
Experience With Safe Manual Memory-Management in
Cyclone

Michael Hicks Greg Morrisett
University of Maryland, College Park Harvard University

mwh@cs.umd.edu greg@eecs.harvard.edu

Dan Grossman Trevor Jim
University of Washington AT&T Labs Research

djg@cs.washington.edu trevor@research.att.com

ABSTRACT
The goal of the Cyclone project is to investigate type safety for low-
level languages such as C. Our most difficult challenge has been
providing programmers control over memory management while
retaining type safety. This paper reports on our experience trying
to integrate and effectively use two previously proposed, type-safe
memory management mechanisms: statically-scoped regions and
unique pointers. We found that these typing mechanisms can be
combined to build alternative memory-management abstractions,
such as reference counted objects and arenas with dynamic life-
times, and thus provide a flexible basis. Our experience—porting
C programs and building new applications for resource-constrained
systems—confirms that experts can use these features to improve
memory footprint and sometimes to improve throughput when used
instead of, or in combination with, conservative garbage collec-
tion.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—dynamic storage management, polymorphism

General Terms
Languages, Experimentation, Reliability

Keywords
memory management, unique pointers, memory safety, regions,
Cyclone

1. INTRODUCTION
Low-level languages such as C provide a degree of control over

space, time, and predictability that high-level languages such as
Java do not. But the lack of type-safety for C has led to many
failures and security problems. The goal of our research is try to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISMM’04,October 24–25, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-945-4/04/0010 ...$5.00.

bring the “Mohammad of type safety” to the “mountain of existing
C code.”

Toward that end, we have been developing Cyclone, a type-safe
dialect of C [23]. Cyclone uses a combination of programmer-
supplied annotations, an advanced type system, a flow analysis,
and run-time checks to ensure that programs are type safe. When
we started the project, we relied entirely on heap allocation and
the Boehm-Demers-Weiser (BDW) conservative garbage collector
(GC) to recycle memory safely. BDW provides convenient inter-
operability with legacy libraries and makes it easy to support poly-
morphism without needing run-time type tags.

While the BDW collector provides convenience, it does not al-
ways provide the performance or control needed by low-level sys-
tems applications. In previous work, we described an integration of
BDW with type-safe stack allocation and LIFO arena allocation. A
region-based, type-and-effect system based upon the work of Tofte
and Talpin [31] ensured safety while providing enough polymor-
phism for reusable code to operate over data allocated anywhere.

In practice, we found that supporting stack allocation was cru-
cial for good performance, and our system was able to infer most
region annotations for porting legacy C code that used stack allo-
cation [15]. We found that LIFO arenas were useful when callers
know object lifetimes but only callees can determine object sizes.
Unfortunately, LIFO arenas suffer from several well-known limi-
tations that we encountered repeatedly. In particular, they are not
suited to computations such as server and event loops.

Since then, we have explored the integration ofunique point-
ers into our memory management framework. Our unique pointers
are closely related to typing mechanisms suggested by other re-
searchers, including linear types [32], ownership types [9], alias
types [28], and capability types [33]. The critical idea with all of
these proposals is to make it easy to track locally the state of an ob-
ject by forbidding uncontrolled aliasing. In Cyclone, a value with a
unique-pointer type is guaranteed to be the only (usable) reference
to an object. Such objects can be deallocated by the programmer
at any time, and a modular flow analysis is used to ensure that the
dangling pointer cannot be dereferenced in the rest of the compu-
tation.

Unique pointers are not a novel idea, but we found many chal-
lenges to implementing them in a full-scale safe language, as they
interact poorly with other features such as exceptions, garbage col-
lection, type abstraction, the address-of operator, undefined evalua-
tion order, etc. To our knowledge, no one has attempted to address
all of these features in a full-scale language implementation.

On the other hand, we found great synergies in the combina-

tion of uniqueness and regions. In particular, we were able to use
the LIFO region machinery to support a form of “borrowed” point-
ers [8], which goes a long way in relaxing the burdens of unique-
ness. We were also able to use unique pointers as capabilities for
building further memory-management abstractions. In particular,
we used unique pointers to control access to a form of dynamically-
scoped arenas [18], and for building reference-counted objects and
arenas.

In this paper, we describe our support for unique pointers and the
extensions they enable; the Cyclone manual has further detail [10].
We then discuss our experience using these facilities to build or
port a few target applications, including a multimedia overlay net-
work, a small web server, a Scheme interpreter, an ftp server, and an
image-manipulation program. Most of the applications were cho-
sen because they are structured as (infinite) loops with loop-carried
state and are thus not well-suited for LIFO arenas. Furthermore, we
feel that these applications are representative for resource-limited
platforms, such as cell-phones or embedded systems, where space
is at a premium. In most of these applications, we were able to
reduce if not eliminate the need for garbage collection. We also
saw dramatic improvements in working-set size, and for at least
one application an improvement in throughput.

Thus, the contributions of this paper are two-fold:

1. We show that the addition of unique pointers to a region-
based language provides a flexible basis for building type-
safe, manual memory management, which can complement
or replace GC.

2. We confirm that the resource requirements of some important
applications can be significantly improved through type-safe,
manual memory management.

2. REGIONS IN CYCLONE
All of the memory management facilities in Cyclone revolve

aroundregions. A region is a logical container for objects that obey
some memory management discipline. For instance, a stack frame
is a region that holds the values of the variables declared in a lexi-
cal block, and the frame is deallocated when control-flow exits the
block. As another example, the garbage-collected heap is another
region, whose objects are individually deallocated by the collector.

Each region in a program is given a compile-time name, either
explicitly by the programmer or implicitly by the compiler. For
example, the heap region’s name is‘H and the region name for a
functionfoo’s stack frame is‘foo. If ‘r is the name of a region,
and an objecto with type T is allocated in‘r, then the type of a
pointer too is writtenT*‘r.

To ensure that programs never dereference a pointer into a deal-
located region, the compiler tracks a conservative approximation
of (a) the regions into which a pointer can point, and (b) the set
of regions that are still live at each program point. This is imple-
mented using a type-and-effects system in the style of Tofte and
Talpin [31].

Cyclone supportsregion polymorphism, which lets functions and
data structures abstract over the regions of their arguments and
fields. By default, Cyclone assumes that pointer arguments to func-
tions live in distinct regions, and that all of these regions are live
on input. A unification-based algorithm is used to infer instan-
tiations for region-polymorphic functions and the regions for lo-
cal variables. This drastically cuts the number of region annota-
tions needed for programs. Cyclone also supports region subtyping
based on region lifetimes, which combines with region polymor-
phism to make for an extremely flexible system. In practice, we

have found few (bug-free) examples where stack-allocation could
not be easily ported from C to Cyclone.

2.1 LIFO Arenas
The basic region system we have described easily supports a

form of arenas that have stack-like last-in-first-out (LIFO) life-
times, but also support dynamic allocation.1 A LIFO arena is intro-
duced with a lexically-scoped declaration:

{ region<‘r> h; ... }

Here, h is a regionhandlehaving typeregion_t<‘r> that can
be used to allocate in the newly introduced region‘r. Calling
the primitivermalloc(h,...) allocates space within region‘r.
When the declaring lexical scope concludes, the handle and the
contents of the arena are deallocated.

FILE *infile = ...

if (get_tag(infile) == HUFFMAN_TAG) {

region<‘r> h;

struct code_node<‘r> *‘r huffman_tree;

huffman_tree = read_huffman_tree(h, infile);

read_and_huffman_decode(infile, huffman_tree,

symbol_stream, ...);

} else ...

