
Dynamic Software Updating

MICHAEL HICKS

University of Maryland, College Park

and

SCOTT NETTLES

The University of Texas at Austin

1. INTRODUCTION

Many computer programs must be ‘non-stop’, that is, run continuously and without
interruption. This is especially true of mission critical applications, such as financial
transaction processors, telephone switches, airline reservations and air traffic control
systems, and a host of others. The increased importance of the Internet and its link
with the global economy has made non-stop service important to a larger range of
less sophisticated users who wish to run e-commerce servers.

On the other hand, companies must be able to upgrade their software to fix bugs,
improve performance, and expand functionality. In the simplest case, upgrades and
bug fixes require the system to be shut down, updated, and then brought back on-
line. This, of course, is not acceptable for non-stop applications; at best, it will
result in loss of service and revenue, and, at worst, may compromise safety.

Thus, in general, non-stop systems require the ability to update software without
service interruption. Solutions to this problem exist and are widely deployed. A
common approach is to provide application-specific software support in conjunction
with redundant hardware (already present to support fault tolerance) to enable
so-called hot standbys. For example, Visa makes use of 21 mainframe computers
to run its 50 million line transaction processing system; it is able to selectively
take machines down and upgrade them by preserving relevant state in the on-line
computers. This is similar to the way that Internet “server farms” are updated.
This Visa system is updated as many thousands of times per year, but tolerates
less than 0.5% downtime [Pescovitz 2000]. Of course, Visa’s approach is expensive
and, perhaps worse, adds to the complexity of building applications. Much of the
complexity comes from the need for the standby machine(s) to keep or gain the
state maintained by the running application.

Authors’ addresses: M. Hicks, Department of Computer Science, University of Maryland, A.V.

Williams Building, College Park, MD 20742. S. Nettles, The University of Texas at Austin,
Electrical and Computer Engineering, 1 University Station C0803, Austin, TX 78712-0240.
This work was supported by the NSF under contracts ANI #00-82386, ANI #98-13875, and ANI

#0081360.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2003 ACM 0164-0925/99/0100-0111 $5.00

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1–??.

2 ·

While redundant hardware may often be present to support fault tolerance or
load balancing, we would prefer not to require it for updating, since it adds cost
and complexity. By using a simpler, general-purpose approach, we can support sys-
tems that do not typically require extra hardware, like communications components
(e.g., routers, firewalls, NAT translators, etc.), simple Internet servers, monitoring
systems, embedded control systems, and others.

Furthermore, there are many non-redundant systems that do not necessarily re-
quire non-stop service but would certainly benefit from it. For example, rather than
having to reboot a desktop computer each time its operating system is upgraded,
we would prefer to realize the updates dynamically. Finally, dynamic updating
can aid the software development and maintenance process. For example, in our
demonstration application, FlashEd, we dynamically inserted probes to observe
the application’s state, and then removed them after it was reported. This was
useful for debugging and profiling. Moreover, dynamic updating supports “fix-and-
continue” methodologies of software development, so that fixes can be applied to
the application while still in the state in which problems were observed.

We present a general-purpose framework for updating a program as it runs,
called dynamic software updating, that is flexible, robust, easy to use, and efficient.
Our approach is both cheaper and less complex than typical application-specific
approaches, and as we shall argue, improves significantly over existing general-
purpose systems.

We focus on the task of dynamically updating the code and state of a single
process. Our work does not directly address the problem of dynamically updat-
ing distributed, cooperating programs. For example, we do not consider updating
“web server farms” along with the underlying database they share. Changes to
the database schema would require corresponding changes to programs that use
the database, and these changes would have to be coordinated. Similarly, dynam-
ically updating distributed programs to use a different protocol to use a newer
protocol would require coordination to ensure that an updated program does not
send a confusing message to a not-as-yet-updated one. Our framework can support
changes to distributed programs that do not require coordination. For example,
we can update a single web server operating within a farm. Because the state of
the updated program is preserved, our approach may be preferable to “updating
by load-balancing” in which the process is forced to shut down and restart after
completing its transactions. In this case, it would lose performance-critical soft-
state, like file and translation caches, while these caches are naturally preserved in
our approach. Such systems would also benefit from the ability to add and delete
debugging probes dynamically.

After stating the goals of dynamic software updating in Section 2, we describe
our updating framework based on dynamic patches in Section 3 and our implemen-
tation of it using Typed Assembly Language [Morrisett et al. 1999] in Section 4. We
describe the development process for updateable software in Section 5, highlighting
our tool for semi-automatically generating dynamic patches, and discuss the issues
behind the timing of dynamic updates in Section 6. Section 7 presents our expe-
rience with a real-world application, a dynamically-updateable web server called
FlashEd; its performance is presented in Section 8. Section 9 discusses existing
research and future directions.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

· 3

A shorter description this work was published in the 2001 ACM Conference on
Programming Language Design and Implementation [Hicks et al. 2001], and a com-
plete description can be found in the first author’s Ph.D. dissertation [Hicks 2001].
Compared to the conference paper, the present paper expands the exposition of
the design, implementation, performance, and work related to our approach, while
Sections 5 and 6, on the development process and timing of updates, are new.

2. GOALS AND APPROACH

What properties define an effective dynamic updating framework? To evaluate
general-purpose dynamic updating systems, we establish four goals that any such
system should ideally meet:

—Flexibility. Any part of a running system should be updateable without requir-
ing downtime.

—Robustness. A system should minimize the risk of errors and crashes due to an
update, using automated means to promote update correctness.

—Ease of use. Generally speaking, the less complicated the updating process is,
the less error-prone it will tend to be. The updating system should therefore be
easy to use.

—Low overhead. Making a program updateable should impact its performance
as little as possible.

2.1 Existing Approaches

Unfortunately, no existing general-purpose updating system meets all of the de-
sired criteria (an in-depth discussion of related work appears in Section 9). Many
systems have limited flexibility, constraining their evolutionary capabilities; for ex-
ample, dynamic linking is a well-known mechanism, but while systems based upon
dynamic linking [Appel 1994; Peterson et al. 1997] may add new code to a running
program, they cannot replace existing bindings with new ones. Those systems that
do allow replacement typically either limit what can be updated (e.g., only abstract
types [Gilmore et al. 1997] or named types [Duggan 2001], whole programs [Gupta
et al. 1996], class instances [Hjálmtýsson and Gray 1998; Soules et al. 2003], or prop-
erly encapsulated objects [Boyapati et al. 2003]), when the updates can occur (e.g.,
only when updated code is inactive [Gilmore et al. 1997; Malabarba et al. 2000;
Frieder and Segal 1991; Gupta et al. 1996; Soules et al. 2003]), or how the updates
may occur (e.g., functions and values must not change their types [Hjálmtýsson and
Gray 1998; Soules et al. 2003], or changes to module and class signatures are re-
stricted [Malabarba et al. 2000; Gilmore et al. 1997]). These limitations leave open
the possibility that a software update may be needed yet cannot be accomplished
without downtime.

In many cases, there are few safeguards to ensure update correctness. Some sys-
tems, for example, break type safety [Tool Interface Standards Committee 1995;
Hjálmtýsson and Gray 1998; Frieder and Segal 1991; Gupta et al. 1996; Buck and
Hollingsworth 2000] or have only dynamic checking [Armstrong et al. 1996], or
require potentially error-prone hand-generation of complex patch files [Lee 1983;
Gilmore et al. 1997; Malabarba et al. 2000; Frieder and Segal 1991; Gupta et al.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 ·

1996; Armstrong et al. 1996; Buck and Hollingsworth 2000]. Others rely on uncom-
mon source languages or properties [Lee 1983; Bloom 1983; Armstrong et al. 1996;
Boyapati et al. 2003] and hence are not broadly applicable. Finally, some systems
impose a high overhead, either due to implementation complexities [Lee 1983; Buck
and Hollingsworth 2000], or due to a reliance on interpreted code [Malabarba et al.
2000].

2.2 Our Framework

Our framework, dynamic software updating, avoids the extra equipment and added
complexity of typical application-specific approaches, and unlike previous general-
purpose systems, it meets all four of the evaluation criteria through a novel combi-
nation of new and existing technology.

Flexibility. Our system permits changes to programs at the granularity of individual
definitions, be they functions, types, or data. Furthermore, we allow these defini-
tions to change in arbitrary ways; most notably, functions and data may change
type, and named types may change definition. The system does not restrict when
updates may be performed, even allowing active code to be updated. Our approach
uses an imperative, C-like language, and should thus be widely usable.

Robustness. In our system, dynamic patches consist of verifiable native code, in
particular Typed Assembly Language (TAL) [Morrisett et al. 1999]. As a result, a
patch cannot crash the system or perform many incorrect actions since it can be
proven to respect important safety properties, including type safety; ours is the first
dynamic updating system to use verifiable native code. Our implementation builds
on top of basic dynamic linking, keeping the implementation simple and robust.

Ease of use. The construction of patches is largely automated and clearly separated
from but compatible with the typical development process. When a new software
version is completed, a tool compares the old and new versions of the source files to
develop patches that reflect the differences. Although total automation is undecid-
able, our tool can nonetheless generate a substantial amount of useful patch code,
leaving placeholders for the programmer in the (infrequent) non-trivial cases. No
previous system both cleanly separates patch development from software develop-
ment and provides automated support for patch construction.

Low Overhead. Our system imposes only a modest run-time overhead, largely in-
herited from dynamic linking. Because we use TAL, programs and patches consist
of native code, giving obvious performance benefits as compared to interpreted
systems.

In short, our approach provides type-safe dynamic updating of native code in an
extremely flexible manner and permits the use of automated tools to aid the pro-
grammer in the updating process. As a result, ours is the first dynamic updating
system to satisfy all of the evaluation criteria.

It should be noted that while the framework itself does not restrict the timing
of an update, there will undoubtedly be moments when updates should not occur,
dictated by the semantics of the program. For example, updating the representation
of a map from a tree to a hashtable should likely not occur while the map is in use.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

· 5

On the other hand, updating the code that manipulates the map to perform extra
logging or to cross-reference another datastructure to improve lookup times is likely
acceptable even while the map is in use. Our system allows the programmer to make
such determinations, while nonetheless ensuring the program remains type-safe.
Some restrictions on update form (Section 3.4) may effectively induce restrictions
on timing as well. The issue of timing is discussed at length in Section 6.

3. DYNAMIC PATCHES

Our approach to dynamic updating is built on the idea of a dynamic patch, which
describes the dynamic changes between two versions of a program module. How
we define a dynamic patch influences both the system’s flexibility and its ease of
use: it should ideally be able to express arbitrary changes to a file, and it should
cleanly separate constructs required for patching from the new code, allowing the
software development process to be cleanly separated from patch development. It
also affects the system’s robustness, as implementing the patch semantics could be
quite difficult, resulting in a large and/or complex implementation. We present
our notion of dynamic patch incrementally, arriving at a definition that is suitably
flexible, all the while keeping the new code separate from code germane to patching.

Dynamic patches differ from static patches, such as those created and applied
using the Unix programs diff and patch, because they must deal with the state
of the running program. We can abstractly define a dynamic patch of some file f
as the pair (f ′, S), where f ′ is the new version of the file and S is an optional state
transformer function, used to convert the existing state accumulated by f to a form
usable by the new code f ′. The transformer is defined such that the old and new
code have their own state, and thus the old state is copied to the new code and
then properly transformed. This notion of patch is similar to Gupta [Gupta 1994],
except that he defines essentially a single patch for the entire program, instead of
one patch per changed file.

In our system, patches may be used to reflect nearly arbitrary changes to a file dy-
namically, particularly to its function and data definitions, and its type definitions.
We look at each of these cases in turn, and then describe some of the limitations
of our patch definition.

3.1 Changes to Code and Data

As an example, consider the module shown in Figure 1.1 The function f increments
num to track the number of times it is called and returns the sum of the two fields of
its argument, which has type t. Suppose we modify f to return the product of its
arguments, creating a new version main.pop(2). The dynamic patch that converts
main.pop to main.pop(2) is shown in Figure 22. The state transformer function S
is trivial: it copies the existing value of num in the old version f to the num variable
in the new version f ′.

1The code examples shown here are written in Popcorn, a safe C-like language [Morrisett et al.
1999]. We’ve made some small modifications to Popcorn syntax in the figures, so the reader can

think of this code as essentially C. We discuss Popcorn further in the next section.
2This figure illustrates an abstract notion of a patch; the actual syntax for our implementation is
presented in Section 4.3.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 ·

static int num = 0;

typedef struct {

int a; int b;

} t;

int f (t T) {

num++;

return T.a + T.b;

}

Fig. 1. Example file main.pop

new version main.pop(2):

static int num = 0;

typedef struct {

int a; int b;

} t;

int f (t T) {

num++;

return T.a * T.b;

}

state transformer S

void S () {

main.pop(2) ::num =

main.pop ::num;

}

Fig. 2. Dynamic patch for main.pop: (main.pop(2), S)

Of course, the transformer function is arbitrary code, so more complicated trans-
formations can be expressed when needed. For example, say the variable x has type
graph, which represents a directed graph. The module containing x is updated, but
the representation of type graph is unchanged, so state transformation can simply
copy the reference to the new module: x = Old::x. Alternatively, say the repre-
sentation of type graph changes to include an additional field at each node. In this
case, the programmer could perform a deep copy of the graph by traversing the old
graph and generating new nodes containing the old information plus the new field.
Auxiliary datastructures (like hash tables) can be used to keep track of the aliasing
relationships in the old graph to ensure they are duplicated in the new one.

