
Managing Policy Updates in Security-Typed Languages ∗
University of Maryland, Technical Report CS-TR-4793

Nikhil Swamy Michael Hicks

University of Maryland, College Park
{nswamy, mwh}@cs.umd.edu

Stephen Tse Steve Zdancewic

University of Pennsylvania
{stse, stevez}@cis.upenn.edu

Abstract

This paper presents RX, a new security-typed program-
ming language with features intended to make the man-
agement of information-flow policies more practical. Se-
curity labels in RX, in contrast to prior approaches, are
defined in terms of owned roles, as found in the RT role-
based trust-management framework. Role-based security
policies allow flexible delegation, and our language RX
provides constructs through which programs can robustly
update policies and react to policy updates dynamically.
Our dynamic semantics use statically verified transactions
to eliminate illegal information flows across updates, which
we call transitive flows. Because policy updates can be ob-
served through dynamic queries, policy updates can poten-
tially reveal sensitive information. As such, RX considers
policy statements themselves to be potentially confidential
information and subject to information-flow metapolicies.

1 Introduction

Security-typed programming languages extend standard
types with labels to specify security policies on the allow-
able uses of typed data. Such labels are typically ordered
by a lattice that expresses multi-level security policies for
properties like confidentiality. For example, labels may de-
note principals like Bob and Alice , and if, according to the
security lattice, Alice v Bob holds, then any data labeled
Alice can be viewed by Bob. Compile-time type-checking
ensures that the policies expressed by labels mentioned in
types are enforced, and thus one can prove, in advance of
program execution, that a program adheres to a particular
information-flow policy.

∗This is the full-length version of a paper that appeared in:
N. Swamy, M. Hicks, S. Tse, and S.Zdancewic; Managing Policy Up-
dates in Security-Typed Languages; In Proceedings of the 19th IEEE Com-
puter Security Foundations Workshop (CSFW-2006); Venice, Italy; July
5-7, 2006

Most existing security-typed languages assume that a
program’s security policy does not change once the pro-
gram begins its execution. This is an unrealistic assumption
for long-running programs. For operating systems, network
servers, and database systems, the privileges of principals
are likely to change. New principals may enter the system,
while existing principals may leave or change duties.

On the other hand, it would be unwise to simply allow
the policy to change at arbitrary program points. For exam-
ple, if the program is unaware of a revocation in the security
lattice it could allow a principal to view data illegally. More
subtly, a combination of policy changes could violate sep-
aration of duty, inadvertently allowing flows permitted by
neither the old nor the new policy. We call this channel of
information leaks across updates a transitive flow.

This paper presents a new security-typed language RX
that permits security policies to change during program ex-
ecution. RX has two distinguishing features. First, labels
in RX are defined in terms of roles as found in the role-
based access control languages of the RT framework [12].
A role names a set of principals, and role ordering in the
security lattice is defined by subset. Second, RX programs
are permitted to dynamically update the current role defi-
nitions; policy queries executed at runtime allow the pro-
gram to observe the evolution of policy. Programmers can
use database-style transactions to denote code that must use
a single consistent policy, preventing unintended transitive
flows. Policy updates that would violate this consistency
cause the program to roll back to a consistent state.

Once we allow policies to change within a program, poli-
cies themselves can become channels that carry sensitive
information. To prevent these channels from leaking in-
formation to unauthorized principals, RX uses metapolicies
that define which principals can view a particular role, and
which principals trust a role’s definition. To our knowl-
edge, RX is the first programming language to formalize
metapolicies to forbid illegal flows via policy updates. The
inherent administrative model of the RT policy languages
suggests natural choices for these metapolicies. For exam-

1

ple, in the RT framework, a role has a designated owner
that is responsible for administering the role’s contents.
Thus, only when the program is acting in a way trusted by
that owner may the role be changed.

The RT policy language has useful features that ease the
administration of policy in use by a security-typed program.
RT supports fine-grained delegation which can limit the
impact of policy changes on information flows. Also, us-
ing named roles as labels provides a useful indirection: the
contents of a role may change when the name of the role
does not. This may reduce the need for data to be relabeled
to effect a policy change. As far as we know, RX is the first
programming language to employ a role-based specification
language for defining security policies.

The rest of this paper is structured as follows. Section 3
presents RXcore, the mostly-standard core of RX for which
security labels are defined as RT roles. Section 3 presents
the full RX language, which extends the RXcore label model
to support the added features of policy queries, policy up-
dates, and transactions. Section 4 states security theorems
that hold for RX. The paper concludes with a discussion of
related work in Section 6 and future directions in Section 7.

2 A Role-based Security-Typed Language

We begin by motivating the use of roles as labels in a lan-
guage that supports policy updates. We follow this with a
presentation of the core features of RT0, the simplest mem-
ber of the RT family of role-based policy languages. Fi-
nally, we present RXcore, an imperative security-typed lan-
guage for which security labels are defined as roles.

2.1 Existing Label Models

Most existing security-typed languages use the lattice
model of information flow [24] in which an information flow
policy is defined by a lattice (L,v), where ` ∈ L is a label
(or security level), and labels are ordered by the relation v.
A typical choice (e.g., in FlowCaml [21]) is to define the
members of L as atomic names, and to definev by a policy
Π that defines the ordering among the names. This kind of
label model allows a program to define labels like L and H ,
which mean “low” and “high” security, respectively, and a
policy Π = {L v H }, which indicates that L is less re-
strictive than H . Generally speaking, labels can either be
atomic—L and H in this example—or the join `1 t `2 of
labels `1 and `2; here t is induced by the v relation.

The language Jif [14] supports the more sophisticated
labels of the decentralized label model (DLM). DLM la-
bels are defined in terms of principals, and have three parts:
an owner, a reader set (those principals allowed to read the
value), and an integrity set (those principals who trust the

value). Jif policies Π define delegation relationships be-
tween principals: for instance, if according to Π, principal
P1 delegates to P2, then P2 may “act for” P1. The ordering
on labels is induced by this acts-for relation among princi-
pals. For example, any data labeled solely by owner P1 may
be read or written by P2 (as well as any principals which
may act for P2).

2.2 Motivations for Roles

The problem with these label models is that they of-
fer no administrative support for changes to policy. This
is not surprising because existing languages were not de-
signed with policy changes in mind. If policy updates are
to be supported, a reasonable administrative model should
be able to provide answers to the following questions. (1)
Who is allowed to make changes to the security policy? (2)
What parts of the policy are permitted to change? (3) How
should those changes be reflected in the running program?
(4) When are such changes permitted to take place?

Rather than develop an administrative model for existing
label models, we looked instead to the body of work on
formal policy languages for which administrative models
already exist. Role-based policy languages [17, 2, 6, 12]
suggest a natural label model. In particular, a role, which
is a name that represents a set of principals, can be treated
as a label, and the ordering between labels can be defined
in terms of subset on the contents of roles according to the
policy. Indeed, in the simple example above, the two atomic
labels L and H are essentially being treated as roles.

We chose to use RT0 as the core of the label model for
RX. RT0 is the simplest member of the role-based policy
language framework RT [12]. Using RT roles as labels has
a number of attractive administrative features:

1. Ownership: An RT role is defined as having an owner
responsible for the role’s definition; a given principal
can own many roles. Only a role’s owner is allowed to
change the definition of that role.

2. Membership and Delegation: An RT policy permits
delegation at the granularity of roles, in which one role
may be defined in part by the contents of another role.
This provides better control than the DLM, which only
permits delegation between principals. To see the dis-
tinction, say that in Jif we define a special principal
Manager that represents the role of Manager in a com-
pany. To express that Alice is a member of this role, a
DLM policy Π would include the statement Manager
v Alice; i.e., whatever a Manager can view, Alice
can view as well. Assuming an administrative model
that would allow Alice to delegate to whomever she
wishes, Alice can state that Alice v Bob, with the ef-
fect of making Bob a manager since Manager vAlice

2

v Bob. By contrast, role membership and role delega-
tion in RT are separate concepts. Roles have an owner,
and membership is strictly under the owner’s control:
the owner can either include a principal in a role di-
rectly, or delegate (part of) the definition of a role to
another role. Membership does not imply delegation.

3. Indirection: Defining labels as roles provides a useful
level of indirection because the membership of a role
may change while the label on data stays the same.
That is, a security policy of some data can be modified
without requiring the data to be relabeled.

These points taken together answer the first three of the
four questions posed previously. The question (4) of when
policy changes are allowed to occur depends on what the
program is doing when a proposed update is available; we
consider this question in the next section.

For the remainder of this section, we first present the
RT0 policy language that forms the core of our label model.
Then we present the syntax and typing rules of the RXcore,
the core of our full language RX, which uses RT0 roles for
security labels.

2.3 RT0: A Role-based Policy Language

RT0 is the simplest member of the RT framework of
role-based policy languages [12]; it is summarized in Fig-
ure 1. A role ρ in RT0 has the form P.r, where princi-
pal P is the role’s owner and r is the role’s name. We
often write A, B, etc. as sample principals P . We use
the function owner(ρ) to extract the owner of ρ (so that
owner(P.r) = P).

Policy statements s have two forms1 P.r ←−
{P1, . . . , Pn} and P1.r1 ←− P2.r2. The first form indi-
cates simple membership, that principals Pi are members of
role P.r. The second form is a simple role delegation state-
ment, which indicates that all members of the role P2.r2

are also members of P1.r1. We use the function roledef (s)
to denote the role ρ defined by the policy statement s: for
example, roledef (A.r ←− {B}) is A.r.

The semantics of a role ρ is a set of principals and is
determined according to a policy Π by the function [[·]]Π.
Intuitively, [[ρ]]Π includes all elements of X where ρ ←−
X ∈ Π, along with all elements of [[ρ′]]Π where ρ←− ρ′ ∈
Π. It is defined formally below.

[[ρ]]Π = SΠ(ρ, Π)
SΠ0(ρ, ∅) = ∅
SΠ0(ρ, {ρ←− X} ∪Π) = X ∪ SΠ0(ρ, Π)

SΠ0(ρ, {ρ←− ρ′} ∪Π) = [[ρ′]]Π0\{ρ←−ρ′} ∪ SΠ0(ρ, Π)
SΠ0(ρ, {s} ∪Π) = SΠ0(ρ, Π) if roledef (s) 6= ρ

1RT0 also includes intersection and linking inclusion. These state-
ments are supported by our label model, but we elide them here for sim-
plicity.

principal P
principal sets X ::= {P1, . . . , Pn}
role ρ ::= P.r
policy stmt s ::= ρ←− X | ρ1 ←− ρ2

policy Π ::= {s1, . . . , sn}

Pat .doctors ←− {DrSue}
Pat .doctors ←− Clinic.staff
Pat .insurers ←− {BCBS}
Pat .healthRecords ←− Pat .doctors
Clinic.staff ←− {DrAlice ,DrBob}
Clinic.insuranceCos ←− {BCBS , Aetna}
DrPhil .self ←− {DrPhil}

Figure 1. Syntax of RT0 and a sample policy.