Figure 1: LIFO Arena example

We have found that arenas work well for situations where data’s
lifetime is scoped, but the caller does not know how much space to
pre-allocate on its stack frame. Consider the example in Figure 1
(adapted from theEpic image compression/decompression bench-
mark in Section 4). If the image in the specifiedinfile is com-
pressed using huffman encoding, then theread_huffman_tree

routine deserializes the huffman tree from the file into acode_node

tree allocated in region‘r. This tree is used to decompress the re-
maining file contents into thesymbol_stream array, which is then
further decompressed in the continuation. The tree is not needed
beyond theif block in which its region is defined, and is freed
with that region when control exits the the block. Obviously, stat-
ically allocating the space for the tree would be problematic since
the size of the tree depends on the contents ofinfile.

Unfortunately, we found that the LIFO restriction on arena life-
times was often too limiting. That is, we often wished that we could
deallocate the arena before the end of its scope. This was partic-
ularly problematic for loops: If one pushes the arena declaration
inside the loop then a fresh arena is created and destroyed for each
iteration. Thus, no data can be carried from one iteration to the
next, unless they are copied to an arena declared outside the loop.
But then all of the data placed in an outer arena would persist until
the entire loop terminates. For loops that do not terminate, such as
a server request loop or event loop, this is a disaster as the LIFO
restriction can lead to unbounded storage requirements.

3. UNIQUE POINTERS
Very often the limitations of stack allocation and LIFO arenas

can simply and conveniently be overcome by using garbage collec-
tion (GC). However, GC may not always be compatible with the
1Our previous paper [15] referred to LIFO arenas asdynamic re-
gionsdue to their dynamically-determined sizes; in this paper we
use the termregion more generally, usingarena to signify a re-
gion supporting dynamic allocation, andLIFO to signify scoped
lifetime.

performance needs of an application. For example, embedded sys-
tems and network servers sometimes require bounds on space con-
sumption, pause times, or throughput that may be hard to achieve
with GC. Therefore, we decided to extend Cyclone with a suite
of mechanisms that would permit manual object deallocation with-
out imposing a LIFO restriction. We emphasize that our goal is
not necessarily to eliminate GC, but rather to provide programmers
with better control over tuning the space and time requirements of
their programs.

In general, ensuring that manual deallocation is safe requires
very precise information regarding which pointers may alias other
pointers. Though there are impressive analyses that compute such
aliasing information, they usually require whole-program analysis
to achieve any level of accuracy.

An alternative solution that has been proposed many times is to
restrict or avoid aliasing altogether, so that reasoning about type-
states can be done locally. One extreme is to require that point-
ers which are deallocated beunique (i.e., have no aliases.) In
what follows, we briefly describe how we have incorporated unique
pointers into Cyclone, enabling support for per-object deallocation,
reference-counting, and arenas with dynamic lifetimes.

To distinguish a unique pointer from a heap-, stack-, or arena-
allocated pointer, we use a special region name‘U. A pointer value
with typeT*‘U is created by callingmalloc and can be deallocated
via free at any time.

We use an intraprocedural, flow-sensitive, path-insensitive anal-
ysis to track when a unique pointer becomesconsumed, in which
case the analysis rejects a subsequent attempt to use the pointer. We
chose an intraprocedural analysis to ensure modular checking and
a path-insensitive analysis to ensure scalability. To keep the anal-
ysis simple, a copy of a unique pointer (e.g., in an assignment or
function call) is treated as consuming the pointer. This ensures that
there is at most one usable alias of a unique pointer at any program
point. Here is an example:

int *‘U q = p; // consumes p

*q = 5; // q not consumed

free(q); // consumes q

*p = *q; // illegal: p & q consumed

The first assignment aliases and consumesp, while the call tofree
consumesq. Therefore, attempts to dereferencep or q are illegal.
Dereferencing a unique pointer does not consume it since it does
not copy the pointer, as the first dereference ofq shows.

At join points in the control-flow graph, our analysis conserva-
tively considers a value consumed if there is an incoming path on
which it is consumed. For instance, ifp is not consumed and we
write:

if (rand()) free(p);

then the analysis treatsp as consumed after the statement. In this
situation, we issue a warning thatp might leak, since the type-states
do not match. Fortunately, we can link in the garbage collector
to ensure the object is reclaimed. We considered making this an
error as in Vault [11], but found that exception handlers and shared
unique pointers (described below) generated too many false alarms.
Thus, we settle for a warning and rely upon the GC as a safety net.

We allow unique pointers to be placed in non-unique objects
(e.g., a global variable or heap-allocated object) that might have
multiple aliases. To ensure that unique pointers remain unique,
we must somehow limit access through these paths. In most sys-
tems, reading a unique pointer is treated as adestructiveoperation
that overwrites the original copy withNULL, so as to preserve the
uniqueness invariant. In Cyclone, we have pointer types that do

not admitNULL as a value, so destructive reads are not always an
option. Therefore, we provide an explicitswapoperation (“:=:”)
that allows one to swap one unique object for another (including
NULL where permitted.) Though notationally less convenient than
a destructive read, we found that programming with swaps made
us think harder about whereNULL-checks were needed, and helped
eliminate potential run-time exceptions.

Here is a simple example of the utility of swap:

int *‘U g = NULL;

void init(int x) {

int *‘U temp = malloc(sizeof(int));

*temp = x;

g :=: temp;

if (temp != NULL) free(temp);

}

Here,g is a global variable holding a unique pointer. Theinit
routine creates the unique pointer and stores it intemp. Then, the
value of the temporary is swapped for the value ofg. Afterward, if
temp is notNULL, then we free the pointer. It is easy to verify that at
any program point, there is at most one usable copy of any unique
value. Furthermore, by making swap atomic, this property holds
even if multiple threads were to executeinit concurrently. Atomic
swap can be used to build useful concurrent protocols, while simple
extensions, like compare-and-swap, can be used to build arbitrary
wait-free structures [20].

In general, we can perform assignments directly without need of
swapping as long as we assign a unique pointer to aunique path. A
unique pathu has the form

u ::= x | u.m | u->m | *u
wherex is a local variable andu is a unique pointer. Its syntactic
difference with normal assignment expresses swap’s runtime cost.

Finally, we remark that placing unique pointers in non-unique
objects can lead to subtle “leaks”. For instance, there is no guar-
antee that when a unique pointer is passed tofree that the object
to which it points does not contain live, unique pointers. Similarly,
when we write a unique pointer into a shared object (e.g., a global)
there is no guarantee that we are not overwriting another live unique
pointer.

3.1 Borrowing Unique Pointers
Unique pointers make it easy to support explicit deallocation, but

they often force awkward coding idioms just to maintain unique-
ness. For example, we must forbid using pointer arithmetic on
unique pointers, since doing so could allow the user to callfree

with a pointer into the middle, rather than the front, of an object,
confusing the allocator. (An allocator supporting such dealloca-
tions would let us remove this restriction, though the fact that C
allows pointers just beyond allocated objects may complicate mat-
ters.) As another example, we often want to pass a copy of a pointer
to a function that does not consume the pointer, and leave the orig-
inal copy as unconsumed.

Most systems based on uniqueness or ownership have some way
of creating “borrowed” pointers to code around these problems. A
borrowed pointer is a second-class copy of a unique pointer that
cannot be deallocated and cannot “escape”. This ensures that if we
deallocate the original pointer, we can invalidate all of the borrowed
copies. In Cyclone, a pointer is borrowed using an explicitalias

declaration, similar to Walker and Watkins’let-region [35], and
the LIFO region machinery prevents the borrowed pointer from es-
caping.