On the other hand, if the program depends on the actual addresses of pointer
data, an acceptable state transformer will be more difficult or impossible. For
example, say the addresses of graph nodes are used as keys in a separate hash
table. If the representation of graph changes and we must copy it as above, we
must likewise transform the hashtable to use the copied keys. We further consider
the limitations of state transformation in Section 3.4.1.

3.2 Stub Functions

Because patches are applied to individual files, rather than whole programs, there
is a problem in applying a single patch if exported code or data changes type:
existing referrers to changed items will access them at the old (now incorrect) type.
For example, consider a new version of f that adds a new argument to f (call
the new file version main.pop(3)); existing callers in different modules will still
call f with a single argument, constituting a type error. In general, this problem
can be ‘corrected’ by simultaneously applying patches to correct the callers. In
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

· 7

new version main.pop(3):

static int num = 0;

typedef struct {

int a; int b;

} t;

int f (t T, int x) {

num++;

return T.a * T.b + x;

}

state transformer S

void S () {

main.pop(3) ::num =

main.pop ::num;

}

int stub_f(t T) {

return f(T,0);

}

Fig. 3. Dynamic patch for main.pop: (main.pop(3), S, {f→ stub f})

most situations, it would not make sense to do otherwise; in transitioning from one
version of a program to another, it only makes sense to patch all of the files that
changed.

On the other hand, in some situations a changed file’s callers cannot be changed.
For example, in some proposed active networks [Tennenhouse et al. 1997], multiple
parties may download code into routers to customize packet processing. In this case,
one party may wish to update their code, but cannot update the callers of that code
belonging to other parties. As another example, we may wish to break down a large
update into several smaller updates, so that the process of updating the system is
less disruptive; Lee [Lee 1983] considers a way of methodically breaking down larger
updates into smaller ones. For these situations, we allow patches to include stub
functions. A stub function has the same type as the old version, and is interposed
between old callers and new definitions to get the types right.

The patch for main.pop to main.pop(3) is (main.pop(3), S, {f → stub f}),
shown in Figure 3. The third part of the patch is a mapping between functions in
main.pop and the stub functions that should replace them. In this case, the stub
function for f, called stub_f, simply inserts a default value for the new argument
x to f. Existing callers of f will now call stub_f, while code loaded later will link
against the new f, at the new type.

Even when all patches are applied at once and/or the types of updated functions
do not change, stub functions can be used to perform incremental, transitional com-
putation. For example, suppose we have an event-based system. Every time the pro-
gram is prepared to process an event, it calls the function get_next_event, which
returns a value of type event. Now, say we wish to update the way that events
are gathered; that is, we wish to change the implementation of get_next_event
to perform some additional, or different operations. Assume that get_next_event
keeps a queue of events waiting to be processed.

We could write a patch for this change in one of two ways. We could write a
state transformer function S to copy the contents of the old queue of events for
use by the new get_next_event. Alternatively, we could use a stub function to
retrieve the queued events using the old function, and then switch to using the new
one when no old events remain, roughly:

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 ·

static bool got_old_events = false;
event stub_get_next_event() {
if (!got_old_events)
event e = Old::get_next_event(); /* old version */
if (e != null) return e;
else got_old_events = true;

}
return get_next_event(); /* new version */

}

Here we differentiate between the old version of get_next_event and the new one
by prepending the old version with Old::. Using a stub in this way deals with the
old state incrementally, as opposed to performing all transitional computation at
patch-time. The obvious benefit is that the pause at patch-time due to state trans-
formation is less; this may be critical to reduce service outage when transforming
large amounts of state.

On the other hand, existing code will always call the stub function, even after
all of the old state has been processed, imposing extra overhead. To avoid this
cost, we could define special syntax to allow a stub function to update its clients
to point the actual function, rather than the stub, once the state transformation is
complete. The above code would change to something like:

event stub_get_next_event() {
event e = Old::get_next_event(); /* old version */
if (e != null) return e;
else {
RELINK("get_next_event",get_next_event);
return get_next_event(); /* new version */

}
}

The call to RELINK would cause existing clients to call the new version of the
function, rather than the stub, on subsequent calls. How this construct would be
implemented would depend on the mechanisms used to realize dynamic updating,
which we discuss in Section 4.3.

There is no obvious construct for data analogous to stubs. Thus, if a patch
changes the type of some global variable, then all the functions in the running
program that refer to that variable must also be changed. In the case that global
data is declared static, no additional files are involved since only the functions
in the local file itself are affected. When data is exported, however, all other files
that refer to that data must be updated. Note that this problem is mitigated in
object-oriented languages, since data is co-located with the code that operates on
it.

3.3 Changes to Type Definitions

Changes may also occur to type definitions, which declare the named types of the
program. Considering again the code in Figure 1, we could change the definition of
t to include a third field. A simple way to express a changed type in a patch file is
to syntactically differentiate between the type’s old definition and its new one, so
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

· 9

new version main.pop(41):

static int num = 0;

typedef struct {

int a; int b; int c;

} t;

int f (t T) {

num++;

return T.a * T.b * T.c;

}

state transformer S

void S () {

main.pop(4) ::num =

main.pop ::num;

}

int stub_f(Old::t T) {

t T2 = new t(T.a,T.b,0);

return f(T2);

}

Fig. 4. Dynamic patch for main.pop: (main.pop(41), S, {f→ stub f})

that we can manipulate data inhabiting both types. A patch in this style is shown
in Figure 4. Here the stub function stub_f takes an argument having the old type
t, syntactically shown as having type Old::t. It then creates a value of type t,
copying the existing fields from the argument, and assigning a 0 for the third field.
Finally, the new f function is called with the newly created value.

Differentiating between the old and new version of types allows the program to
have values of both the old and new t during its execution. The benefit here is
that dealing with data of changed type is completely programmer-directed, which
allows more relaxed constraints on when updates can be performed at run-time,
and is more predictable. Programmer-directed patches admit a reasonably simple
implementation.

3.4 Limitations

Our notion of patch is designed to be flexible, but it has some limitations to ensure
a simple implementation. In particular, there are fundamental limitations on the
process of state transformation, the patch definition does not provide a means to
deal with data on the stack, and its requirement that programmers manually handle
existing data may sometimes prove burdensome; we consider each point in turn.

3.4.1 Expressiveness of State Transformation. There is a fundamental assump-
tion that the form of the new state can be determined from the existing state,
implemented by the programmer as the state transformation function S. For ex-
ample, converting a tree to a hash table is straightforward because the informa-
tion contained in the tree is sufficient to construct the hash table. However, new
data structures may contain information not available in the current program. For
example, we could imagine adding a time stamp field to a data structure T to in-
dicate when it was created. Dynamically transforming existing T instances to add
this new field will be impossible because the information simply does not exist at
dynamic-update time. We call this the state transformation problem. Bloom and
Day [Bloom and Day 1993] have explored some of the theoretical limitations of
state transformation.

This problem can be overcome by modifying the code and data structures in
question to handle the lack of information. In the worst case, the programmer
could use a version field to differentiate between data-deficient structures converted
at update-time and those created by the new code. In the places that it matters,
the deficient data structures can be treated specially, perhaps by calling bits of old

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 ·

code, as we did for the queue example in Section 3.2. In our experience, the state
transformation problem rarely arises; we describe the sole case we have encountered
in Section 7.1.1.

Others have handled the state transformation problem by allowing old code and
new code to be intermixed [Appel 1994; Segal and Frieder 1993; Hjálmtýsson and
Gray 1998; Duggan 2001; Bierman et al. 2003], and the choice of which to execute
to be determined automatically. Existing data instances are not transformed, and
are used exclusively by older versions of the code. Newly-created instances are
always of the most recent version, and are handled by the new code. Unfortunately,
this semantics does not lead to correct program operation in general, and thus
the programmer is forced to ensure an orderly transition. However, it becomes
quite difficult to do so given the possibility of many versions of code and state
interacting together. We feel our approach keeps things simpler, while still providing
enough control. More experience is needed to understand how often this process is
burdensome in reasonable cases, and/or whether the ‘pollution’ of the source code
to accommodate one-time patches will be excessive.

3.4.2 Transforming the Stack. The state transformation function S considers
global state, including the heap and static data segment, but not the stack. As
a result, there is no direct means for the programmer to transform data on (or
pointed at from) the stack. In contrast, systems like Dynamic ML [Gilmore et al.
1997] and others [Boyapati et al. 2003; Duggan 2001] can automatically transform
all data having the changed type from wherever it may be reached.

Preventing direct manipulation of the stack has two consequences. First, old code
and data may, for a time, be active along with new code. This is advantageous in
that there is no need to translate the return address of the running code to return
instead to the new version of its caller. If the caller changed significantly, it would be
difficult to decide where to return instead. On the other hand, having two versions of
a function or data active in the program may lead to incorrect and/or unpredictable
behavior. One way to handle multiple versions is to use stub functions. That
is, when old code calls new functions, it will do so through the stub functions.
These functions could attempt to ensure a consistent semantics, but admittedly
determining reasonable behavior could quickly become quite complicated in even
simple situations.

The second consequence is that the implementation burden is reduced. In partic-
ular, there is no need to support a general way of traversing the stack. Type-safe,
runtime stack traversals would require extra semantic information be available at
runtime, such as that needed by a debugger. Adding such a mechanism in a system
like TAL would also increase its trusted computing base.

We opted for the simpler implementation at the cost of some reduced flexibility.
As we describe in Section 6, to avoid dealing with the stack at patch time, we
constructed our application to only permit updates when the stack was essentially
empty. This required slightly restructuring the application. Recent work is start-
ing to explore type-safe ways of supporting garbage collectors, thread schedulers,
security checkers, etc. It would be interesting to revisit this issue at that point and
experiment with possible approaches.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

· 11

new version main.pop(42):

static int num = 0;

struct t {

int a; int b; int c;

}

int f (t T) {

num++;

return T.a * T.b * T.c;

}

state transformer S

void S () {

main.pop(4) ::num =

main.pop ::num;

}

Old::t convert_t(t T) {

t T2 = new t(T.a,T.b,0);

return T2;

}

Fig. 5. Alternative notion of dynamic patch for main.pop: (main.pop(42), S, {}, {t→ convert t})

3.4.3 Transforming Existing Data. While our style of programmer-directed patch
is simple and intuitive, it nonetheless places an added burden on the programmer.
An alternate approach is system-directed patches, in which only one version of a
type’s data can be present at any given time, as enforced by system. In this case,
programmers define type conversion functions in the patch to indicate how data of
the old type should be transformed to the new, and the system invokes these func-
tions when needed. This approach has the advantage that state transformation can
occur on demand, reducing potentially-long pauses when the program is updated.
Using this semantics, our patch file might be like that shown in Figure 5.

In this case, there is no need to explicitly define a stub function as we did in
Figure 4. The system will properly convert the data using convert_t as needed.
As such, the programmer is only responsible for how the data is converted, not
when. System-directed patches are employed by Dynamic ML [Gilmore et al. 1997]
and others [Duggan 2001; Boyapati et al. 2003].

The disadvantages of system-directed patches are twofold. There is a greater
implementation burden: since data must be tagged with its type, there must be
some means for finding and converting the data. In addition, erroneous conditions
(such as exceptions thrown during transformation) may be difficult to handle. Fur-
thermore, a system-directed, automatic approach to converting old data may be
too inflexible for certain applications. In particular, to ensure soundness, there are
restrictions on when type conversions can take place. For example, Boyapati et.
al [Boyapati et al. 2003] develop a system for lazily upgrading objects in a per-
sistent store. For their system to work properly, the programmer must properly
use language-level transactions to avoid conflicts, and be sure that data encapsu-
lation properties imply a well-defined ordering. Without transactions, the changes
must be transparent to the surrounding code, since it will be unaware of when the
change is to take place. Transparency typically implies that changed types must
be abstract [Gilmore et al. 1997].

We favor programmer-directed data conversion because of its greater flexibility
and simpler implementation, with a smaller trusted computing base. Our experi-
ence with FlashEd has been that manual conversion is not difficult. However, the
notion of system-directed transformation is appealing both from a usability and
performance point-of-view. We leave it to important future work to discover ways

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 ·

of combining the best of both approaches.

In summary, our preferred definition of dynamic patch is (f, S, stub set), where f
is the new code, S is the state transformer function (acting on the heap and static
data), and stub set is a set of mappings from functions to their corresponding stubs.
This notion is both flexible and easy to use, as it can reflect nearly arbitrary changes
between two files, and the code germane to dynamic patching is cleanly separated
(as the state transformer and stubs) from the new code. The fact that we can
generate patches mostly automatically, as described in Section 5, further bolsters
our claims of ease of use.

4. IMPLEMENTING DYNAMIC PATCHES

There are two basic ways we could implement dynamic patches. The first would
be to compile the new program from the new source files, start it up alongside
the old one, and then signal the old one to marshal and transmit its state to the
new program. The new program would unmarshal and transform this state, and
initialize its execution using the result. We call this approach state transfer -based
updating. The alternative is to dynamically link patches into the existing program,
transform the state locally, and then transition to using the new code. We call this
dynamic linking-based updating.

The state transfer approach has been implemented by Gupta [Gupta and Jalote
1993]. It is appealing in that we can upgrade a program and its underlying hardware
at once by starting the new program on a different machine. However, it has a
number of drawbacks:

—Old and new code cannot run concurrently, even temporarily, which limits when
updates might occur.

—An update will always affect the entire program. For example, all of its state
must be transferred from the old process to the new, even if only a fraction of it
is actually changed by the update.

