
Lightweight Monadic Programming in ML

Nikhil Swamy⋆ Nataliya Guts† Daan Leijen⋆ Michael Hicks†
⋆Microsoft Research, Redmond †University of Maryland, College Park

Abstract
Many useful programming constructions can be expressed as mon-
ads. Examples include probabilistic modeling, functionalreactive
programming, parsing, and information flow tracking, not tomen-
tion effectful functionality like state and I/O. In this paper, we
present a type-based rewriting algorithm to make programming
with arbitrary monads as easy as using ML’s built-in supportfor
state and I/O. Developers write programs using monadic values
of type m τ as if they were of typeτ , and our algorithm inserts
the necessary binds, units, and monad-to-monad morphisms so that
the program type checks. Our algorithm, based on Jones’ qualified
types, produces principal types. But principal types are sometimes
problematic: the program’s semantics could depend on the choice
of instantiation when more than one instantiation is valid.In such
situations we are able to simplify the types to remove any ambigu-
ity but without adversely affecting typability; thus we canaccept
strictly more programs. Moreover, we have proved that this simpli-
fication isefficient(linear in the number of constraints) andcoher-
ent: while our algorithm induces a particular rewriting, all related
rewritings will have the same semantics. We have implemented our
approach for a core functional language and applied it successfully
to simple examples from the domains listed above, which are used
as illustrations throughout the paper.

Categories and Subject Descriptors D.3.2 [Programming lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; F.3.3 [Logics and Meanings of Programs]: Studies of Pro-
gram Constructs—Type structure

General Terms Languages,Theory

Keywords monad, type, rewriting, coherence, coercion

1. Introduction
The research literature abounds with useful programming construc-
tions that can be expressed as monads, which consist of a typecon-
structorm and two operations,bind andunit:1

bind : ∀α, β. m α → (α → m β) → m β
unit : ∀α. α → m α

Example monads include parsers [13], probabilistic computa-
tions [25], functional reactivity [8, 3], and information flow track-

1 These operations must respect certain laws; cf. Wadler [29]for details.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’11, September 19–21, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0865-6/11/09. . . $10.00

ing [26]. In a monadic type system, ifvaluesare given typeτ then
computationsare given typem τ for some monad constructorm.
For example, an expression of typeIO τ in Haskell represents
a computation that will produce (if it terminates) a value oftype
τ but may perform effectful operations in the process. Haskell’s
Monad type class, which requires thebind and unit operations
given above, is blessed with special syntax, thedo notation, for
programming with instances of this class.

Moggi [22], Filinksi [11], and others have noted that ML pro-
grams, which are impure and observe a deterministic, call-by-value
evaluation order, are inherently monadic. For example, thevalue
λx.e can be viewed as having typeτ → m τ ′: the argument
type τ is never monadic becausex is always bound to a value in
e, whereas the return type is monadic because the function, when
applied, produces a computation. As such, call-by-value applica-
tion and let-binding essentially employ monadic sequencing, but
the monad constructorm and thebind andunit combinators for
sequencing are implicit rather than explicit. In essence, the explicit
IO monad in Haskell is implicit in ML.

While programming with I/O in ML is lightweight, program-
ming with other monads is not. For example, suppose we are inter-
ested in programmingbehaviors, which are time-varying values, as
in functional reactive programs[8, 3]. With the following notation
we indicate that behaviors can be implemented as a monad: expres-
sions of typeBeh α represent values of typeα that change with
time, andbindp andunitp are its monadic operations:

Monad(Beh, bindb, unitb)

As a primitive, functionseconds has typeunit → Beh int , its
result representing the current time in seconds since the epoch. An
ML program usingBeh effectively has two monads: the implicit
monad, which applies to normal ML computations, and the user-
defined monadBeh. The former is handled primitively but the latter
requires the programmer to explicitly usebindb, unitb, function
composition, etc., as in the following example:

bindb (bindb (seconds()) (fun s-> unitb (is_even s)))
(fun y-> unitb (if y then 1 else 2))

The type of this entire expression isBeh int : it is time-varying,
oscillating between values 1 and 2 every second.

Instead of using tedious explicit syntax, we would like to over-
load the existing syntax so that monadic constructs are implicit,
e.g., as in the following program (call itQ)

let y = is_even (seconds()) in
if y then 1 else 2

We can see that the programs are structurally related, with abind
corresponding to each let and application, and unit appliedto the
bound and final expressions.

While ML programming with one monad is tedious, program-
ming with more than one is worse. Along with different binds and
units for each monad, the programmer may have to insert callsto

morphisms, which are functions that lift one monad into another.
For example, suppose that along with time-varying expressions like
seconds() we allowed time-varying probability distributions ex-
pressed as a monadBehPrb α (we show an example of this in
Section 2). Given a morphism from the first monad to the second,
i.e., from a time-varying value to a time-varying probability distri-
bution, the programmer must insert calls to it in the right places.

This paper presents an algorithm for automatically converting
an ML program, likeQ, which makes implicit use of monads, into
one that, likeP , makes explicit use of monads, with binds, units,
and morphisms inserted where needed. Our algorithm operates as
part of polymorphic type inference, following an approach simi-
lar to Jones [14], which is the foundation of Haskell’s type class
inference. We use the syntactic structure of the program to iden-
tify where binds, units, and morphisms may appear. Type inference
introduces a fresh variable for the monad being used at thesevari-
ous points and, as in Jones, we produce qualified types of the form
∀ν̄.P ⇒ τ , whereν̄ contains free type and monad variables, andP
contains morphism constraints. We prove our algorithm produces
principal types.

As it turns out, our basic scheme of inferring principal types
could be encoded within Haskell’s type class inference algorithm,
e.g., one could define morphisms as instances of aMorphism type
class and then rely on inference to insert them as necessary.How-
ever, this algorithm would reject many useful programs as poten-
tially ambiguous, in particular, those whose types containquan-
tified variables that appear only in the constraintsP but not in
the typeτ . In the general setting of Haskell, this is sensible, as
different instantiations of these variables could produceprograms
with different semantics. By focusing our attention on monads we
sidestep this problem. We can exploit laws governing the behavior
of morphisms to ensure that all potential instantiations ofsuch vari-
ables arecoherent; i.e., the program semantics will not change with
different instantiations. As such, our algorithm employs alinear-
time strategy to eliminate such variables, thus simplifying the con-
straintsP with no adverse effects on typability.

We have implemented our inference algorithm for a core func-
tional language. We demonstrate its utility by applying it to exam-
ple programs that use monads implementing behaviors, probabilis-
tic computations, and parsers (cited above). We also develop an
example using a family of monads for tracking information flows
of high- and low-security data [7, 26]. We prove that our rewriting
algorithm produces programs accepted by FlowCaml, a dialect of
ML that performs information flow tracking [24], and therebyshow
that rewritten programs are secure (enjoy noninterference[12]).

In summary, this paper presents an extension to ML for monadic
programming, providing the following benefits:

• Developers can define their own monads and program with
them in a direct style, avoiding the tedium of introducing binds,
units, and morphisms manually.

• Monadic operations are inserted automatically in conjunction
with a novel type inference algorithm. Our algorithm produces
qualified types which describe the monads and morphisms used
by a piece of code, usefully revealing the monadic structureof
the program to the developer. Exploiting the morphism laws,we
efficiently infer general types and produce coherent rewritings.

• The system is quite flexible: we have shown, via our prototype
implementation, that it supports many varieties of monads and
their combination.

The next section presents an overview of our approach; our main
technical results are contained in Sections 3–5; and applications
and related work discussed in Sections 6 and 7, respectively.

2. Overview
This section presents an overview of our approach through the
development of a few examples. We start by considering a single
user-defined monad and see that this is relatively easy to handle.
Then, we look at handling multiple monads, which require theuse
of morphisms. With these examples we illustrate our type inference
and rewriting algorithm and discuss its key properties.

2.1 Programming with a single user-defined monad

As mentioned earlier, pure ML computations may be seen as al-
ready employing an implicit monad, e.g., covering partiality, state,
exceptions, and I/O. We call this implicit monadBot , since it is the
bottom element of our monad hierarchy; in effect, its unit opera-
tor is the identity function, and bind is the reverse application. Our
goal is to exploit the inherent monadic structure of ML to provide
support for programming with multiple, user-defined monadswith
the same ease as programming, implicitly, withBot . Of course, we
aim to do this without breaking compatibility with ML.

Let us illustrate our idea on an example using the probability
monad [25]. Expressions of typePrb α describe distributions
over values of typeα, with bindp andunitp as its bind and unit
combinators, respectively:

Monad(Prb, bindp, unitp)

The probability monad can be used to define probabilistic models.
The following programP , based on the classic example due to
Pearl [23], is an example of model code we would like to write:

let rain = flip .5 in
let sprinkler = flip .3 in
let chance = flip .9 in
let grass_is_wet = (rain || sprinkler) && chance in
if grass_is_wet then rain else fail ()

This program uses two functions it does not define:

flip : float → Prb bool
fail : ∀α.unit → Prb α

The first introduces distributions:flip(p) is a distribution where
true has probabilityp and false has probability1 − p. The
second,fail, represents impossibility.

The first four lines ofP define four random variables:rain
is true when it is raining;sprinkler is true when the sprinkler
is running;chance is explained below; andgrass is wet is true
when the grass is wet. The probability distribution for the last is
dependent on the distributions of the first three: the grass is wet if
either it is raining or the sprinkler is running, with an additional
bit of uncertainty due tochance: e.g., even with rain, grass under
a tree might be dry. The last line ofP implements a conditional
distribution; i.e., the probability that it is raining given that the grass
is wet. Mathematically, this would be represented with notation
Pr(rain | grass is wet).