Consider the example in Figure 2 (adapted from theKiss-FFT
benchmark). Thedo_fft function allocates a unique pointerx to

fft_state *‘U fft_alloc(int n, int inv);

void fft(fft_state *‘r st,...);

void fft_free(fft_state *‘U st);

void do_fft(int numffts, int inv) {

fft_state *‘U x = fft_alloc(nfft,inv);

for (i=0;i<numffts;++i) {

let alias<‘s> fft_state *‘s a = x;

fft(a,...);

}

fft_free(x);

}

Figure 2: Pointer borrowing example

hold the state of the transform, performs the specified number of
FFT’s, and then frees the state. The declaration

let alias<‘s> fft_state *‘s a = x; ...

introduces a fresh region name,‘s, and an aliasa for x that appears
to be a pointer into region‘s. Within the scope of thealias dec-
laration (which is the entirety of thefor loop), we may freely copy
a and pass it to functions, just as if it were allocated on the stack,
in the heap, or in an arena. However, throughout the scope of the
alias, the original unique pointerx is considered to be consumed.
This prevents the object to which it refers from being deallocated.
At the end of the block, any copies ofx will be treated as unusable,
since the region‘s will not be in scope. Thus, no usable aliases
can survive the exit from the block, and we can safely restore the
type-state ofx to be an unconsumed, unique pointer, permitting it
to be freed withfft_free. In short, regions provide a convenient
way to temporarily name unique pointers and track aliasing for a
limited scope.

Using a fresh, lexically-scoped region name is crucial to the
soundness of thealias construct. For example, suppose an incor-
rect program attempts to assign a borrowed pointer of typeint*‘s

to a global variable (thus permitting the pointer to escape.) Such a
program cannot type-check because the global cannot have a com-
patible type since‘s is not in scope.

Finally, it is important to note that we provide a limited form
of alias-inference around function calls to simplify programming
and cut down on annotations. In particular, whenever a region-
polymorphic function (such asfft) is called with a unique pointer
as an argument, the compiler will attempt to wrap analias decla-
ration around the call, thereby allowing the arguments to be freely
duplicated within the callee. As a result, we can rewritedo_fft to
be:

void do_fft(int numffts, int inv) {

fft_state *‘U x = fft_alloc(nfft,inv);

for (i=0;i<numffts;++i) {

fft(x,...);

}

fft_free(x);

}

and the compiler will insert the appropriatealias declaration for
x around the function call tofft.

3.2 Polymorphism
In general, the interaction of unique pointers with subtyping and

region polymorphism requires some care. The following function
illustrates some of the difficulties:

Aliasability May have aliases May create aliases
normal × ×
unique (U)
top (T) ×

normal ≤ top (T)
unique (U) ≤ top (T)

Table 1: Kinds and Aliasabilities

‘a copy(‘a x,‘a *‘U y) {

*y = x;

return x;

}

The syntax‘a denotes a Cyclonetype variablewhich stands for an
arbitrary type. Thecopy function copies x into the pointer argu-
menty and returnsx as the result, effectively creating two copies
of x. Consider if we callcopy with a unique pointer:

int *‘U x = malloc(sizeof(int));

int *‘U *‘U y, *‘U z;

z = copy(x,y);

free(*y);

*z = 1; // ERROR!

When callingcopy, x is consumed, but two copies of it are made
available to the caller. Thus the caller can free one of them and
then erroneously use the other. To prevent this situation, we need
to distinguish between polymorphic regions and values that can be
copied (i.e., in the body of thecopy function) and those that cannot.

We classify types with both analiasabilityand akind. Kinds de-
scribe the structure of types, e.g.,B describes boxed (i.e., pointer)
types,R describes regions, etc. Aliasabilities indicate how a type
may be aliased, and are shown in Table 1. Anormal aliasability
indicates that a type’s objects may have aliases and that aliases can
be freely created. In contrast, auniquealiasability indicates that
a type’s objects are not aliased, nor can they ever be. For exam-
ple, the region‘U has kindUR and the typeint *‘U has kindUB.
Normal aliasability is the default. As such, to prohibit callingcopy

with a unique pointer, its fully annotated prototype should be

‘a::B copy(‘a x,‘a *‘U y);

This states that‘a has boxed kindB, and normal aliasability. The
call to copy in the above example would be disallowed becausex

has typeint *‘U, which has kindUB, andUB 6≤ B. Note that‘a
has boxed kind by default and need not be annotated explicitly as
we have done here.

For more code reuse, we define a third aliasabilityT (for “top”),
whose types’ objects could have aliases, but for which no new
aliases may be created. For instance, a value of type‘a::TB cannot
be freely duplicatedandcannot be considered unique. These condi-
tions permit using unique- or normal-kinded types where we expect
top-kinded types, creating the subaliasing relationship shown in Ta-
ble 1. This enables writing functions polymorphic over aliasability.

3.3 Reference Counting
Even with borrowing and polymorphism support, unique point-

ers can only be used to build tree-like data structures with no in-
ternal sharing or cycles. While GC or LIFO arenas may be rea-
sonable options for such data structures, another alternative often
employed in systems applications is reference-counting. For exam-
ple, reference-counting is used in COM and the Linux kernel, and
is a well-known idiom for C++ and Objective C programs.

Region Variety Allocation Deallocation Aliasing
(objects) (what) (when) (objects)

Stack static whole exit of lexical
LIFO Arena region scope unrestricted
Dynamic Arena manual
Heap (‘H) dynamic automatic (GC)
Unique (‘U) single objects manual restricted
Reference-counted (‘RC)

Table 2: Summary of Cyclone Regions

We found we could elegantly support safe reference-counting by
building on the discipline of unique pointers. This has two advan-
tages. First, we introduce almost no new language features, rather
only some simple run-time support. Second, the hard work that
went into ensuring that unique pointers coexisted with conventional
regions is automatically inherited for reference-counted objects.

We define a newreference-counted region‘RC, whose objects,
when allocated, are prepended with a hidden reference-count field.
As with unique pointers, the flow analysis prevents the user from
making implicit aliases. Instead,‘RC pointers must be copiedex-
plicitly by using thealias_refptr function, which increments
the reference count and returns a new alias, without consuming the
original pointer. In essence, both of the‘RC values serve as explicit
capabilities for the same object. A reference-counted pointer is de-
stroyed by thedrop_refptr function. This consumes the given
pointer and decrements the object’s reference count; if the count
becomes zero, the memory is freed.

struct conn *‘RC cmd_pasv(struct conn *‘RC c) {

struct ftran *‘RC f;

int sock = socket(...);

f = alloc_new_ftran(sock,alias_refptr(c));

c->transfer = alias_refptr(f);

listen(f->sock, 1);

f->state = 1;

drop_refptr(f);

return c;

}

Figure 3: Reference counting example

Consider the example in Figure 3, adapted from theBetaFTPD
benchmark. In BetaFTPD,conn structures andftran structures
mutually refer to one another. Therefore, we must explicitly aliasc

when allocatingf to point to it. Likewise, we aliasf explicitly to
store a pointer to it inc. Once thesock connection is established,
we no longer need the local copy off, and so we drop it explicitly,
leaving the only legal pointer to it via the one stored inc.

Thus, treating‘RC pointers as if they were unique forces pro-
grammers to manipulate reference counts explicitly. Instead of
free, one usesdrop_refptr, which callsfree if the reference
count becomes zero. Otherwise, the compile-time restrictions on
reference-counted pointers are like those for unique pointers. For
example, ify holds a reference-counted pointer, the assignment
x=y consumesy. So there is at most one usable aliasper call to
alias_refptr.

While this is less convenient than automatic reference counting,
it requires almost no additional compiler support. Furthermore, the
constraints on unique pointers ensure that an object is never pre-
maturely deallocated, and the flow analysis warns when a pointer

is potentially “lost.” Finally, we can use thealias construct to
borrow a reference-counted pointer to achieve a form of explicit,
deferred reference counting. Thus, the programmer has complete
control over where reference counts are manipulated.