An example of an RT0 policy Π is given in Figure 1,
which models the privacy of a patient’s health care docu-
ments. The example defines roles owned by three princi-
pals: Pat , a patient; Clinic, a specialized medical treat-
ment center where Pat is currently a patient; and DrPhil ,
a doctor not affiliated with the clinic. The policy state-
ments define several roles that capture the affiliations just
mentioned. Pat .doctors is defined via two statements. The
first says that DrSue (a family doctor) is Pat’s doctor. The
second statement is a delegation to Clinic.staff, indicating
that Pat’s doctors also include the practitioners that work
at the clinic, which according to the policy in Figure 1,
is currently just the two principals DrAlice and DrBob.
Pat .insurers includes all insurance companies with which
Pat has a policy—this is the single company BCBS defined
through simple membership. Clinic.insuranceCos is the set
of insurance companies accepted by the clinic. Finally, the
last definition owned by DrPhil includes only himself.

The semantics of the role Pat .doctors and of
Pat .insurers according to this sample policy are:

[[Pat .doctors]]Π = {DrAlice,DrBob,DrSue}
[[Pat .insurers]]Π = {BCBS}

2.4 The RXcore Programming Language

RXcore is a simple imperative language with security la-
bels. Its syntax is shown at the top of Figure 2. Labels `
in RXcore are either atomic labels L or the join of two la-
bels according to the lattice ordering. An atomic label is
merely a role ρ. Labels are ordered according to the judg-
ment Π ` `1 v `2, where Π is an RT0 policy as described
above. For atomic labels, this ordering is according to the
semantics of roles as sets:

Π ` ρ1 v ρ2 ⇐⇒ [[ρ2]]Π ⊆ [[ρ1]]Π

3

atomic labels L ::= ρ
compound labels ` ::= L | ` t `
types t ::= bool
security types τ ::= t`

policy context Q ::= Π
typing context Ω ::= (Γ, pc, Q)
expressions E ::= true | false | x | E1 ⊕ E2

statements S ::= skip | x := E | S1; S2

| while (E) S | if (E) S1 S2

Ω ` true : bool` Ω ` false : bool` Ω ` x : Ω.Γ(x)

Ω ` E1 : bool`1 Ω ` E2 : bool`2
Ω ` E1 ⊕ E2 : bool`1t`2

Ω ` S1 Ω ` S2

Ω ` S1; S2

Ω ` skip
Ω ` E : bool` Ω[pc = Ω.pc t `] ` S

Ω ` while (E) S

Ω ` E : bool` Ω[pc = Ω.pc t `] ` Si i ∈ {1, 2}
Ω ` if (E) S1 S2

Ω.Γ(x) = t` Ω ` E : t` Ω.Q ` Ω.pc v `

Ω ` x := E

Ω ` E : bool`′ Ω.Q ` `′ v `

Ω ` E : bool`

Figure 2. RXcore syntax and typing.

Note that the label ordering relation (v) is the reverse
of the subset relation (⊆) over role membership. That is, a
role that has a larger set of members is a lower security level
than a role with fewer members, since strictly more princi-
pals can read data labeled by it. Extending this ordering to
compound labels is straightforward by interpreting the join
operator as set intersection.

RXcore contains a single base type (bool) subscripted
with a security level (We add another base type when ex-
tending RXcore to RX.). There are two typing judgments for
RXcore, shown at the bottom of Figure 2. Expression typ-
ings Ω ` E : τ state that in context Ω the expression E
has type τ . Statement typings Ω ` S state that statement
S is well formed with respect to the context Ω. The con-
text Ω has three elements: the environment Γ, the program
counter label pc and the policy context Q. Here Γ is a map
from variables to types, and pc is simply a label ` that is
used to bound the effect of writing to memory, to prevent
indirect information flows [19]. We discuss Q below. In the
typing rules we project the elements of the Ω tuple via the
dot notation; for example, Ω.pc is the pc component of Ω.
We write Ω[pc = pc′] to represent the context that is identi-
cal to Ω except the pc component is replaced with the value
pc′ (and similarly for other components of a context).

As in other security-typed languages, type checking in
RXcore is equivalent to security checking: if program S type
checks, when executed it will not leak information in vio-
lation of its policy. The policy context Q is a compile-time
approximation of the actual policy Π at run time with which
S will be executed. In RXcore and most security-typed lan-
guages, Q and Π are synonymous. That is, in these lan-
guages, it is assumed that the policy to be applied to the
entire execution of S is known when S is compiled. We
distinguish between policy context Q and policy Π now in
anticipation of the full RX in Section 3, for which policies Π
will evolve over time. Other than this difference, the typing
rules in Figure 2 are standard [24].

To illustrate how the typing judgments of RX0 prevent il-
legal information flows, consider typing the following pro-
gram in an environment where x is a high-security location
and y a low-security location.

if (x) (y := true) (y := false)

In this program, although the contents of x are not directly
assigned to y, the value stored in x is successfully copied
into y. This is because the branches of the if-statement carry
information about the contents of the high-security location
x. To prevent such flows, the rule for if-statements checks
each branch in a context where the effect lower-bound pc
is strengthened to be no less than the security level of x.
When typing the branches, the last premise of the rule for
assignment requires the label of y to be no less than the ef-
fect lower-bound. In our example, since y is a low-security
location, this premise is not satisfied and the program fails
to type-check.

3 RX: Adding Policy Updates to RXcore

This section presents the remaining features of the full
language RX, which include (1) policy queries by which
programs can examine the current policy during execution,
and (2) policy updates, by which programs can add or delete
statements from the current policy. The type system ensures
none of these operations will leak confidential information,
as proven in the next section. In addition, because policy
updates are a potentially dangerous operation—increasing
the membership of a role effectively declassifies informa-
tion [9]—RX adapts the integrity constraints from previ-
ous work on robust declassification [27, 15]. Intuitively,
the owner of a role ρ must trust the integrity of the deci-
sion to update policy statements that define ρ. Interestingly,
changes to policy become a potential conduit for illegal in-
formation flow. As such, we use metapolicies [10] for pro-
tecting the confidentiality and integrity of roles.

4

atomic labels L ::= ρ | CΠ(ρ) | IΠ(ρ)
compound labels ` ::= (LC , LI) | ` t `
types t ::= . . . | pol
queries q ::= L1 v L2

policy context Q ::= {q1, . . . , qn}
update δ ::= add () | del ()
updates ∆ ::= δs | δs, ∆
expressions E ::= . . . | ∆
statements S ::= . . . | if (q) S1 S2

| update E | transQ S

Figure 3. RX syntax, based on RXcore.

3.1 RX Syntax

The syntax of RX is shown in Figure 3. It differs from
RXcore in several ways. Atomic labels, L, now include ab-
stract operators CΠ(ρ) and IΠ(ρ) to represent metapolicies
that define the confidentiality and integrity of roles. Like
roles themselves, metapolicies are interpreted as sets of
principals. Full labels, `, are now joins of pairs consisting
of a confidentiality component and an integrity component,
which restricts where policy updates may occur.

Policy queries, q, are used in the statement if (q) S1 S2

to branch to S1 or S2 depending on whether the query L1 v
L2 holds according to the current dynamic policy Π. Policy
contexts Q used for type checking the program now consist
of a set of queries {q1, . . . , qn} that represent the knowledge
gained about the run time policy through policy queries.

Expressions E are augmented to include collections ∆
of policy mutation statements δs. The type language is ex-
tended to include the type pol` which stands for the type
of policy mutation statements at security level `, where ` is
defined by a metapolicy. The statement update E is used
to change the current policy by adding or deleting a collec-
tion of policy statements {s1, . . . , sn} where each si results
from the evaluation of E to ∆ = δ1s1, . . . , δnsn.

Finally, the statement transQ S creates a transaction
with policy context Q. Policy updates in S that violate pol-
icy assumptions stated in Q cause all memory effects of the
S to be rolled back. This ensures that modifications to mem-
ory by S are consistent with respect to a single policy.

We first introduce the intuitive idea behind these new
constructs by example. We then present the formal dy-
namic and static semantics. We conclude with a discussion
of metapolicies.

3.2 Motivating Examples

Example 1. A fragment of a program that might be used to
create the sample health care policy in Figure 1:

if(patAcceptsTreatment)

if(Clinic.insuranceCos v Pat.insurers)
update(add(Pat.doctors ←− Clinic.staff))

In the example, the variable patAcceptsTreatment in-
dicates that Pat has agreed to be treated at the Clinic. As a
result, the program will update Pat’s policy to include the
Clinic’s staff in her authorized list of doctors, but only after
ensuring that the Clinic accepts payment from her insur-
ance provider.2

The policy update statement executes only if the runtime
policy Π satisfies the label ordering relation that appears in
the second if-statement. Thus it is safe to assume this label
ordering when type-checking the update statement since it
will always be true when the statement executes. The policy
context Q is used to accumulate the result of label ordering
queries that appear in enclosing scopes and is used to stati-
cally prove label orderings.

This program has a number of potential information
leaks. Suppose that patAcceptsTreatment is private to
only Pat and staff at the Clinic, but that the contents
of Pat .doctors is public. Then an adversary could learn
the secret value of patAcceptsTreatment by observing
Pat .doctors. This leak occurs because policy is essentially
another kind of data, which suggests we must protect it in
the same way as we protect variables. There is a similar
dependency between the contents of Clinic.insuranceCos
and Pat .insurers and the contents of Pat .doctors. The
change to the latter may indirectly reveal information to
an adversary about the former (i.e., that the members of
Pat .insurers are included in Clinic.insuranceCos). To ad-
dress both cases, we define the metapolicy label of role
ρ to be lab(ρ), and use this label to protect policy infor-
mation. Protecting policy information involves both confi-
dentiality and integrity concerns. In particular, the depen-
dency between the variable patAcceptsTreatment and
the update to role Pat .doctors implies that the contents of
patAcceptsTreatment should be trusted by Pat ; other-
wise, a malicious adversary could modify this variable and
affect an unauthorized change to Pat’s policy. Therefore,
RX labels have the form (LC , LI), where LC describes the
confidentiality level and LI describes the integrity level. As
a result, we must define both confidentiality and integrity
of roles as well, with lab(ρ) = (CΠ(ρ), IΠ(ρ)). Here the

2This example is a bit artificial: in practice, one would also need to
check that Pat .insurers is not empty (i.e. she has some insurance); such
a check could easily be added. Also, this check fails if Pat .insurers con-
tains some principal not in Clinic.insuranceCos. Handling the condition
correctly would require intersection roles that we have omitted for simplic-
ity in this paper.

5

metapolicies CΠ(ρ) and IΠ(ρ) may depend on the owner of
the role ρ and delegation information in the policy Π. Sec-
tion 3.5 will discuss possible choices of metapolicy.