Unfortunately, in ML we cannot write the above code directly
because it is not type-correct. For example, the expressionrain
|| sprinkler applies the|| function, which has typebool →
bool → bool , to rain and sprinkler, which each have type
Prb bool . Fortunately, our system will automatically rewriteP so
that it is type-correct, producing the code given below.

bindp (flip .5) (fun rain->
bindp (flip .3) (fun sprinkler->
bindp (flip .9) (fun chance->
bindp (unitp ((rain || sprinkler) && chance))
(fun grass_is_wet->

if grass_is_wet then unitp rain else fail ()))))

When there is only one user-defined monad to consider, a
rewriting such as this one is entirely syntactic. Roughly, eachlet
is replaced by abindp and each let-bound expression that is not
already monadic is wrapped withunitp. By doing so, we keep to
the monadic structure of sequencing implemented primitively by
ML for its Bot monad, except we have now interposed thePrb
monad. Although not shown above, function applications arehan-
dled similarly: we insertbindp on both the left- and right-hand
sides, thereby echoing the call-by-value semantics of function ap-
plication in ML.

Under this rewriting semantics, we can give a type to the orig-
inal program even though it is not typable in ML—our algorithm
infers the typePrb bool for the source program. The types we
infer always have a particular structure that mirrors the monadic
structure of ML. As in Moggi’s computational lambda calculus, we
note that inferred function types always have a monadic typein
their co-domain and monadic types never appear in negative posi-
tion. This corresponds to the following intuition. Since values are
always pure, under a call-by-value semantics, function arguments
must always be effect free (hence, no monadic types in negative
position). Furthermore, since in ML functions can have arbitrary
effects, their co-domains are always monadic.

2.2 Programming with multiple monads

Now suppose we wish to program with both probabilities and
behaviors (introduced in Section 1). Perhaps we would like the
probability of rain to change with time, e.g., according to the
seasons. Then we can modifyP (call it P ′) so that the argument
to flip is a functionrainprb of typeunit → Beh float :

let rain = flip (rainprb ()) in ...

Again, this program fragment is ill-typed, becauseflip expects a
float but we have passed it aBeh float .

If our rewriting system is to be applied, what should be the
type of rain? One might expect it to beBeh (Prb bool), since
it is a time-varying distribution. However, this type is nonsensical.
Just as ML does not support data structures containing non-values
(e.g., those having typeList (Bot α)) it does not support com-
putations parameterized by non-values, e.g., expressionsof type
Bot (Bot α) and, for that matter, typeBeh (Prb α). Therefore,
a programmer must construct a combined monad,BehPrb, along
with morphisms from the individual monads into the combinedone,
to ensure that the overall program’s semantics makes sense.There
are several standard techniques for combining monads [17];here,
we can combine them by defining objects of typeBehPrb τ as a
stream of distributions overτ , with the obvious morphisms.

Monad(BehPrb, bindbp, unitbp)
p2bp : Prb � BehPrb
b2bp : Beh � BehPrb

To allow automatic type-directed insertion of morphisms, we as-
sume that there is at most one morphism between each pair of
monads. In general, a morphismf1,2 : m1 � m2 has the type
∀α.m1 α → m2 α.2 (We implicitly consider the unit operation of
monadm as the morphismBot �m.) Given the above morphisms,
our system rewritesP ′ thus:

bindpb (bindpb (b2bp (rainprb ()))
(fun v1-> p2bp (flip v1))) (fun rain->

p2bp (bindp (flip .3) (fun sprinkler-> ...

where ... is identical to the corresponding part of the rewrit-
ing for P , and the final type isBehPrb bool . Here, the result

2 Morphisms (just like the binds and units) are not part of the source
program; as such, they are treated specially and not subjectto the positivity
condition on monadic types.

of rainprb() is lifted into BehPrb float and then bound to the
current valuev1, which is passed toflip to generate a distribu-
tion. This value is in turn lifted intoBehPrb bool and bound to
booleanrain for the rest of the computation, whose result, of type
Prb bool , is lifted intoBehPrb bool by application ofp2bp.

2.3 Properties of type inference and rewriting

Our examples so far have involved inserting known morphisms,
binds, and units, producing monomorphic types. But our system
is more general in that we can rewrite a function to abstract the
monads and morphisms it uses. For such functions our algorithm
infers qualified types of the form∀ν̄.P ⇒ τ , whereP is a set
of constraintsm1 � m2 where themi could be constant, known
monads, likeBeh, or abstracted, unknown monadsµ that appear in
the bound type variables̄ν (along with the usual type variablesα).
For example, the type of

let compose f g x = f (g x)

inferred by our system is

∀αβγµ1µ2µ.
(µ1 � µ, µ2 � µ) ⇒ (β → µ2 γ) → (α → µ1 β) → α → µγ

(where two occurrences ofBot on arrow types have been elided for
readability). The rewritten term will take as arguments a represen-
tation of the monadsµ, µ1, andµ2, and two morphism functions
corresponding to the two morphism constraints. Section 4 shows
that our algorithm infersprincipal types, i.e. most general types.

By restricting the structure of inferred types (e.g., positive
monadic types), and by providing only a limited form of subtyping,
we obtain morphism constraintsP that can be efficiently solved us-
ing a simple linear-time procedure. A solution of constraints allows
us to instantiate the monadic operators and the morphisms inthe
elaborated term.

Last but not least, our algorithm enjoyscoherence: any two
rewritings of the same program are semantically equivalent. Said
differently, choosing a particular solution does not affect the mean-
ing of the program. Coherence allows us to accept programs that
would otherwise be rejected as ambiguous by related systemsthat
employ qualified types for type inference, e.g., Haskell’s type-class
mechanism. We achieve coherence by taking advantage of the fol-
lowing assumed properties of morphisms:

f1,2 ◦ unit1 = unit2 (1)

f1,2 (bind1 e1 e2) = bind2 (f1,2 e1) (f1,2 ◦ e2) (2)

f2,3 ◦ f1,2 = f1,3 (3)

Properties (1–2) are the so-calledmorphism laws, and the third is
the transitivity property.

For instance, the combination ofBeh ,Prb, and BehPrb in
the example above leads to constraints that admit several valid
solutions. One of these solutions, shown below, directly lifts all the
let bindings to theBehPrb monad, instead of lifting parts of the
computation to either theBeh or Prb monads.

bindbp (bindbp (b2bp (rainprb ()))
(fun v1-> p2bp (flip v1))) (fun rain->

bindbp (p2bp (flip .3)) (fun sprinkler->
bindbp (p2bp (flip .9)) (fun chance->
bindbp (unitbp ((rain || sprinkler) && chance))
(fun grass_is_wet->

bindpb (fail ()) (fun f->
unitpb (if_ grass_is_wet then rain else f))))))

Using the morphism laws, we can show that the two rewritings
are equivalent. However we might argue that the first rewriting,
produced by our algorithm, is more precise than this one; intuitively
it applies morphisms “as late as possible” and uses the “simplest”

types τ ::= α
| T τ1...τn (n > 0 is the arity ofT)
| τ1 → m τ2

monadic types m ::= µ | M
type variables ν ::= α | µ

constraints P ::= π1, ..., πn

constraint π ::= m1 � m2

type schemes σ ::= ∀ν̄.P ⇒ τ
environment Γ ::= · | Γ, c:σ | Γ, x:σ

values v ::= x | c | λx.e
expressions e ::= v | e1 e2 | let x=e1 in e2

Figure 1. Core language syntax.

P |= m � m (M-Taut)
m1 � m2 ∈ P

P |= m1 � m2
(M-Hyp)

P |= m1 � m2 P |= m2 � m3

P |= m1 � m3

(M-Trans)

P ⊢ π1 ... P ⊢ πn

P ⊢ π1, ..., πn

(M-Many)

Figure 2. The constraint entailment relation.

ρ = m, τ θ = [ρ/ν1]
P, π̄2 |= θπ̄1 ν̄2 6∈ ftv(∀ν̄1. π̄1 ⇒ τ)

P ⊢ ∀ν̄1. π̄1 ⇒ τ > ∀ν̄2. π̄2 ⇒ θτ
(Inst)

Figure 3. The generic instance relation over type schemes.

monad as long as possible. As such, the types more precisely reveal
the monads actually needed by a piece of code.

3. Qualified types for monadic programs
This section describes the formal type rules of our system. Figure 1
gives the syntax of types, constraints, environments, and expres-
sions. Monotypesτ consist of type variablesα, full applied type
constructorsT τ1 ... τn, and function typesτ1 → m τ2. Function
arrows can be seen as taking three arguments where them is the
monadic type. We could use a kind system to distinguish monadic
types from regular types but, for simplicity, we distinguish them
using different syntactic categories. Monadic typesm are either
monad constantsM or monadic type variablesµ.

Since types can be polymorphic over the actual monad (which is
essential to principal types) we also have monadic constraintsπ of
the formm1�m2, which states that a monadm1 can be lifted to the
monadm2. Type schemes are the usual qualified types [14] where
we can quantify over both regular and monadic type variables.

In the expression language, we distinguish between syntactic
value expressionsv, and regular expressionse. This is in order to
impose the value restriction of ML where we can only generalize
over let-bound values.

Figure 2 describes the structural rules of constraint entailment,
whereP |= π states that the constraints inP entail the constraint
π. The entailment relation is monotone (whereP ′ ⊆ P implies

P |= P ′), transitive, and closed under substitution. We also require
that morphisms between the monads form a semi-lattice. Thisre-
quirement is not essential for type inference but as shown inSec-
tion 5 it is necessary for a coherent evidence translation.

Using entailment, we define the generic instance relationP ⊢
σ1 > σ2 in Figure 3. This is just the regular instance definition
on type schemes where entailment is used over the constraints. In
the common case where one instantiates to a monotype, the rule
simplifies to:

ρ = m, τ θ = [ρ/ν] P |= θπ̄

P ⊢ ∀ν̄. π̄ ⇒ τ > θτ
(Inst-Mono)

3.1 Declarative type rules

Figure 4 describes the basic type rules of our system; we discuss
rewriting in the next subsection. The rules come in two forms: the
rule P |Γ ⊢ v : σ states that value expressionv is well typed with
a typeσ, while the ruleP |Γ ⊢ e : m τ states that expression
e is well-typed with a monadic typem τ , in both cases assuming
the constraintsP and type environmentΓ. The rule (TI-Bot) allows
one to lift a regular typeτ into a monadic typeBot τ .

