5 Conclusions and Future Work

Our experience thus far leads us to believe that dynamic analysis can usefully
perform annotation inference. Since programmers typically write tests for their
programs, dynamic annotation inference imposes only a small burden, and
adds value by proving sound properties, in our case the absence of data races,
based on collected traces. Indeed, our tool inferred all the annotations needed
for idioms that RFJ could check. Moreover, a number of applications made
use of external locking, and our approach correctly parameterized classes to
express this fact.

However, our experience has exposed two limiting factors in the technique:

(1) A large program may only execute a portion of its code during common
usage, and thus a dynamic tool may not generate annotations for the

19

entire program. This was a problem for our (very simple) testing code for
HSQL.

(2) In general, a given static analysis may not be able to verify properties
easily detected by dynamic analysis. For example, RFJ does not support
treating classes as thread-local on a per-field basis. It also cannot check
temporal shifts in protection, such as an object that is thread-local at
first, but later becomes read-only or shared and locked. Our dynamic
instrumentation could discover these situations easily, but the chosen
static analysis could not check them.

To reduce the need for good test coverage, we could have the dynamic analysis
“add value” to a static inference system. In particular, candidate annotations
could be generated both statically and dynamically, and checked for soundness
in the style of Houdini [26,7]. Indeed, the RFJ2 inference system Rcc/Sat seems
like a prime candidate for this approach.

To address the second problem requires developing a stronger complementary
static checking system. Indeed, both RFJ2 and PRFJ are more expressive than
RFJ. Dynamic annotation inference could make practical a more sophisticated
type system which requires many annotations, since it can infer at least some
of those annotations automatically. For example, dynamic analysis can easily
and efficiently capture the program execution paths for which a safety property
holds. To make best use of this information, our static checking system could
be path sensitive. Type systems with intersection-, union-, and dependent
types can describe path-sensitive properties. Since (static) type inference in
such a system is generally undecidable, dynamic path information could supply
needed annotations.

More generally, an interesting avenue of future work is to evaluate, under a
variety of metrics, when the technique of applying dynamic analysis to aid
sound static analysis makes sense. In general, the fact that a property is sat-
isfied by some set of executions does not imply that the property holds for
the entire program. However, in our experience the guarded-by relation dis-
covered by the dynamic instrumentation can frequently be proved sound for
the whole program. The interesting question is when and why this is the case.
While work has been done to characterize the computability classes of runtime
analysis as compared to static analysis [5,27], little has been done to explore
the two at the level of actual programs. For example, Ernst [18] has found
that dynamically-inferred properties sometimes hold statically, but does little
to explain why. One possibility is to consider program traces and programs
that induce them in a single formalism such as abstract interpretation [28].

20

References

[1] C. Flanagan, S. N. Freund, Type-Based Race Detection for Java, in: Proceedings
of the 2000 ACM SIGPLAN Conference on Programming Language Design and
Implementation, Vancouver B.C., Canada, 2000, pp. 219–232.

[2] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, T. Anderson, Eraser: A
Dynamic Data Race Detector for Multi-Threaded Programs, in: Proceedings of
the 16th ACM Symposium on Operating Systems Principles, St. Malo, France,
1997, pp. 27–37.

[3] D. Engler, K. Ashcraft, Racerx: effective, static detection of race conditions and
deadlocks, in: Proceedings of the 19th ACM Symposium on Operating Systems
Principles, Bolton Landing, New York, 2003, pp. 237–252.

[4] D. Hovemeyer, W. Pugh, Finding bugs is easy, in: J. M. Vlissides, D. C. Schmidt
(Eds.), OOPSLA Companion, ACM, 2004, pp. 132–136.

[5] K. W. Hamlen, G. Morrisett, F. B. Schneider, Computability classes for
enforcement mechanisms, ACM Transactions on Programming Languages and
Systems 27, to appear.

[6] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, R. Stata,
Extended Static Checking for Java, in: PLDI’02 [29], pp. 234–245.

[7] C. Flanagan, K. R. M. Leino, Houdini, an Annotation Assitant for ESC/Java,
in: J. N. Oliverira, P. Zave (Eds.), FME 2001: Formal Methods for Increasing
Software Productivity, International Symposium of Formal Methods, no. 2021
in Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, 2001,
pp. 500–517.