Example 2. A program that leaks information
across updates to the policy in Figure 1, motivating
RX’s transactional semantics. Assume Γ as below:

clinicRec : bool(Clinic.staff,Clinic.staff),
patSymptoms : bool(Pat.healthRecords,Pat.healthRecords),
philRec : bool(DrPhil.self,DrPhil.self)

S1: if(Pat.healthRecords v Clinic.staff)
clinicRec := patSymptoms;

S2: if(leaveClinic)

update(del(Pat.doctors ←− Clinic.staff));
S3: update(add(Clinic.staff ←− {DrPhil}));
S4: if(Clinic.staff v DrPhil.self)

philRec := clinicRec

Here, patSymptoms contains data confidential to mem-
bers of the role Pat .healthRecords. Line S1 copies this data
into the Clinic records, which is permitted by the policy in
Figure 1. If the patient decides to leave the clinic, repre-
sented by the variable leaveClinic in line S2, the pol-
icy is updated to remove the Clinic.staff from Pat .doctors.
Subsequently, DrPhil joins the clinic and is therefore added
as part of Clinic.staff. If this policy update succeeds, then
the program can copy data from the clinicRec variable
into philRec, which can be labeled by role DrPhil .self.
Consequently, DrPhil is able to view the patSymptoms
even though this information flow is permitted by neither
the original nor the new policy. This is an example of a
unintended transitive flow.

The unintended flow is caused because the label order-
ing relation (Pat .healthRecords v Clinic.staff) needed to
justify the flow of information in the assignment of S1 was
violated by the update to policy. This problem of uninten-
tional flows motivates the support of a non-standard transac-
tional model [18, 26] to our language RX. The semantics of
a transaction transΦ S is such that if, during the execution
of S, a policy update violates a label ordering relation nec-
essary to show the absence of unintentional flows, then the
memory of the program is reverted to the state it was prior
to the start of the transaction. Execution of the statement
S then resumes using the updated policy. The subscript Q
contains all the necessary label ordering relations.

Rolling back transactions, however, introduces yet an-
other channel of information leaks. To see why, sup-
pose that we enclose the program of Example 2 within a
transaction. Since the policy update statement in S2 vi-
olates the policy invariant that appears in S1, the trans-
action is rolled back, undoing the assignment to location
clinicRec. Any principal P who can view the contents
of clinicRec can therefore observe whether or not the
transaction has been rolled back. If the confidentiality of

leaveClinic is greater than clinicRec, then, by observ-
ing the rollback, the principal P will have gained informa-
tion about leaveClinic. The static semantics of RX guar-
antees that no information leaks of this kind occur.

Our choice of transaction semantics is motivated by our
belief that policy updates must take effect immediately.
This behavior is particularly critical in the case of updates
that revoke privileges. With this in mind, we have defined
the semantics of transaction rollback to be such that the pol-
icy is updated immediately, and only the state of memory
rolled back. Note that policy updates that occur in a trans-
action are treated like I/O operations in traditional transac-
tion systems [18, 8]—only writes to memory are undone
by a rollback, policy updates are left intact. Rolling back
both the state of policy and memory is not feasible since
this would guarantee non-termination through infinite roll-
back. As with traditional transaction systems, we could use
compensations to allow programmers to undo some updates
if necessary. Another consequence of not rolling back pol-
icy updates is that it is possible for badly written programs
to enter livelock—for instance, a transaction that performs
mutually incompatible policy updates can cause the roll-
back mechanism to enter an infinite loop.

In situations where it is not essential for the update to
take effect immediately, it might be desirable to choose a
roll-forward semantics in which policy updates that violated
consistency were delayed until the transaction completed
execution. We explored such a semantics in a previous pa-
per [9]. One of the contributions of this paper is showing
that transactions can be rolled back in a secure manner.

3.3 RX Dynamic Semantics

The dynamic semantics of RX is defined by the execu-
tion relation E , S −→ E ′, S′ where E is the current execu-
tion configuration and S is the current program statement.
The execution takes a small step, resulting in a new config-
uration E ′ and a new statement S′ to be executed next. The
syntax for configurations is:

exec. configuration E ::= (Π,M,Ψ)
dynamic snapshot Ψ ::= · | (M,S)

An execution configuration consists of a policy Π; a mem-
ory store M mapping variables to values; and a possibly
empty dynamic snapshot Ψ of memory M and program
statement S used to implement transactional rollback.3

The rules, shown in Figure 4, define two relations:
E , S −→ E ′, S′ for normal execution, and E , S E ′, S′
for rollback. The rules for standard constructs (assignment,
addition, sequences etc.) are not shown.

3As discussed in Section 3.4, we support only non-nested transactions,
for simplicity. So, no stack of snapshots is needed.

6

E .Ψ = · Ψ′ = (E .M, transQ S)

E , transQ S −→ EΨΨ′, transQ S
(E-TR1)

E .Ψ 6= · E , S −→ E ′, S′

E , transQ S −→ E ′, transQ S′
(E-TR2)

E .Ψ 6= ·
E , transQ skip −→ EΨ., skip

(E-TR3)
E .Ψ 6= · E , S E ′, S′

E , transQ S −→ E ′, S′
(E-TR4)

E , S1 E ′, S
E , S1; S2 E ′, S

(R-SEQ)

Π′ = E .Π ∪ {s | add (s) ∈ ∆} \ {s | del (s) ∈ ∆}
E .Ψ = (M ′, transQ S) ∀q ∈ Q.(Π ` q)⇔ (Π′ ` q)

E , update ∆ −→ E [Π = Π′], skip
(E-UP1)

E , E −→ E , E′

E , update E −→ E , update E′
(E-UP2)

Π′ = E .Π ∪ {s | add (s) ∈ ∆} \ {s | del (s) ∈ ∆}
E .Ψ = (M ′, transQ S) ∃q ∈ Q.(Π ` q) 6⇔ (Π′ ` q)

E , update ∆ E [M = M ′][Π = Π′], transQ S
(R-UP)

E .Π ` q ⇒ j = 1 E .Π 6` q ⇒ j = 2

E , if (q) S1 S2 −→ E , Sj

(E-IFQ)

Figure 4. RX execution (E , S −→ E ′, S′) and rollback (E , S E ′, S′).

lab(L1 v L2) = lab(L1) t lab(L2) lab(CΠ(ρ)) = lab(IΠ(ρ)) = lab(ρ) = (CΠ(ρ), IΠ(ρ))

Q ` CΠ(ρ) v ρ Q ` IΠ(ρ) v ρ Q ` ` v `
Q ` `1 v ` Q ` ` v `2

Q ` `1 v `2

L1 v L2 ∈ Q

Q ` L1 v L2

Q ` LC1 v LC2 Q ` LI1 v LI2

Q ` (LC1 , LI1) v (LC2 , LI2)

Q ` (LC , LI) v ` Q ` `′ v `

Q ` (LC , LI) t `′ v `

Q ` ` v (LC , LI) Q ` ` v `′

Q ` ` v (LC , LI) t `′

` = lab(roledef (s))

Ω ` δs : pol`
(T-POL1)

Ω ` δs : pol`
Ω ` ∆ : pol`′

Ω ` δs, ∆ : pol`t`′
(T-POL2)

pc′=pc t lab(q) q ∈ Φ.Q
Γ; pc′; Q ∪ {q}; Φ ` S1 Γ; pc′; Q; Φ ` S2

Γ; pc; Q; Φ ` if (q) S1 S2

(T-IFQ)

Γ; pc; ∅; (pc, Q′) ` S

Γ; pc; ∅; · ` transQ′ S
(T-TR)

Γ; pc; Q; · ` ∆ : pol` Q ` pc v ` Q ` pc v pc′ Q ` (tq∈Q′ lab(q)) v pc′

Γ; pc; Q; (pc′, Q′) ` update ∆
(T-UP)

Figure 5. RX metapolicy labels (lab(·)), label ordering (Q ` `1 v `2) and typing (Ω ` E : τ, Ω ` S).

The rules (E-TR1), (E-TR2), (E-TR3) and (E-TR4) are
for the execution of transaction statement transQ S. (E-
TR1) takes a new snapshot Ψ′ of the current memory store
M and the current statement transQ S in the execu-
tion context E , only if the current snapshot is empty. (E-
TR2) is a congruence rule for evaluation within a transac-
tion and (E-TR3) discards the snapshot when a transaction
completes. (E-TR4) and (R-SEQ) use the rollback relation
E , S E ′, S′ triggered by failed updates to abort a trans-
action.

(E-UP1) takes the current policy E .Π and computes the
new policy Π′ by adding or deleting policy statements ac-
cording to ∆s, which is the result of evaluating each E that
appears in ∆ according to the rule (E-UP2). We omit the
standard definition of the execution relation for expressions
E , E −→ E , E′. However, the new policy Π′ must be con-
sistent with the query set Q which annotates the enclosing
transaction statement transQ S (stored in the snapshot Ψ).

Formally, the policy consistency condition is:

∀q ∈ Q. (Π ` q)⇔ (Π′ ` q)

This consistency condition says that the satisfiability of ev-
ery query q in the policy context Q is the same for the old
policy and for the new policy. This condition is sufficient
to guarantee that every information flow witnessed during
the execution of the transaction under the old policy is also
consistent with the new policy. If the consistency condi-
tion fails, (R-UP) is triggered instead, rolling back using
(R-SEQ) to discard the second statement of any sequence
statement S1;S2, and completing the abort using (E-TR4).

Finally, (E-IFQ) for the policy query statement chooses
the appropriate branch to take according to the judgment
E .Π ` q; that is, whether or not the query q holds in the
current policy Π. This judgment is defined as follows (note
the contravariance):

Π ` L1 v L2 ⇔ [[L2]]
Π ⊆ [[L1]]

Π

7

Example 3. A program that rolls back when executed under
the policy {A.r ←− B.r,B.r ←− {B}}:

trans{A.rvB.r}
if(A.r v B.r) {

update(del(A.r ←− B.r)); S }

Execution of this program begins with the (E-TR1) rule
which takes a snapshot of the memory and program and
records it in Ψ. Notice that the subscript Q = {A.r v B.r}
on the transaction statement is a set that includes the
lone policy query that occurs in the body of the trans-
action. (E-TR2) now applies and with the program tak-
ing a small step using (E-IFQ). Since the role A.r dele-
gates to B.r, the policy entails the query q and the then-
branch of the statement is taken. We now have a se-
quence of statements with the first being an update state-
ment update(del(A.r ←− B.r)), all enclosed in a
transaction statement from the first line.

In attempting to apply the (E-TR2) rule again, the first
statement in sequence must take a step under the normal
execution relation −→ (according to the standard rule for
evaluating sequences, which is omitted here). In this case
the policy consistency condition is violated by the update
since, under the new policy ({B.r ←− {B}}), the policy
query (A.r v B.r) is not satisfied, unlike under the old
policy. Therefore, the first statement of the sequence can
only take a step under the rollback relation . Then, we use
(E-TR4) with (R-SEQ) preceded by (R-UP) in the premise.
The conclusion of (R-SEQ) serves to discard the statement
S that succeeds the update statement. The result is that the
program and memory is reverted to its original state and the
policy is now {B.r ←− {B}}.