The rules for variables, constants, let-bound values, instantia-
tion, and generalization are all standard. The rule for lambda ex-
pressions (TI-Lam) requires a monadic type in the premise toget
well-formed function types. An expression likeλx.x therefore gets
typeα → Bot α where the result is in the identity monad.

The application rule (TI-App) and let-rule (TI-Do) lift into an
arbitrary result monad. The constraint∀i. P |= mi � m ensures
that all the monads in the premise can be lifted to a common
monadm, which allows a type-directed evidence translation to the
underlying monadic program.

3.2 Type directed monadic translation

As described in Section 2, we rewrite a source program while
performing type inference, inserting binds, units, and morphisms
as needed. This translation can be elegantly described using a type
directed evidence translation [14]. Since the translationis entirely
standard, we elide the full rules, and only sketch how it is done. In
Section 5 we do show the evidence translation for the type inference
algorithm W since it is needed to show coherence.

Our elaborated target language is System F (but here we leave
out type parameters for simplicity). For the declarative rules, we
can define a judgment likeP |Γ ⊢ e : m τ ; e which proves
that source terme is given monadic typem τ and elaborated
to the well-typed output terme. Similarly, the entailment relation
P |= m1 � m2 ; f returns a morphism witnessf with type
∀α. m1 α → m2 α.

As an example, consider the (TI-App) rule. The rule with a type
directed translation is defined as:

P |Γ ⊢ e1 : m1 (τ2 → m3 τ) ; e1 P |Γ ⊢ e2 : m2 τ2 ; e2

∀i.P |= mi � m ; fi

P |Γ ⊢ e1 e2 : m τ ;

bindm (f1 e1) (λx:(τ2 → m3 τ). bindm (f2 e2) (λy:τ2. f3 (x y)))

The bindm evidence comes from theMonad(m, bindm, unitm)
constraint. This constraint is left implicit in the type rules since it
is always satisfied. Much of the time the morphisms are identity
functions and the binding operations will be in theBot monad
which can all be optimized away. An optimizer can make further
use of the monad laws to aggressively simplify the target terms.

3.3 Compatibility with ML

Figure 4 is backwards compatible with the ML type system: it
accepts any program that is accepted by the standard Hindley-
Milner typing rules [5] extended with the value restriction—we

P |Γ ⊢ v : σ P |Γ ⊢ e : m τ Γ(x) = σ

P |Γ ⊢ x : σ
(TI-Var)

Γ(c) = σ

P |Γ ⊢ c : σ
(TI-Const)

P |Γ, x:τ1 ⊢ e : m τ2

P |Γ ⊢ λx.e : τ1 → m τ2
(TI-Lam)

P |Γ ⊢ v : τ

P |Γ ⊢ v : Bot τ
(TI-Bot)

P |Γ ⊢ v : σ P ⊢ σ > τ

P |Γ ⊢ v : τ
(TI-Inst)

P, π̄ |Γ ⊢ v : τ ν̄ 6∈ ftv(Γ, P)

P |Γ ⊢ v : ∀ν̄. π̄ ⇒ τ
(TI-Gen)

P |Γ ⊢ e1 : m1 (τ2 → m3 τ) P |Γ ⊢ e2 : m2 τ2 ∀i.P |= mi � m

P |Γ ⊢ e1 e2 : m τ
(TI-App)

P |Γ ⊢ v : σ P |Γ, x:σ ⊢ e : m τ

P |Γ ⊢ let x=v in e : m τ
(TI-Let)

P |Γ ⊢ e1 : m1 τ1 P |Γ, x:τ1 ⊢ e2 : m2 τ2 ∀i.P |= mi � m

P |Γ ⊢ let x=e1 in e2 : m τ2

(TI-Do)

Figure 4. The basic declarative type rules.

P |Γ ⊢ e : m τ P |= m � m′

P |Γ ⊢ e : m′ τ
(TI-Lift)

Figure 5. The type rules extended with a lifting rule.

write an ML derivation asΓ ⊢ML e : τ . To compare the derivations
in both systems, we need to translate regular ML function types to
monadic function types, and we define〈τ 〉 as:

〈α〉 = α
〈T τ1 ... τn〉 = T 〈τ1〉 ... 〈τn〉
〈τ1 → τ2〉 = 〈τ1〉 → Bot 〈τ2〉

We can state compatibility with ML formally as:

Theorem 1(Compatibility with ML). For any well-typed ML non-
value expressione such thatΓ ⊢ML e : τ , we also have a valid
monadic derivation in theBot monad of the form∅ |Γ ⊢ e :
Bot 〈τ 〉. For any well-typed valuev whereΓ ⊢ML v : τ , we have a
monadic derivation of the form∅ |Γ ⊢ v : 〈τ 〉.

The proof is by straightforward induction over typing deriva-
tions. We observe that for a standard ML program, we only need
theBot monad which means we can always reason under an empty
constraint set∅. Assuming empty constraints, the instance relation
and generalization rule coincide exactly with the Hindley-Milner
rules. The other rules now also correspond directly. We showthe
case for theApp rule as an example. By the induction hypothe-
sis, we can assume the premise∅ |Γ ⊢ e1 : Bot 〈τ2 → τ 〉 and
the premise∅ |Γ ⊢ e2 : Bot 〈τ2〉. The first premise is equiva-
lent to ∅ |Γ ⊢ e1 : Bot (〈τ2〉 → Bot 〈τ 〉) by definition. Us-
ing the tautology rule of entailment, we can also conclude that
∅ |= Bot �Bot and therefore we can apply rule (TI-App) to derive
∅ |Γ ⊢ e1 e2 : Bot 〈τ 〉 which is the desired result.

3.4 Extensions

Unfortunately, the basic type rules are fragile with respect to η-
expansion. For example, consider the following functions:

id = λx.x

iapp : (int → Beh int) → Beh int (* given *)
iapp = λf.f 1

The basic rules infer the type ofid to be∀α. α → Bot α, and we
suppose the type ofiapp is given by the programmer. With these
types both the applicationsiapp id andiapp (λx.x) are rejected
becauseid andλx.x have the typeα → Bot α where the monadic
typeBot doesn’t match the expected monadBeh.

However, we can lift the monadic result type by usingη-
expansion and introducing an application node, e.g. theη-expanded
expressioniapp (λx.id x) is accepted since the application rule
allows one to lift the result monad to the requiredBeh monad.
Since the monadic types only occur on arrows, the programmer
can always use a combination of applications andη-expansions to
lift a monadic type anywhere in a type.

Fortunately, such manualη-expansion is rarely required: only
when combining higher-order functions where automatic lifting
is expected on the result type. The inferred types in the basic
system are also often general enough to avoid need of it. For
example, without annotation, the inferred principal type for iapp
is ∀αµ1µ2. (µ1 � µ2) ⇒ (int → µ1 α) → µ2 α where all the
given applications are accepted as is without need forη-expansion.

Lifting

Nevertheless, it is possible to make the type rules more robust under
η-expansion, where we extend the basic system with a general
lifting rule (TI-Lift) given in Figure 5 which allows arbitrary lifting
of monadic expressions. For example, theid function in this system
has the inferred type∀αµ. α → µ α. Using this new type, all
the applicationsiapp id, iapp (λx.x), and iapp (λx.id x) are
accepted. The good news is that extending the system with (TI-Lift)
is benign: we can still do full type inference and constraintsolving
as shown in later sections. The bad news is that some inferred
types become slightly more complicated. For example, the type for
compose (given in Section 2.3) would be

∀αβγµ1µ2µ3µ4µ. (µ1 � µ, µ2 � µ) ⇒
(β → µ2 γ) → µ3 ((α → µ1 β) → µ4 (α → µγ))

Structural subtyping

To ensure robustness underη-expansion while retaining simple
types we could introduce a structural subtyping rule. In particular,
besides (TI-Lift) we could also introduce the rule:

P |Γ ⊢ e : τ P |= τ � τ ′

P |Γ ⊢ e : τ ′
(TI-Subsume)

Note that the subsumption constraint is betweentypesinstead of
between monads. The rules for subsumption are:

P |= τ ′
1 � τ1 P |= τ2 � τ ′

2 P |= m � m′

P |= τ1 → m τ2 � τ ′
1 → m′ τ ′

2

(S-Fun)

P |= τ � τ (S-Taut)

P |Γ ⊢⋆ v : τ P |Γ ⊢• e : m τ Γ(x) = σ P |= σ > τ

P |Γ ⊢⋆ x : τ
(TS-Var)

Γ(c) = σ P |= σ > τ

P |Γ ⊢⋆ c : τ
(TS-Const)

P |Γ ⊢⋆ v : τ

P |Γ ⊢• v : Bot τ
(TS-Bot)

P |Γ ⊢• e1 : m1 (τ → m3 τ ′) P |Γ ⊢• e2 : m2 τ ∀i. P |= mi � m

P |Γ ⊢• e1 e2 : m τ ′
(TS-App)

P |Γ, x:τ1 ⊢• e : m τ2

P |Γ ⊢⋆ λx.e : τ1 → m τ2

(TS-Lam)
P ′ |Γ ⊢⋆ v : τ ′ σ = Gen(Γ, P ′ ⇒ τ ′) P |Γ, x:σ ⊢• e : m τ

P |Γ ⊢• let x=v in e : m τ
(TS-Let)

e1 6= v P |Γ ⊢• e1 : m1 τ1 P |Γ, x:τ1 ⊢• e2 : m2 τ2 ∀i. P |= mi � m

P |Γ ⊢• let x=e1 in e2 : m τ2

(TS-Do)

Figure 6. The syntax-directed type rules. The generalization function is defined as:Gen(Γ, σ) = ∀(ftv(σ) \ ftv(Γ)).σ .

P |Γ ⊢⋆ v : τ

P |Γ ⊢• v : m τ
(TS-Lift)

Figure 7. The syntax directed type rules extended with a lifting
rule which replaces the rule(TS-Bot).

These rules are structural over arrows using the usual co/contra-
variant typing.3 With these rules we can give functions likeid and
iapp fairly simple types:

id : ∀α. α → Bot α
iapp : ∀µ. (int → µ int) → µ int

And under the subsumption rules we can show that this type forid,
∀α. α → Bot α, is as general as the type∀αµ. α → µ α.