3.4 Dynamic Arenas
Coming full circle, we found we can use unique pointers to pro-

vide a more flexible form of arenas that avoids the LIFO lifetime
restriction. The basic idea is to use a unique pointer as a capabil-
ity or “key” for the arena. The operationnew_ukey() creates a
fresh arena‘r and returns a unique key for the arena having type
uregion_key_t<‘r>. Accessing the arena requires possession of
the key, as does deallocating the arena, which is performed by call-
ing free_ukey(). Since the key is represented as a unique pointer
and is consumed when the arena is destroyed, the arena can no
longer be accessed.

Rather than requiring the key be presented on each allocation or
pointer-dereference into the arena, we provide a lexically-scoped
open construct that temporarily consumes the key and allows the
arena to be freely accessed within the scope of theopen. The key
is then given back upon exit from the scope.

trie_t<‘r> trie_lookup(region_t<‘r> r,

trie_t<‘r> t,

char *‘H buff) {

switch (t->children) ... //dereferences t

}

int ins_typedef(uregion_key_t<‘r> k,

trie_t<‘r> t, char *‘H s ; {}) {

{ region h = open(k); //may access ‘r, not k

trie_t<‘r> t_node = trie_lookup(h,t,s);

...

} //k unconsumed, ‘r inaccessible

return 0;

}

Figure 4: Dynamic Arena example

Consider the example in Figure 4, adapted from the Cyclone
compiler’s lexer: The functioninsert_typedef takes a unique
key to some arena‘r, along with a pointert to atrie_t stored in
‘r. The annotation “; {}” on the function’s prototype is an empty
“effect.” The fact that it is empty effectively denotes that‘r is not
accessible, sot cannot be dereferenced. (By default, when no ef-
fect is indicated, all regions mentioned in a prototype are assumed
to be live; the heap region‘H is always live.) Within the function,
the arena is opened via the syntaxregion h = open(k), which
adds‘r to the set of accessible regions. Thus,t can be derefer-
enced, and the call totrie_lookup is safe. The handleh permits
the user to perform additional allocation into the arena if desired.

Program Description Non-comment Lines of Code Manual
C Cyc Cyc (+manual) mechs

Boa web server 5217 ± 284 (5%) ± 91 (1%) U(D)
BetaFTPD ftp server 1146 ± 191 (16%) ± 225 (21%) UR
Epic image compression utility 2123 ± 217 (10%) ± 114 (5%) UL
Kiss-FFT fast Fourier transform routine 453 ± 73 (16%) ± 20 (4%) U
MediaNet streaming data overlay network 8715 ± 320 (4%) URLD
CycWeb web server 667 U
CycScheme scheme interpreter 2523 ULD

U = unique pointers R = ref-counted pointers
L = LIFO regions D = dynamic arenas

Table 3: Benchmark Programs

To prevent the arena from being freed while it is in use, the keyk

is temporarily consumed until the scope concludes, at which time
it can be safely destroyed.

Clearly,open andalias are related. Both provide a way to tem-
porarily “pin” something and give it a name for a particular scope.
In the case ofalias, a single object is being pinned, whereas in the
case ofopen, an arena is being pinned. Pinning prevents the ob-
ject(s) from being deallocated throughout the scope, and the region
name is used to prevent pointers to the object(s) from escaping the
scope. Thus, while lexically-scoped, LIFO arenas can be limiting,
lexically-scoped region names have proven invaluable for making
unique pointers and dynamic arenas work well in practice.

As a simple generalization, we support reference-counted are-
nas, where‘RC pointers are used as keys instead of unique point-
ers. It is thekeythat is reference-counted, so accessing objects in
the arena just requires using theopen construct with the reference-
counted key, as above. When the last reference to a key is dropped,
the key and the associated region are deallocated.

Thus, the addition of unique pointers to our region framework
gives us a number of memory-management options, which are sum-
marized in Table 2 . It illustrates the flexibility that programmers
have, particularly in choosing how to deallocate objects. As the
alias restrictions indicate, a particular choice essentially trades ease
of use for better control over object lifetime. In the following sec-
tion, we describe our experience trying to use these facilities in
various applications.

4. APPLICATIONS
Table 3 describes the benchmark programs with which we exper-

imented. For programs we ported from C (Boa, BetaFTPD, Epic,
and Kiss-FFT) it shows the non-comment lines of code of the orig-
inal program, and then the changes due to porting to Cyclone to
use the GC, and then the additional changes needed to use man-
ual mechanisms. The other programs (MediaNet, CycWeb, and
CycScheme) were written directly in Cyclone. The final column
indicates which manual mechanisms we used. For all programs
other than MediaNet, we eliminated the need for GC entirely. We
describe the program and the coding process below. Performance
experiments for these programs are presented in the next Section.

4.1 Porting Experience
The process of porting from C to Cyclone is made easiest by

placing all dynamically-allocated data in the heap region and let-
ting BDW take care of recycling the data. Most of the changes
involve differences between C and Cyclone that are not memory-
management related, such as introducingfat pointer annotations.
(Fat pointers carry run-time array-bounds information with them

used to support dynamic bounds checks when pointer arithmetic
cannot be statically verified.) To take advantage of the new man-
ual facilities, we roughly performed two actions. First, we distin-
guished between those data whose lifetimes are scoped from those
whose are not. Second, for those data structures with a non-scoped
lifetime, we identified their aliasing behavior to determine which
mechanism to use.

Objects with Scoped Lifetime.When data structures have
scoped lifetimes, we can either allocate them in a LIFO arena, or we
can allocate them in the unique region, and use thealias construct
to allow temporary aliasing until they can be freed. For example,
in both Epic and Kiss-FFT, we merely had to change a declaration
from something like

T* q_pyr = malloc(...);

to instead be

T*‘U q_pyr = malloc(...);

All alias statements were inferred automatically when calling
subroutines that wished to alias the array (see Figure 2). For Epic,
we also used a LIFO arena to store a Huffman compression tree
that was used during the first phase of the compression. This re-
quired changing the prototypes of the creator functions to pass in
the appropriate arena handle, in addition to adding various region
annotations (see Figure 1).

Objects with Dynamic Lifetime.If we wish to manage a data
structure manually using unique pointers, it cannot require aliases.
For example, Boa stores the state of each request in arequest

structure, illustrated in Figure 5. Because these form a doubly-
linked list, we cannot use unique pointers. Even if we were to re-
move thenext and prev fields and storerequest objects in a
separate (non-unique) list, we could not uniquely allocate requests
because they contain internal aliases. For example, theheader

field identifies the HTTP header in an internal buffer.
In the case of Boa,request objects are managed by a custom

allocator. Throughout its lifetime, a request is moved between a
blocked queue and a ready queue, and when complete, the request
is moved onto a free list to be reused. Therefore, we can continue to
use this allocator and simply heap-allocate the requests since they
will never be freed by the system allocator. Some internal elements
of the request, such as the pathname (shown with open-headed ar-
rows in the figure) were not aliased internally, so they could be
uniquely allocated and freed when the request was complete. We
also experimented with a version that used dynamic arenas for re-
quests instead of the custom allocator, but found that this adversely

next
prev
header
pathname
...

buf

Figure 5: Request data structure in Boa

affected throughput (we are still investigating why). We remark that
this alternative required changes only to the topmost request man-
agement routines; the internal request processing routines could re-
main the same.