—State transfer is more challenging to implement, since machine state like the
program counter, heap, stack, etc. must be reified correctly in the new program,
which may have a wholly different layout. Indeed, to address this point Gupta
only permitted the updating of global variables that were scalars; transforming
linked structures was not supported. Work platform-independent checkpointing
could probably be applied to address some of these concerns [Ramkumar and
Strumpen 1997].

—Some program state may be stored in the operating system kernel, like file de-
scriptor maps or parent-child process relationships, and this may not be easily
captured and moved between the old and new process.

Therefore, for reasons of flexibility and simplicity, we build dynamic patch appli-
cation on top of dynamic linking. In this section, we first consider possible mecha-
nisms for transitioning the program to use dynamically linked patches, considering
updates to code and data, and then updates to type definitions. We conclude with
the details of our implementation.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

· 13

 return bfunc();
}

int afunc() { int bfunc() {
 return 1;
}

 return bfunc();
}

int afunc() { int bfunc() {
 return 1;
}

B

int bfunc() {
 return 2;
}

new B

A B

A

Before

After

Fig. 6. Updating by code relinking

 return bfunc();
}

int afunc() {

 return bfunc();
}

int afunc() {

A

int bfunc() {
 return 1;
}

B

indirection
table

A

indirection
table

B

int bfunc() {
 return 1;
}

After

Before

new B

int bfunc() {
 return 2;
}

Fig. 7. Updating by reference indirection

4.1 Code and Data Updates

Once a patch has been dynamically linked into the program, existing function
calls and data must be redirected to the stubs and new definitions in the patch.
There are essentially two ways to do this: either by code relinking or by reference
indirection. When using code relinking, the rest of the program is relinked after
loading a patch; as a result, all references to the old definitions will be redirected to
refer to the new ones. This is shown in Figure 6. By contrast, reference indirection
requires modules to be compiled so that references to other modules are indirected
through a global indirection table. An update then consists of loading a patch and

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 ·

altering appropriate entries in the table to point to the patch. This is shown in
Figure 7.

With relinking, the process of updating is active: the dynamic linker must go
through the entirety of the program and ‘fix up’ any existing code to point to the
new code. With reference indirection, updating is passive: the existing code is
compiled to notice changes. As a result, the linker does not need to keep track
of the existing code and simply makes changes to the table, but at the cost of an
extra indirection to access definitions through the table. In both cases it is the
responsibility of the state transformer function to find references to old definitions
that are stored in the program’s data. For example, if the program defines a table
of function pointers, the state transformer must redirect each pointer in the table
to its new version.

We have chosen to use code relinking because it has two main benefits: it avoids
extra indirection, reducing overhead, and it is simple to implement, enhancing
robustness. In particular, we implement code relinking by reusing the code in the
dynamic linker (described in Section 4.3.1). One apparent burden is the need to
keep track of the existing code to be able to relink it; but we must do this already,
since the dynamic linker resolves external references in loaded code against all the
existing code. Relinking may also incur a higher update-time cost, since all callers
to a changed function must be rewritten, as opposed to a single table entry. In our
experience this cost has been negligible.

Ultimately, we could take a hybrid approach in which some elements are com-
piled to notice updates, and others must be relinked. One possibility that we have
explored is to compile pointerful data (notably function pointers) to have an ex-
tra indirection, but require code references to be relinked. This would ease the
requirement that the state transformer translate pointer data. We touch on this
idea further in Section 9.

4.2 Updating Type Definitions

To preserve type-safety, we need a way to upgrade the type definitions as understood
by the type-checker used by the dynamic linker. Again, there are basically two
approaches we could take: replacement or renaming. With replacement, applying
the patch replaces the existing type definition in the typechecking context with a
new one. Newly loaded code is checked against the new definition, implying that
to preserve consistency we must also convert any existing instances of the old type
definition (whether in the heap, stack, or static data area) to the new one. This
idea is illustrated in the left side of Figure 8. Here, a new version of module B has
been loaded that updates the type definition for t. The notion of t is updated in
the typechecking context, and the existing instance of t is converted to a new one
(the new field is filled in with a default value). Because the implementation of t
has changed, any code that makes use of t elsewhere in the program must itself be
replaced. One exception is in the case that the type is abstract; then only the code
that implements the type must be replaced.

The alternative approach is type renaming. Instead of allowing type definitions
to be replaced, we maintain a fixed notion of a type definition, and rely on the
compiler to define a new type that logically replaces the old one by syntactically
renaming occurrences of the old name with the new one. Renaming is similar to the
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

· 15

t a = 1

A

t belem =

t a = 1

A

t belem =

t struct { int a; }

t struct { int a; }
typechecking context

Before

typedef struct {
 int a;
} t;

B

typedef struct {
 int a;

new B

typedef struct {
 int a;
} t;

B

 int b;

typechecking context

After (renaming)

t_new } t_new;

typedef struct {
 int a;

new B

typedef struct {
 int a;
} t;

BA

t belem =

 int b;
} t;

typechecking context

t a = 1
b = 0

t struct {
 int a;
 int b;
}

After (replacement)

struct {
 int a;
 int b;
}

Fig. 8. Two methods of updating type definitions: replacement and renaming

idea of α-conversion in scoped programming languages, in which a type definition
can override a definition of the same name in a surrounding scope; the overriding
type is renamed to avoid the clash. The consequence of this approach is that when
the patch is applied, existing instances of the old type are left as they are; the state
transformer function and/or the stub functions in the patch can be used to convert
old instances at update-time or later if needed. The typechecking context retains
its definition of the old type and adds a new one for the new type.

The type renaming approach is shown in the right side of Figure 8. Now, the new
version of B defines a different type t_new as the logical replacement of t. Existing
instances of t are left as they are; the state transformer function and/or the stub
functions in the patch can be used to convert old instances at update-time or later
if needed. The typechecking context retains its old definition of t and adds the new
one for t_new.

There are advantages to both approaches. Type replacement, in general, is quite
flexible and easy to use: it maintains the identity of a type within the program
but lets its definition change. The system updates the values of the changed type
(perhaps using user-provided code), so long as the programmer has updated all of
the modules that use that type. However, because the program has no notion of
the old and new versions of the type, the system must ensure that it can (logically)
convert all of the old types invisibly. This restriction prevents an update to a type
while code in the program is using values of that type [Gilmore et al. 1997], or else
requires a way of converting from the new version back to an old one [Duggan 2001],
which can make the program harder to reason about. In contrast, type renaming
only allows the loading of new types to logically replace existing ones, placing more
burden on the programmer to convert values from the old to new type in either the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 ·

state transformer or stub functions. However, renaming provides more freedom in
timing updates, since the program is ‘aware’ of both versions.

Implementing type renaming is quite simple, requiring no additional runtime
support. To be practical it does require a standard method for renaming type
definitions at compile-time so that different developers do not choose clashing or
inconsistent names, which would result in program errors. This problem can be
solved by taking a cryptographic hash (e.g. using MD5 [Oehler and Glenn 1997])
of the type’s definition to arrive at a consistent name. In contrast, type replacement
requires a way to find all existing instances of a given type, and a way to change
them from the old version to the new. Furthermore, to ensure that type updates
do not occur when code that uses them is active requires heavyweight mechanisms
to track when modules are in use [Frieder and Segal 1991; Lee 1983; Gupta et al.
1996]. Recent systems mitigate these problems by discovering changed objects
lazily [Boyapati et al. 2003; Duggan 2001], and/or by using indirection [Soules
et al. 2003] to effectively update all aliases.

We favor the simpler type renaming approach over the more complex, though
easier to use, type replacement approach. Type renaming is more likely to be cor-
rectly implemented because it is simple, and is more portable, relying on facilities
available in type-safe dynamic linkers. Renaming also provides more flexibility as
to when and how values of changed type will be converted. Other approaches [Mal-
abarba et al. 2000] have cited runtime type dispatch operators (e.g. instanceof
in Java) as a reason for performing type replacement, but we believe more study is
needed to bring to light the problems of type renaming in such a context. In our
experience, renaming types at compile-time, and having multiple notions of a type
in the program, has not been problematic; we present some of our experience in
this regard in Section 7.1.1.

4.3 Prototype Implementation

We have implemented our framework to target Typed Assembly Language (TAL) [Mor-
risett et al. 1999]. Both TAL and its cousin, proof-carrying code [Necula 1997],
belong to a framework we call verifiable native code, in which native machine code
is coupled with annotations such that the code is provably safe. A well-formed TAL
program is memory safe (i.e. no pointer forging), control-flow safe (i.e. no jumping
to arbitrary memory locations), and stack-safe (i.e. no modifying of non-local stack
frames) among other desirable properties. TAL has been implemented for the Intel
IA32 instruction set; this implementation, called TALx86 [Morrisett et al. 1999],
includes a TAL verifier and a prototype compiler from a safe-C language, called
Popcorn, to TAL.

4.3.1 Dynamic Updating. We provide dynamic updating for Popcorn programs
by extending the functionality of TALx86’s type-safe dynamic linker [Hicks et al.
2000]. We briefly describe the original dynamic linker, and follow with the changes
we made to support dynamic updating.

At the core of the TAL dynamic linker is a simple primitive, load, that loads and
verifies TAL modules. The remainder of the linker’s functionality, which includes
linking and symbol management, is written in Popcorn, and can thus be proven
type-safe, adding to the implementation’s robustness.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

· 17

Dynamically loadable files are compiled so that their external references are in-
directed through a local table called the global offset table (GOT) in the style of
ELF dynamic linking [Tool Interface Standards Committee 1995]. At load-time,
the entries in this table are resolved with the exported definitions of the running
program. These definitions are tracked by the dynamic linker within a global dy-
namic symbol table. This ‘table’ consists of a linked list of hashtables, one per
module, that maps symbol names to their addresses. In ELF, both the GOT and
the dynamic symbol table are encoded as part of the object file header, but in our
system, they are written in Popcorn. In particular, the GOT for each loadable file
is constructed automatically via a source-to-source translation, and the dynamic
symbol table is generated and maintained by symbol management part of the dy-
namic linker. As a result, the indirection facility and the process of linking can be
checked for type-safety.

To support dynamic updating, we alter this scheme only slightly. Say we are
loading a patch for some program module A.

(1) All files, whether statically- or dynamically-linked, are compiled to have a GOT,
and external references are indirected through that GOT.

(2) When the patch for A is loaded, a new hashtable is created to be stored in
the dynamic symbol table. Once the patch has been linked with the running
program, the patch’s state transformer transfers the old state from the old
to the new A, transforming it as necessary. If an error occurs during linking
(e.g a symbol is looked up at the wrong type) or state transformation (some
exception is raised), then we roll back to the old version of A. This can be
done by simply throwing out the new hashtable, since the old code and the old
hashtable has not been modified. Once state transformation is complete, the
existing code in the program is relinked; this includes the present version of A in
case that code is still active. The result is that the GOT’s of each of the existing
files will have their entries redirected to the new code’s symbols. Finally, the
old A’s hashtable is essentially removed from the dynamic symbol table (see
below). When applying multiple patches simultaneously, we require more than
one linking pass, since patches may contain mutually-recursive references, but
the gist is the same [Hicks 2001].

To properly support these operations, we modified our dynamic linker to support
the following features:

—Exporting static variables. This allows state transformers have access to all
global state. To avoid name clashes between files, we prepend local variables
with filename::Local::.

—Customized linking order. This allows us to look up existing table entries before
they are overwritten; this is important for state transformer functions, which
may refer to both old and new versions of a given variable.

—Rebinding. We can map symbols in the program to different names in the dynamic
symbol table. This allows us to replace function symbols with stubs that do not
have the exact same name.

—Secondary lookups. After a patch is loaded, say for module A, the old version of
A needs to be relinked in case it is still active. In this case, if a lookup during

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 ·

the relinking finds a requested symbol at the wrong type, it secondarily looks for
the old version of that symbol in an older hashtable. This circumstance will only
occur when a symbol changes type and does not, or cannot in the case of data,
define a stub function. Because the old A is going to shortly be outmoded by
the new A, we allow the code to use the old version of the symbol. In contrast,
when relinking the rest of the program (i.e. everything but the old version of
A), we do not allow secondary lookups, effectively enforcing that current code
always refers to the most current symbols.

—Weak pointers. Once relinking is complete, we would like to remove any old
hashtables from the dynamic symbol table to make the old code unreachable,
and thus garbage-collectible. However, doing so is not strictly correct because
this code might still be active at the next update, and thus need to be relinked.
An effective compromise is to keep the old hashtables linked into the dynamic
symbol table with weak pointers. Weak pointers do not keep data from being
garbage collected when not reachable by some non-weak pointer elsewhere in the
program, and thus code can be collected when it is no longer needed.
Unfortunately, TAL does not support weak pointers, but adding them would be
straightforward. To simulate the weak pointer implementation, for purposes of
understanding the performance of updated programs, we remove the old tables
following an update, but ensure via program construction that the removed code
will not be active at the next update.

4.3.2 Patches. Our implementation of dynamic patches closely follows the ab-
stract description of Section 3. The contents of a patch are described by a patch
description file containing four parts: the implementation filename, the interface
code filename, the shared type definitions, and the type definitions to rename. The
first two fields describe the patch: the new implementation in the first file, and
the state transformer and stub functions in the second file. The final two fields
are for type namespace bookkeeping. The shared type definitions are those types
that the new file has in common with the old, while the changed definitions are in
the renaming list, along with a new name to use for each. The compiler uses this
information to syntactically replace occurrences of the old name with the new one.
An example patch file is shown later, in Figure 12.