3.4 RX Static Semantics

The static semantics of RX is defined by the typing rela-
tions Ω ` E : τ and Ω ` S in Figure 5, just like the typing
relation for RXcore in Figure 2. However, the typing con-
text Ω now contains a static snapshot Φ for type checking
transactions:

typing context Ω ::= (Γ; pc;Q; Φ)
static snapshot Φ ::= · | (pc, Q)

Hence, we also write the typing judgment as Γ; pc; Q; Φ `
S. The type binding for variables in Γ and the program
counter pc are standard, and the policy context is already
defined Figure 3. The snapshot Φ is used to approximate
the assumptions of a transaction (explained below).

Metapolicy labels The first row of Figure 5 defines the
auxiliary function lab(·) to compute the metapolicy label
of policy queries q. The function lab(·) uses the metapol-
icy CΠ(·) and IΠ(·) to construct a label for a role. The

assertion lab(CΠ(ρ)) = lab(IΠ(ρ)) = lab(ρ) is the meta-
metapolicy. It states that the metapolicies CΠ(ρ) and IΠ(ρ)
only carry information about ρ. A metapolicy label for
queries L1 v L2 is the join of all the metapolicy labels
for roles contained in L1 and L2.

Label ordering Figure 5 (the second and third rows) spec-
ifies the label ordering relation Q ` `1 v `2. In the second
row of Figure 5, the first two rules impose conditions on the
metapolicy. The first rule states that all members of a role
ρ are permitted observe the definition of ρ; the second rule
states that all members of a role ρ trust the definition of ρ.
We discuss these conditions in more detail in Section 3.5.
The remaining three rules on this row are straightforward:
the left and the middle rules say that the relation is reflexive
and transitive, and the rightmost rule makes use of the pol-
icy context Q when the labels L1 and L2 are atomic. In the
third row of Figure 5, the left rule handles the compound la-
bel (LC , LI), and the middle and the right rules handle the
join label ` t `′.

Typing policy mutation statements The rule (T-POL1) as-
signs a policy mutation statement δs the type pol` where `
is the metapolicy associated with the role defined by the s.
For a collection of policy mutation expressions ∆ (T-POL2)
states that the label in the type of ∆ is the join of the labels
assigned to each policy mutator that appears in ∆. For in-
stance, if ∆ = add (A.r ←− X) , del (B.r ←− Y) then
the type of ∆ is pol(CΠ(A.r),IΠ(A.r))t(CΠ(B.r),IΠ(B.r)).

Note that we do not give a subsumption rule for pol`.
This restriction on pol` can be understood by thinking of
a policy statement s as a reference to component of policy.
Since policy updates can mutate policy it is not sound to use
subtyping for policy statements. Further intuition for the in-
variance of this type under subtyping is given in Section 3.5.

Typing policy queries The rule (T-IFQ) type checks policy
query statement if (q) S1 S2. The rule has three impor-
tant aspects. First, notice that we check the true-branch S1

using an augmented policy context Q ∪ {q}. Second, both
branches are checked using an elevated program counter la-
bel pc′, which is defined as the join of the current pc la-
bel and the label of the query q according to the label set
function lab(q). This reflects the information gained by
querying the policy, and is used to prevent leaks about a pol-
icy through assignments to variables. Finally, the premise
q ∈ Φ.Q is used to ensure transaction consistency, which
we will explain when we consider the typing rule for trans-
actions below.

Example 4. An instantiation of the typing rule (T-IFQ)
for policy queries for Example 1, assuming the policy
query appears within a transQ statement, for an appro-
priate Q. (Here we elide the else branch and abbreviate

8

Clinic.insuranceCos and Pat .insurers to save space.)

pc′=pc t lab(Clinic.ins v Pat .ins)
Clinic.ins v Pat .ins ∈ Φ.Q

Γ; pc′; Q ∪ {Clinic.ins v Pat .ins}; Φ ` update ...

Γ; pc; Q; Φ ` if (Clinic.ins v Pat .ins) update ...

where lab(Clinic.ins v Pat .ins) is

(CΠ(Clinic.ins), IΠ(Clinic.ins))
t (CΠ(Pat .ins), IΠ(Pat .ins))

Typing transactions The snapshot Φ is used to ensure that
every policy query q that appears in the body S of a transac-
tion transQ′ S also appears in Q′. This is ensured by the
(T-TR) rule, whose body S is checked in a Φ snapshot that
mentions Q′, and the (T-IFQ) rule, whose premise q ∈ Φ.Q
ensures that every policy query is accounted for. The (T-
TR) rule also includes the current program counter label pc
in Φ. Doing this guarantees that the memory effects that
occur when a transaction is rolled back do not leak infor-
mation. We explain how this works when considering the
(T-UP) rule below.

Supporting nested transactions (assuming inner transac-
tions can roll back without causing outer ones to rollback
too) would require a flow-sensitive static analysis. Such
an approach would also increase the precision of the static
semantics and permit more updates. To simplify the dy-
namic semantics and typing rules, (T-TR) must occur in an
empty policy context, thus preventing nested transactions.
Ultimately, we want to extend RX with procedures, which
will increase the need for nested transactions; i.e., to allow
transaction-containing procedures to compose.

Also notice that these rules effectively prevent policy
queries from occurring outside a transaction. This is to pre-
vent aberrant behavior in which an update occurring within
a transaction has a conflict with non-transactional query
outside the transaction; in this case, rolling back would not
solve the problem, and the program would resume execu-
tion under the new policy while still not satisfying the non-
transactional query.

Typing policy updates The (T-UP) rule defines the con-
ditions under which policy may be safely modified. Re-
call that the metapolicy label of a role ρ is (CΠ(ρ), IΠ(ρ)),
where the metapolicy CΠ(ρ) is the set of principals who
are permitted to view the members of ρ, and the metapol-
icy IΠ(ρ) is the set of principals that trust ρ’s definition.
As motivated by the discussion of Example 1, we must be
careful to only allow a program to update the definition of
a role ρ when doing so is trusted by those in IΠ(ρ); this is
a condition similar to robust declassification [27]. More-
over, according to the metapolicy, the change in a role def-
inition ρ reveals information about the context to principals
in CΠ(ρ). The first two premises of (T-UP) (in a manner
analogous to the rule for assignments in Figure 2) ensures

that members of CΠ(ρ) are permitted to gain information
about the context. In particular, the pc must be no more
confidential and no less trustworthy than the confidentiality
and integrity levels of the role, thus ensuring that the role
is not improperly updated, and that its update does not leak
information. Note that to ensure that the owner of a role
is permitted to modify its definition, any metapolicy IΠ(ρ)
must include the owner of the role.

Example 5. An instantiation of the typing rule (T-UP) for
policy updates in Figure 5. We abbreviate role names to
save space. Suppose we enclose Example 1 as statement
S in a transaction transQ′ S. Hence we wish to prove
Γ; pc; Q; · ` transQ′ S with

Γ = patAcceptsTreatment : bool(CΠ(Pat.drs),IΠ(Pat.drs))

pc = (CΠ(Pat .drs), IΠ(Pat .drs))

The variable patAcceptsTreatment determines
whether Pat’s role Pat .drs should be updated. The label
on its type, (CΠ(Pat .drs), IΠ(Pat .drs)), indicates that
information flows from this variable to the definition of
the role Pat .drs. The pc at the start of the transaction will
be added to the snapshot Φ by (T-TR). The instance of
(T-UP) that checks the update statement appears within
a derivation that includes (T-IFQ). (T-IFQ) checks the
then-branch of the policy query statement by augmenting
the policy context Q to include {Clinic.ins v Pat .ins},
while the program counter is strengthened to pc′ to reflect
the security level of the query. The instantiation of the
(T-UP) rule in the derivation is as follows:

Q ∪ {Clinic.ins v Pat .ins} ` pc′ v lab(Pat .drs)
Q ∪ {Clinic.ins v Pat .ins} ` pc′ v pc

Q ∪ {Clinic.ins v Pat .ins} ` lab(Q′) v pc

Γ; pc′; Q ∪ {Clinic.ins v Pat .ins}; (pc, Q′) `
update add(Pat .drs←− Clinic.staff)

where

pc′ = pc t (CΠ(Clinic.ins), IΠ(Clinic.ins))
t (CΠ(Pat .ins), IΠ(Pat .ins))

lab(Pat .drs) = (CΠ(Pat .drs), IΠ(Pat .drs))

If Q were ∅, it would not be sufficient to prove the first
premise according to the label ordering rules in Figure 5.
This is because {Clinic.ins v Pat .ins} alone has nothing
to say about the relationship between the metapolicies of
the various roles. It would be sufficient to choose

Q = { CΠ(Clinic.ins) v CΠ(Pat .drs),
CΠ(Pat .ins) v CΠ(Pat .drs),
IΠ(Clinic.ins) v IΠ(Pat .drs),
IΠ(Pat .ins) v IΠ(Pat .drs) }

Such a context Q could be established by preceding the
code S in Example 1 with policy queries testing these as-
sertions within the transaction. Rather than expect the pro-
grammer to write these, they could be straightforwardly

9

inferred. To type-check these queries (and the one al-
ready in S) would require choosing the transaction’s Q′ ⊇
Q ∪ {Clinic.ins v Pat .ins}.

The decision of whether or not an update causes a roll-
back depends on the policy consistency condition (∀q ∈
Q. Π ` q = Π′ ` q) appearing in the operational rules
(E-UP1) and (R-UP) in Figure 4. We want to avoid leak-
ing information about the queries through low-security data
and low-security policy. The first case is handled by the
third premise of the (T-UP) rule. It ensures that all memory
effects in a transaction are bounded below by the pc label
of the current context. As explained earlier (Section 3.1)
for Example 2, this guarantees that the change to memory
caused by the rollback of a transaction is observable only by
principals who are also permitted to view the effects of the
context in which the update occurs. In our example typing
above, Q clearly satisfies this condition because it asserts
that each component of the pc label is higher than each of
the components in pc′ that do not already include pc.

The second case of a leak via policy is handled by the
last premise (Q ` lab(Q′) v pc′) of (T-UP), which re-
quires that all the queries mentioned in Q′ are at a lower
security level than the program counter label at the start
of the transaction. This ensures that the effects to mem-
ory that occur as a result of rollback are at a higher se-
curity level than all the policy queries. Therefore, the
principals that can observe the effects to memory as a re-
sult of rollback are also sufficiently privileged to view the
definitions of roles mentioned in Q′. So, policy infor-
mation is not leaked into memory via rollback. In our
example typing, this third premise is clearly satisfied be-
cause lab(Q′) = (CΠ(DrBob.ins), IΠ(DrBob.ins)) t
(CΠ(Pat .ins), IΠ(Pat .ins)).