BetaFTPD also used doubly-linked lists, one for open sessions
and one for transfers in progress. Furthermore, there are cross-
links between session and transfer objects. Thus, reference-counted
pointers seemed like the best safe option that avoided garbage col-
lection. As can be seen from Table 3, this required 21% of the code
to be changed, significantly more than the other ports. The reason is
that all reference-counts are managed manually, so we had to insert
many calls toalias_refptr and drop_refptr along with the
addition of annotations (see Figure 3). While largely straightfor-
ward, we were forced to spend some time tracking down memory
leaks that arose from failing to decrement a count. The warnings is-
sued by the compiler were of little help, since there were too many
false positives. However, we remark that the original program had
a space leak along a failure path that we were able to find and elim-
inate. Thus, our experience with reference counting was mixed.

Because the changes to legacy code do not change the underlying
data structures or logic of the application, we have not found the
introduction of application-level bugs a major problem. Straight-
forward testing, using the original C program as the ground truth,
appears suitable in practice, though the inherent “danger” of chang-
ing existing code cannot be completely eliminated.

4.2 Cyclone Applications
In addition to porting C programs, we have written three Cyclone

programs from scratch that use our manual mechanisms. Here we
describe which mechanisms we used and why.

4.2.1 CycWeb
CycWeb is a simple, space-conscious web server that supports

concurrent connections using non-blocking I/O and an event li-
brary in the style of libasync [25] and libevent [27]. The event
library lets users registercallbacksfor I/O events. A callback con-
sists of a function pointer and an explicit environment that is passed
to the function when it is called. The event library uses polymor-
phism to allow callbacks and their environments to be allocated in
arbitrary regions. For the library, this generality is not overly bur-
densome: of 260 lines of code, we employ our swap operator only
10 times across 10 functions, and never use thealias primitive
explicitly. The web server itself (667 lines) has 16 swaps and 5
explicit aliass.

For the rest of the application, we also chose to use unique point-
ers. When a client requests a file, the server allocates a small buffer
for reading the file and sending it to the client in chunks (default
size is 1 KB). Callbacks are manually freed by the event loop when
the callback is invoked (they must be re-registered if an entire trans-
action is not completed); each callback is responsible for freeing its

own environment, if necessary. As we see in the next section, this
design allows the server to be reasonably fast while consuming very
little space.

4.2.2 MediaNet
MediaNet [22] is an overlay network with servers that forward

packets according to a reconfigurable DAG ofoperations, where
each operation works on the data as it passes through. For better
performance, we eschew copying packets between operations un-
less correctness requires it. However, the dynamic nature of config-
urations means that both packet lifetimes and whether packets are
shared cannot be known statically.

We use a data structure called astreambufffor each packet, sim-
ilar to a Linuxskbuff:

struct StreamBuff { <i::I>
... // three omitted header fields

tag_t<i> numbufs;

struct DataBuff<‘RC> bufs[numbufs];

};

The packet data is stored in the arraybufs. Note thatbufs is not
a pointer to an array, but is flattened directly withinStreamBuff.
Thus StreamBuff elements will vary in size, depending on the
number of buffers in the array. Thenumbufs field holds the length
of bufs. The notation<i::I> introduces anexistentialtype vari-
able of integer kind (I), and is used by our type system to enforce
the correspondence between thenumbufs field and the length of
thebufs array in a fashion similar to Xi and Pfenning’s Dependent
ML [37]. Databuffsstore packet data:

struct DataBuff {

unsigned int ofs;

byte ?‘RC buf;

};

Thebuf field points to an array of the actual data. The? notation
designates a fat pointer to a dynamically-sized buffer. Theofs

field indicates an offset, in bytes, into thebuf array. This offset
is necessary since pointer arithmetic is disallowed for unique and
reference-counted pointers.

EachStreamBuff object is allocated in the unique region. When
a packet must be shared, a new streambuff is created, whose array
points to the same databuffs as the original (after increasing their
reference counts). This approach allows for quickly appending and
prepending data to a packet, and requires copying packet buffers
only when they are both shared and mutated.

An example using streambuffs is shown in Figure 6. Here, three
individual streambuffsA, B, andC share some underlying data;
unique pointers have open arrowheads, while reference-counted
ones are filled in. This situation could have arisen by (1) receiv-
ing a packet and storing its contents inA; (2) creating a new buffer
B that prepends a sequence number1234 to the data ofA; and
(3) stripping off the sequence number for later processing (assum-
ing the sequence number’s length is4 bytes). Thus,C andA are
equivalent. When we free a streambuff, we decrement the reference
counts on its databuffs, so they will be freed as soon as possible.

MediaNet’s DAG of operations is stored in a dynamic arena. We
found it convenient to allocate some objects in the heap, such as
the objects representing connections. This means that we must use
the GC to manage these objects. An earlier version of MediaNet
stored all packet data in the heap as well, using essentially the same
structures. One important difference was that databuffs contained
an explicitrefcnt field managed by the application to implement
copy-on-write semantics. Unfortunately, this approach yielded a

A buffer with data

1234

0 4 00 0

A B C

Figure 6: Pointer graph for three streambuffs

number of hard-to-find bugs due to reference count mismanage-
ment. Our language support for reference-counting eliminated the
possibility of these bugs, and further let us free the data immedi-
ately after its last use. As shown in Table 3, moving to explicit
unique pointers and dynamic regions was not difficult; only 4% of
the code had to be changed. The majority of these changes were
in a couple of utility files. Out of nearly 9000 non-comment lines,
we used swap 74 times andalias 67 times, of which 67% were
automatically inferred.

4.2.3 CycScheme
Using a combination of our dynamic arenas and unique pointers,

Fluet and Wang [13] have implemented a Scheme interpreter and
runtime system in Cyclone. The runtime system includes a copying
garbage collector in the style of Wang and Appel [36], written en-
tirely in type-safe Cyclone. All data from the interpreted program
are allocated in an arena, and when the collector is invoked, the live
data are copied from one arena to another, and the old arena is then
deallocated. Since both arenas must be live during collection but
their lifetimes are not nested, LIFO arenas would not be sufficient.

Further details on CycScheme’s performance and implementa-
tion can be found in Fluet and Wang’s paper. We simply observe
that our system of memory management was flexible enough for
this interesting application. In particular, this shows that at least
in principle, it is possible for Cyclone programs to code up their
own copying garbage collectors tailored for a particular applica-
tion. However, we remark that the approach is limited to straight-
forward copying collection and does not accommodate other tech-
niques, including generations or mark/sweep.

5. PERFORMANCE EXPERIMENTS
To understand the benefit of our proposed mechanisms, we com-

pared the performance of the GC-only versions of our sample appli-
cations to the ones using manual mechanisms. Our measurements
exhibit two trends. First, we found that elapsed time is similar for
the GC and manual versions of the programs. Indeed all of our
benchmark programs, other than MediaNet, have execution time
performance virtually the same for the GC and non-GC cases. In
the case of MediaNet, judicious use of manual mechanisms signifi-
cantly reduced the reliance on GC (but did not eliminate it entirely),
improving performance. Second, we found that we could signifi-
cantly reduce memory utilization by using manual mechanisms.

In this section we carefully discuss the performance of the Boa,
CycWeb, and MediaNet servers. We found these to be the most
interesting programs from a resource management point of view;
measurements for the remaining programs can be found in the Ap-
pendix. We ran our performance experiments on a cluster of dual-
processor 1.6 GHz AMD Athlon MP 2000 workstations each with
1 GB of RAM and running Linux kernel version 2.4.20-20.9smp.
The cluster is connected via a Myrinet switch.