As introduced in the state transformation function of Figure 2, we need a way to
refer to different versions of a variable within the interface code file. For a variable
x, we may wish to differentiate between the old version of x, the new version of x,
or the stub function for x. This is achieved by prepending the variable references
in the interface code file with New::, Old::, and Stub:: respectively. With no
prefix, the reference defaults to the version available before the patch was applied;
this turns out to simplify how we compile patch files.

The patch file is compiled by translating it into a normal Popcorn file, and then
using the normal Popcorn compiler. The translation works as follows. First, all
definitions in the implementation file whose variables are in the sharing list are
made into externs, which will resolve to the old version’s definitions at link time.
Second, all of the defined variables (non-extern) in the implementation file are
prefixed with New::. Third, the interface code file and the implementation file
are concatenated together. Finally, all the mappings from the renaming list are
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

· 19

applied to the file’s type names. The resulting file is then compiled to be loadable
and updateable, as described above.

4.3.3 Compiler Optimizations. Global state is transformed at the time of an up-
date. Therefore, we require that compiler optimizations not cause writes to globals
to be reordered before or after an update point, and that any globals allocated in
registers be flushed back to main memory. This turns out to be easy, since a pro-
gram update point is simply a call to a well-defined function the compiler can be
made aware of. That is, in our system, a program updates itself at a well-defined
moment, rather than being interrupted and updated at an unexpected time. We
describe our timing model further in Section 6.

The use of indirections in the GOT to facilitate relinking implies that any up-
dateable function should not be in-lined. If some calls were in-lined, those calls
would not notice dynamic updates. We have not found this to be a performance
problem with I/O-intensive applications, as detailed in Section 8. A possible solu-
tion is to employ technology as in Sun’s HotSpot JVM [hot 2002], which un-inlines
code when debugging. In our case, we would un-inline functions that needed to be
updated.

5. GENERATING PATCHES

Given a means to dynamically patch running programs, we must now consider
how best to generate these patches. A novel aspect of our approach is the mostly
automatic generation of patch files. This feature was originally designed to make the
system easier to use during the development of FlashEd, our updateable webserver:
it is very tedious to write state transformation and stub functions by hand. It
has also proven invaluable in minimizing human error, since it is less likely that
a necessary state transformation or stub function will be accidentally left out: it
discovers all files that have changed, and leaves placeholders in the generated code
where programmers need to fill in the details. As it turns out, a very simple
syntactic comparison of files, informed by type information, can do a good job of
identifying changes and partially generating patch code.3 In this section, we discuss
how patch generation fits into the normal software development process, explain
the patch generation algorithm itself, and then present some examples of its use.

5.1 Software Development for Dynamically Updateable Systems

A typical way to develop software is as follows. Each version of a program is given
a revision number, and the corresponding program source is associated with that
revision, probably archived with revision control software. When changes need to
be made, such as to fix bugs or add new features, the current version is modified to
effect those changes. Once these changes have been thoroughly tested, the modified
source is assigned a new revision number, archived, and deployed. In short, to make
a software change, we start with the current source, modify and test it, and then
deploy the changed program as the new version.

Our approach to building dynamically updateable systems alters this process
only slightly. Just as before, programmers make changes to the current sources,

3Note that our patch generator is similar in spirit to the transformGen database schema evolution
system developed by Garlan et. al [Garlan et al. 1986].

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 ·

changed

changed

program

Compile & Run Compile & Run

version 0.3version 0.2
program

Dynamic Update

accept.pop
c_string.pop
cold.pop

accept.pop
c_string.pop
cold.pop

Version 0.2 source Version 0.3 source

patch

patch

... ...

Fig. 9. Building and maintaining an updateable program

and then compile and test the result to create the new version. Once the new
version is stable, rather than halting the existing version and then deploying the
new one, patches are created that reflect the differences between the old and new
versions of the software. In our system, much of these patch files can be generated
automatically. The programmer only fills in the parts of the state transformer
and stub functions that cannot be automatically generated. The patches are then
dynamically applied to the old version of the software, thereby migrating it to the
new version.

The development process is depicted in Figure 9. The current version 0.2 of some
software consists of a number of source files. In moving to the next version, 0.3,
many of these files have changed. When testing is complete, patches are created
for the changed files. These patches are then dynamically applied to the currently
running version 0.2, resulting in a running program equivalent to version 0.3. The
new version retains the state of the old version, and only negligibly interrupts (but
does not cancel) service while the patches are applied. These are the benefits of
dynamic updating; if we were to instead shut down the old version and restart
with the new one, the running program’s state would be lost, and any midstream
processing would be forcibly cancelled.

Our methodology cleanly separates software development from patch develop-
ment. Such a separation is possible because our notion of patch (and our imple-
mentation of it) is cleanly separated from the software itself. Moreover, because
our notion of patch is quite flexible, the process of development is not hampered
by what may be expressible as a patch. In many other systems, patches are limited
to certain forms, and so software development is similarly limited. For example,
in Dynamic C++ classes [Hjálmtýsson and Gray 1998], only changes to instance
methods and data may be reflected dynamically; per-class (i.e. static) methods
and data cannot evolve. As a result, new static methods must be added to pro-
grammatically replace the old ones, but the old ones will remain, cluttering the
code and obscuring its meaning.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

· 21

types changed

interface code
file

new file

old file
changed funs
changed funs (old type)

changed data

types to rename
types to share patch file

type convert file
old type map
current type map

type convert file

Compare

current type map

Defs unchanged data

Fig. 10. Structure of the automatic patch generator tool

On the other hand, there are times when writing a valid state transformer is
not possible without further altering the source files. For example, it may be that
the existing state respects one invariant, but the new version of that state respects
another. If the old state cannot be transformed to respect the new invariant, the
new code could be changed to temporarily accept state having the old invariant,
until it is no longer needed. In our experience, such changes are rare; we consider
this issue more when describing our experience with FlashEd.

5.2 Automatic Patch Generation

The schematic of our patch generator is illustrated in Figure 10. As inputs, the
patch generator takes the new file, the old file, a current typename map, the old
file’s typename map, and the current type conversion file. Only the new file is
required, all other arguments are optional. The results of patch generation are the
patch file, the interface code file, the updated typename map, and the updated
type conversion file; if the new and old files differ then a patch file will always be
generated, but the other outputs are generated only if needed.

Patch generation is broken into two stages, identification and generation. The
identification phase is shown in the figure as the Compare Defs box. It takes the
old and new files as inputs, along with a set of named types that are known to
have changed. The set starts off as empty, or may be initialized by the contents
of the current typename map file. The algorithm works as follows. First, the
old and new files are parsed and type-checked. Then, for each definition in the
new file, the corresponding definition is looked up by name in the old file. In
the case of type definitions (i.e. struct or union declarations), the bodies of the
definition are compared; if found to be different, the name of the type is added
to the set of changed types. In the case of value declarations, the bodies are also
compared syntactically, taking into account the differences in type definitions; in
particular, the syntax of a function may remain the same from the old to the new
version, but the function has actually changed if a type definition mentioned in
the body has changed. Furthermore, a function is considered to have changed if
it references static data or functions that have themselves changed; the reason for
this is explained shortly.

The results of the identification phase are a number of sets that describe the
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 ·

differences between the files. These sets are (1) the functions that changed, (2) the
functions that changed but retained their old type, (3) the data declarations that
did not change, (4) the data declarations that changed, (5) the named types that
did not change, and finally (6) the named types that did change. These sets are
used, along with some of the inputs, to generate the patch file and some supporting
files, including the interface code file, the type conversion file, and the typename
map file. We cover each of these in turn.

Interface code file. The interface code file contains the state transformation func-
tion S, and any needed stub functions. To construct S, the toplevel contents of
unchanged global variables are simply copied, either as a variable assignment, as
shown for num in Figure 2, or with element-wise copying for arrays and aggregates.
When a value’s type changes, the old value must be converted to the new type dur-
ing the copy. For named types whose definitions have changed, we generate type
conversion functions, and call those; these are described below. We perform as-
signments for like primitive types (e.g. promoting a int to a float), but otherwise
insert a ‘placeholder’ indicating where code should be inserted by hand.

The patch generator also generates default stubs for functions that have changed
type. Two basic modes are possible. In the simplest mode, the generator creates
a function body having the old type, but which raises an exception. This mode is
useful when all patches for the running program are to be applied simultaneously,
in which case no stub functions should ever be invoked, so the exception signals an
unexpected error. The second mode is to automatically generate a call to the new
version of the function, first translating the arguments appropriately, as shown in
Figure 4.

Typename map file. During the identification phase, the patch generator keeps track
of any type definitions that have changed, and generates new names for these types.
The new name is determined by taking the MD5 hash of the pretty-printed type
definition (which includes the type name), meaning that the same definition will
always generate the same name. This allows development of patches by multiple
programmers without the worry of choosing incompatible type names.

The mapping from old to new name is stored in the typename map file. This file
is read in as each patch is generated, so that the global fact that a type changed
informs the local process of patch generation for a particular file. The updated map
file is written out upon generation completion. Crucially, the typename map file
for the old version will also be consulted so that types that have changed name as
a result of earlier patches are properly named in the current set of patches.

Type conversion file. Finally, type conversion functions are constructed for data
conversion from old to new versions of a named type, and vice versa. These are
used by the interface code files, as mentioned above. All type conversion functions
are stored in a separate file; this file is read in at the start and written out upon
patch generation completion, with new conversions functions for changed types not
already covered. Eventually, the type conversion file is dynamically loaded into the
running program along with the other patches for their use.

For struct types, unchanged fields are copied, and new fields are initialized with
a default value. Each field that has changed type is translated, either by calling
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

· 23

old version old_foo.pop:

typedef struct {

int a; int b;

} *t;

t someTs[];

int f (t T) {

return T.a + T.b;

}

new version new_foo.pop:

typedef struct {

int a; int b; int c;

} *t;

t someTs[];

int f (t T) {

return T.a + T.b;

}

Fig. 11. The old and new versions of example file foo.pop

another type conversion function, or by a local translation, inserting ‘placeholders’
where translations are unknown. Popcorn’s tagged union types are translated by
deconstructing the value of the old type, and reconstructing a new type by cases,
following the above rules.

The patch generator assumes a correspondence between the names of types in
the old version and in the new. Therefore, if the new version changes its name, then
the patch generator will think of this as a new type. This difficulty of changing
names arises in other areas, in particular file synchronization [Tridgell and Mack-
erras 1996; Balasubramaniam and Pierce 1998]; we should be able to apply its
solutions to our patch generation system. For example, some problems could be al-
leviated by permitting the user to inform the generator of old → new relationships
between definitions having different names. Instrumentation of the development
environment could also be used to generate such relationships.

5.3 Example

To illustrate the patch generator in action, consider the following example. Fig-
ure 11 illustrates the old and new versions of some file foo.pop. The new version
has changed in two ways: the type of the structure t has changed to include an
additional field c, and as a result the function f has now changed type, since it takes
a value of the new type t, rather than the old t. Providing these two files as input
to the patch generator results in four output files, shown in Figure 12. They are the
patch description file new_foo.patch, the interface code file new_foo_patch.pop,
the typename map file TYPENAME_MAP, and a file containing the type conversion
functions, convert_patch.pop.

The patch generator observes that the type t changed, so it generates a name for
the new version of t from the MD5 hash of its definition. It stores this mapping
in the TYPENAME_MAP and indicates it in the renaming list of the patch description
file. The TYPENAME_MAP file should be used as input for other patches in the same
program that reference t, so that even if those files do not change themselves, they
will be considered to have changed since the definition of t is different.

The interface code file new_foo_patch.pop defines a state transformer function
S to translate the array someTs, and a stub function for f, since f now takes a
value of the new type t. For the array transformation, a loop is generated that
piecewise translates the elements of the array by calling the type conversion function
t__old2new; this function is defined in convert_patch.pop, explained below. Note
that the loop refers to the someTs array using the prefix New::. As explained in

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 ·

new foo.patch:

implementation: new_foo.pop

interface: new_foo_patch.pop

renaming:

New::t=MD5(

typedef struct {

int a; int b; int c;

} *t)

TYPENAME MAP:

New::t=MD5(

typedef struct {

int a; int b; int c;

} *t)

new foo patch.pop:

#include "core.h"

typedef struct {

int a; int b;

} *t;

extern t someTs [];

extern New::t t__old2new (t);

static void S () {

int idx__0;

for (idx__0 = 0;

idx__0 < size(someTs);

++idx__0)

New::someTs[idx__0] =

t__old2new(someTs[idx__0]);

}

prefix Stub {

int f (t v0) {

raise (new Core::InvalidArg(

"Stub?f (int (New::t))"));

}

}

convert patch.pop:

typedef struct {

int a; int b;

} *t;

typedef struct {

int a; int b; int c;

} *New::t;

New::t t__old2new (t from) {

if (from == NULL)

return NULL;

else {

New::t to = new New::t{b=from.b,

a=from.a,

c=0};

return (to);

}

}

t t__new2old (New::t from) {

if (from == NULL)

return NULL;

else {

t to = new t{b=from.b,a=from.a};

return (to);

}

}

Fig. 12. The patch and supporting files generated for foo.pop

Section 4.3.2, this prefix ensures that the new version of the array is stored into,
since the lack of a prefix defaults to the old version.

The stub function simply raises an exception indicating that an existing caller
has not been properly updated. Note that the array conversion is not entirely
correct: the new version of the array someTs needs to be allocated before the
copying can take place. Retaining more information during the identification phase
concerning how globals are allocated, either statically or dynamically, would allow
this transformation to be more precise.