3.5 Requirements of a Metapolicy

RX uses metapolicies CΠ(ρ) and IΠ(ρ) to protect the
confidentiality and integrity, respectively, of a role ρ. Be-
cause metapolicies are labels, they must be interpreted as
sets of principals; i.e. [[CΠ(ρ)]] = {P1, . . . , Pn} for some
principals Pi, and similarly for IΠ(ρ). Here we discuss pos-
sible interpretations of CΠ(ρ) and IΠ(ρ). We define suffi-
cient conditions for metapolicy interpretations that enables
proving noninterference.

A simple interpretation for role confidentiality is
[[CΠ(ρ)]] = ⊥. Here, ⊥ denotes the set of all principals,
so that under this metapolicy every principal can know the
contents of all roles. While simple, this metapolicy requires
policy update decisions to be independent of secret data, as
shown in Example 1, which may be too limiting.

An attempt to permit updates to occur in contexts de-
pendent on secret data would have to define [[CΠ(ρ)]] to be
more restrictive than ⊥. An anonymity policy might, for

instance, allow a principal to learn of its own membership
but not that of others [7]. That is, not all members of ρ can
compute the interpretation [[ρ]]Π. However, such a metapol-
icy is overly restrictive in that many simple programs will
fail to type-check, as illustrated by the following example.

Example 6. Consider checking the following program in a
context Γ = x : bool(B.r,B.r), y : bool(A.r,A.r):

if(A.r v B .r) x := y

Since the query carries information about the roles A.r
and B.r, (T-IFQ) checks the then-branch in a context with
pc = (CΠ(A.r), IΠ(A.r))t (CΠ(B.r), IΠ(B.r)) and Q =
{A.r v B.r}. To justify the flow of information from y to x
the rule for assignments requires A.r v B.r, the evidence
for which is provided by Q. The mutation of location x
that results from this assignment is observable by all mem-
bers of B .r. Therefore the rule for assignments must also
show pc v (B.r,B.r), so that information about the query
is not leaked to unauthorized principals. If the metapol-
icy is such that [[CΠ(B.r)]] does not include [[B.r]]Π, then
pc v (B.r,B.r) cannot be satisfied and the program fails
to type-check.

Intuitively, by observing the write to location x, all mem-
bers of B .r gain information about [[B .r]]Π. To be able
to write programs in which information flows across se-
curity levels (from low-security to high-security), we must
ensure that the policy conditions that are necessary to jus-
tify the flow of information into a particular memory loca-
tion are not more confidential than the contents of that loca-
tion. This requirement is expressed formally in Figure 5 as
Q ` CΠ(ρ) v ρ. A similar argument explains the need for
Q ` IΠ(ρ) v ρ.

Though intuitive, allowing CΠ(ρ) to include only the
members (and the owner of ρ) is not sufficient. A pol-
icy that includes delegations permits information to flow
between roles that are related by delegation. These flows
could possibly reveal secret information. To see why, con-
sider the example from Figure 1. In the example, the def-
inition of the role Pat .doctors is given by a membership
statement including DrSue and a delegation to Clinic.staff;
the interpretation of the role is given by [[Pat .doctors]]Π =
{DrAlice,DrBob,DrSue}. Under a choice of metapolicy
where [[CΠ(ρ)]] includes only the members of ρ and the
role’s owner, we permit DrSue to view the interpretation of
Pat .doctors although she is not permitted to view the inter-
pretation of Clinic.staff. However, any change in the defini-
tion of Clinic.staff (say, if DrAlice is removed) is reflected
in the interpretation of Pat .doctors. Hence, even though
DrSue is not a member of Clinic.staff, she can observe the
effect of changes to that role. Realizing that the definition of
Pat .doctors depends on the definition of Clinic.staff makes

10

it clear that it is not reasonable to treat the policy state-
ments defining Clinic.staff as being more confidential than
the those defining Pat .doctors. We formally state this con-
straint on the confidentiality metapolicy below (A similar
constraint must hold for the integrity metapolicy IΠ(ρ).).

∀Π.∀ρ, ρ′.(∃s.roledef (s) = ρ′ ∧ [[ρ]]Π 6= [[ρ]]Π∪{s})⇒
[[CΠ(ρ)]] ⊆ [[CΠ(ρ′)]]

Informally, this constraint reads: “if the interpretation of
the role ρ depends on the definition of ρ′, then the metapol-
icy for ρ must be at least as restrictive as the metapolicy for
ρ′.” Intuitively, ρ depends on ρ′ if ρ delegates transitively
to ρ′. Note that an interpretation that satisfies this condition
must also be robust under policy updates. A simple way to
ensure this is to allow the semantics of role confidentiality
to change with the update, which is the approach we adopt
here. While simple, this permits members of one role to
view another role by delegating to it. To prevent this we
could require that for an update to add a delegation state-
ment A.r ←− B.r the integrity of the pc must be trusted
by both IΠ(A.r) and IΠ(B.r). We leave exploration of this
issue to future work.

We do not extend the subtyping relation v given in Fig-
ure 2 to pol` types. The following example illustrates what
might go wrong if we allowed covariant subtyping for pol`
as we do for bool`.

Example 7. Assume the existence of a covariant subtyping
rule for pol` and consider the program below checked in a
context with Γ = x : pol(CΠ(B.r),IΠ(B.r)).

trans{CΠ(A.r)vCΠ(B.r),IΠ(A.r)vIΠ(B.r)}
if(CΠ(A.r) v CΠ(B .r))

if(IΠ(A.r) v IΠ(B .r))
x := add (A.r ←− C) ;

trans{}
update(del (A.r ←− B.r));

update(x)

The type of the policy statement in the assignment is
pol(CΠ(A.r),IΠ(A.r)). The policy queries provide the neces-
sary evidence for the covariant subtyping judgment for pol`
to permit the assignment to x. A separate transaction deletes
the delegation A.r ←− B.r from the policy. Since the in-
terpretation of the metapolicies CΠ(·) and IΠ(·) depend in
general on the the state of the policy Π and in particular the
delegations between roles in Π, the deletion of a delegation
in the second transaction can violate the assumptions of the
first transaction. This has the effect of destroying the ev-
idence for subtyping necessary to check the assignment to
x. The final update statement updates the role A.r. Even
though at runtime the effect of this update is observable by
all members of CΠ(A.r), the type of x indicates that the
update is observable only by members of B .r.

Treating pol` as invariant is one way of ensuring up-
dates that use first-class policy statements do not leak infor-
mation even in the the presence of non-monotonic updates
to policy. An alternative might be to permit subtyping for
pol` while imposing constraints on how policy is allowed to
evolve. We leave examining this alternative to future work.

A further condition on metapolicies CΠ(ρ) and IΠ(ρ) is
induced by our definition in Figure 5 of meta-metapolicy
through lab(CΠ(ρ)) = lab(IΠ(ρ)) = lab(ρ). The metapol-
icy CΠ(·) is a function that maps a role to a set of principals.
The interpretation of this function might depend on its in-
put ρ, and possibly on the definition of some other roles
{ρ1, . . . , ρn} that appear in the policy Π. In such a case,
since CΠ(ρ) carries information about ρ and ρ1, . . . , ρn,
the label of CΠ(ρ) should be (tiCΠ(ρi)) t CΠ(ρ). Thus,
for our definition of lab(CΠ(ρ)) = lab(ρ) to be sound, the
metapolicy must also satisfy the following condition.

∀Π.∀ρ, ρ′.(∃s.roledef (s) = ρ′ ∧ [[CΠ(ρ)]] 6= [[CΠ∪{s}(ρ)]])⇒
[[CΠ(ρ)]] ⊆ [[CΠ(ρ′)]]

An identical condition must also hold true for IΠ(ρ).
In this section we have identified properties that must

be fulfilled by a metapolicy for the noninterference theo-
rem to hold. We have, however, left a specific choice of
metapolicy undetermined. In Appendix C, we show that it is
possible to construct a non-trivial metapolicy (a metapolicy
that is not the constant function ⊥) that satisfies the sound-
ness conditions identified here. We devise this metapolicy
in the context of the full RT0 language — that is, we in-
clude the linking and intersection delegation constructs that
were elided from the main presentation. We call this partic-
ular metapolicy Cdel(·) because its definition depends on
the delegation structure of a policy. Preliminary investi-
gation suggests that delegation in the metapolicy language,
while adding flexibility, forces well-formed metapolicies to
be relatively coarse grained. We leave to future work a full
investigation of this issue.

4 Noninterference

This section states a noninterference property for RX.
The proof is developed in detail in Appendices A and B.
Informally speaking, we show that if an RX program S
is well-formed according to the static semantics, then the
effects of executing that program visible to a low-security
observer are independent of the high-security parts of the
configuration elements M and Π (memory and policy) with
which the program executes. Updates to policy intention-
ally alter the security behavior of the program, possibly re-
vealing previously secret information [9]. Therefore, rather
than providing an end-to-end security guarantee with re-
spect to a single policy, we prove that information flows

11

observable by a principal at a given point in time during the
program’s execution are consistent with the policy at that
time. Since our formulation of policy and data integrity is
conceptually identical to our formulation of confidentiality,
this property of noninterference also yields a preservation
property for the integrity of policy and data. We do not con-
sider timing or termination channels.

The statement of noninterference relies on the notion of
a well-formed configuration. We write Ω |= E to mean that
the execution context is consistent with the static assump-
tions made while type-checking the program.

Definition 8. A configuration E = (Π,M,Ψ) is well-
formed with respect to a context Ω, denoted Ω |= E , if and
only if all of the following are true:

dom(M) ⊆ dom(Ω.Γ) (1)
∀q ∈ Ω.Q . Π ` q (2)
if Ψ = (M ′, S′) then

Ω ` S′ (3.1)
dom(M ′) = dom(M) (3.2)
∀x.M(x) 6= M ′(x)⇒ Π ` Ω.pc v Ω.Γ(x) (3.3)

The clauses in the definition above are mostly straight-
forward. Clause (2) connects the static approximation Q
used during type checking to the runtime policy Π. The
following lemma ensures that this connection is sound.

Lemma 9 (Static Label Ordering Soundness). For all con-
texts Ω and programs S, if the derivation of Ω ` S contains
a sub-derivation Ω′ ` S′, then the following holds true for
all policies Π:

(∀q ∈ Ω′.Q.Π ` q)⇒ (∀`1, `2.Ω′.Q ` `1 v `2 ⇒ Π ` `1 v `2)

Clause (3.3) states that all effects on memory exhibited
during a transaction are bounded above the pc lower-bound
used to statically check the transaction.

We prove noninterference by relating execution traces
of well-formed configurations, restricted to an attacker’s
level of observation. An execution of a configuration
(E0, S0) (where E0 = (Π,M, Ψ)) is written 〈E0, S0〉
and denotes a (possibly infinite) sequence of configura-
tions E0, . . . , En, . . . and programs S0, . . . , Sn, . . . such that
(Ei, Si) −→ (Ei+1, Si+1). The sequence of config-
urations E0, . . . , En, . . . is called the trace and is written
Tr(〈E0, S0〉). We write α to denote a (possibly empty) trace
and E , α to denote the concatenation of a single configura-
tion and a trace.