We used Cyclone version 0.8 which, along with the benchmarks,
is publicly available [10]. By default, Cyclone programs use the
Boehm-Demers-Weiser (BDW) conservative collector [6], version

1000 2000 3000 4000

document size (bytes)

3800

4000

4200

4400

th
ro

ug
hp

ut
 (

re
q/

s)

Boa C
Boa Cyc
Boa Cyc (unique)
CycWeb

Figure 7: Throughput for CycWeb and Boa

6.2α4, for garbage collection and manual deallocation. BDW uses
a mark-sweep algorithm, and is incremental and generational. We
used the default initial heap size and heap-growth parameters for
these experiments. When programs do not need GC, they are com-
piled with the Lea general-purpose allocator [24], version2.7.2.
Cyclone compiles to C and then usesgcc version3.2.2, with opti-
mization level-O2, to create executables.

5.1 Boa and CycWeb
We measured web server throughput using theSIEGEweb bench-

marking tool2 to blast Boa with repeated requests from6 concurrent
users for a single file of varying size for 10 seconds. (We chose6
users because we observed it maximized server performance.) The
throughput results are shown in Figure 7—note the non-zero y-axis.
This shows three versions of Boa—C, Cyclone using GC, Cyclone
without GC (labeled “unique”)—and the single version of CycWeb.
We plot the median of 15 trials, and the error bars show the quar-
tiles. For Boa, the performance difference between the C and Cy-
clone versions is between 2 and 3%, and the differences between
the various Cyclone versions are negligible (often within the range
of error or close to it). Thus, for the performance metric of through-
put, removing the GC has little payoff. CycWeb is optimized for
memory footprint instead of speed, but comes within 10–15% of
Boa in C.

Avoiding GC has greater benefit when considering memory foot-
print. Figure 8 depicts three traces of Boa’s memory usage while it
serves 4 KB pages to6 concurrent users. The first trace uses GC,
while the second two make use of unique pointers. The second
(unique+GC) uses BDW as its allocator (thus preventing inadver-
tent memory leaks), while the third uses the Lea allocator.3 The x-
axis is elapsed time, while the y-axis plots memory consumed. The
graph shows memory used by the heap region and by the unique
region, as well as the total space reserved by the allocator (i.e., ac-
quired from the operating system).

The working set size of all versions is similar, and is dominated
by the heap region since the majority of memory is consumed by
the heap-allocated request structures. The GC version’s footprint
fluctuates as request elements are allocated and collected (each GC,

2http://joedog.org/siege/
3The throughput of both versions is essentially the same, so only
one line is shown in Figure 7.

Boa Cyc (GC) Boa Cyc (unique+GC) Boa Cyc (unique) CycWeb

Figure 8: Memory footprint of Cyc Boa versions

of which there are a total of 33 in this case, is depicted as a vertical
line). To ensure reasonable performance, the collector reserves a
fair amount of headroom from the OS: 635 KB in this case. By
contrast, the unique versions have far less reserved space, with the
Lea allocator having little more than that required by the applica-
tion. We have done memory traces with other heap sizes and levels
of concurrent access and found the trends to be similar. Very lit-
tle data is allocated in the unique region (it is not really visible in
the graph)—only about 50 bytes per request. In the GC case, this
same data is allocated in the heap, and accumulates until eventually
collected.

Turning to CycWeb, which uses only the Lea allocator and no
garbage collector, we see that we have succeeded in minimizing
memory footprint: the working set size is less than 6.5 KB. This
is proportional to the number of concurrent requests—we process
at most6 requests at a time, and allocate a 1 KB buffer to each
request.

5.2 MediaNet
All of the versions of Boa perform very little allocation per trans-

action, thanks to the use of a custom allocator. The benefit of
the allocator depends in part on the fact thatrequest objects are
uniformly-sized: allocations merely need to remove the first ele-
ment from the free list. The same approach would work less well
in an application like MediaNet, whose packets vary widely in size
(from a tens of bytes to tens of kilobytes). Avoiding excessive inter-
nal fragmentation would require managing multiple pools, at which
point a general-purpose allocator seems more sensible, which is
what we used. However, we found that this choice can lead to sig-
nificant overhead when using GC.

In a simple experiment, we used the TTCP microbenchmark [26]
to measure MediaNet’s packet-forwarding throughput and mem-
ory use for varying packet sizes. We measured two configurations.
GC+free is MediaNet built using unique and reference-counted
pointers for its packet objects (as described above), whileGC only
stores all packet objects in the garbage-collected heap.

Figure 9 plots the throughput, in megabits per second, as a func-
tion of packet size (note the logarithmic scale). Each point is the
median of 21 trials in which 5000 packets are transferred; the er-
ror bars plot the quartiles. The two configurations perform roughly
the same for the smallest packet sizes, butGC onlyquickly falls
behind as packets reach256 bytes. Both curves level off at 4 KB
packets, with theGC+freecase achieving 23% better throughput.
The odd leveling of the slope in theGC onlycurve at 2 KB packets
results in a 70% difference.This experiment illustrates the benefit
of being able to free a packet immediately. While more sophisti-

100 1000 10000

packet size (bytes)

0

200

400

600

th
ro

ug
hp

ut
 (

M
b/

s)

GC+free
GC only

Figure 9: MediaNet throughput

cated garbage collectors could well close the gap, the use of manual
mechanisms can only be of help. Moreover, even advanced GCs
will do less well when packet lifetimes vary due to user processing
in the server; our use of reference-counting allows packets to be
shared and freed immediately when no longer of interest.

Figure 10 illustrates the memory usage of MediaNet when for-
warding 50,000 4 KB packets. This graph has the same format
as the graph in Figure 8; it shows the heap, unique, and reference-
counted regions, and the dynamic region in which the configuration
is stored (labeled “other”). TheGC onlyconfiguration stores all
data in the heap region, which exhibits a sawtooth pattern with each
peak roughly coinciding with a garbage collection (there were 553
total on this run). TheGC+freeconfiguration uses and reserves far
less memory: 131 KB as opposed to 840 KB for reserved memory,
and 15.5 KB as opposed to 438 KB of peak used memory. There is
about 10 KB of initial heap-allocated data that remains throughout
the run, and the reference-counted and unique data never consumes
more than a single packet’s worth of space, since each packet is
freed before the next packet is read in. This can be seen in the
close-up at the right of the figure. The topmost band is the heap
region (the reserved space is not shown), while the feathery band
below it is the reference-counted region. Below that is the dynamic
region and finally the unique region.

These performance trends are consistent with other studies compar-
ing GC and manual memory management [38, 21]. What we have
shown is that some simple and safe manual mechanisms cancom-
plementGC in attacking problems of memory management. They
give programmers more control over the performance of their pro-

MediaNet (GC only) MediaNet (GC+free) MediaNet (GC+free) close up

Figure 10: MediaNet memory utilization

grams, without undue programming burden, and without need to
compromise safety.

6. RELATED WORK
The ML Kit [30] implements Standard ML with (LIFO) arenas.

Type inference is used to automatically allocate data into arenas.
Various extensions have relaxed some LIFO restrictions [2, 16],
but unique pointers have not been considered.

The RC language and compiler [14] provide language support
for reference-counted regions in C. However, RC does not prevent
dangling pointers to data outside of regions and does not provide
the type-safety guarantees of Cyclone.

Use-counted regions [29] are similar to our dynamic arenas, ex-
cept there are no alias restrictions on the keys and there is an ex-
plicit “freeregion” primitive. Freeing an accessible (opened) region
or opening a freed region causes a run-time exception. The remain-
ing problem is managing the memory for the keys. One solution,
also investigated in an earlier Cyclone design, is to allocate one re-
gion’s key in another region, but the latter region typically lives so
long that the keys are a space leak (although they are small). A
second solution allows a key to be allocated in the region it repre-
sents by dynamically tracking all aliases to the key and destroying
them when the region is deallocated. This approach requires more
run-time support and cannot allow keys to be abstracted (via poly-
morphism, casts tovoid*, etc.).