Finally, the file convert_patch.pop contains the type conversion functions for
translating values to and from the old and new versions of t. As with interface
code files, the old and new versions are differentiated by their prefix: new versions
are prepended by New::, and old versions have no prefix. Note that in this case, a
default value of 0 is generated for the added field; we could conceivably have inserted
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

· 25

a comment to remind the user to use a more appropriate value if necessary.
The function t__old2new translates an element from the old type t to the new

one. When the function is called, a new value of type t is allocated and initialized
with the fields it shares with the old value. Since the new t has an added field, the
patch generator also inserts a default value for that field. Note that this function
does not preserve aliasing relationships, since a new instance is allocated each time.
If aliasing is important, this problem is easily solved using a hashtable to map old
pointers to their new versions. In the example, this could be done in the S function
in new_foo_patch.pop. The loop that converts the someTs array would maintain
the hash table, and only call t__old2new as necessary. Since it is not clear that
preserving aliasing is always necessary, and adds cost to the transformation, we
leave it to the programmer to insert such code when needed.

The function t__new2old translates in the reverse direction, dropping the value in
the new field. In general, functions x__old2new are useful in state transformation,
while x__new2old functions are useful in stub functions, for returning an value of
old type to an existing caller.

6. WHEN TO APPLY PATCHES

So far we have concentrated entirely on how dynamic updates can be realized, and
what well-formed updates will consist of. However, an equally important question
is when updates should be performed. To understand the question of timing, and
why it is important, we consider two models of updating, the interrupt model and
the invoke model. The essential difference between the two is that in the invoke
model, the conditions under which an update may be performed are determined
statically (at compile-time), while for the interrupt model they are determined
dynamically (while the program is running). While many dynamic updating ap-
proaches use the interrupt model for its apparent increase in flexibility, we argue
that it makes determining appropriate update times no less difficult, and requires
greater implementation complexity than the invoke model, which is our model of
choice.

6.1 Interrupt Model

In general, it is possible for a well-formed update to be applied at a bad time,
resulting in incorrect state. For example, consider our very first example, the file
f and its patch, shown in Figures 1 and 2, respectively. Here the patch state
transformation function S copies the current value of num to the new version. The
new code then uses this new version of num. If this patch is applied while f is
inactive (that is, f is not currently running, and not on the stack) then everything
will be fine. However, if (the old version of) f begins execution just before the
patch is applied, it will increment the old version of num after it has been copied
by S. The result is the new version of num will not reflect the call of f.

In part, the above scenario occurs because we assume that a program could be
updated at any moment during its execution. This implies an interrupt-driven
model of updating: the program is interrupted at some point during its execution,
the update takes place, and then the program is resumed. This model can be more
controlled. Rather than performing the update at the moment of interruption,
the update can be delayed until certain conditions are satisfied. These conditions

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 ·

return

time

transition
well-defined

interrupt

program

update
relink and transform state

resume

program

update
relink and transform state

Interrupt model

Invoke model
call dlopen

transition
?

met
conditions possible

notify

Fig. 13. Two models for updating a single-threaded program

might be determined automatically, if possible. For example, some systems forbid
updates to modules that are active [Gilmore et al. 1997; Malabarba et al. 2000;
Segal and Frieder 1993; Soules et al. 2003; Boyapati et al. 2003]. On-line upgrading
support for the K42 operating system [Soules et al. 2003] supports delaying an
object upgrade until that object is inactive. In both cases, the transition to new
code always occurs immediately upon program resumption.

Alternatively, conditions can be provided by the programmer. For example,
in DYMOS [Lee 1983], the programmer specifies when-conditions along with the
patches to update as in

update P, Q when P, M, S idle

This specifies that procedures P and Q should be updated only when procedures P,
M, and S do not have activations in any thread stack.

This interrupt model is visualized in the top portion of Figure 13. During its
execution, the program is interrupted, then after some time the necessary conditions
are satisfied and the program context-switches to perform the update atomically.4

Control then returns to the running program, and at some point the program
transitions to using the new code. For example, if procedure Q was running when
the update took place, the old Q would continue to run and the new Q would be
invoked sometime later.

Being able to enforce timing conditions at runtime adds flexibility, since only
the program state at the time of the update need be considered. However, it lacks
predictability, since it is not clear when or if such timing conditions will ever be
satisfied. Even specifying those conditions is not necessarily straightforward. In

4This does not mean that the update cannot be performed in parallel with program execution,
although this is frequently the case in existing systems, only that the update must appear atomic
to the program.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

· 27

fact, Gupta et. al have shown that the problem of correct timing is, in general,
undecidable. To show this, they developed a formal model for dynamic updating
and defined a notion of update validity [Gupta 1994; Gupta et al. 1996].

Because no automated means of generally determining a valid update time is pos-
sible, previous researchers have developed techniques to identify program patterns
that have valid update points. Gupta et. al developed an algorithm that compares
the old and new versions of C code (not including functions, stack allocation, or
heap allocation) and identifies, based on a syntactic analysis, program points that
would preserve update validity. This analysis is quite conservative, and can only
handle restructurings of the same algorithm, not changes to program functionality.
Lee [Lee 1983] describes a way to decompose a valid update into a set of smaller
valid updates. A directed graph is constructed such that each node in the graph
represents a function to be replaced, and an edge from f to g implies that g should
be updated before or with f . The strongly connected components of the graph then
represent functions that must be updated together. Lee does not formalize why one
procedure should be updated before another; in some cases this is easy to deter-
mine (e.g. if the types of functions change), but in others it is not straightforward.
Furthermore, a valid update must be known before it can be deconstructed, but
no guidance is provided in finding such an update. Many systems simply impose
the restriction that updates may only occur to inactive code [Gilmore et al. 1997;
Malabarba et al. 2000; Segal and Frieder 1993; Soules et al. 2003], but this does
not guarantee that race conditions will not occur.

Enforcing arbitrary when-conditions at runtime can be expensive, in terms of
performance and implementation complexity. For the system to test update con-
straints at runtime, there must be some way to identify the set of active procedures.
If some procedure required to be idle is in the set, then the program continues to
execute, updating the active set as it goes, with each change to the set testing
whether the idle conditions have been met. PODUS [Frieder and Segal 1991] relies
on the fact that its programs must be single-threaded and therefore the active set
is effectively the stack; the set is maintained by extra code that checks the stack
depth upon procedure return. In DYMOS, which supports multi-threading, each
function call requires a synchronized access to some global structures to store the
fact that the function is active; this can be quite costly.

Whether the problems we have described with identifying valid dynamic timing
constraints arise in practice is uncertain. However, few of the systems mentioned
above present any analysis or experience that says otherwise. Therefore, we are
led to believe that while flexibility is potentially increased by timing enforcement
mechanisms, using these mechanisms may or may not result in actual gains, call-
ing into question the loss in performance and predictability and the increase in
implementation complexity.

6.2 Invoke Model

The problem of timing can be greatly simplified by specifying update points stat-
ically rather than dynamically. That is, rather than assuming, as in the interrupt
model, that a program will not be aware that it is updateable, and thus updates
may conceptually occur at any time, we instead require the program to be coded
to perform its own updating by invoking a special update procedure. This model,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 ·

which we call the invoke model, is illustrated in the bottom half of Figure 13. Here,
the program is somehow notified that it should perform an update. The next time
it invokes the update procedure, the waiting patches are applied, and the program
continues where it left off. If it was properly constructed, it should transition to
the new code at a well-understood time.

6.3 Example

Based on our experience, we have found a general approach to structuring applica-
tions so that updates are well-timed when using our system. This is not the only
possible program structuring, but we believe it works well.

The problem with arbitrary update times is two-fold:

(1) Running procedures might be manipulating state we want to transform; the
interaction between the state transformer and these procedures could result
in race conditions. To prevent this, we essentially want to delay state trans-
formation until running code has completed transactions manipulating global
state. The notion of transaction has been formalized in the database commu-
nity as being a series of operations that must occur all-at-once (as far as the
rest of the program is concerned) or not at all. Since most programming lan-
guages (including Popcorn) do not support formal transactions, we consider a
more informal notion. In particular, a program transaction is a computational
sequence that performs some self-contained piece of work.

(2) We want the transition to the new code to be well-defined. If functions have
activation records on the stack, and these functions are updated, then the old
code will run until the functions exit and are re-entered. Unless the program is
structured in a reasonable way, running functions may not exit (and re-enter the
new code) in a timely fashion, leading to potential problems. For example, old
code could continue to operate on old copies of global state, thus not properly
communicating computation to the new code.

We can solve both of these problems by requiring that the program unwind the
stack at update-time. That is, any code that is currently executing must exit,
without performing any meaningful (i.e. state-manipulating) computation. Once
all active functions have exited, the program restores the stack to its former state
by calling into the new code, and resumes its computation on the transformed state.
This way, any piece of code that was executing, even an infinite event loop, can be
updated in a timely manner.

The program’s transactions must be identified when implementing stack unwind-
ing. In particular, updates should only be applied when there are no active transac-
tions. This allows the stack to be safely unwound and restarted, since all meaningful
work has been completed. Event-based programs are easily restructured to unwind
and restart computation. In particular, each event-handler essentially implements
a transaction, so that an update notification can be processed at the start of the
event loop, when there are no transactions being processed. The loop can then
be exited and restarted, using the new code. We take this basic approach with
FlashEd, as we will describe in detail in the next section.

It should be noted that “internal” transactions relevant to updating need not
correspond to external transactions the entire program might be involved in. For
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

· 29

example, an event-driven web server will likely process a single HTTP request using
many internal transactions. One transaction parses the request and queues an event
to retrieve the requested file; the next several transactions read that file in chunks;
and the final few transactions transfer the file to requestor. The state of the overall
HTTP request is kept consistent after each internal transaction, so an update could
be performed then. Thus updates can occur in our framework while the program
is actively processing requests (and indeed this is the case with FlashEd).

This approach can also apply to multi-threaded programs by employing barrier
synchronization. First, each thread can be notified that an event is pending. The
threads then complete any outstanding transactions, and unwind their stacks. They
‘check in’ with the main program thread, at which time the update is applied.
Finally, the main thread notifies the remaining threads that they may restart,
at which point they begin using the new code. While simple and effective, this
approach exacerbates the possibility that an application will be unresponsive while
it is being updated, since many threads may be waiting for others to synchronize.
The programmer must therefore ensure that update points will be reached often
enough to mitigate this possibility. We further note that even if the program does
become unresponsive for a time, this is much preferable to the interruption that
would occur if it actually had to be stopped and restarted.

6.4 Discussion

The fact that the invoke model fixes the moment(s) of update is both an advantage
and a disadvantage. On the one hand, our ability to reason about an update’s
correct timing is increased because we know exactly when updates will occur and
thus can determine how they will interact with the system. On the other hand,
choosing update times may be difficult since they must accommodate updates of
unknown composition, and if an update time is chosen poorly, we may be limited
in the updates we can perform correctly (at least until we can update the program
to accept updates at other times). However, our experience with the program
structure described above, which derives from our approach in FlashEd, has been
that a priori choosing a reasonable update time has not affected what changes a
patch can express, and has greatly improved our confidence in its correctness. That
is, the advantage of fixed timing is significant and the disadvantage of fewer times
for update is minimal.

To be fair, determining proper update timing to ensure both responsiveness and
correctness is the largest unexplored area of this work. We have had good results
with single-threaded, event-driven programs, but have little practical knowledge
in the way of multi-threaded programs. We are encouraged that updating multi-
threaded programs is not onerous with the invoke model, as this model is success-
fully employed by multi-threaded Erlang [Armstrong et al. 1996] programs. We
believe there is ripe opportunity to apply formal methods to proving that an up-
date is valid. One possibility is to use formal transactions to support proper update
timing [Bloom 1983; Boyapati et al. 2003]. We discuss this approach in more detail
in Section 9.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 ·

7. THE FLASHED WEBSERVER

To demonstrate our system, as well as to further inform its design and imple-
mentation, we developed a dynamically-updateable webserver, based on the Flash
webserver [Pai et al. 1999]. Flash consists of roughly 12,000 lines of C code and
has performance competitive with popular servers, like Apache [Apache]. We
constructed our version, called FlashEd (for Ed itable Flash), by porting Flash to
Popcorn while preserving its essential structure and coding techniques. In this sec-
tion, we use FlashEd as a case study to explain three aspects of our system: how to
construct an updateable application, how to construct and test patches in practice,
and how dynamic updateability affects application performance; we look at the first
two of these points in this section, and discuss performance in the next section.

7.1 Building an Updateable Application

Flash’s structure is quite amenable to ensuring patches are well-timed. It is con-
structed around an event loop (in a file separate from that of main) that does three
things. First, it calls select to check for activity on client connections and the
connection listen socket. Second, it processes any client activity. Finally, it accepts
any new connections. This kind of event loop is common in server applications.

Only two changes were needed to Flash to support dynamic updating. First,
we added a maintenance command interface. A separate application connects to
the webserver and sends a textual command with the files to dynamically load.
After the select completes, a pending maintenance command is processed and the
specified dynamic patches are applied. Upon completion, the event loop exits and
re-enters the loop (thus reflecting any change to the file containing the loop) and
continues processing. Relevant state is preserved between loop invocations.

The second change was to how errors were handled. Flash contains many places
where exit is called upon the discovery of illegal conditions. Such aborts are
not acceptable in a non-stop program, so we changed these cases to throw an
exception instead. When the event loop catches any unexpected exceptions, it
prints diagnostics, shuts down existing connections, and restarts. If an exception
is thrown from a module that maintains state, that state is also reset. Thus the
program can continue service until it can be repaired, albeit with the loss of some
information and connections.

