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Abstract. The tasks of measurement and data transport are often
treated independently, but we believe there are benefits to bringing them
together. This paper proposes the simple idea of a transport agent to
encapsulate useful data within probe packets in place of useless padding.

1 Introduction

Overlay networks have become a popular vehicle for introducing network ser-
vices. Oftentimes, to drive its services, an overlay network infers characteristics
of the network via application-layer probes. For example, nodes in RON [1],
Detour [2], and Pastry [3] regularly ping their neighbors to check availability
and/or measure latency. MediaNet [4] uses available bandwidth [5] estimations
to determine along which paths to forward media streams.

For the most part, the measurement and transport aspects of overlay net-
works are treated independently. The measurement service is a black box used
by the overlay to make decisions. But the fact that measurement traffic is in
addition to transport traffic imposes an extra burden on the network. While not
a problem for a single overlay under normal conditions, as congestion and/or
the number of overlay networks in use increases, measurement traffic begins to
influence the total traffic.

To reduce the overhead of measurement traffic, we propose the following sim-
ple idea: merge the task of network measurement with the task of data transport.
In many cases, measurement traffic consists largely of null padding just meant to
consume bandwidth for timing purposes. This is the case when measuring avail-
able bandwidth, for example [5]. To avoid this wasted bandwidth, the transport
layer can replace null padding with user payloads available from other streams.

While others have proposed cooperative measurement services [6–8], or ob-
served that network characteristics can be inferred passively [9], no one has
proposed merging the tasks of measurement and transport. In this extended
abstract, we outline the design and preliminary implementation of a transport
agent that provides TCP and UDP-like transport along with an enhanced API
for sending measurement probes.



2 Probe-Aware Transport Agent

The two goals of our probe-aware transport agent are: (i) to minimize the band-
width that measurement tools consume and (ii) to allow probe traffic to be
responsive to congestion conditions. It is desirable that the API and the end-to-
end semantics of user traffic (TCP and UDP) remain intact so that no changes
are required to existing applications. Only measurement tools should be required
to use the socket API extensions to set encapsulation and dispatch policy for
their probes.

The challenge is how to maintain the same measurement accuracy while de-
creasing the probe bandwidth. The critical observation is that the null padding,
which dominates probe packets, can be reused without sacrificing the tool’s ac-
curacy. The actual pad bytes are irrelevant to the measurement algorithm which
means that probe packets can encapsulate user traffic if it is available. This ap-
proach satisfies the first goal. To address the second goal, we observe that probing
schemes usually do not care about the absolute timing of probe packets but only
about the relative timing between packets. Therefore, it should be possible to
briefly delay certain probe packets without degrading the tool’s accuracy. For
example, the transport agent can delay the first packet of a packet train as long
as it preserves the inter-packet timing and records the actual departure times.

There is an important trade-off between bandwidth efficiency and the time-
liness of probe/user packet transmission. The bandwidth optimization achieved
depends directly on how often probes encapsulate user traffic. Congestion con-
ditions will increase this frequency, since it is more likely that user traffic will
be buffered and available when probe packets are sent. Thus, probes consume
less bandwidth as congestion increases. To improve the optimization under non-
congested conditions, we can briefly delay certain probe packets, as directed by
the measurement tool, when no user data is available. Conversely, we can delay
a user packet when the application would allow it. For example, TCP already
delays data to send it in larger chunks.

Socket API Extensions: Our probe-aware transport API extends the BSD-style
socket API to define additional flags that affect the way packets are sent, either
per-packet or per-session; these flags are presented in Table 1.

Probe packets are sent with the PAD PKT [x ] flag enabled. This states that
the provided data should be sent with an additional x bytes of padding. Thus, if a
probe tool wants to send d bytes of data (i.e., the byte content it wants delivered
to the peer tool, such as control information) with x bytes of padding, it would
pass only the d bytes to send, along with the flag PAD PKT [x ]. The transport
agent will transport a packet of size d + x bytes, and will attempt to use the
x bytes portion of the packet to encapsulate user traffic. When the packet is
actually sent, it is timestamped by the transport agent, and timestamped again
when it is received. A separate function is used by tools to acquire the times.

The DELAY [t ] flag can be used to delay the packet up to t ms, to increase the
chances of encapsulating user data; otherwise the packet is queued for immediate
departure. Note that this flag can be applied to either user or probe traffic. For



Table 1. Probe-Aware Transport API flags

send flags

PAD PKT [s] Probe packet that requires s bytes padding.
DELAY [t] Packet can be delayed up to t ms.
PKT FOLLOWS This packet is not the last packet of a train (others follow).

per-session flags

SINGLE PKT Packets should not be encapsulated.
WAIT CONGESTION Packets under congestion control.

example, to send a probe that waits up to 100 ms would require flags PAD PKT[x ]
| DELAY [100].

Finally, the PKT FOLLOWS flag is used to indicate that the packet is part of a
train, and should not be sent until all packets are available (i.e., a subsequent
packet is submitted without this flag). Thus, the entire train may be delayed (by
the first packet), but all packets in the train are sent back-to-back.

We also provide two session-level flags. If for some reason encapsulation
should be avoided, users can establish sessions using the flag SINGLE PACKET.
Probe packets sent in such a session will not encapsulate other packets, and user
packets will not be encapsulated by probes. Thus, our transport API semantics
reverts to the standard semantics when this flag is set.

Additionally, we provide the flag WAIT CONGESTION to subject sessions to
congestion control. By default, STREAM sessions have this flag enabled (to
conform to TCP semantics), but DGRAM sessions can specify it as well. This
allows probe packets, which are often sent as datagrams, to be accounted for
in the congestion window. However, the implementation is non-standard in that
we must consider the DELAY and PKT FOLLOWS flags when doing congestion ac-
counting.

Figure 1 depicts our preliminary probe-aware transport agent which exchanges
traffic between two IP endpoints. The transport agent would sit normally on top
of IP; our current implementation tunnels over UDP. Internally, the transport
agent multiplexes user and probe streams into one packet stream with uniform
congestion control, as in the Congestion Manager [10], and encapsulates user
traffic in probe packets, unless explicitly disallowed by SINGLE PACKET flags.

For example, consider a measurement tool (session P2 in Figure 1) that
periodically sends a probe packet consisting of 10 bytes of control data and 990
bytes of padding. Before the transport agent sends the packet out, it attempts
to find user data to fill the 990 available bytes from candidate TCP sessions B1,
B2 and UDP packet streams D1, D2. If any of them have bytes waiting in their
buffers, then up to 990 bytes of user traffic will be encapsulated in the probe.

We have run preliminary experiments with real traffic on Emulab1 that
demonstrated bandwidth savings up to 95% during congestion conditions, i.e.,
most of the probe traffic piggy-backed on top of user traffic during that period.
We are in the process of completing a fully functional implementation and mod-

1 http://www.emulab.net
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Fig. 1. Overview of a probe-aware transport agent

ifying a number of measurement tools to run on top of our transport agent. We
intend to run wide-area experiments with real traffic on PlanetLab2 and continue
our performance measurements in the controlled setting of Emulab.
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