Unfortunately, it turns out that it is exceedingly difficultto
solve constraints between arbitrary types, as opposed to constraints
between just monadic types. Since the subsumption rules give rise
to constraints between types, we cannot give a coherent constraint
solving strategy that is still complete—we either need to reject
certain reasonable programs or we need to solve such constraints
too aggressively leading to an incomplete inference algorithm.

Thus, our implementation uses the simple strategy since neither
lifting nor subsumption provide a satisfactory improvement.

3.5 Syntax-directed type inference

Figure 6 presents a syntax directed version of the declarative type
rules. The rules come in two flavors, one for value expressions
P |Γ ⊢⋆ v : τ , and one for general expressionsP |Γ ⊢• e : m τ .
Since each flavor has a unique rule for each syntactical expression,
the shape of the derivation tree is uniquely determined by the
expression syntax. Just like the Hindley-Milner syntax directed
rules, all instantiations occur at variable and constant introduction,
while generalization is only applied at let-bound value expressions.

We can show that the syntax directed rules are sound and com-
plete with respect to the declarative rules.

Theorem 2(The syntax directed rules are sound and complete).
Soundness: For any derivationP |Γ ⊢⋆ v : τ there exists a
derivationP |Γ ⊢ v : τ , and similarly, for anyP |Γ ⊢• e : m τ
we haveP |Γ ⊢ e : m τ .
Completeness: For any derivation on a value expressionP |Γ ⊢
v : σ there exists a derivationP ′ |Γ ⊢⋆ v : τ , such thatΓ ⊢ (P ′ |
τ) > (P | σ). Similarly, for any derivationP |Γ ⊢ e : m τ ,

3 Note that when a system has higher-kinds, we need to ensure that the arrow
is not a first-class type constructor.

there exists a derivationP ′ |Γ ⊢• e : m′ τ ′, such thatΓ ⊢ (P ′ |
m′ τ ′) > (P | m τ).

Both directions are proved by induction on the derivations.Follow-
ing Jones [14], we use an extension of the instance relation in order
to define an ordering of polymorphic type schemes and monadic
types under some constraint set. We can define this formally as:

σ1 = ∀ν. π̄ ⇒ τ P2 ⊢ Gen(Γ,∀ν. (P1, π̄) ⇒ τ) > σ2

Γ ⊢ (P1 | σ1) > (P2 | σ2)

ᾱ, µ̄ = ftv(m1, τ1, P1) \ ftv(Γ) θ = [m/µ̄, τ̄/ᾱ]
P2 |= θP1 P2 |= θm1 � m2 θτ1 = τ2

Γ ⊢ (P1 | m1 τ1) > (P2 | m2 τ2)

Besides extending the instance relation to monadic types, the def-
inition of this qualified instance relation allows us specifically to
relate derivations in the declarative system that can end ina type
schemeσ, to derivations in the syntax directed system that always
end in a monotype.

Finally, the syntax directed rules for the declarative typerules
extended with the rule (TI-Lift) can be obtained by replacing the
rule (TS-Bot) with the rule (TS-Lift) given in Figure 7. Thisex-
tended system is also sound and complete with respect to the ex-
tended declarative rules.

4. Principal types
The standard next step in the development would be to define an
algorithmic formulation of the system (including a rewriting to out-
put terms) and then prove that the algorithm is sound and complete
with respect to the syntactical rules, thereby establishing the prin-
cipal types property. Interestingly, we can do this by translation. In
particular, we can show that the syntactical rules in Figure6 di-
rectly correspond to the syntactical rules of OML in the theory of
qualified types [14]. In the next subsection we prove that forevery
derivation on an expressione in our syntactical system, there ex-
ists an equivalent derivation of an encoded termJeK in OML and
the other way around. Since OML has a sound and complete type
reconstruction algorithm, we could choose to reuse that as is, and
thereby get sound and complete type inference (and as a conse-
quence there exist principal derivations).

Unfortunately, the OML type reconstruction algorithm (essen-
tially the Haskell type class inference algorithm) is not satisfactory,
as it would reject many useful programs. Intuitively, this is because
it conservatively rejects solutions to constraints that are reasonable
in light of the morphism laws; since it is unaware of these laws it
cannot take advantage of them. The next section develops an algo-
rithm that takes advantage of the morphism laws to be both permis-
sive and coherent.

4.1 Translation to OML

The translation between our system and OML is possible sincewe
use the same instance and generalization relation as in the theory
of qualified types. Moreover, it is easy to verify that our entailment
relation over morphism constraints satisfies all the requirements
of the theory, namely monotonicity, transitivity, and closure under
substitution. The more difficult part is to find a direct encoding to
OML terms. First, we are going to assume some primitive termsin
OML that correspond to rules in our syntactical system:

bot : ∀α. α → Bot α
do : ∀αβµ1µ2µ. (µ1 � µ, µ2 � µ)

⇒ µ1 α → (α → µ2 β) → µ β
app : ∀αβµ1µ2µ3µ. (µ1 � µ, µ2 � µ, µ3 � µ)

⇒ µ1 (α → µ3 β) → µ2 α → µ β

Using these primitives, we can give a syntactic encoding from our
expressions into OML terms:

JxK⋆ = x
JcK⋆ = c
Jλx.eK⋆ = λx.JeK

JvK = bot JvK⋆

Je1 e2K = app Je1K Je2K
Jlet x=v in eK = let x= JvK⋆ in JeK
Jlet x=e1 in e2K = do Je1K Jλx.e2K

⋆ (with e1 6= v)

We can now state soundness and completeness of our syntactic
system with respect to encoded terms in OML, where we write
P |Γ ⊢OML e : τ for a derivation in the syntax directed inference
system of OML (cf. Jones [14], Fig. 4).

Theorem 3(Elaboration to OML is sound and complete).
Soundness: WheneverP |Γ ⊢⋆ v : τ we can also derive
P |Γ ⊢OML JvK⋆ : τ in OML. Similarly, whenP |Γ ⊢• e : m τ we
haveP |Γ ⊢OML JeK : m τ .
Completeness: If we can deriveP |Γ ⊢OML JvK⋆ : τ , there also ex-
ists a derivationP |Γ ⊢⋆ v : τ , and similarly, wheneverP |Γ ⊢OML

JeK : m τ , we also haveP |Γ ⊢• e : m τ .

The proof of both properties can be done by straightforward induc-
tion on terms. As a corollary, we can use the general type recon-
struction algorithm W from the theory of qualified types which is
shown sound and complete to the OML type rules. Furthermore,it
means that our system is sound, and we can derive principal types.

Corollary 4. The declarative and syntactic type rules admit prin-
cipal types.

Again, the same results hold for the extended type rules withthe
(TI-Lift) and (TS-Lift) rules. The only change needed is that the
lifting primitive now needs to be polymorphic to reflect the (TS-
Lift) rule, i.e. bot : ∀αµ. α → µ α.

4.2 Ambiguous types

Following Theorem 3, we could encode our type inference algo-
rithm using the type class facility of a language like Haskell, em-
ploying a morphism type class that provides morphisms between
monads. In particular:

class Morph m n where
lift :: m a -> n a

app :: Morph m1 m, Morph m2 m, Morph m3 m, Monad m
=> m1 (a -> m2 b) -> m3 a -> m b

app mf mx = lift mf >>= \f ->
lift mx >>= \x ->
lift (f x)

...

Type checking could now be implemented using the syntactical
encoding into a Haskell program and running the Haskell type
checker. Unfortunately, this approach would not be very satisfac-
tory: it turns out that our particular morphism constraintsquickly
lead to ambiguous types that cannot be solved by a generic sys-
tem. In particular, Haskell rejects any types that have variables in
the constraints that do not occur in the type (which we call free
constraint variables).

Recall our functioniapp : (int → Beh int) → Beh int .
The expressionJiapp (λx. id (id x))K has the Haskell type
∀µ. (Morph µ Beh) ⇒ Beh int where the type variableµ
only occurs in the constraint but not in the body of the type. Any
such type must be rejected in a system like Haskell. In general,
there could exist multiple solutions for such free constraint vari-
ables where each solution gives rise to a different semantics. A
common example in Haskell is the programshow [] with the type
Show α ⇒ string . In this example, choosing to resolveα aschar
results in the string“”, while any other choice results in[].

We were initially discouraged by this situation until we realized
that focusing only on morphism constraints confers an advantage:
the monad morphism laws allow us to show that any solution forthe
free constraint variables leads to semantically equivalent programs;
i.e., the evidence translations for each solution are coherent.

Moreover, there is an efficient and decidable algorithm for find-
ing a particular “least” solution. At a high-level our algorithm
works by requiring that the set of monad constants and morphisms
between them form a semi-lattice, withBot as the least element,
where all morphisms satisfy the monad morphism laws. Another
requirement that is fulfilled by careful design of the type system is
that the only morphism constraints are between monadic typecon-
stants or monadic type variables, and never between arbitrary types.
We can repeatedly simplify a given constraint graph by eagerly sub-
stituting free constraint variablesµ with the least upper bound of
their lower bounds when these lower bounds are constants. This
simple strategy yields a linear-time decision procedure. The next
section presents the algorithm in detail and proves coherence.

5. Constraint simplification and coherence
This section presents an algorithmic formulation (a variation on the
Hindley-Milner algorithm W) of our syntax-directed type inference
system. The previous section established that while the type recon-
struction algorithm of Jones can infer principal types, these types
are frequently ambiguous and hence programs with these types
must be rejected. The contribution of this section is a simple (linear
time) procedure that can eliminate some ambiguous variables in the
constraints of a type in acoherentway. By performing constraint
simplification, the types inferred by our algorithm are intentionally
not the most general ones. However, simplification allows strictly
more programs to be accepted. Moreover, we can show that sim-
plification is justified, in that the typability of the program is not
adversely effected by the simplified type.

Section 5.1 discusses the key algorithmic typing and rules and
illustrates elaboration of source terms to System F target terms.
Section 5.2 gives our constraint solving algorithm. Finally, Sec-
tion 5.3 shows, by appealing to the morphism laws, that our solv-
ing algorithm is coherent and does not introduce ambiguity into the
semantics of elaborated terms.