Aside from changes due to porting from C to Popcorn, these were the only two
changes we had to make to FlashEd to support dynamic updating.

7.1.1 Patching. To gain experience evolving a program using our system, we con-
structed FlashEd incrementally. Our initial implementation (version 0.1) lacked
some of Flash’s features (such as dynamic directory listings) and performance en-
hancements (such as pathname translation caching and file caching). We added
these features, one at a time, following the process outlined in Section 5.1. Version
0.2 adds pathname translation caching; version 0.3 adds file caching; and version
0.4 adds dynamic directory listings.

Information about the changes between versions, including the patches that re-
sulted, is summarized in Table I. Columns two to four of the table show the
changes to the source code made from the previous version, including the number
of changed or added source files (not including header files), the number of changed
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

· 31

To changed ∆ source total interface LOC
ver files types LOC patches auto by hand

0.2 11 3 433 16 1324 48

0.3 9 2 813 14 1261 99
0.4 7 1 1557 12 1214 99

Table I. Summary of changes to versions 0.2 through 0.4 of FlashEd

type definitions, and the number of changed or added lines of code. The last three
columns describe the patches, including the total number of patches generated (not
including the type conversion file), the total lines of generated code for the patch
interface code files, and those lines that were added or changed by hand.

There are two things to notice in the table. First, the number of patches generated
exceeds the number of changed source files; this is because certain type definitions
changed, so functions in otherwise unchanged files that refer to those types also
effectively changed. Second, the number of lines of interface code automatically
generated far exceeds the amount modified or added by hand. This is not to say
that the process of modifying the automatically-generated files was simple (it was
not in some cases), only that a large portion of the total work, much of it tedious,
could be done automatically. For example, many of the generated lines include
extern statements that refer to the old and new versions of changed definitions;
these would have had to be placed by hand otherwise. Most importantly, using
the patch generator guaranteed that the patches were complete—all of the changes
were identified automatically, even though some changes needed to be addressed
by the programmer.

The alterations to the generated files usually had one of three forms. First, we
had to write code in the state transformer function to translate pointerful data.
For example, sometimes various connection handler functions changed, so we had
to translate references to those handlers in the global handler array to point to the
new version. Second, we occasionally had to fill in placeholders in the generated
type conversion functions, particularly for function pointers (like a per-connection
timeout function) and newly-defined types (like a struct added to manage cached
files). Finally, we had to add code to the state transformer to initialize new func-
tionality; this code already exists in (and was copied from) main, but because the
new functionality is added dynamically, the code must run in the state transformer.

As mentioned in Section 3.4.1, our approach may require changes to the source
program to solve instances of the state transformation problem, in which existing
state cannot be straightforwardly converted to allow newer code to process it. For
FlashEd, this situation arose in the patch from version 0.2 to version 0.3, which
adds a file cache. In all versions of FlashEd, the datastructure used to maintain
connection state contains a field dataEnt, which has struct-type DataEntry. Ele-
ments of type DataEntry contain information about the file that a particular URL
refers to, including its modification date, size, contents, etc. In versions earlier
than 0.3, this entry was constructed from scratch for each request and then thrown
out after the connection closed. In version 0.3, this entry is inserted into the file
cache after it is first created, and then shared among concurrent connections that
have requested the same file thereafter. The difficulty is that when the connec-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 ·

fixed date parsing bug
added pathname translation caching

handling for previously-fatal exceptions
added new maintenance commands
added 32 MB file cache

eliminated spurious hangup message

12 Oct 2000

20 Oct 2000

27 Oct 2000

4 Nov 2000

completed date parsing fix

/index.htmlinitial version 0.1 (only)

version 0.2

version 0.3

... dynamic directory listing7 Feb 2001 version 0.4

t

Fig. 14. Timeline of FlashEd updates

tion is complete, the code for releasing DataEntry values expects these values to
respect certain invariants. Constructing the entries out of context to respect these
invariants is not trivial.

Therefore, we had to slightly change the source of version 0.3, specifically the
routine ReleaseDataEntry, to deal specially with those DataEntry values that are
problematic. This would prevent them from confusing the invariants maintained
by the file cache software. Fortunately the changes to be made were fairly simple in
this case, but it may be that more complicated changes would be necessary in other
cases. While our experience has largely been that software and patch development
are separate processes, this particular case suggests that in general the development
process for updateable software is an iterative one: develop the next version of the
software and test it; develop the patches and test them; if during patch development
any changes needed to be made to the source, go back and test the static program.

7.2 Experience

To simulate a production environment, we ran a public FlashEd server with the
intention of never shutting it down, making all changes on-line. A brief chronology
for FlashEd is shown in Figure 14. We started version 0.1 at http://flashed.
cis.upenn.edu on October 12, 2000, to host the FlashEd homepage. We applied
patches for version 0.2 on October 20 and for version 0.3 on November 4. All
patches were tested offline on a separate server under various conditions, and when
we were convinced they were correct, we applied them to the on-line server. Even
so, we found a mistake in the first patch—a flag had not been properly set—and
applied a fix on October 27. In addition, we applied roughly five small patches for
debugging purposes, such as to print out the current symbol table.

Running the server revealed a number of interesting practical aspects. For in-
stance, we learned soon after we deployed the server that our version of the TAL
verifier was buggy—it only checked a subset of all of the basic blocks in loaded files.
Since the verifier is part of the trusted computing base, it cannot be updated. As
a result, we shut down the server on February 7 and redeployed it compiled with
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

· 33

the new verifier.5 To accommodate these kinds of changes dynamically, we could
allow certain trusted code to be loaded without benefit of verification.

We also made a human error when compiling the server: we forgot to enable
the exporting of static variables when compiling the library code. This problem
became apparent when we attempted to dynamically update the dynamic updating
library. The library was not properly removing old entries from the dynamic symbol
table, and so we wanted to patch the library to fix the problem, as well as clean up
the existing symbol table. However, since the symbol table is declared static, it
was not available for use by the patch. As a result, any update to the library was
effectively precluded since the state cannot be properly transferred.

On the whole, however, the system has been easy to use, since the only burden
on the programmer is to fill out parts of the patch that the automated generator
leaves out, and then to test the patches off-line. It has been particularly effective to
be able to load code to print out diagnostic information. For example, on a number
of occasions we loaded code that would print out the dynamic symbol table (by
calling an existing function in the updating library) to make sure that symbol
names referenced in our patches, particularly the ones chosen for static variables,
matched the ones present in the table. We also loaded code to print out the state
of the file and translation caches, to make sure that things were working.

Having the verifier to check patches as they are being loaded has been quite
valuable. For example, we tried to apply some patch files that were incorrectly
generated; the implementation file path mentioned in the patch description file was
for an incorrect version. As a result, some of the type definitions were incorrect,
and this fact was caught by the verifier. Once we applied a patch whose state
transformation function failed to account for null instances; the updating library
caught the NullPointer exception and rolled back the changes made to the symbol
table. Using an unsafe language, such as C, would have resulted in our non-stop
system stopping with a core dump.

8. PERFORMANCE ANALYSIS

Supporting dynamic-updating imposes a number of costs on the system. At update-
time, each patch must be verified and linked. At run-time, each external reference
entails an extra indirection, essentially inherited from dynamic linking. In this
section, we present the results of some experiments that measure these costs.

Our experimental cluster is made up of four dual-300 MHz Pentium-II’s with
split first level caches for instruction and data, each of which is 16 KB, 4-way set
associative, write-back, and with pseudo LRU replacement. The second level 4-way
set associative cache is a unified 512 KB with 32-byte cache lines and operates at
150 MHz. These machines receive a rating of 11.7 on SPECint95 and have 256 MBs
of EDO memory. Each machine is connected to a single Fast Ethernet (100 Mb/s),
switched by a 3Com SuperStack 3000. We run fully patched RedHat Linux 6.2,
which uses Linux kernel version 2.2.17.

5Actually, the power was accidentally shut off on the server, and so we took that opportunity to
make the change.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

34 ·

8.1 FlashEd runtime performance

The only runtime overhead of our implementation is incurred through the use of
the GOT, which is inherited from dynamic linking. We could avoid this cost by
implementing our linker to resolve external references in-place [Hicks et al. 2000].
Using a GOT, each external reference requires two additional instructions, which
adds about 2 cycles (or 6.7 ns) on our machines. By itself, this overhead is not
very meaningful, since its overall effect is application-specific, depending on both
the number of external function calls made during execution, and the amount of
computation that occurs between those calls. To provide context, we examined the
impact of this overhead on FlashEd’s application performance.

To measure server performance, we used httperf (v0.8) [Mosberger and Jin
1998], which is a single, highly-parameterizable executable process that acts as an
HTTP client. It can generate HTTP loads in a variety of ways, being able to
simulate multiple clients by using non-blocking sockets. To ensure that the server
is saturated, multiple httperf clients can be executed concurrently on different
machines. Throughput is measured by sampling the server response over fixed
intervals, and then summarizing the samples at the end of the test.

8.1.1 Log-based Test. To get a sense of overall server performance, we ran a
single server on one machine, and one httperf client on each of three other ma-
chines creating ‘typical’ traffic patterns. Each client’s requests were determined by
an identical filelist, which consists of a list of files to request, with a corresponding
weight for each file. Each request is determined pseudo-randomly, based on its
weight. Our filelist was obtained from the WebStone benchmarking system [Web-
stone] as a fair representation of file-based traffic. It is shown in Figure 15. The
first column indicates the URL and the second column indicates the weight to assign
to it; the comment in the third column indicates the file’s size in bytes.

We used 90 second sample times, and we measured each server for roughly 32
minutes, totaling 21 samples. Because we observed skewed distributions in many
cases, we report the median, rather than the mean, and use the quartiles to illus-
trate variability. With 21 samples, the interval between the bars serves as a 98%
confidence interval [Pratt and Gibbons 1981]. Note that we had to make some
minor changes to httperf to run this test.

Figure 16 shows the measured throughput. The X-axis varies with server ver-
sion; the first three columns show the throughput for FlashEd 0.1, 0.2, and 0.3,
respectively, and the fourth column shows the throughput for Flash (compiled us-
ing gcc version egcs-2.91.66 with flag -O2) as a point of reference. The Y-axis shows
throughput in Mb/s (note that it does not start at 0). For each version of FlashEd,
we measured the server’s performance when it was compiled with and without up-
dating support (labeled static and updateable in the figure, respectively), as well
as when it was patched on-line (labeled updated in the figure); for example, the
updateable FlashEd 0.3 was compiled directly from the version 0.3 sources, while
updated FlashEd 0.3 was compiled from the version 0.1 and then patched twice dy-
namically. We suspected (correctly or incorrectly) that an updated FlashEd would
have higher overhead than an updateable one due to a larger heap and memory
footprint, since it retains the original version of the code in the text segment while
new code is loaded into the heap. For each server we show the median throughput,
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

· 35

/file500.html 350 #500

/file5k.html 500 #5125

/file50k.html 140 #51250

/file500k.html 9 #512500

/file5m.html 1 #5248000

Fig. 15. Filelist used in the log-based test.

0.1 0.2 0.3 C

Server Version

70

75

80

T
hr

ou
gh

pu
t

(M
b/

s)

static
updateable
updated

Fig. 16. Flash and FlashEd throughput by version

with the quartiles as bars.
The overhead due to updating is the difference in performance, per server version,

between the medians of the static and updated/updateable versions. In all cases,
this overhead is between 0.3% and 0.9%, which is negligible when compared to the
measured variability. This variability is not unexpected because the URL request
pattern seen by the server differs from sample to sample, since the URL’s requested
in aggregate by the three clients will differ during each sample (we chose longer
sample times to mitigate this effect).

The measurements do not consistently favor either the updated or updateable
code. In particular, for FlashEd 0.2, the updated server is slightly faster than
the updateable one, while the reverse is true for version 0.3. The fact that the
relative and absolute locations of the code in an updated program is different than
the updateable one may be one source of difference, since the same modules will
be affected differently by cache policy. In addition, because the heap sizes are
the same but the updated program uses some of this heap to store update code,
we have observed that the updated code garbage collects more often, favoring the
updateable code in this regard. However, in general this difference is well within
the measured variability of the numbers and may be due to experimental variation.

8.1.2 URL Test. The log-based test characterizes ‘typical’ performance, but has
two shortcomings. First, the actual activity seen by the server is variable from sam-
ple to sample, since the URLs requested in aggregate by the three clients may differ
during each sample. We extended the sample time to 90 seconds to mitigate this
problem, but each value in Figure 16 has a (relatively-speaking) sizable variability.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

36 ·

0.1 0.2 0.3 C

Server Version

1100

1200

1300

1400

1500
T

hr
ou

gh
pu

t
(C

on
ns

/s
)

URL /file500.html

static
updateable
updated

0.1 0.2 0.3 C

Server Version

1100

1200

1300

1400

URL /file1k.html

static
updateable
updated

0.1 0.2 0.3 C

Server Version

580

600

620

640

660

680

T
hr

ou
gh

pu
t

(C
on

ns
/s

)

URL /file10k.html

static
updateable
updated

0.1 0.2 0.3 C

Server Version

24.0

24.5

25.0

25.5

URL /file500k.html

static
updateable
updated

Fig. 17. Flash throughput for URL-based tests

In particular, the semi-interquartile range (SIQR), which is the difference between
the high and low quartiles divided by two, is roughly 3% of the median, as compared
to a SIQR of < 1% of the median for the tests we are about to describe. The second
problem is that the log-based test provides less of a sense of ‘worst-case’ overhead,
because some of the files requested during the test are quite large, and thus the
I/O time dominates the overhead imposed by updating. To address the problem
of per-sample variability, we ran tests that request the same URL repeatedly. To
examine how I/O dominates updating overhead, we considered a variety of URL
file sizes, from 500 B files to 500 KB files. For each URL, we used a 10 second
sample time, and ran each test for just over 5 minutes, totaling 31 samples. Again,
we calculated the median and the quartiles.