[8] A. Aiken, M. Fähndrich, J. S. Foster, Z. Su, A Toolkit for Constructing
Type- and Constraint-Based Program Analyses, in: X. Leroy, A. Ohori (Eds.),
Proceedings of the Second International Workshop on Types in Compilation,
Vol. 1473 of Lecture Notes in Computer Science, Springer-Verlag, Kyoto, Japan,
1998, pp. 78–96.

[9] C. Flanagan, S. N. Freund, Type Inference Against Races, in: R. Giacobazzi
(Ed.), Static Analysis, 11th International Symposium, Vol. 3148 of Lecture
Notes in Computer Science, Springer-Verlag, Verona, Italy, 2004.

[10] R. Agarwal, S. D. Stoller, Type Inference for Parameterized Race-Free Java,
in: Proceedings of the Fifth International Conference on Verification, Model
Checking and Abstract Interpretation, Vol. 2937 of Lecture Notes in Computer
Science, Springer-Verlag, Venice, Italy, 2004.

[11] F. Henglein, Type Inference with Polymorphic Recursion, ACM Transactions
on Programming Languages and Systems 15 (2) (1993) 253–289.

[12] Bytecode engineering library, http://jakarta.apache.org/bcel/.

21

[13] D. Mosberger, T. Jin, httperf: A tool for measuring web server performance,
in: First Workshop on Internet Server Performance, ACM, 1998, pp. 59—67.

[14] C. Boyapati, M. Rinard, A Parameterized Type System for Race-Free Java
Programs, in: Proceedings of the 16th ACM SIGPLAN Conference on Object-
oriented Programming Systems, Languages, and Applications, 2001, pp. 56–69.

[15] D. Grossman, Type-Safe Multithreading in Cyclone, in: Proceedings of the 2003
ACM SIGPLAN International Workshop on Types in Language Design and
Implementation, New Orleans, Louisiana, USA, 2003, pp. 13–25.

[16] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, M. Sridharan,
Efficient and Precise Datarace Detection for Multithreaded Object-Oriented
Programs, in: PLDI’02 [29], pp. 258–269.

[17] R. O’Callahan, J.-D. Choi, Hybrid dynamic data race detection, in: Proceedings
of the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, San Diego, California, USA, 2003, pp. 167–178.

[18] M. D. Ernst, J. Cockrell, W. G. Griswold, D. Notkin, Dynamically Discovering
Likely Program Invariants to Support Program Evolution, IEEE Transactions
on Software Engineering 27 (2) (2001) 99–123.

[19] J. W. Nimmer, M. D. Ernst, Static verification of dynamically detected program
invariants: Integrating Daikon and ESC/Java, in: Proceedings of the First
Workshop on Runtime Verification (RV ’01), 2001.

[20] J. W. Nimmer, M. D. Ernst, Invariant Inference for Static Checking: An
Empirical Evaluation, in: Tenth Symposium on the Foundations of Software
Engineering, Charleston, South Carolina, USA, 2002, pp. 11–20.

[21] G. Ammons, R. Bodik, J. R. Larus, Mining specifications, in: Proceedings
of the 29th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Portland, Oregon, 2002, pp. 4–16.

[22] G. Ammons, J. R. Larus, Improving data-flow analysis with path profiles, in:
Proceedings of the 1998 ACM SIGPLAN Conference on Programming Language
Design and Implementation, Montreal, Canada, 1998, pp. 72–84.

[23] T. Ball, J. R. Larus, Optimally profiling and tracing programs, in: Proceedings
of the 19th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Albuquerque, New Mexico, 1992, pp. 59–70.

[24] K. Pettis, R. C. Hansen, Profile guided code positioning, in: Proceedings of
the 1990 ACM SIGPLAN Conference on Programming Language Design and
Implementation, White Plains, New York, 1990, pp. 16–27.

[25] Y. Wu, J. R. Larus, Static branch frequency and program profile analysis, in:
Proceedings of the 27th International Symposium on Microarchitecture, San
Jose, CA, 1994, pp. 1–11.

[26] C. Flanagan, S. N. Freund, Detecting race conditions in large programs, in:
Proceedings of the ACM SIGPLAN/SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, Snowbird, Utah, 2001, pp. 90–96.

22

[27] F. B. Schneider, Enforceable security policies, ACM Transactions on
Information and Systems Security 3 (1) (2000) 30–50.

[28] P. Cousot, R. Cousot, Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints,
in: Proceedings of the 4th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 1977, pp. 238–252.

[29] Proceedings of the 2002 ACM SIGPLAN Conference on Programming Language
Design and Implementation.

23