5.1 Algorithmic rewriting

The structure of our algorithm W closely follows Jones’ algorithm
for qualified types [14], and includes an elaboration into a calculus
with first-class polymorphism. We formulate our algorithm in a
stylized way to facilitate the proof of coherence. We think of the
constraints generated by our system as forming a directed graph,
with nodes corresponding to monad type constants and variables,

any type t ::= m τ | τ
constraint π ::= Do(m1, m2, m)

| App(m1, m2, m3, m)
substitution θ ::= · | α 7→ τ | µ 7→ m | θθ′

target types t ::= ν | t1 t2 | ∀ν.t | t1 → t2
target terms e ::= x | c | λx:t.e | e1 e2 | Λα.e | e [t]

Figure 8. Syntax of constraint bundles and a target languagee.

and edges represented by the morphism relationm�m′. However,
instead of simply producing constraints of the formm�m′ as in the
syntax-directed system, our algorithm groups related constraints
together in “bundles”. Constraint bundles come in two flavors,
corresponding to the fragments of the typing derivation (and hence
bits of program syntax) that induced the constraints. The bundles
allow us to reason that edges in constraint graph come in specific
kinds of pairs or triples, thus syntactically restricting the shape of
the graph and facilitating our coherence proof.

Figure 8 gives the syntax of target termse and typest, and
alters the syntax of constraintsπ to constraint bundles. As we will
see shortly, the bundles arise from corresponding inference rules
from Figure 9:Do(m1, m2, m) is induced by the monadic let-
binding rule (W-Do) andApp(m1, m2, m3, m) by the (W-App)
rule. Substitutionsθ map type variables to types, andθ1θ2 denotes
substitution composition.

Figure 9 shows the key rules in our algorithm W, expressed as
a judgmentP | Γ ⊢κ e : t; θ ; e where the constraintsP ,
type t, substitutionθ, and target terme are synthesized. As shown
in Figure 8,t is eitherτ or m τ ; as in the syntax-directed rules,
κ denotes one of two modes,⋆ and •; and the target terme is
explicitly typed. The substitutionθ applies to the free type-level
variables (α andµ) in Γ. An invariant of the rules is thatθ(t) = t,
θ(P) = P , andθ(e) = e. For simplicity, we omit types on formal
parameters and instantiation of type parameters in elaborated terms
e. We also assume that a morphism from a monadm tom′ is named
fm,m′ ; and the bind and unit of a monadm arebindm andunitm.
The omitted rules are unsurprising.

Rule (W-Bot) corresponds to the syntactic rule (TS-Bot). It
switches modes from• to ⋆ in its premise, produces the monadic
typeBot τ , and elaborates the term by inserting the unit forBot .

Rule (W-App) elaborates each sub-term in its first two premises,
and in the fourth and fifth premises, computes the most-general
unifier θ3 of the formal parameter type ofe1 and the value type
of e2. We generate anApp-constraint bundle which indicates that
there is a morphism from each ofθ3θ2µ1, θ3θ1µ2, andθ3µ

′ to the
result monadµ. In the elaborated terms,fµi,µ stand for morphisms
that will be abstracted (or solved) at the nearest enclosinglet;
similarly the bindµ are the binds of the result monad. The rule
for monadic let-bindings, (W-Do), is nearly identical to (W-App)
except that there is one fewer monad variable.

Finally, rule (W-Let) implements generalization. We rewrite the
let-bound valuev in the first premise, and compute the variables
ν̄ over which we can soundly generalize. In the third premise, we
compute the variables̄µ that appear in the constraintsP1 but are
not free in the typeτ—these variables are candidates for constraint

simplification. The judgmentP1
solve(µ̄)
−→ P ′

1; θ
′ simplifies con-

straints, eliminating the ambiguous type variablesµ̄ coherently—
this judgment is discussed in the next subsection. The last premise
rewrites the body in a context in whichx’s type is generalized. In
the conclusion, we translate to an explicitly typed application form,
where the let-bound value is elaborated to generalize over both its
constraints and the type variablesν̄.

5.2 Soundness and efficiency of constraint simplification

Intuitively, our algorithm views a constraint setP as a directed
graph, where the nodes in the graph are the monad types, and the
edges are introduced by the constraint bundles. For example, we
view a bundleDo(m1, m2, m) as a graph with vertices form1, m2

andm, and edges fromm1 to m andm2 to m. In the discussion
below, we informally use intuitions from this graphical view of P .
For each edge betweenm andm′ in the constraint graph, a solution
to P must compute a specific morphism betweenm andm′.

We start our description of the algorithm with the definitionof
morphism-induced least-upper bounds. This definition is relative to
an initial set of constraintsP0 that define the monad constants and
primitive morphisms used to type a source program.

Definition 5 (Least-upper bound). With respect to an initial context
P0, given a set of monad constantsA = {M1, . . . , Mn}, we write
lub(A) = M to mean thatM is the least upper bound of the monad
constants inA, i.e.,∀i.P0 |= Mi � M ; and for anyM ′ such that
∀i.P0 |= Mi � M ′, we haveP0 ⊢ M � M ′. Although defined
with regard to a particular initial contextP0, we writelub(A) for
conciseness, leavingP0 implicit.

Our constraint simplification algorithm is straightforward. We
limit our attention to cycle-free constraint graphs. Whenever a cycle
is detected in the constraint graph, we require every variable and
constant in the cycle to be identical—a constraint graph with a
cycle containing more than one constant cannot be solved andthe
program is rejected.

Given a cycle-free graph we perform a topological sort and then
proceed to simplify the graph starting from the leaves. We con-
sider a variableµ only after all its children have been considered.
All variables have lower bounds (in-edges), since variables are in-
troduced by (W-Do) and (W-App) and have lower bounds by con-
struction. Besides, the node corresponding toBot has an out-edge
to every other node. For each variableµ considered, if all its in-
edges are from monad constantsA = {M1, . . . , Mn}, and ifµ has
some out-edge (needed for coherence, and discussed in the next
sub-section), we assign toµ the constantlub(A), thus eliminating
the variable and proceeding to consider the next variable, if any.

Figure 10 presents a set of inference rules that codifies thissolv-
ing algorithm (omitting the cycle elimination phase, for simplic-

ity). The judgment has the formP
solve(µ̄)
−→ P ′; θ. It considers the

free constraint variables̄µ in P , replacing them with monad con-
stants under certain conditions, returning the residual constraints
P ′ that cannot be simplified further. This judgment ensures that
dom(θ) ⊆ µ̄ andθP ′ = P ′. Thus, in the (W-Let) rule we apply
θ′ to the body ofe1 in the conclusion, in effect resolving any free
morphismfµ,µ′ to the specific morphism determined byθ′. Notice
that sincedom(θ) ⊆ µ̄, the premises of (W-Let) ensure that we
eliminate only those variables appearing in neither the final type
nor the context.

The inference rules make use of a few auxiliary functions,
defined to the right of Figure 10. First, for a constraint bundle π,
functionup-bnd(π) is the type of the resulting monad. In contrast,
lo-bnd(π) is the set of types in a constraint bundlefrom whichwe
require morphisms. Both of these are lifted to sets of constraints in
the natural way. We also defineflowsToµ P , the set of constraints
in P that haveµ as an upper bound;flowsFromµ P , the set of
constraints that haveµ as a lower bound.

We now explain the rules in detail. Rule (S-µ) is the workhorse
of the algorithm. In the first two premises, it selects some constraint
π whose upper boundµ is in the list of variables to be solved,µ̄.
The third premise checks thatµ has an upper bound; i.e., it is the
lower bound of at least one constraint inP (for coherence). The
fourth premise definesA, the set of all ofµ’s lower bounds, and the

P | Γ ⊢κ e : t; θ ; e
P | Γ ⊢⋆ v : τ ; θ ; e

P, π | Γ ⊢• v : Bot τ ; θ ; (unitBot e)
(W-Bot)

P1 | Γ ⊢• e1 : µ1 τ1; θ1 ; e1 P2 | Γ ⊢• e2 : µ2 τ2; θ2 ; e2 µ, µ′, α, β fresh
θ2τ1 = θ3(α → µ′ β) θ1τ2 = θ3α P = (θ3θ2P1), (θ3θ1P2), App(θ3θ2µ1, θ3θ1µ2, θ3µ

′, µ) θ = θ1θ2θ3

P | Γ ⊢• e1 e2 : θ3(µ β); θ ; θ(bindµ (fµ1,µ e1) (λx: .bindµ (fµ2,µe2) λy: .(fµ′ ,µ(x y))))
(W-App)

e1 6= v P1 | Γ ⊢• e1 : µ1 τ1; θ1 ; e1 P2 | Γ, x:τ1 ⊢• e2 : µ2 τ2; θ2 ; e2 µ, α, β fresh
θ2τ1 = θ3(α) θ1τ2 = θ3(β) P = (θ3θ2P1), (θ3θ1P2), Do(θ3θ2µ1, θ3θ1µ2, µ) θ = θ1θ2θ3

P | Γ ⊢• let x=e1 in e2 : θ3(µ β); θ ; θ(bindµ (fµ1,µe1) λx:α.(fµ2 ,µe2))
(W-Do)

P1 | Γ ⊢⋆ v : τ ; θ1 ; e1 ν̄ = ftv(P1 ⇒ τ) \ ftv(Γ) µ̄ = (ftv(P1) \ ftv(τ)) ∩ ν̄

P1
solve(µ̄)
−→ P ′

1; θ
′ σ = ∀ν̄.P ′

1 ⇒ τ P2 | Γ, x:σ ⊢• e : m τ ; θ2 ; e2 θ = θ1θ2

P2 | Γ ⊢• let x=v in e : θ1(m τ); θ ; θ((λx: .e2) Λν̄.abstractConstraints(P ′
1, θ

′e1))
(W-Let)

where

abstractConstraints((π,P), e) = abstractConstraints(π, abstractConstraints(P, e))
abstractConstraints(Do(m1, m2, m), e) = λbindm: .λfm1,m: .λfm2,m: .e
abstractConstraints(App(m1, m2, m3, m), e) = λbindm: .λfm1,m: .λfm2,m: .λfm3,m: .e
abstractConstraints(Lift(m), e) = λunitm: .e

Figure 9. Selected algorithmic rules for elaboration into System F (with types in elaborated terms omitted for readability).