Work on linear types [32], alias types [28, 34], linear regions [35,
19], and uniqueness types [1] provide important foundations for
safe manual memory management on which we have built. Much
of this foundational work has been done in the context of core func-
tional languages and does not address the range of issues we have.

Perhaps the most relevant work is from the Vault project [11,
12] which also uses regions and linearity. Unique pointers allow
Vault to track sophisticated type states, including whether memory
has been deallocated. To relax the uniqueness invariant, they use
novel adoptionand focusoperators. Adoption lets programs vio-
late uniqueness by choosing a unique object to own a no-longer-
unique object. Deallocating the unique object deallocates both ob-
jects. Compared to Cyclone’s support for unique pointers in non-
unique context, adoption prevents more space leaks, but requires
hidden data fields so the run-time system can deallocate data struc-
tures implicitly. Focus (which is similar to Foster and Aiken’s
restrict [3]) allows adopted objects to be temporarily unique.
Compared toswap, focus does not incur run-time overhead, but the
type system to prevent access through an unknown alias requires
more user annotations (or a global alias analysis.)

Unique pointers and related restrictions on aliasing have received

considerable attention as extensions to object-oriented languages.
Clarke and Wrigstad [9] provide an excellent review of related
work and propose a notion of “external uniqueness” that integrates
unique pointers and ownership types. Prior to this work, none of
the analogues to Cyclone’salias allowed aliased pointers to be
stored anywhere except in method parameters and local variables,
severely restricting code reuse. Clarke and Wrigstad use a “fresh
owner” to restrict the escape of aliased pointers, much as Cyclone
uses a fresh region name withalias. Ownership types differ from
our region system most notably by restricting which objects can
refer to other objects instead of using a static notion of accessible
regions at a program point.

Little work on uniqueness in object-oriented languages has tar-
geted manual memory management. A recent exception is Boyap-
ati et al.’s work [7], which uses regions to avoid some run-time er-
rors in Real-Time Java programs [5]. As is common, this work uses
“destructive reads” (an atomic swap withNULL) and relies on an
optimizer to eliminate unnecessary writes ofNULL on unique paths.
Cyclone resorts to swaps only for unique data in nonunique con-
tainers, catching more errors at compile time. Few other projects
have used swap instead of destructive reads [4, 17]. Alias bury-
ing [8] eschews destructive reads and proposes using static analysis
to prevent using aliases after a unique pointer is consumed, but the
details of integrating an analysis into a language definition are not
considered.

7. CONCLUSIONS
Cyclone now supports a rich set of safe memory-management

idioms beyond garbage collection:

• Stack/LIFO Arenas:works well for lexically-scoped life-
times.

• Dynamic arenas:works well for aggregated, dynamically al-
located data.

• Uniqueness:works well for individual objects as long as
multiple references aren’t needed within data structures.

• Reference counting:works well for individual objects that
must be shared, but requires explicit reference count man-
agement.

• Garbage collection:provides simple, general-purpose mem-
ory management.

Programmers can use the best idioms for their application. In our
experience, all idioms have proven useful for improving some as-
pect of performance.

This array of idioms is covered by the careful combination of
only two linguistic features: regions with lexically-scoped lifetimes
and unique pointers. Unique pointers give us the power to reason
in a flow-sensitive fashion about the state of objects or arenas and
to ensure that safety protocols, such as reference counting, are en-
forced. Regions work well for stack allocation and give us a way
to overcome the burdens of uniqueness for a limited scope.

Nonetheless, there are many open issues that require further re-
search. For instance, a strict, linear interpretation of unique point-
ers instead of our relaxed affine approach would have helped to
avoid the leaks that we encountered and perhaps avoid the need for
GC all together. However, we found that the strict interpretation
generated too many false type-errors in the presence of exceptions
and global data.

Another area where further work is needed is in tools to assist
the porting process. We generally found that developing new code
in Cyclone was easier because we could start with the invariants
for a particular memory management strategy in mind. In contrast,
porting legacy code required manually extracting these invariants
from the code. Our hope is that we can adapt tools from the alias
and shape analysis community to assist programmers in porting ap-
plications.

8. REFERENCES
[1] Peter Achten and Rinus Plasmeijer. The ins and outs of Clean I/O.

Journal of Functional Programming, 5(1):81–110, 1995.
[2] Alex Aiken, Manuel F̈ahndrich, and Raph Levien. Better static

memory management: Improving region-based analysis of
higher-order languages. InProc. ACM Conference on Programming
Language Design and Implementation (PLDI), pages 174–185, 1995.

[3] Alex Aiken, Jeffrey S. Foster, John Kodumal, and Tachio Terauchi.
Checking and inferring local non-aliasing. InProc. ACM Conference
on Programming Language Design and Implementation (PLDI),
pages 129–140, June 2003.

[4] Henry Baker. Lively linear LISP—look ma, no garbage.ACM
SIGPLAN Notices, 27(8):89–98, 1992.

[5] Gregory Bellella, editor.The Real-Time Specification for Java.
Addison-Wesley, 2000.

[6] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an
uncooperative environment.Software – Practice and Experience,
18(9):807–820, 1988.

[7] Chandrasekhar Boyapati, Alexandru Sălcianu, William Beebee, and
Martin Rinard. Ownership types for safe region-based memory
management in real-time Java. InProc. ACM Conference on
Programming Language Design and Implementation (PLDI), pages
324–337, June 2003.

[8] John Boyland. Alias burying: Unique variables without destructive
reads.Software – Practice and Experience, 31(6):533–553, 2001.

[9] Dave Clarke and Tobias Wrigstad. External uniqueness is unique
enough. InEuropean Conference on Object-Oriented Programming
(ECOOP), pages 176–200, July 2003.

[10] Cyclone, version 0.8. Available at
http://www.eecs.harvard.edu/~greg/cyclone/.

[11] Robert DeLine and Manuel Fähndrich. Enforcing high-level
protocols in low-level software. InProc. ACM Conference on
Programming Language Design and Implementation (PLDI), pages
59–69, June 2001.

[12] Manuel F̈ahndrich and Robert DeLine. Adoption and focus: Practical
linear types for imperative programming. InProc. ACM Conference
on Programming Language Design and Implementation (PLDI),
pages 13–24, June 2002.

[13] Matthew Fluet and Daniel Wang. Implementation and performance
evaluation of a safe runtime system in Cyclone. InInformal
Proceedings of the SPACE 2004 Workshop, January 2004.

[14] David Gay and Alex Aiken. Language support for regions. InProc.
ACM Conference on Programming Language Design and
Implementation (PLDI), pages 70–80, June 2001.

[15] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling

Wang, and James Cheney. Region-based memory management in
Cyclone. InProc. ACM Conference on Programming Language
Design and Implementation (PLDI), pages 282–293, June 2002.

[16] Niels Hallenberg, Martin Elsman, and Mads Tofte. Combining region
inference and garbage collection. InProc. ACM Conference on
Programming Language Design and Implementation (PLDI), pages
141–152, June 2002.

[17] Douglas Harms and Bruce Weide. Copying and swapping: Influences
on the design of reusable software components.IEEE Transactions
on Software Engineering, 17(5):424–435, May 1991.

[18] Chris Hawblitzel.Adding Operating System Structure to
Language-Based Protection. PhD thesis, June 2000.

[19] Fritz Henglein, Henning Makholm, and Henning Niss. A direct
approach to control-flow sensitive region-based memory
management. InProc. Principles and Practice of Declarative
Programming (PPDP), pages 175–186, September 2001.