We define the attacker’s observation level as a set of roles
R. We assume the existence of a type environment Γ. The
restriction of a trace α to observation level R is written
α|R, and is defined in Figure 6. As long as the policy re-
mains unchanged, a restricted trace consists of a restriction
to each configuration element of the trace (the “otherwise”
clause of the Trace definition of the figure). In doing so,

we restrict the view of memory according to the policy Π
and the Ω.Γ used to type check the initial program. Here
lab(Γ(x)) refers to the security label associated with the
contents of the location x. We restrict the policy accord-
ing to the metapolicy CΠ(ρ), which must satisfy the condi-
tion described in Section 3.5. However, if a policy update
results in a declassification with respect to the observer’s
roles R then the trace is truncated (the first clause of the
Trace definition of the figure). The relation dclasR,Π1,Π2

is non-empty when the policy Π2 results from declassifica-
tions of memory or policy with respect to the policy Π1.
Its definition depends on a classification (dependent on an
observation level R) of roles in a policy Π into three sets
ρLR,Π, ρMR,Π, ρHR,Π, which stand intuitively for low,
medium and high-security roles respectively. Informally,
dclas(R,Π1,Π2) contains roles that are low security in Π2

that were medium or high-security in Π1 and those that are
medium-security in Π2 which were high-security in Π1. A
detailed description of the definition of dclas(R,Π1,Π2) is
given in Sections A.2 and A.3 of the Appendix.

Note that declassifications to observers at an unrelated
observation level do not cause the trace to be truncated.
Similarly, a policy update that causes a reduction in the priv-
ilege of an observer at level R (a revocation) has no impact
on trace truncation. This truncation is justified since declas-
sifications due to policy update are intentional releases of
information. These ideas are captured by the two clauses in
the definition of (E1, E2, α)|R.

We make no attempt to restrict the observability of a
program configuration while the program executes within
a transaction. This makes it reasonable to exclude the snap-
shot Ψ when defining the observability of a configuration.
However, for our statement of non-interference, it is use-
ful to identify configurations while taking into account the
transaction context, so we define (Π,M, Ψ) |ψR = (Π |R
,M|R,Π,Ψ|R,Π).

The definition of trace observability implies that compu-
tation steps are only observable if they have an effect on an
observable part of memory or policy. This entails that we
identify traces only up to stuttering. 4 We write α

.= β if α
and β are equivalent up to stuttering.

Theorem 10 (Noninterference). Suppose that for an
RX program S and a pair of configurations E0 and E1, there
exists a context Ω such that Ω ` S, Ω |= E0 and Ω |= E1.
Then, for any set of roles R, whenever both 〈E0, S〉 and
〈E1, S〉 terminate, we have

E0 |ψR = E1 |ψR ⇒ Tr(〈E0, S〉) |R
.= Tr(〈E1, S〉) |R

4Sequence α1 is equivalent up to stuttering to α2 if α′1 = α′2, where
α′i is obtained from αi by removing all consecutively repeated elements
from αi. For example, the sequence aabbbc is equivalent up to stuttering
to abbccc since the result of removing consecutively repeated elements
from each sequence is abc.

12

Role :
Obs(R, Π) = {ρ | ∃ρ′ ∈ R. Π ` CΠ(ρ) v ρ′}

Policy :
Π|R = Π‖Obs(R,Π)

∅‖R = ∅ ({s} ∪Π′)‖R =

{s} ∪ (Π′‖R) roledef (s) ∈ R
Π′‖R otherwise

Memory :
M|R,Π = {(x, M(x)) | ∃ρ ∈ R. Π ` lab(Γ(x)) v ρ}

Transaction snapshot :
·|R,Π = . (M, S)|R,Π = (M|R,Π, S)

Configuration :
(Π, M, Ψ)|R = (Π|R, M|R,Π, ·)

Trace :

(E1, E2, α)|R =

E1|R if dclas(R, E1.Π, E2.Π) 6= ∅
E1|R, (E2, α)|R otherwise

where

dclas(R, Π1, Π2) ≡
(ρL(R, Π2) ∩ ρM (R, Π1)) ∪
(ρL(R, Π2) ∩ ρH(R, Π1)) ∪
(ρM (R, Π2) ∩ ρH(R, Π1))

ρL(R, Π) ≡ {ρ | ∃ρR ∈ R.Π ` CΠ(ρ) v ρR ∧ Π ` ρ v ρR}

ρM (R, Π) ≡ {ρ | ∃ρR ∈ R.Π ` CΠ(ρ) v ρR ∧
∀ρR ∈ R.Π ` ρ 6v ρR

}

ρH(R, Π) ≡ {ρ | ∀ρR ∈ R.Π ` CΠ(ρ) 6v ρR ∧ Π ` ρ 6v ρR}

Figure 6. Trace observability.

The proof presented in Appendices A and B uses Pottier
and Simonet’s proof technique [16] which extends the lan-
guage to represent pairs of executions that differ only in the
high-security parts of their configurations. Because we may
truncate traces for which there is a declassification visible at
level R, to obtain an end-to-end security guarantee we can
apply noninterference piecewise to each non-declassifying
sub-trace. Thus we can claim that (1) the execution is non-
interfering until the policy is updated; (2) the act of updating
the policy itself does not leak information; and (3) after the
policy has been updated all subsequent flows are consistent
with the new policy.

5 The Transaction Model

The transaction model introduces some subtleties that
need to be considered when writing RX programs. We treat
updates to policy much as I/O effects are treated in other
languages that use software transactional memory [18, 8].
That is, updates to policy are not reverted when an inconsis-
tency is detected; a rollback only restores the memory and
control of the program. After the rollback is complete, exe-
cution resumes under the new policy. To illustrate the impli-

cations of these semantics, consider the program below that
is an extension of the program ing Example 1, evaluating
under the RT0 policy in Figure 1

transQ

if(patAcceptsTreatment)

if(Clinic.insuranceCos v Pat.insurers)
x := 1 ;

update(add Pat.doctors ←− Clinic.staff);
update(del DrBob.insurance ←− {BCBS})

The second update statement in this program violates the
label ordering relation established by the policy query. The
rollback that results causes the assignment to x to be re-
verted, but the effect of both policy update statements re-
main. The transaction resumes execution under a policy
that includes (Pat .drs←−DrBob.staff) despite DrBob not
accepting payment from Pat’s insurance company. This
programming model requires therefore that a transaction be
written so as to be re-entrant with respect to the state of pol-
icy. In this case, the programmer can install a compensation
[25] to ensure that upon resumption of the transaction, the
policy is in a consistent state according to the application
semantics.

Since execution is deterministic, an alternative semantics
in which effects to memory and policy are reverted when a
transaction is rolled back is not tenable. This will cause
the transaction to roll back repeatedly forever. Under the
semantics chosen in this paper, a program that contained a
series of mutually incompatible update statements can still
fail to terminate because a transaction is rolled back repeat-
edly. This is illustrated by the following example, which
does not terminate when executing under an initial policy in
which the definitions of A.r and B .r are empty.

transQ

update add A.r ←− B.r;

if(A.r v B .r)
update(del A.r ←− B.r);

These issues indicate that using transactions to manage
policy updates requires particular care on behalf of the pro-
grammer. One could argue that since we have assumed that
the contents of policy update is part of the program text,
it is possible to devise a static analysis that guarantees that
an update does not result in an inconsistent policy. The in-
lined policy update statements are however an artifact of
our desire to keep the presentation simple. The analysis we
have presented here only places restrictions on the identity
of the role being updated; the definition of the role is free
to change arbitrarily. This allows for a straightforward ex-
tension to our full-language which supports first-class pol-
icy update statements and runtime principals. In that lan-
guage, a reasonable static analysis for policy consistency is
not possible and we have to resort to runtime policy consis-
tency checks.

13

6 Related Work

There is a large body of work on policy specification lan-
guages, including owned policies [4] and role-based lan-
guages like Cassandra [2], RBAC [17], SPKI [6]. RX poli-
cies are based on those from RT framework by Li, Mitchell
and Winsborough [12], which is similar to SPKI/SDSI [11].
The RX transaction semantics is inspired by software trans-
actional memory [20].

There has been much prior work on language-based en-
forcement of information-flow policies [19]. The majority
of that research has assumed that the security lattice and
other policy components are known at compile-time and re-
main fixed for the duration of the program execution.

In some information flow languages the policy remains
fixed but may be discovered at run time by using dynamic
queries. Banerjee and Naumann [1] permit information-
flow policies to be mixed with stack-inspection style dy-
namic access control checks. The Jif programming lan-
guage [14] supports dynamic queries of the security lattice
and includes features for using both dynamic principals and
dynamic labels [22, 28, 23]. Jif 2.0 also allows delegations
between principals to change at run time, but does not pre-
vent information leaks through policy updates.

The predecessor [9] of this paper showed that unre-
stricted updates to the security lattice could violate sound-
ness in languages supporting dynamic policy queries, and
proposed delaying updates until soundness could be en-
sured, as determined by a run-time examination of the pro-
gram. RX builds on this work by reasoning about fine-
grained policy updates within a program (in our prior work
they were out-of-band), by using roles and metapolicies to
form an administrative model (the term metapolicy is due
to Hosmer [10]) and by introducing transactions to ensure
policy consistency.

There has been recent interest in studying temporal poli-
cies which are permitted to change in predefined ways dur-
ing execution. Recent work on flow locks by Broberg
and Sands [3] can encode many recently-proposed tem-
poral policies, including declassification policies [5], and
lexically-scoped flow policies [13]. RX is designed to sup-
port unrestricted changes to policy during execution. Since
RX supports first-class policy mutation statements the con-
tent of an update statement is not fully known statically. The
intent is to support even more general models of policy up-
date statements by following techniques of dynamic labels
and run-time principals.

When policy updates cause declassifications our non-
interference guarantee is similar to the noninterference
until conditions property provided by Chong and My-
ers [5]. Both our definitions of noninterference consider
only declassification-free subtraces of the execution. Our
noninterference guarantee however permits certain classes

of declassifications to occur without necessitating a trun-
cation of the trace. Our approach to obtain an end-to-end
security guarantee by piecing together non-declassifying
subtraces yields a property similar to the nondisclosure
property proposed by Almeida Matos and Boudol [13].
Their approach of using a labeled transition semantics has
the benefit of making explicit the concatenation of non-
declassifying subtraces. However, their attacker model does
not consider the state of policy as a channel of information.

7 Conclusions

This paper has presented RX, a security-typed language
that supports dynamic updates to role-based information-
flow policies. The main contributions of this work are:
(1) The novel use of role-based policies to provide a nat-
ural administrative model for managing policies in long-
running programs. (2) A language design that allows pro-
grammatic addition and deletion of the policy statements
that define roles along with a transaction mechanism that
ensures that policies are applied consistently. (3) The novel
use of metapolicies for preventing illegal flows of informa-
tion through changes to policy. (4) A static type system and
accompanying proof that the type system enforces a form
of noninterference.