P
solve(µ̄)
−→ P ; ·

π,P
solve(µ̄)
−→ P ′; θ

π, π, P
solve(µ̄)
−→ P ′; θ

P2, P1
solve(µ̄)
−→ P ′; θ

P1, P2
solve(µ̄)
−→ P ′; θ

S-M
P0 |= lub(lo-bnds(π)) � up-bnd(π) P

solve(µ̄)
−→ P ′; θ

π, P
solve(µ̄)
−→ P ′; θ

S-µ

up-bnd(π) = µ µ̄ = µ, µ̄′ flowsFromµ P 6= {}

A = lo-bnds(π, flowsToµ P) θ = (µ 7→ lub(A)) θP
solve(µ̄′)
−→ P ′; θ′

π,P
solve(µ̄)
−→ P ′; θθ′

where
up-bnd(Lift(m)) = m

up-bnd(App(·, ·, ·, m)) = m

up-bnd(Do(·, ·, m)) = m
up-bnds(P) =

S

π∈P {up-bnd(π)}

lo-bnd(Lift(m)) = Bot

lo-bnd(App(m1, m2, m3, ·)) = {m1, m2, m3}
lo-bnd(Do(m1, m2, ·)) = {m1, m2}
lo-bnds(P) =

S

π∈P lo-bnd(π)

flowsToµ P = {π | π ∈ P ∧ µ = up-bnd(π)}
flowsFromµ P = {π | π ∈ P ∧ µ ∈ lo-bnd(π)}

Figure 10. P
solve(µ̄)
−→ P ′; θ: Simplifying constraints using thelub-strategy.

fifth premise defines the substitutionθ as mappingµ to the least
upper bound ofA. Recall again thatlubis only defined on constant
monads, soA must contain no variablesµ′; this requirement es-
sentially forces solving to proceed bottom up, with the leaves of
the tree induced byP (following cycle elimination) solved first. Fi-
nally, the sixth premise applies the substitution to the constraints
P and proceeds to solve them; the final substitution consists of the
substitutionθ′ produced by this recursive step, composed withθ.

Rule (S-M) checks that constraints involving only constants
(e.g., those whoseµ have been completely substituted for) are con-
sistent with the initial constraint setP0, in which case they can be
dropped. Finally, the first three rules help with bookkeeping, indi-
cating that (1) constraints may remain unsimplified; (2) duplicate
constraints may be dropped; and (3) constraints may be permuted.
This last rule is non-deterministic, but it can be implemented easily
using simple topological sort of a cycle-free constraint constraint
graph.

The next definition and the following lemma establish that

P
solve(µ̄)
−→ P ′; θ only produces sound solutions to a constraint set.

The proof is straightforward.

Definition 6 (Sound solution). Given an initial contextP0 and
a constraint setP , a solutionθ to the constraintsP is sound if

and only if, for eachµ in dom(θ), we have{M1, . . . , Mn} =
lo-bnds(θ(flowsToµ P)), and∀i.P0 |= Mi � θµ.

Lemma 7 (Constraint simplification is sound). For all P0, P, µ̄,

P ′, θ, if we haveP0 ⊢ P
solve(µ̄)
−→ P ′; θ, thenθ is sound forP .

Theorem 8(Constraint solving is linear time). Given a constraint
setP and an initial contextP0, there exists aO(|P |) algorithm to
decide whether or notP is fully solvable, where a constraint setP

is fully solvable iffµ̄ = ftv(P) impliesP0 ⊢ P
solve(µ̄)
−→ ·; θ.

Proof. (sketch) The algorithm begins by detecting and eliminating
cycles in the constraint graph. Doing so is linear in number of ver-
tices and edges of the graph, i.e.,O(|V |+ |E|), where|V | and|E|
are each at most three times the number ofApp(m1, m2, m3, m)
constraints plus twice the number ofDo(m1, m2, m) constraints.

Then the algorithm sorts the graph topologically (also linear).
Then it attempts to eliminate each constraint variable in sorted

order. Eliminating a single constraint variable takes constant time.
This is because elimination amounts to the cost of computingthe
lubfor elements of a finite lattice inP0 and all lubs can be pre-
computed onP0 without dependence onP .

After eliminating all eligible constraint variables we areleft
with either a graph that has variables without upper bounds (in
which case we answer “no”) or we have a graph with only con-
stants. Checking for upper bounds in a variable-free graph is again
linear in the number of constraints, since each ordering canbe an-
swered in constant time (again, pre-computed onP0).

One would also like to show that our constraint solving algo-
rithm does not solve constraints too aggressively. We definean im-
provementrelation on type schemes (following the terminology of
Jones [16]), as a lifting of the solving algorithm.

Definition 9 (Improvement of type schemes). Given a type scheme
σ = ∀ν̄.P1 ⇒ τ and a set of type variables̄µ = (ftv(P1) \

ftv(τ)) ∩ ν̄. If P1
solve(µ̄)
−→ P2; θ then we sayσ′ = ∀ν̄.P2 ⇒ τ is an

improvementof σ.

We might conjecture at first that improvement of types is con-
sistent with the type instantiation relation. That is, ifσ′ is an im-
provement ofσ, thenP0 ⊢ σ′ ≥ σ and P0 ⊢ σ ≥ σ′. How-
ever, by eliminating free constraint variables, our solving algorithm
intentionally makesσ′ less general thanσ. For example, given
σ = ∀µ.(M1 � µ, µ � M2) ⇒ τ , (whereµ 6∈ ftv(τ)) our al-
gorithm could improve this toσ′ = M1 � M2 ⇒ τ , and indeed
further toτ , if P0 |= M1 � M2. However, for an arbitrary constant
µ, it is not that case thatP0 |= M1 � µ, µ � M2, which is what is
demanded by the instantiation relation.

Nevertheless, the type improvement scheme is still useful since
improvement at generalization points does not impact the typability
of the remainder of the program.

Theorem 10 (Improvement is justified). For all P, Γ, x, σ, σ′,
e, m, τ , if we haveP | Γ, x:σ ⊢ e : m τ , andσ′ is an improvement
of σ, thenP | Γ, x:σ′ ⊢ e : m τ .

Intuitively, we can see this theorem holds because the improvement
of a typeσ = ∀ν̄. P1 ⇒ τ to ∀ν̄. P2 ⇒ τ only effects the free
constraint variables: the actual typeτ is unchanged and ifP |= P1

we always haveP |= P2 too. At any instantiation ofσ, we can
always substitute the improved type since the typeτ is the same
and the improved constraintsP2 are also entailed if the original
constraintsP1 were.

5.3 Coherence

The effectiveness of our constraint-solving strategy stems from our
ability to eagerly substitute constraint variableµ with the least
upper boundM of all the types that flow to it. Such a technique
is not admissible in a setting with general purpose qualifiedtype
constraints, particularly when the evidence for constraints (in this
case our morphisms, binds and units) has operational meaning. One
may worry that by instantiatingµ with someM ′ 6= M where
M �M ′, we may get an acceptable solution to the constraint graph
but the meaning of the elaborated programs differs in each case.
This section shows that when the monad morphisms satisfy the
morphism laws our constraint improvement strategy is coherent,
i.e., all admissible solutions to the constraints yield elaborations
with the same semantics. So, any specific solution (including the
one produced by thelub-strategy) can safely be chosen.

Our approach to showing coherence proceeds as follows:

1. Given a constraint setP and a derivationP0 ⊢ P
solve(µ̄)
−→ ·; θ,

we callθ the lub-solution toP .

2. We can see all other solutions toP as being derived from the
lub-solution by repeatedlocal modificationsto thelub-solution.
A local modification involves picking a single variableµ such
that θ = θ′(µ 7→ M) and considering a solution to the
constraint setθ′P that assigns some other solutionM ′ 6= M

to µ; i.e., we have some solutionθ1 = θ′(µ 7→ M ′). We can
iterate this process, generating the solutionθi+1 from θi in this
manner.

3. We enumerate the ways in whichθiP can differ fromθi+1P ,
considering interactions between pairs of constraint bundles
(App/App, Do/Do, Do/App, App/Do, etc.). In each case,
since each kind of constraint bundle can be related to the ab-
stract syntax of elaborated programs, we can reason about the
differences in semantics that might arise from theθi and the
θi+1 solutions. We show that when all the morphisms satisfy
the morphism laws, that the solutions are indeed equivalent.

Our result applies only to well-formed contexts, a notion de-
fined below. In the definition, requirements (1) and (2) ensure that
the monads and their morphisms are well-typed. Requirement(3)
ensures that least-upper bounds are defined and that there isa Bot
monad. Our notion of term equivalence, writtene1

∼= e2, is exten-
sional equality on well-typed, elaborated terms. Clauses (4) and (5)
state that this equivalence is axiomatized by the transitivity prop-
erty and the morphism laws.

Definition 11 (Well-formedness of a context). The following con-
ditions are required of well-formed contexts,P0, Γ:

1. For any pair of monad constantsM we have bindM andunitM

bound as constants inΓ, with appropriate types.
2. For all M1, M2, if P0 |= M1 � M2 thenΓ contains a constant

fM1,M2
bound at the type∀α.M1 α → M2 α.

3. For any set of monad constantsA, there existsM such that
lub(A) = M and Bot is a monad constant inΓ with P0 |=
Bot � M , for all M .

4. We assume that for allM1, M2, M3, if P0 |= M1 � M2 and
P0 |= M2 � M3, thenfM2,M3

◦ fM1,M2

∼= fM1,M3
.

5. We assume that for allM1, M2, e1, e2, t1, t2, such thatP0 |=
M1 � M2 and e1 : M1 t1 and e2 : M2 t2, we have
fM1,M2

(bindM1
e1 λx:t1.e2) ∼= bindM2

(fM1,M2
e1) λx:t1.