The results are shown in Figure 17, which has the same format as Figure 16. The
first thing to notice here is that the variability is much decreased; in particular the
SIQR is typically less than 0.5% of the median, and except in the case of 500k files,
the inter-quartile ranges rarely overlap for each cluster of points. The range of the
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

· 37

1000 10000 100000

URL file size (B)

0

1

2

sl
ow

do
w

n
re

la
ti

ve
 t

o
st

at
ic

 (
%

) FlashEd 0.1 updateable
FlashEd 0.2 updateable
FlashEd 0.2 updated
FlashEd 0.3 updateable
FlashEd 0.3 updated

Fig. 18. Correlating the overhead of updateability with URL file size

Y-axis differs for each graph, with none starting at 0. The error bars for the 500k
files have the same size as the rest but appear more significant because the scale of
the Y-axis is smaller.

To understand the trends exhibited in this graph, we graphed the overhead due
to updating, shown in Figure 18, where the X-axis is URL file size—shown for
500 B, 1 KB, 10 KB, and 500 KB files—using a logarithmic scale for presentation
purposes, and the Y-axis is percent overhead from the non-updateable (static)
FlashEd. There are three basic trends:

(1) The overhead for updateability decreases as the size of the file increases. For the
500 byte file, we see as much as a 2.3% overhead, while for the 500 kilobyte file
the overhead is 0. This is most likely because the added I/O time overwhelms
the extra processing cost.

(2) In general, the relative overhead due to updating decreases as the version num-
ber of FlashEd increases. This can be seen in the Figure by comparing all of
the “updateable” lines (whose points are marked with boxes) and comparing
all of the “updated” lines (whose points are marked with diamonds).
There are two explanations for this phenomenon. First, because the processing
time per request decreases for each file, while the network transfer time remains
the same, the impact of updating is decreased. Second, there are fewer external
references made for version 0.3 than for versions 0.1 and 0.2. Because the
runtime penalty of an extra indirection occurs only when references are to
definitions not in the current file, the fewer these kinds of references, the lower
the overhead. To discover the relevant fraction of references, we modified the
Popcorn compiler to insert counters for global references, whether to data or
functions, differentiating between references to external and static variables.
We then re-built the three versions of FlashEd and ran our tests on each of them.
For versions 0.1, 0.2, and 0.3 of the server, the percentage of dynamic references
to external definitions was 70%, 71%, and 62%, respectively, meaning that
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

38 ·

version 0.3 incurs a lower penalty for indirection, relative to its non-updateable
version.

(3) The relative overhead of updated and updateable versions is inconsistent; that
is, sometimes the updated version performs better and sometimes the update-
able one does. This follows the same pattern as the log-based test.

We are encouraged by the fact that FlashEd 0.3 has performance essentially
identical to that of Flash, though at first this is surprising, given our prototype
compiler. However, much of the cost of file processing is due to I/O, reducing
the benefit of compiler optimizations; a more CPU intensive task would certainly
favor the C implementation. In any case, FlashEd’s favorable performance suggests
that TAL, and verifiable native code in general, is a viable platform for medium-
performance, I/O-intensive applications.

8.2 Load-time overhead

Our updating system also imposes a load-time cost to apply the dynamic patches.
Figure 19 shows the time to apply patches that update FlashEd version 0.2 to
version 0.3. Each bar in the figure represents a single file, where the X-axis indicates
the total size of the compiled patch file, and the Y-axis is the time to apply the
patch. Each bar includes the time to (1) dynamically load the file, (2) perform link-
checking, and (3) link the file into the current program. Link-checking is the process
of verifying that a loaded file’s interface (the types of its imported and exported
symbols and its exported type definitions) is consistent with that of the running
program. All of these files are applied together, due to the mutually-recursive
references among them, for a total time of 0.33 seconds. The cost to relink the
program and run the state transformers after all files are loaded in this case was an
additional 0.81 seconds, for a total of 1.14 seconds.

Only a negligible portion of the relinking time includes state transformation. For
this particular update, most of the state in updated files was unchanged, and so was
simply transferred by reference. The contents of two arrays changed type, so they
needed to be copied. The first was the connection handler array, indexed by file
descriptor, and the second was the connection array, indexed by connection number,
containing the state of outstanding connections. Both the handler and connection
types changed, and so existing entries needed to be copied and transformed. In this
experiment, these arrays were empty since no requests were being serviced, so we
only paid the cost of allocation and initialization of the arrays in the new code. In
total, roughly 100 global variables were transferred by reference, and a few hundred
KB were allocated for the new arrays.

The times in Figure 19 do not include the cost of type checking. We assume the
owner of the non-stop application is the only one allowed to update it, and there-
fore typechecking can be performed off-line. In contrast, performing link-checking
on-line ensures that the loaded code meshes with the running program at the link-
ing level, which is important for ensuring safety. Indeed, linkchecking caught the
error reported in Section 7.2. Were we to perform typechecking on-line, it would
not add to assurances of safety, and would result in a significant pause, as shown
in Figure 20. The figure adds the cost of typechecking to the costs illustrated in
Figure 19 (labeled as “other”). This includes the cost to disassemble the object file,
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

· 39

50000 100000 150000

file size (B)

0.00

0.02

0.04

0.06

ti
m

e
(s

)

load-time cost

Fig. 19. Time to apply dynamic patches (link-checking only)

50000 100000 150000

file size (B)

1

2

3

ti
m

e
(s

)

other
type checking

Fig. 20. Time to apply dynamic patches (link-checking and type-checking)

and the cost to type check the disassembled representation. On average, typecheck-
ing costs 75% of the total time, with the remaining time for disassembly. According
to Grossman et al. [Grossman and Morrisett 2000], verification is generally linear
in the size of the files being verified, which we find to be true here. If for some
reason type checking should be performed on-line, it could be performed in parallel
with normal service, meaning that the system need only be stopped for linking and
relinking, which have negligible cost.

9. DISCUSSION

To conclude, we discuss related work, place our current work into a broader con-
text, and consider future work. We organize the discussion around our four major
criteria for evaluating updating systems: flexibility, robustness, ease of use, and low
overhead. A more complete discussion of related work may be found in the first
author’s Ph.D. dissertation [Hicks 2001].

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

40 ·

9.1 Flexibility

At one extreme of the flexibility axis are systems that use dynamic linking alone
to support updating [Appel 1994; Peterson et al. 1997]. These solutions are only
adequate when the programmer can correctly anticipates the form of future updates
and structures the program to accommodate them. This is because dynamic linking
only allows new code to be plugged into existing interfaces. Other systems are more
flexible, but do not allow arbitrary changes. For example, Dynamic ML [Gilmore
et al. 1997] only permits changing the definitions of types that are abstract, and
updated modules cannot remove or change the types of existing elements. The
Dynamic Virtual Machine [Malabarba et al. 2000], a Java VM with updating ability,
Dynamic C++ classes [Hjálmtýsson and Gray 1998], and K42 [Soules et al. 2003]
similarly require class signature compatibility.

A number of systems support “fix-and-continue” development, in which program
code can be updated while it runs. This feature was typical in Common Lisp and
Smalltalk implementations. More recently, Sun’s HotSwap JVM permits dynamic,
type-compatible changes to method bodies [hot 2002; Dmitriev 2001]. The DynInst
system [Buck and Hollingsworth 2000] similarly allows the dynamic addition and
removal of machine code. Such systems generally focus on updating the code of
running program, but have little or no support for updating its state. This works
for small changes, or for the insertion of instrumentation or debugging code, but
hampers long-term dynamic evolution.

At the other extreme of the flexibility axis are systems that, like ours, allow
nearly arbitrary changes to programs at runtime [Lee 1983; Frieder and Segal 1991;
Gupta et al. 1996; Armstrong et al. 1996; Bloom 1983]. DYMOS [Lee 1983] (DY-
namic MOdification System) is the most flexible existing system; programmers can
not only update functions, types, and data, but can also update infinite loops. Like
ours, some past systems permit updates to active code. A gradual transition from
old to new code occurs at well-defined points, such as at procedure calls [Arm-
strong et al. 1996; Lee 1983; Frieder and Segal 1991; Bloom 1983], or during object
creation [Hjálmtýsson and Gray 1998].

We believe our system sufficiently balances flexibility with the other updating
criteria: the generality of our dynamic patches allows us to achieve most of the
flexibility of the most general solutions, and programmer control of patch applica-
tion gives good flexibility in timing updating. However, there are some important
flexibility limitations we would like to address, which we describe next.

Pointerful Data. As mentioned in Section 3, we rely on the state transformer func-
tion to alter pointers to updated definitions that are stored in the program’s data;
such references could be to functions (i.e. function pointers), or to global data.
For instance, when some function f is updated, a function pointer to f must be
modified during state transformation to point to the new f; the system does not do
this automatically. While handling ‘pointerful data’ in this way may be reasonable
for imperative languages like C and Popcorn, this approach is likely insufficient for
functional languages that make heavy use of closures (which are essentially func-
tion pointers), and object-oriented languages, whose objects can viewed as records
of closures.

Object-oriented systems like Dynamic C++ classes and K42 use added indirec-
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

· 41

tion to make updating object references automatic. The former uses a proxy class
to wrap an underlying object; the proxy and the object share the same interface.
All calls to the proxy’s methods are forwarded to the underlying object. However,
when a new version of a class is loaded, only newly-created objects use that version,
while existing objects continue to use the old version. K42 essentially implements
the reference indirection approach we describe in Section 4, by employing a global
indirection table for all object references. When an object is updated, its entry in
the global table is changed, so that all aliases are simultaneously updated. The
added indirection adds to performance overhead for each dereference, but has been
shown to improve multiprocessor performance scalability [Gamsa et al. 1999].

Another option would be a hybrid approach using reference indirection for point-
erful data, and code relinking for direct calls. We have experimented with having
the compiler modify the code so that rather than passing or storing a function
pointer, we pass the function’s GOT entry. When the function pointer is actually
used, the GOT entry is dereferenced, effectively retrieving the most recent version.
This approach should apply equally well to pointers and to data. We implemented
this idea for function pointers, but found that it can interact poorly with polymor-
phism [Hicks 2001], and so continue to use manual pointer updating by default.

Distributed Programs. As mentioned in the introduction, our approach does not
directly address the problem of coordinating distributed processes that should be
updated together, e.g., because a shared communication protocol must be altered,
or because the representation of shared state, such as that stored in a database,
must change. Work on distributed updates [Magee et al. 1989; Kramer and Magee
1990; Hofmeister 1993] considers the problem of coordination. Sewell [Sewell 2001]
has explored means to ensure distributed programs behave properly when commu-
nicating values of possibly different versions of an abstract type. Our work could
profitably be combined with these to allow both updates within a process and a
means to coordinate those updates across processes.

We believe an interesting avenue of future work is to combine the problem of
database evolution with the problem of code updating. In object-oriented databases,
where code and data are combined as object instances, this combination is straight-
forward and is being actively explored [Boyapati et al. 2003]. However, the problem
of updating a relational database along with the programs that are actively using it
has remained relatively unexplored. Some work has considered database views,
which allow programs to view the same database as having different schemas,
but this approach hampers longer-term evolution since changes must always be
backward-compatible. We believe that we can build on our approach of synchro-
nizing on update points in multi-threaded programs to address this problem, using
static analysis to ensure safety.

9.2 Low Overhead

Some systems provide updating at no runtime cost, including Gupta’s system [Gupta
et al. 1996], and Dynamic ML [Gilmore et al. 1997]. Most systems employ reference
indirection, either as we described in Section 4.1 [Armstrong et al. 1996; Malabarba
et al. 2000; Hjálmtýsson and Gray 1998; Soules et al. 2003], or in slightly more clever
ways [Lee 1983; Frieder and Segal 1991]. Dynamic linking may (as in the case of

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

42 ·

ELF [Tool Interface Standards Committee 1995]) or may not impose an indirec-
tion, affecting systems like ours and those that use it exclusively [Peterson et al.
1997; Appel 1994]. As we have demonstrated here, however, this extra indirec-
tion does not translate to high overhead in practice. Furthermore, because our
approach is based on native code, it lacks the overhead of interpretation, e.g., as in
the DVM [Malabarba et al. 2000].

Most approaches, including our own, require that relevant data is transformed
at the time of an update. However, if the application is maintaining a very large
dataset, this transformation could create a long, undesirable pause in processing.
An alternative is to delay state transformations until relevant data is actually used.
Two recent approaches support such lazy updates. Duggan [Duggan 2001] permits
objects of named type to be updated lazily. Each time data of named type is
accessed, it must be opened, at which point the compiler provides the version of
the data it expects. If the runtime version is different, then a version transformer
(or a composition of them) runs to convert the data to the expected type. This is
similar to, but more flexible than, our use of stubs (Section 3.2), using the model
of type replacement. The problem is that data must support both upgrading and
downgrading, which may not be possible. Moreover, the programmer has a more
difficult time reasoning about the overall correctness of a program, since the point
of transformations, and whether they go forward or back, is not under manual
control.