It is for large distributed systems characterized by mu-
tual distrust that the need for a principled approach to secu-
rity is most pressing. To become a relevant technology for
this kind of setting, security-typed languages must be able
to cope with highly dynamic environments in which policy
evolution is the norm rather than the exception. Although
we have not studied the issue here, we expect that the trans-
actional approach will scale better to systems with concur-
rent threads, each of which might try to update the global
information-flow policy. The transactional model is also
likely to be useful when policy updates are asynchronous,
or in a distributed environment. The techniques presented
in this paper provide some of the groundwork for achieving
our long-term objective of designing a language that can
provide strong guarantees of security for complex, realistic
applications.

Acknowledgments We thank Jeff Foster, Boniface Hicks,
Polyvios Pratikakis, Saurabh Srivastava, Will Winsbor-
ough, and the anonymous reviewers for their comments.
Funding for this research was provided in part by NSF
grants CCF-0346989, CCF-0524036, CCF-0524305, CNS-
0346939 and CCR-0311204.

References

[1] A. Banerjee and D. A. Naumann. Using access control for
secure information flow in a Java-like language. In CSFW,
June 2003.

14

[2] M. Y. Becker. Cassandra: flexible trust management and
its application to electronic health records. Technical Re-
port UCAM-CL-TR-648, University of Cambridge, Com-
puter Laboratory, 2005.

[3] N. Broberg and D. Sands. Flow Locks: Towards a Core
Calculus for Dynamic Flow Policies. In ESOP, 2006.

[4] H. Chen and S. Chong. Owned Policies for Information Se-
curity. In CSFW, 2004.

[5] S. Chong and A. C. Myers. Security policies for downgrad-
ing. In CCS, 2004.

[6] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,
and T. Ylonen. SPKI certificate theory. IETF RFC 2693,
1999.

[7] J. Y. Halpern and K. R. O’Neill. Anonymity and informa-
tion hiding in multiagent systems. J. Computer Security,
13(3):483–514, 2005.

[8] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Com-
posable memory transactions. In PPoPP, 2005.

[9] M. Hicks, S. Tse, B. Hicks, and S. Zdancewic. Dynamic
Updating of Information-Flow Policies. In FCS, 2005.

[10] H. H. Hosmer. Metapolicies 1. SIGSAC Review, 10(2-3):18–
43, 1992.

[11] N. Li and J. C. Mitchell. Understanding SPKI/SDSI using
first-order logic. In CSFW, 2003.

[12] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a
Role-Based Trust-Management Framework. In IEEE Sym-
posium on Security and Privacy, 2002.

[13] A. Matos and G. Boudol. On declassification and the non-
disclosure policy. In CSFW, 2005.

[14] A. C. Myers, N. Nystrom, L. Zheng, and S. Zdancewic.
Jif: Java + information flow. Software release. Located at
http://www.cs.cornell.edu/jif, July 2001.

[15] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing
Robust Declassification. In CSFW, 2004.

[16] F. Pottier and V. Simonet. Information flow inference for
ML. TOPLAS, 25(1), Jan. 2003.

[17] Role based access control. http://csrc.nist.gov/

rbac/, 2006.
[18] M. F. Ringenburg and D. Grossman. AtomCaml: First-Class

Atomicity via Rollback. In ICFP, 2005.
[19] A. Sabelfeld and A. C. Myers. Language-based information-

flow security. IEEE Journal on Selected Areas in Communi-
cations, 21(1):5–19, Jan. 2003.

[20] N. Shavit and D. Touitou. Software transactional memory.
In PODC, 1995.

[21] V. Simonet. FlowCaml in a nutshell. In G. Hutton, editor,
APPSEM-II, pages 152–165, Mar. 2003.

[22] S. Tse and S. Zdancewic. Run-time Principals in
Information-flow Type Systems. In IEEE Symposium on Se-
curity and Privacy, 2004.

[23] S. Tse and S. Zdancewic. Designing a security-typed lan-
guage with certificate-based declassification. In ESOP, Lec-
ture Notes in Computer Science, 2005.

[24] D. Volpano, G. Smith, and C. Irvine. A sound type sys-
tem for secure flow analysis. Journal of Computer Security,
4(3):167–187, 1996.

[25] W. Weimer and G. C. Necula. Finding and preventing run-
time error handling mistakes. In OOPSLA ’04, pages 419–
431, New York, NY, USA, 2004. ACM Press.

[26] A. Welc, S. Jagannathan, and A. L. Hosking. Transactional
monitors for concurrent objects. In ECOOP, 2004.

[27] S. Zdancewic and A. C. Myers. Robust declassification. In
Proc. of 14th IEEE Computer Security Foundations Work-
shop, pages 15–23, Cape Breton, Canada, June 2001.

[28] L. Zheng and A. C. Myers. Dynamic Security Labels and
Noninterference. In Formal Aspects in Security and Trust,
2004.

A Representing Multiple Executions in RX2

A.1 RX2 Syntax

To prove noninterference for RX we use Pottier and Si-
monet’s proof technique [16], whereby a pair of executions
of an RX program is represented within the syntax of the
language itself. We call this language RX2 and its syntax is
defined as an extension of the syntax of RX. We make two
superficial changes to the syntax of RX to make simplify
the presentation of the the proof. First, transaction state-
ments are annotated with a set of invariants Q, as well as
a label `, where ` represents the pc label used to check the
transaction. The second modification is to exclude policy
statements ∆ from syntactic class of expressions. In RX2

policy statements ∆ can only appear in the context of a pol-
icy update statement update ∆.5

RX statements S ::= . . . | transΦ S
expressions E ::= v | x | E1 ⊕ E2 | 〈E1 ‖ E2〉
statements S ::= skip | x :=E | S;S

| while (E) S | if (E) S1 S2

| if (q) S1 S2 | transΦ S
| update ∆ | 〈S1 ‖ S2〉

We adopt the convention that syntactic elements that be-
long to RX2 are denoted in sans serif font – e.g E,S, v etc.
while those in RX are denoted by their serif counterparts
E,S, v etc.

The significant extension here is that an expression E can
be constituted from a pair of expressions E1 and E2 using
the form 〈E1 ‖ E2〉 – the expression on the left-side of
the bracket, E1, represents an expression in the first exe-
cution, and the expression on the right, E2, represents an
expression in the second execution. Similarly, statements S
in RX2 can be pairs of RX statements in bracketed form; i.e.
〈S1 ‖ S2〉.

5The inclusion of ∆ in the class of expressions poses no fundamen-
tal problems. Informally, the key to including ∆ as an expression hinges
on not including a subsumption rule for pol` types. As discussed in Sec-
tion 3.5, this ensures that an expression of type polCΠ(A.r),IΠ(A.r) is a
policy update statement that modifies the definition of precisely A.r. Thus
the type pol` adequately indicates which roles are being updated. The
proof of noninterference detailed here appeals only to the identity of the
role being updated, and not the actual contents of the update.

15

An important point to note here is that bracketed state-
ments and expressions cannot be nested within one another.
The intention is for bracket terms to represent only pairs
of executions — a bracket within a bracket does not make
sense.

Finally, note that the syntax of RX2 does not permit
bracketed statements from appearing in all positions. For
instance, the while-statement does not contain brackets at
all. The reason for this is that our proof of noninterference
considers pairs of executions of a single RX program. These
executions make take place in contexts that can differ in
their high-security components. The operational semantics
of RX2 (in Section A.4) causes bracketed expressions and
statements to be introduced as the program is transformed.
It will become clear that the operational semantics does not
arbitrarily introduce brackets. This precludes the need for
brackets in all positions within a statement.

A.2 Static semantics of RX2

The static sementics of RX2 is given in terms of a typing
judgment of the form

Ω ` S

This judgment is identical to the judgments Ω ` S pre-
sented in Section 3.4, except in its handling of bracket ex-
pressions and statements. A minor change in the (T-TR)
rule is discussed below.

The purpose of RX2 is to represent pairs of executions
that differ only in the high-security component of their
configurations. The objective is to show that the effects
of each execution that are observable by a low-security
observer are identical. The semantics of the language
are therefore given with respect to an observation level
R embodied as a set of roles. To make the presentation
of the rules simpler, we classify roles according into
three classes according to the observation level, namely
ρL(R,Π), ρM (R,Π) and ρH(R,Π). Such a simplification
is standard — for instance, in [16] Pottier and Simonet
make the assumption of a label hierarchy, with L v H .

Role defintions of roles in ρL(R,Π) are observable
as are memory locations that are labeled with roles in
ρL(R,Π). We abbreviate ρL(R,Π) as ρL where R and Π
are clear from the context. One can think of ρL as being
low-security roles. Formally,

ρL(R, Π) ≡ {ρ | ∃ρR ∈ R.Π ` CΠ(ρ) v ρR ∧ Π ` ρ v ρR}

The set ρM (R,Π) consists of those roles ρ for which the
definition of ρ is observable, but memory locations labeled
ρ are not observable. We abbreviate this set ρM where the

context permits. Formally,

ρM (R, Π) ≡ {ρ | ∃ρR ∈ R.Π ` CΠ(ρ) v ρR ∧
∀ρR ∈ R.Π ` ρ 6v ρR

}

Finally, the set ρH(R,Π) contains those roles ρ for which
neither the definition of ρ nor memory locations labeled ρ
are observable. We abbreviate ρH(R,Π) as ρH where con-
venient. One can think of ρH as being high-security roles.
Formally,

ρH(R, Π) ≡ {ρ | ∀ρR ∈ R.Π ` CΠ(ρ) 6v ρR ∧ Π ` ρ 6v ρR}

In the formal definitions of ρL(R,Π) etc. above the pol-
icy Π is understood to refer to the runtime policy under
which the program executes, while R is the fixed obser-
vation level of the low-security observer. Even though the
runtime policy is allowed to change, our definition of nonin-
terference allows us to treat the partitioning of the roles into
these three sets as unchanging. This is achieved by means
of the relation dclasR,Π1,Π2 introduced in Figure 6 and
will be discussed further in Section A.3.

Although all three sets, ρL, ρM , ρH are not needed for
the static semantics, the proof technique we use relies on the
the definition of these three sets in the operational semantics
for RX. This usage should become clear in Section A.4.

The typing judgments for RX2 are identical to those pre-
sented for RX. The additional rules are (T-EBR) and (T-
SBR) which handle bracket expressions and statements re-
spectively. In both cases, the rules require that the compo-
nents of a bracket be checked in a context where the pc is
strengthened to be at a high-security level. Since the brack-
eted terms represent the divergent parts of the two execu-
tions, this condition forces divergent parts of the computa-
tion to not contain any effects observable to the low-security
observer.