(fM1,M2
e2)

The following lemma establishes that in well-formed contexts,
our algorithm produces well-typed System F terms. The proofis a
straightforward induction on the structure of the derivation, where
by {[Γ]} we mean the translation of a source typing context to a
System F context.

Lemma 12 (Well-typed elaborations). GivenΓ such thatP0, Γ is
well-formed,e, t, θ, e, κ, such thatP | Γ ⊢κ e : t; θ ; e. Then
there existst such that{[θΓ]} ⊢F abstractConstraints(P, e) : t.

Next, we formalize the notion of a local modificationθ′ of a
valid solutionθ to constraint set. Condition (1) identifies the vari-
ableµ which is the locus of the modification. Conditions (2) and
(3) establish the range of admissible solutions toµ, and condition
(4) asserts that the modified solutionθ′ picks a solution forµ that
is different thanθ, but still admissible.

Definition 13 (Local modification of a solution). Given a solution
θ1 to a constraint set(π,P), a local modification toθ1 is a solution
θ2 for which the following conditions are true:

1. There exists a variableµ and a constantM such thatµ =
up-bnd(π) andθ1 = θ′

1(µ 7→ M).
2. There existsM lo = lub(θ′

1(lo-bnds(flowsToµ P)))). M lo is a
lower-bound forµ.

3. There exists{Mhi
1 , . . . , Mhi

n }= θ′
1(up-bnds(flowsFromµ P)).

EachMhi
i is an upper bound forµ.

4. There exists a monad constantM ′ 6= M such thatP0 ⊢ M lo
�

M ′ and∀i.P0 ⊢ M ′
� Mhi

i , such thatθ2 = θ′
1(µ 7→ M ′)

Finally, we state and sketch a representative case of the main
result of this section: namely, that thelub-strategy is coherent when
the morphisms form a semi-lattice and satisfy the morphism laws.

Theorem 14(Coherence of constraint solving).
GivenP0, Γ, P, e, t, θ, θ1, θ2, e, κ, µ̄, such that

1. P0, Γ is well-formed andP is cycle-free.
2. For all µ ∈ µ̄, the setflowsFromµ P is non-empty, i.e.,µ has

an upper bound.
3. P | Γ ⊢κ e : t; θ ; e.
4. There existsθ1 such that dom(θ1) ⊆ µ̄ and θ1 is a sound

solution forP .
5. There existsθ2, a local modification ofθ1.

Then,θ1e ∼= θ2e.

Proof. (Sketch) Sinceθ2 is a local modification, we have (from
condition (1) of Definition 13)θ1 = θ′

1(µ 7→ M), for some
µ, M, θ′

1, andP = π, P ′, whereµ = up-bnd(π) is the modified
variable. We proceed by cases on the shape ofπ.
Caseπ is anApp bundle: We haveθ′

1π = App(M lo
1 , M lo

2 , M lo
3 , µ)

(since from condition (2) of Definition 13,lub is only defined
on monad constant). To identify the upper bounds ofµ, we con-
sider the constraints inθ′

1(flowsFromµ P ′), note that all the upper
bounds must be constants (from condition (3)), and proceed by
cases on the shape of each of the constraintsπ′ in this set.

Sub-caseπ′ is an App bundle: Without loss of generality on
the specific position ofµ, we haveθ′π′ = App(m1, µ, m3, M

hi),
whereMhi is an upper-bound ofπ′. From the shape of the con-
straints, we reason that we have a source term of the forme (e1 e2),
that is elaborated to the term shown below, wheree, e1, e2 are the
elaboration of the sub-terms.

1. bindMhi (fm1,Mhi e) (λx: .bindMhi

2. (fµ,Mhi(bindµ (fMlo
1

,µ e1) (λx1: .

3. bindµ (fMlo
2

,µ e2) (λx2: .(fMlo
3

,µ(x1 x2))))))

4. (λy: .fm3,Mhi (x y)))

Under the solutionsθ1 andθ2, the inner subterm at lines 2 and 3
(call it ê) may differ syntactically, i.e.,θ1ê 6= θ2ê. Specifically,
the solutionθ1 choosesµ 7→ M while θ2 may chooseµ 7→ M ′,
for M 6= M ′. However, using two applications of the morphism
laws, (condition (5) of Definition 11), we can show that theê is
extensionally equivalent to the term shown below.

2. bindMhi (fµ,Mhi ◦ fMlo

1
,µ e1) (λx1: .

3. bindMhi (fµ,Mhi ◦ fMlo
2

,µ e2) (λx2: .

(fµ,Mhi ◦ fMlo
3

,µ(x1 x2))))

Appealing to condition (4) of Definition 11, the transitivity prop-
erty, we get that the term above is extensionally equivalentto the
term below (call it̂e′).

2. bindMhi (fMlo

1
,Mhi e1) (λx1: .

3. bindMhi (fMlo

2
,Mhi e2) (λx2: .(fMlo

3
,Mhi(x1 x2))))

We havêe ∼= ê′ and henceθ1ê ∼= θ1ê
′. Since,µ 6∈ FV (ê′), we

haveθ1ê
′ ∼= θ2ê

′, andθ2ê
′ ∼= θ2ê, thus establishingθ1ê = θ2ê, as

required.

5.4 Ambiguity and limitations of constraint solving

Our constraint solving procedure is effective in resolvingmany
common cases of free constraint variables in types that would oth-
erwise be rejected as ambiguous by Haskell. However, a limitation
of our algorithm is that, for coherence of solving, we require free
constraint variables to have some upper bound in the constraint set.
(See condition (2) of Theorem 14.) A variable with no upper bound

may admit several possible solutions, so the morphisms leading to
these solutions differ and result in different program rewritings—
our algorithm rejects such a program as ambiguous.

We argue that for typical programs our constraint solving strat-
egy is still effective. Our experience shows that terms withan un-
bounded constraint variable either consist of ‘dead’ computations
that are never executed, or constitute top-level expressions. In the
next paragraph we discuss a particular example program withan
ambiguous type, illustrating the former case. To deal with the latter
case, top-level expressions should have type annotations.All the
examples in this paper are deemed unambiguous by our algorithm
provided a top-level annotation. Out of the 5 example programs, 3
programs have types with variables that do not appear in the final
type. All of these types would be rejected by OML (or Haskell)as
ambiguous but are accepted by our system since they all have con-
straint variables with several distinct lower bounds and anupper
bound, so we can instantiate them with the lub of the lower bounds.

Consider the following example, with a state monadST and a
primitive functionread: int → ST char :

let g = fun () ->
let f = fun x -> fun y ->

let z = read x in read y in
let w = f 0 in ()

Here, the type inferred forf is ∀µ. (ST � µ) ⇒ int →
Bot int → µ char . Because of the partial applicationf 0, we
must giveg the type∀µ, µ′. (ST � µ,Bot � µ′) ⇒ unit →
µ′ unit . Here, the constraint variableµ resulting from the partial
application off does not appear in the return type, while it appears
in the constraints without an upper bound.

Picking an arbitrary solution forµ, sayµ = ST or µ = IO ,
whereP0 |= ST � IO , causes the sub-termw to be given differ-
ent types. This is a source of incoherence, since our extensional
equality property is only defined on terms of the same type. How-
ever, pragmatically, the specific type chosen forw has no impact on
the reduction of the program, and we conjecture that in all cases
when this occurs, the unbounded constraint variable has no influ-
ence on the semantics of the program. As such, our implementation
supports a “permissive” mode, so that despite it technically being
ambiguous, we can accept the programg, and improve its type to
∀µ′.Bot � µ′,⇒ unit → µ′ unit , by solvingµ = ST.

6. Implementation and applications
We have implemented our inference algorithm for the core lan-
guage of Figure 1 extended with standard features, including con-
ditionals and recursive functions. Our implementation is written in
Objective Caml (v3.12) and is about 2000 lines of code. It follows
our basic morphism insertion strategy (i.e., Figure 4), butalso pro-
vides an alternative typing mode that uses the (TI-Lift) rule (Fig-
ure 5). All rewritings shown in this paper, modulo minor readabil-
ity improvements, were produced with our implementation and run
against matching monadic libraries.

In this section we present programs using two additional mon-
ads, to give further examples of the usefulness of our system: pars-
ing and information flow tracking. For the latter, our technical re-
port [27] further considers a source language extended withmuta-
ble references, which for tracking information flow requiresparam-
eterized monads. We can type rewritten programs using the Flow-
Caml security type system [24] and thereby prove they are secure.

6.1 Parsing example

A parser can be seen as a function taking an input string and
returning its unconsumed remainder along with a result of type
α. We can apply this idea directly by implementing a parser as

a monad whose typePar α conveniently hides the input and
output strings. Its bind and unit combinators have namesbindp and
unitp, respectively. Thetoken: char → Par unit parser parses a
particular character, whilechoice: (unit → Par α) → (unit →
Par α) → Par α returns the result of the first (thunkified) parser
if it is successful, and otherwise the result of the second parser.

As an example we shall write a parser that computes the maxi-
mum level of nested brackets in an input string:

(rec nesting. fun ()->
let nonempty = fun ()->

token ’[’;
let n = nesting() in
token ’]’;
let m = nesting() in
max (n + 1) m in

let empty = fun () -> 0 in
choice (fun ()-> nonempty()) (fun ()-> empty()))()

Interpreted as standard ML code, the above program is not type
correct: the functionsmax and+ are typed asint → int → int ,
which does not match with the type ofn andm of typePar int .

In our system the example is well-typed where the term gets
type Par int . The type directed translation automatically inserts
the binds for sequencing and units to lift the final result into the
parser monad. The actual translation produced by our implementa-
tion is:

(rec nesting. fun () ->
let nonempty = (fun ()->

bindp (token ’[’) (fun _ ->
bindp (nesting()) (fun n ->
bindp (token ’]’) (fun _ ->
bindp (nesting()) (fun m ->
unitp (max (n + 1) m)))))) in

let empty = fun () -> 0 in
choice (fun () -> nonempty())

(fun () -> unitp (empty()))) ()

6.2 Information flow

We are interested in enforcing a confidentiality property bytrack-
ing information flow. Data may be labeled with a security level, and
the target independence property, called noninterference[6, 12],
ensures that low-security outputs do not depend on high-security
inputs. Ever since Abadi et al. showed how to encode information
flow tracking in a dependency calculus [1], a number of monadic
encodings have been proposed [7, 26, 19, 4]. We focus on a variant
of theSec monad [26] that wraps data protected at some security
level for a pure functional subset of ML. In the absence of side ef-
fects, we only have to ensure that data with a certain confidentiality
level is not disclosed to lower-level adversaries (explicit flows).