[20] Maurice Herlihy. Wait-free synchronization.ACM Transactions on
Programming Languages and Systems, 13(1):124–149, January 1991.

[21] Matthew Hertz and Emery Berger. Automatic vs. explicit memory
management: Settling the performance debate. Technical Report CS
TR-04-17, University of Massachussetts Department of Computer
Science, 2004.

[22] Michael Hicks, Adithya Nagajaran, and Robbert van Renesse.
MediaNet: User-defined adaptive scheduling for streaming data. In
Proc. IEEE Conference on Open Architectures and Network
Programming (OPENARCH), pages 87–96, April 2003.

[23] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James
Cheney, and Yanling Wang. Cyclone: A safe dialect of C. InProc.
USENIX Annual Technical Conference, pages 275–288, June 2002.

[24] Doug Lea. A memory allocator.
http://gee.cs.oswego.edu/dl/html/malloc.html.

[25] David Mazìeres. A toolkit for user-level file systems. InProc.
USENIX Annual Technical Conference, pages 261–274, June 2001.

[26] Mike Muuss. The story of TTCP.
http://ftp.arl.mil/~mike/ttcp.html.

[27] Niels Provos. libevent — an event notification library.
http://www.monkey.org/~provos/libevent/.

[28] Fred Smith, David Walker, and Greg Morrisett. Alias types. InProc.
European Symposium on Programming (ESOP), pages 366–381,
March 2000.

[29] Tachio Terauchi and Alex Aiken. Memory management with
use-counted regions. Technical Report UCB//CSD-04-1314,
University of California, Berkeley, March 2004.

[30] Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg,
Tommy Højfeld Olesen, and Peter Sestoft. Programming with
regions in the ML Kit (for version 4). Technical report, IT University
of Copenhagen, September 2001.

[31] Mads Tofte and Jean-Pierre Talpin. Region-based memory
management.Information and Computation, 132(2):109–176,
February 1997.

[32] Philip Wadler. Linear types can change the world! InProgramming
Concepts and Methods, April 1990. IFIP TC 2 Working Conference.

[33] David Walker, Karl Crary, and Greg Morrisett. Typed memory
management in a calculus of capabilities.ACM Transactions on
Programming Languages and Systems, 24(4):701–771, July 2000.

[34] David Walker and Greg Morrisett. Alias types for recursive data
structures. InProc. Workshop on Types in Compilation (TIC), pages
177–206, September 2000.

[35] David Walker and Kevin Watkins. On regions and linear types. In
Proc. ACM International Conference on Functional Programming
(ICFP), pages 181–192, September 2001.

[36] Daniel Wang and Andrew Appel. Type-preserving garbage
collectors. InProc. ACM Symposium on Principles of Programming
Languages (POPL), pages 166–178, January 2001.

[37] Hongwei Xi and Frank Pfenning. Dependent types in practical
programming. pages 214–227, January 1999.

[38] Benjamin G. Zorn. The measured cost of conservative garbage
collection.Software - Practice and Experience, 23(7):733–756, 1993.

Test C time(s) Cyclone time (GC)
checked(s) factor unchecked(s) factor

Epic 1.06± 0.00 1.60± 0.00 1.51× 1.05± 0.01 0.99×
Kiss-FFT 1.33± 0.00 3.21± 0.01 2.41× 1.30± 0.01 0.98×
BetaFTPD 2.17± 0.02 2.25± 0.02 1.04× 2.22± 0.01 1.02×

Cyclone time (+manual)
Epic 1.06± 0.00 1.61± 0.01 1.52× 1.06± 0.00 1.00×
Kiss-FFT 1.33± 0.00 3.22± 0.01 2.42× 1.31± 0.00 0.98×
BetaFTPD 2.17± 0.02 2.24± 0.01 1.03× 2.23± 0.02 1.03×

Table 4: Benchmark performance

APPENDIX

A. ADDITIONAL PERFORMANCE
MEASUREMENTS

This section presents performance measurements for the bench-
marks not considered in Section 5. In general, these benchmarks
exhibit the following trends (as mentioned in the body of the pa-
per):

• Using manual memory management mechanisms does not
improve the execution time of the program relative to GC.

• Using manual memory management does allow the memory
footprint of the program to be reduced.

We measured the performance of each program as follows. For
Epic, we used it to compress and decompress a large image file.
For Kiss-FFT, we performed1024 size 10000 FFT’s, using the
benchmark program provided with the distribution. For BetaFTPD,
we usedWGET4, a utility for retrieving files from HTTP and FTP
servers, to retrieve a 20 KB file via anonymous FTP 1000 times,
piping it to/dev/null.

A.1 Elapsed Time Measurements
The results of measuring the elapsed time of each benchmark are

shown in Table 4. Here we measure the C and Cyclone versions,
with the top three rows considering Cyclone using GC, and the
bottom three using manual mechanisms (no GC needed). We also
report the performance of Cyclone with and without array bounds
checks enabled. Each number reports elapsed time in seconds, and
is the median of 21 trials, with± referring to the scaled semi-
interquartile range (SIQR). The SIQR measures variance, similar
to standard deviation, by calculating the distance between the quar-
tiles and scaling it to the median.

For the computationally-intensive Epic and Kiss-FFT programs,
we see that Cyclone can be substantially slower than C due to ar-
ray bounds checks. While Cyclone does some array-bounds check
elimination, this is an area of current work in the compiler. With
these particular benchmarks, the problem is the use of pointer arith-
metic. Our compiler could eliminate many more checks if we were
to restructure the program to use array indexes instead.

For BetaFTPD there is no appreciable difference between the
C and Cyclone versions. To acquire a file via anonymous FTP
requires roughly six configuration commands, at which time the
client instructs the server to connect back to it on a specified port to
send the data. As a result, retrieving a file using anonymous FTP is
very much I/O-bound, and quite time-consuming, so there is little
concern about the CPU-time or pause-time overhead incurred by
garbage collection (or reference-counting, for that matter). On the

4http://www.gnu.org/directory/wget.html

other hand, BetaFTPD is clearly not well optimized, as each FTP
takes22 ms.

Of most concern to the topic of this paper, we can see that using
manual memory management (in this case, unique and reference-
counted pointers) did not provide a performance advantage relative
to Cyclone using GC when considering elapsed time.

A.2 Memory Footprint Measurements

Test KB Footprint KB Footprint
(GC) (+manual)

data resv data resv resv
(BDW) (Lea)

Epic 17475 23400 13107 15585 13128
Kiss-fft 400 725 400 725 402
BetaFTPD 183 356 3.3 65 8

Table 5: Benchmark Memory Footprint

Statistics for memory footprint are shown in Table 5. For each
benchmark we report the peak memory usage for the data memory
and reserved memory, in kilobytes. The first group of numbers are
for the GC case, while the last group are for the manual case, and
we consider the reserved memory for the case when using the BDW
collector as the allocator or the Lea allocator. None of the manual
versions of these programs require garbage collection.

For Epic there is a memory utilization advantage to the manual
case because we are able to free some data early, i.e., during the
compression process. On the other hand, the FFT program is set
up to only free its memory upon conclusion, so there is no real
effect on data footprint, and thus the only benefit is to reduce the
about of reserved space by linking in the Lea allocator. The trend
for BetaFTPD is similar to that of Boa, shown earlier. In particu-
lar, when using garbage collection both the data footprint and the
reserved memory required are much higher than for the manual
mechanisms. We do not show the memory-consumption graphs
here, but they are essentially the same as Boa (and MediaNet): a
sawtooth pattern for the GC case (for a total of 11 GCs during the
run), and a smooth trend for the manual case.