Boyapati et al. [Boyapati et al. 2003] support a lazy update system for persistent
objects. Like Duggan, objects are not updated until they are used. However,
downgrades can be avoided by forcing an update ordering that avoids having new
objects received by existing code. A type system that enforces encapsulation is able
to ensure that all of an object o’s encapsulated objects are updated first, so that
o’s state transformation function can assume its fields have already been updated.
The programmer has some control over update timing through the use of program-
level, database-style transactions. For example, if an update to an object is noticed
while the object is in use, the current transaction is aborted, and the object is
updated before the transaction restarts. The drawback of this approach is that
strict encapsulation boundaries must be drawn so that the approach can be fully
automatic.

We also note that Dynamic ML [Gilmore et al. 1997], which performs its updates
using a modified garbage collector, could perform updates incrementally or concur-
rently by using a more advanced collector. A key disadvantage of lazy updates is
that complicates handling errors that could arise during state transformation. In
particular, in our approach, if a state transformer throws an exception, the entire
process can be immediately rolled back. In a lazy approach, some of the state may
already have been transformed and manipulated by the program before the error
is discovered, leaving the program in an unrecoverable, corrupt state.

9.3 Robustness

Dynamic linking alone provides a significant advantage with respect to robustness
over the more general updating system we have proposed, simply because bindings
are stable: once bound, a reference never changes. Previous work has leveraged this
fact to try to build support for evolving systems that only use dynamic linking. For
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

· 43

example, Appel [Appel 1994] describes an approach in which the old and new version
of code can run concurrently in separate threads, with the old version phasing out
after it completes its work. Similarly, Peterson et al. [Peterson et al. 1997] describe
an application-specific means of stopping a program, updating its code, and then
invoking the new version with the old version’s state. Both of these approaches
suffer the problem that they are more difficult to use and less flexible.

However, as we explained in Section 6, allowing code to change arbitrarily can
result in incorrect behavior if timing is not considered. While our approach allows
a programmer to determine when updates will occur, much work remains for de-
termining where such safe points lie. In particular, things get more complicated
with multithreading. As mentioned above, Boyapati et al. use encapsulation and
first-class transactions to ensure safely-ordered updates, even with multithreading.
However, determining appropriate transaction points is quite similar to our require-
ment of finding safe update points. K42 uses a protocol for ensuring that an object
is quiescent before it is updated [Soules et al. 2003]. The idea is to block threads
from entering an object that needs to be updated, and wait until all current threads
have stopped using the object. Assuming that the object properly encapsulates its
state (there are no aliases to it directly), and that all individual method calls are
essentially complete transactions, the object can be updated at that time, and the
blocked threads restarted in the new object. In a sense, this is a particular imple-
mentation strategy to ensure a transactional semantics. The problem is the lack
of automatic support for determining when the given assumptions are reasonable,
and the failure to support more general transactions (say, across multiple method
calls). We believe a more general formal understanding of application-specific up-
date correctness is needed. We and others have done some formal work [Bierman
et al. 2003; Gupta et al. 1996; Lee 1983; Frieder and Segal 1991] toward this end.

Robustness is greatly strengthened by verifying important safety properties of
loaded code, including type safety. This is a key benefit to our approach, and to
the DVM [Malabarba et al. 2000], which makes use of Java bytecode verification.
Other systems benefit from the use of type-safe source languages, like SML [Appel
1994; Gilmore et al. 1997], Haskell [Peterson et al. 1997] and Modula [Lee 1983],
but must trust the compiler; we need only trust the verifier. Erlang is dynamically
typed, so runtime type errors are possible. Most other approaches are for C [Frieder
and Segal 1991; Gupta et al. 1996] and C++ [Hjálmtýsson and Gray 1998; Soules
et al. 2003], which lacks the benefit of strong typing.

9.4 Ease of use

Dynamic linking is generally easy to use and is well integrated into standard pro-
gramming environments. Also due to its widespread support in current languages
and systems, it is also quite portable. In contrast, the more flexible systems are
quite hard to use. In all of the existing systems, patches must be constructed by
hand: the programmer must identify parts of the system that have changed and
reflect these in the file to load. In many cases, the limitations of patch files hamper
the normal development process.

Ease of use is one of the areas that our system makes the greatest contributions.
Our basic methodology, in which programs are developed normally, and dynamic
patches update the old version to the new, limits disruption of normal work flow.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

44 ·

In particular, the semi-automatic generation of patches greatly increases the ease
of use of our system, automating the most tedious parts of patch generation, while
letting the programmer control the more subtle aspects that are not amenable to
automation. We are currently working on newer tools to do a better job of au-
tomated state transformation. In particular, we are exploring how understanding
a program’s refactorings (semantics-preserving changes), as opposed to functional
changes, can help in automatically generating a state transformation function, par-
ticularly with relation to how like data is moved between types, or variables in
different files.

10. CONCLUSIONS

We have presented a system for dynamic software updating built on type-safe dy-
namic linking of native code. Our framework provides significant advances in bal-
ancing the tradeoffs of flexibility, robustness, ease of use, and low overheads, as
borne out by our experience with our dynamically updateable webserver, FlashEd.

Acknowledgments

We would like to thank the anonymous reviewers for their constructive and helpful
feedback. Thanks to the former members of TALC group at Cornell University,
most especially Stephanie Weirich, Karl Crary, and Greg Morrisett, for the use and
support of the TALx86 implementation, and for contributions to this work and work
that led up to it. Thanks also to Jonathan Moore, for his early contributions to this
work, and to Benjamin Pierce, Jonathan Smith, Insup Lee, and Mark Segal, who
served on the first author’s dissertation committee and provided valuable feedback
and suggestions.

REFERENCES

2002. The Java HotSpot virtual machine, v1.4.1, d2. Available at http://java.sun.com/products/
hotspot/docs/whitepaper/Java_Hotspot_v1.4.%1/JHS_141_WP_d2a.pdf.

Apache. The apache software foundation. http://www.apache.org.

Appel, A. 1994. Hot-sliding in ML. Unpublished manuscript.

Armstrong, J., Virding, R., Wikstrom, C., and Williams, M. 1996. Concurrent Programming

in Erlang, Second ed. Prentice Hall.

Balasubramaniam, S. and Pierce, B. C. 1998. What is a file synchronizer? In Fourth Annual
ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom ’98).

Full version available as Indiana University CSCI technical report #507, April 1998.

Bierman, G., Hicks, M., Sewell, P., and Stoyle, G. 2003. Formalizing dynamic software
updating. In Proceedings of the Second International Workshop on Unanticipated Software

Evolution (USE).

Bloom, T. 1983. Dynamic Module Replacement in a Distributed Programming System. Ph.D.

thesis, Laboratory for Computer Science, The Massachussets Institute of Technology.

Bloom, T. and Day, M. 1993. Reconfiguration and module replacement in Argus: theory and

practice. Software Engineering Journal 8, 2 (March), 102–108.

Boyapati, C., Liskov, B., Shrira, L., Moh, C.-H., and Richman, S. 2003. Lazy modular

upgrades in persistent object stores. In ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2003).

Buck, B. and Hollingsworth, J. K. 2000. An API for runtime code patching. Journal of High

Performance Computing Applications 14, 4, 317–329.

Dmitriev, M. 2001. Towards flexible and safe technology for runtime evolution of java language
applications. In Workshop on Engineering Complex Object-Oriented Systems for Evolution.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

· 45

Duggan, D. 2001. Type-based hot swapping of running modules. In International Conference on

Functional Programming. 62–73.

Frieder, O. and Segal, M. E. 1991. On dynamically updating a computer program: From

concept to prototype. Journal of Systems and Software 14, 2 (September), 111–128.

Gamsa, B., Krieger, O., Appavoo, J., and Stumm, M. 1999. Tornado: Maximizing locality

and concurrency in a shared memory multiprocessor operating system. In Operating Systems

Design and Implementation. 87–100.

Garlan, D., Krueger, C. W., and Staudt, B. J. 1986. A structural approach to the maintenance

of structure-oriented environments. In SIGSOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments. ACM, Palo Alto, CA, 160–170.

Gilmore, S., Kirli, D., and Walton, C. 1997. Dynamic ML without Dynamic Types. Tech.
Rep. ECS-LFCS-97-378, Laboratory for the Foundations of Computer Science, The University

of Edinburgh. December.

Grossman, D. and Morrisett, G. 2000. Scalable certification for Typed Assembly Language.
In Proceedings of the ACM SIGPLAN Workshop on Types in Compilation, R. Harper, Ed.

Lecture Notes in Computer Science, vol. 2071. Springer-Verlag.

Gupta, D. 1994. On-line software version change. Ph.D. thesis, Department of Computer Science

and Engineering, Indian Institute of Technology, Kanpur.

Gupta, D. and Jalote, P. 1993. On-line software version change using state transfer between

processes. Software—Practice and Experience 23, 9 (September), 949–964.

Gupta, D., Jalote, P., and Barua, G. 1996. A formal framework for on-line software version
change. Transactions on Software Engineering 22, 2 (February), 120–131.

Hicks, M. 2001. Dynamic software updating. Ph.D. thesis, Department of Computer and Infor-
mation Science, University of Pennsylvania.

Hicks, M., Moore, J. T., and Nettles, S. 2001. Dynamic software updating. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation.

13–23.

Hicks, M., Weirich, S., and Crary, K. 2000. Safe and flexible dynamic linking of native code.
In Proceedings of the ACM SIGPLAN Workshop on Types in Compilation, R. Harper, Ed.

Lecture Notes in Computer Science, vol. 2071. Springer-Verlag.

Hjálmtýsson, G. and Gray, R. 1998. Dynamic C++ classes, a lightweight mechanism to update

code in a running program. In Proceedings of the USENIX Annual Technical Conference.

Hofmeister, C. 1993. Dynamic reconfiguration. Ph.D. thesis, Computer Science Department,

University of Maryland, College Park.

Kramer, J. and Magee, J. 1990. The evolving philosophers problem: Dynamic change manage-
ment. IEEE Transactions on Software Engineering 16, 11, 1293–1306.

Lee, I. 1983. DYMOS: A dynamic modification system. Ph.D. thesis, Department of Computer
Science, University of Wisconsin, Madison.

Magee, J., Kramer, J., and Sloman, M. 1989. Constructing distributed systems in Conic. IEEE
Transactions on Software Engineering 15, 6 (June), 663–675.

Malabarba, S., Pandey, R., Gragg, J., Barr, E., and Barnes, J. F. 2000. Runtime support
for type-safe dynamic Java classes. In Proceedings of the Fourteenth European Conference on
Object-Oriented Programming.

Morrisett, G., Crary, K., Glew, N., Grossman, D., Samuels, R., Smith, F., Walker, D.,
Weirich, S., and Zdancewic, S. 1999. TALx86: A realistic typed assembly language. In
Second Workshop on Compiler Support for System Software. Atlanta.

Morrisett, G., Walker, D., Crary, K., and Glew, N. 1999. From System F to typed assembly

language. ACM Transactions on Programming Languages and Systems 21, 3 (May), 527–568.

Mosberger, D. and Jin, T. 1998. httperf: A tool for measuring web server performance. In First
Workshop on Internet Server Performance. ACM, 59—67.

Necula, G. 1997. Proof-carrying code. In Twenty-Fourth ACM Symposium on Principles of
Programming Languages. Paris, 106–119.

Oehler, M. and Glenn, R. 1997. HMAC-MD5 IP Authentication with Replay Prevention.
Internet RFC 2085.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

46 ·

Pai, V. S., Druschel, P., and Zwaenepoel, W. 1999. Flash: An efficient and portable webserver.

In Proceedings of the USENIX Annual Technical Conference. Monterey, 106–119.

Pescovitz, D. 2000. Monsters in a box. Wired 8, 12, 341–347.

Peterson, J., Hudak, P., and Ling, G. S. 1997. Principled dynamic code improvement. Tech.

Rep. YALEU/DCS/RR-1135, Department of Computer Science, Yale University. July.

Pratt, J. W. and Gibbons, J. D. 1981. Concepts of Nonparametric Theory. Springer-Verlag.

Ramkumar, B. and Strumpen, V. 1997. Portable checkpointing for heterogenous architectures.

In Symposium on Fault-Tolerant Computing. 58–67.

Segal, M. E. and Frieder, O. 1993. On-the-fly program modification: Systems for dynamic

updating. IEEE Software, 53–65.

Sewell, P. 2001. Modules, abstract types, and distributed versioning. In Proceedings of the

Twenty-Eighth ACM Symposium on Principles of Programming Languages. London. To ap-
pear.

Soules, C., Appavoo, J., Hui, K., Wisniewski, R. W., Silva, D. D., Ganger, G. R., Krieger,

O., Stumm, M., Auslander, M., Ostrowski, M., Rosenburg, B., and Xenidis, J. 2003.
System support for online reconfiguration. In USENIX Annual Technical Conference.

Tennenhouse, D. L., Smith, J. M., Sincoskie, W. D., Wetherall, D. J., and Minden, G. J.

1997. A survey of active network research. IEEE Communications Magazine 35, 1 (January),

80–86.

Tool Interface Standards Committee. 1995. Executable and Linking Format (ELF) specifi-
cation.

Tridgell, A. and Mackerras, P. 1996. The rsync algorithm. Tech. Rep. TR-CS-96-05, Canberra

0200 ACT, Australia. http://samba.anu.edu.au/rsync/.

Webstone. Mindcraft—WebStone benchmark information. http://www.mindcraft.com/webstone.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