Let us consider a simple security lattice{⊥ ≤ L ≤ H ≤
⊤}. The information flow monadSecH (resp.,SecL) tracks data
with confidentiality levelH (resp.,L) with monadic operators
bindh,unith (resp.,bindl,unitl). The may-flow relation is ex-
pressed via a morphism that permits public data at a protected level:

labup : SecL � SecH

Thus data labeledL may be used in a context expecting data labeled
H , but not vice versa.

The following small example computes the interest due for
a savings account, and the date of the last payment. Primitive
savings returns a secret, having typeunit → SecH float ,
rate returns a public input having typeunit → SecL float .
add interest is a pure function computing the new amount of
the account after adding interest, having typefloat → float →

float . Finally,current date returns the current date, having type
unit → int .

add_interest (savings ()) (rate())

The rewriting lifts the low securityrate to compute the high
secrecy update forsavings. The final type of the entire expression
is SecH float .

bindh (savings ()) (fun y ->
bindh (labup (rate ())) (fun z ->
unith (add_interest y z)))}

Our extended technical report [27] gives a proof of soundness
with respect to FlowCaml for an information flow state monad
which subsumes theSec∗ monads; therefore they also soundly
encode non-interference.

7. Related work
Our work builds on Jones’ theory of qualified types [14, 16, 15],
which ensures principal types and coherence of the type inference
for OML and is used to infer Haskell type classes. We adapt this
approach for a practical monadic setting. The key difference is that
we make the solving procedure aware of morphism laws, in sucha
way that Jones’ restriction on ambiguous types can be removed.

Filinski previously showed that any individual monadic effect
can be synthesized from first-class (delimited) continuations and a
storage cell [11], and thereby can be expressed in direct style with-
out explicit use of bind and unit. Kiselyov and Shan [18] apply
this representation to implement probabilistic programs as an ex-
tension to Objective Caml. While our system shares the same goals
as these, it uses a different mechanism—type-directed rewriting—
to insert monadic operators directly, rather than requiring them to
be implemented in terms of continuations.

Filinski also showed how to implement monads in a compos-
able way [9]: given implementations of individual monads, and an
order in which they can belayeredon top of each other, he gives
a semantics to their compositions. However, Filinski’s representa-
tion elides monadic types from terms, complicating programunder-
standing. For example, the type ofseconds in his system would be
unit → int , notunit → Beh int . Our approach fully integrates
monadic types with ML type inference and yields well-typed ML
programs, therefore it is hopefully easy to understand by the pro-
grammers. Our approach can also be seen as orthogonal, sincewe
leave the implementation of monads to the programmer, treating all
monad operators as black boxes. The lattice induced by our mor-
phism declarations corresponds to Filinski’s layering structure be-
tween monads.

In his latest work on this topic [10], Filinski proposes an opera-
tional semantics for composing monads; he reflects monads inthe
types, as effects, and provides runtime guarantees for well-typed
programs, by dynamically inserting the minimal number of binds
and units, based on syntactic hints. Orthogonally, we perform type
inference from unannotated source code. We make the monadic
types, operators, and morphisms explicit in the rewritten program,
which gives the programmer the option to review and assess the
resulting program. Last but not least our approach supportspoly-
morphism over monads, permitting us to abstract and generalize
monads and morphisms. For example, the rewrittencompose func-
tion, whose type is given in Section 2.3, would additionallytake
as arguments the monads and morphisms used by its body, akin to
Haskell’s dictionary-passing interpretation of type classes.

We can view our rewriting algorithm as a particular case of a
more general strategy fortype-directed coercion insertion, which
supports automatic coercion of data from one type to another, with-
out explicit intervention by the programmer. Most related to our ap-
proach is that of Luo [21, 20], which considers coercion insertion as

part of polymorphic type inference. In Luo’s system rewritings may
be ambiguous: when more than one is possible, each may have dif-
ferent semantics. Also, the system does not include qualified types,
so coercions may not be abstracted and generalized, hurtingexpres-
siveness. Our own prior work addressed the problem with ambigu-
ity by carefully limiting the form and position of coercions[28].
However, we could not scale this approach to a setting with poly-
morphic type inference, as even the simplest combinations of co-
ercions admitted (syntactic) ambiguity. Our restriction to monads
in the present work addresses this issue: we can prove coherence
by relying on the syntactic structure of the program to unambigu-
ously identify where combinators should be inserted, and when the
choice of combinators is unconstrained, the morphism laws allow
us to prove that all choices are equivalent.

Benton and Kennedy developed MIL, themonadic intermediate
language, as the basis of optimizations in their MLj compiler [2].
They observe, as we do, that ML terms can be viewed as having the
structure of our typesτ (Figure 1) where monads appear in positive
positions. While our approach performs inference and translation
together, their approach suggests an alternative: convertthe source
ML program into monadic form and then infer the binds, units,
and morphisms. We know from our translation to Haskell that
this approach can only work by informing the solver of monad
morphisms.

8. Conclusions
Monads are a powerful idiom in that many useful programming
disciplines can be encoded as monadic libraries. ML programs
enjoy an inherent monadic structure, but the monad in question is
hardwired to be the I/O monad. We set out to provide a way to
exploit this structure so that ML programmers can program against
monads of their choosing in a lightweight style.

The solution offered by this paper is a new way to infer monadic
types for ML source programs and to elaborate these programs
in a style that includes explicit calls into monadic libraries of the
programmer’s choice. A key consideration of our approach isto
provide programmers with a way to reason about the semanticsof
elaborated programs. We achieve this in two ways. First, thetypes
we infer are informative in that they explicitly indicate the monads
involved. And, second, when our system accepts a program, we
show that all possible elaborations of a program have the same
meaning, i.e., our elaborations are coherent.

We implement our system in a prototype compiler, and evaluate
it on a variety of domains. We find our system to be relatively
simple, both to implement and to understand and use, and powerful
in that it handles many applications of interest.

Acknowledgements The authors would like to thank Gavin Bier-
man and Matt McCutchen for their early contributions to thiswork,
and to Gavin for comments on this draft. Hicks and Guts were both
supported by NSF grant CNS-0905419.

References
[1] M. Abadi, A. Banerjee, N. Heintze, and J.G. Riecke. A corecalculus

of dependency. InPOPL, volume 26, pages 147–160, 1999.
[2] Nick Benton and Andrew Kennedy. Monads, effects and transforma-

tions. InElectronic Notes in Theoretical Computer Science, 1999.
[3] Greg Cooper and Shriram Krishnamurthi. Embedding dynamic

dataflow in a call-by-value language. InESOP, 2006.
[4] K. Crary, A. Kliger, and F. Pfenning. A monadic analysis of

information flow security with mutable state.Journal of functional
programming, 15(02):249–291, 2005.

[5] L. Damas and R. Milner. Principal type-schemes for functional
programs. InPOPL, pages 207–212, 1982.

[6] D.E. Denning. A lattice model of secure information flow.Communi-
cations of the ACM, 19(5):236–243, 1976.

[7] D. Devriese and F. Piessens. Information flow enforcement in monadic
libraries. InTLDI, pages 59–72, 2011.

[8] Conal Elliott and Paul Hudak. Functional reactive animation. In
ICFP, pages 263–273, 1997.

[9] A. Filinski. Representing layered monads. InPOPL, pages 175–188,
1999.

[10] A. Filinski. Monads in action. InPOPL, pages 483–494, 2010.
[11] Andrzej Filinski. Representing monads. InPOPL, 1994.
[12] J.A. Goguen and J. Meseguer. Security policy and security models. In

Symposium on Security and Privacy, pages 11–20, 1982.
[13] Graham Hutton and Erik Meijer. Monadic Parsing in Haskell. JFP,

8(4), 1998.
[14] Mark P. Jones. A theory of qualified types. InESOP, 1992.
[15] Mark P. Jones. Coherence for qualified types. TechnicalReport

YALEU/DCS/RR-989, Yale University, September 1993.
[16] Mark P. Jones. Simplifying and Improving Qualified Types. Technical

Report YALEU/DCS/RR-1040, Yale University, June 1994.
[17] Mark P. Jones and Luc Duponcheel. Composing monads. Technical

Report YALEU/DCS/RR-1004, Yale University, 1993.
[18] Oleg Kiselyov and Chung chieh Shan. Embedded probabilistic

programming. InDSL, 2009.
[19] P. Li and S. Zdancewic. Encoding information flow in Haskell. In

CSFW, pages 16–27, 2006.
[20] Z. Luo. Coercions in a polymorphic type system.MSCS, 18(4), 2008.
[21] Z. Luo and R. Kießling. Coercions in Hindley-Milner systems. In

Proc. of Types, 2004.
[22] Eugenio Moggi. Computational lambda-calculus and monads. In

LICS, 1989.
[23] Judea Pearl. Embracing causality in default reasoning(research note).

Artificial Intelligence, 35(2):259–271, 1988.
[24] F. Pottier and V. Simonet. Information flow inference for ML.

TOPLAS, 25(1):117–158, 2003.
[25] Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and

monads of probability distributions. InPOPL, pages 154–165, 2002.
[26] Alejandro Russo, Koen Claessen, and John Hughes. A library for

light-weight information-flow security in haskell. InHaskell, 2008.
[27] Nikhil Swamy, Nataliya Guts, Daan Leijen, and Michael Hicks.

Lightweight monadic programming in ML. Technical Report MSR-
TR-2011-039, Microsoft Research, May 2011.

[28] Nikhil Swamy, Michael Hicks, and Gavin M. Bierman. A theory of
typed coercions and its applications. InICFP, 2009.

[29] Philip Wadler. The essence of functional programming.In POPL,
1992.