The (T-TR) rule given here differs slightly from the one
given for RX. In this report, we consider transaction state-
ments transΦ S to be labeled with a program counter label
as well as a set of invariants. This permits a simplification of
the operational semantics of RX2 which relies on the pro-
gram counter annotation on transactions. This annotation
serves no purpose in the semantics of RX and was therefore
omitted in our presentation in the prior sections. The con-
tent of the rule however remains unchanged — that is, the
program counter annotation that appears on the transaction
must be the same as the pc that is used to type-check the
transaction.

A.3 RX2 Configurations and Observability

RX2 programs represent the execution of two RX pro-
grams that differ only in the high-security parts of their

16

lab(∆) =
F

add (s) ,del (s) ∈∆ lab(roledef (s)) lab(Q) =
F

q∈Q lab(q)

lab(L1 v L2) = lab(L1) t lab(L2) lab(CΠ(ρ)) = lab(ρ)
lab(IΠ(ρ)) = lab(ρ) lab(ρ) = (CΠ(ρ), IΠ(ρ))

Ω ::= Γ; pc; Q; Φ

Ω ` E : `

Ω ` i : ` (T-LIT)
Ω.Γ(x) = `

Ω ` x : `
(T-VAR)

Ω ` E1 : `1
Ω ` E2 : `2

Ω ` E1 ⊕ E2 : `1 t `2
(T-PLUS)

ρ ∈ ρM ∪ ρH

Ω ` E1 : ` Ω ` E2 : `

Ω ` 〈E1 ‖ E2〉 : ` t ρ
(T-EBR)

Ω ` S

Ω ` skip (T-SKIP)

Ω ` S
Ω ` S

Ω ` S; S
(T-SEQ)

Ω ` E : `1 Ω ` x : `
Ω.Q ` `1 v ` Ω.Q ` Ω.pc v `

Ω ` x := E
(T-ASN)

Ω ` E : `′ pc′ = Ω.pc t `′

Ω[pc = pc′] ` S1 Ω[pc = pc′] ` S2

Ω ` if (E) S1 S2

(T-IFE)

Ω ` E : `′ pc′ = Ω.pc t `′

Ω[pc = pc′] ` S

Ω ` while (E) S
(T-WHL)

pc′=pc t lab(q) q ∈ Φ.Q
Γ; pc′; Q ∪ {q}; Φ ` S1 Γ; pc′; Q; Φ ` S2

Γ; pc; Q; Φ ` if (q) S1 S2

(T-IFQ)

Φ.pc = pc
Γ; pc; ∅; Φ ` S

Γ; pc; ∅; . ` transΦ S
(T-TR)

Q ` pc v pc′

Q ` pc v lab(∆) Q ` lab(Q′) v pc′

Γ; pc; Q; (pc′, Q′) ` update ∆
(T-UP)

ρ ∈ ρM ∪ ρH pc′ = Ω.pc t ρ
Ω[pc = pc′] ` S1 Ω[pc = pc′] ` S2

Ω ` 〈S1 ‖ S2〉
(T-SBR)

Figure 7. Static Semantics of RX2

configurations. As such, a configuration of an RX2 pro-
gram must represent a pair of RX configurations. In this
section, we define the form of C, the context in which an
RX2 program executes. We also extend the definition of
trace observability given in Figure 6 to cover pairs of con-
figurations.

The definition of C the configuration of an RX2 program
is shown in the top part of Figure 8. It extends the defi-
nition of E , the configuration of an RX program given in
Section 3.3.

We prove noninterference by relating execution traces
of well-formed configurations, restricted to an attacker’s
level of observation. An execution of a configuration
(E0, S0) (where E0 = (Π,M, Ψ)) is written 〈E0, S0〉
and denotes a (possibly infinite) sequence of configura-
tions E0, . . . , En, . . . and programs S0, . . . , Sn, . . . such that
(Ei, Si) −→ (Ei+1, Si+1). The sequence of config-
urations E0, . . . , En, . . . is called the trace and is written
Tr(〈E0, S0〉). We write α to denote a (possibly empty) se-
quence of configurations, and E , α to denote the concatena-
tion of a single configuration and a sequence.

We define the attacker’s observation level as a set of roles

R. The restriction of a trace α to observation level R is writ-
ten α|R, and is defined in Figure 6. As long as the policy re-
mains unchanged, a restricted trace consists of a restriction
to each configuration element of the trace (the “otherwise”
clause of the (E1, E2, α)|R definition of the figure). In doing
so, we restrict the view of memory according the policy Π
and the Ω.Γ used to type check the initial program. We re-
strict the policy according to the metapolicy CΠ(ρ), which
must satisfy the condition described in Section 3.5. How-
ever, if a policy update results in a declassification then the
trace is truncated (the first clause of the (E1, E2, α)|R defi-
nition of the figure).

Given the definitions of ρL, ρM and ρH from Sec-
tion A.2 we can now examine in detail the definition of
dclas(R,Π1,Π2) given in Figure 6 and repeated here:

dclas(R, Π1, Π2) ≡
(ρL(R, Π2) ∩ ρM (R, Π1)) ∪
(ρL(R, Π2) ∩ ρH(R, Π1)) ∪
(ρM (R, Π2) ∩ ρH(R, Π1))

Let us examine the last term ((ρM (R,Π2) ∩ ρH(R,Π1)))
first. Recall that roles ρ in ρM are those for which the def-
inition of ρ is observable, but a memory location x, with

17

RX2 Configuration :
policy stmt. s ::= s | 〈s1 ‖ s2〉
policy Π ::= {s1, . . . , sn}
values v ::= v | 〈v1 ‖ v2〉
memory M ::= {(x1, v1), . . . , (xn, vn)}
one snapshot Ψ∗ ::= . | (M, S)
snapshot Ψ ::= Ψ∗ | 〈Ψ∗1 ‖ Ψ∗2〉
configuration C ::= Π; M; Ψ

Values bvci
bvc0 ≡ v bvci ≡ v b〈v1 ‖ v2〉ci ≡ vi

Policy bΠci
bΠc0 ≡ Π b∅ci = ∅ b{s} ∪ Πci = {s} ∪ bΠci
b{〈s1 ‖ s2〉} ∪ Πci = {si} ∪ bΠci

Memory bMci
bMc0 = M b∅cj = ∅ b{(x, i)} ∪Mcj = {(x, i)} ∪ bMcj
b{(x, 〈i1 ‖ i2〉)} ∪Mcj = {(x, ij)} ∪ bMcj

Transaction snapshot bΨci
bΨc0 ≡ Ψ bΨ∗ci ≡ Ψ∗ b〈Ψ∗1 ‖ Ψ∗2〉ci ≡ Ψ∗i

Configuration bCci
b(Π, M, Ψ)ci ≡ (bΠci, bMci, bΨci)

Figure 8. RX2 configurations and projections.

Γ(x) = ρ is not observable. Neither the role definitions nor
locations labeled with roles in ρH are observable. The in-
tersection of the two sets of roles is non-empty when some
role ρ for which neither policy nor memory was observ-
able under the policy Π1, has its definition only revealed
under Π2. Thus, this term captures declassifications that
reveal information about policy only. Similarly, the term
ρL(R,Π2)∩ρM (R,Π1) represents declassification of mem-
ory only — i.e. a role ρ for which only the definition was
observable under Π1, under Π2 has its corresponding mem-
ory locations revealed also. Finally, ρL(R,Π2)∩ρH(R,Π1)
represents declassifications that reveal both the contents of
memory as well as policy. Obviously, dclas(R,Π1,Π2) is
parameterized with respect to an observation level R. Thus,
declassifications that occur within a set ρM or within ρH do
not reveal any information to the R-observer.

We say that an execution 〈E , S〉 contains a declas-
sification when E , S −→∗ E1, S1 −→ E2, S2 and
dclas(R, E1.Π, E2.Π) 6= ∅.

In Figure 9 we define the observability for configurations
of RX2 programs. Recall that we are using RX2 to reason
about pairs of program executions that are identical in the
parts of their configuration observable to a low-security ob-
server. We proceed by defined a well-formedness condi-
tion for C that requires precisely this condition — the low-
observable parts of C should be identical for both execu-

Policy Π|R :
Π|R≡ bΠc1|R ⊕bΠc2|R where

Π1 ⊕Π2 ≡
[

s∈Π1∩Π2

s ∪
[

s∈Π1\Π2

〈s ‖ ·〉 ∪
[

s∈Π2\Π1

〈· ‖ s〉

Memory M|R,Π :
M|R,Π≡ bMc1|R,bΠc1 ⊕bMc2|R,bΠc2 where

M1 ⊕M2 ≡
[8>><>>:

{x} M1(x) = M2(x)
〈M1(x) ‖M2(x)〉 M1(x) 6= M2(x)
〈x ‖ ·〉 x ∈ dom(M1) \ dom(M2)
〈· ‖ x〉 x ∈ dom(M2) \ dom(M1)

Transaction snapshot Ψ|R,Π:
(M, S)|R,Π≡ (M|R,Π, S)
〈Ψ∗1 ‖ Ψ∗2〉|R,Π≡ 〈Ψ∗1|R,Π‖ Ψ∗2|R,Π〉

Configuration C|R:
(Π, M, Ψ)|R≡ (Π|R, M|R,Π, ·)

Figure 9. Observability of RX2 configurations.

tions. For this purpose, Figure 9 extends the definitions of
observability in Figure 6 to include pairs of configurations.

The observability of C relies on the operator b·ci which
restricts the configuration component to the parts relevant to
the ith execution. For instance bΠci contains only the policy
statements in Π that are relevant to the ith execution, where
i ∈ {1, 2}; similarly bMci refers only to the contents of
memory that are relevant to the ith execution. To define the
observability of Π and M we use the operator ⊕ to combine
the results of observability relation in each execution.

We extend Definition 8 to obtain a well-formedness con-
dition for RX2 configurations.

Definition 11 (Well-formed C). A configuration C =
(Π,M,Ψ) is well-formed with respect to a context Ω and
a set of roles R, denoted Ω |=R C, if and only if all of the
following are true:

dom(M) ≡ dom(Ω.Γ) ∧ ∀x.Ω ` M(x) : Ω.Γ(x) (1)
∀q ∈ Ω.Q . bΠc1 ` q ∧ bΠc2 ` q (2)
if for i ∈ {1, 2} bΨci = (M′, transΦ S′) then

Ω ` transΦ S′ (3.1)
dom(M′) = dom(Ω.Γ) ∧ ∀x.Ω ` M′(x) : Ω.Γ(x) (3.2)
∀x.bM(x)ci 6= bM′(x)ci ⇒
∃Q′ ⊆ Φ.Q.∀q ∈ Q′.
bΠci ` q ∧ Q′ ` Ω.pc v Ω.Γ(x) (3.3)

bCc1|R≡ bCc2|R (4)

It should be clear that Definition 11 is closely related to
Definition 8. The most significant difference is the addition
of clause (4) which requires that the pair of RX configura-
tions embedded in C are observationally equivalent.

Clauses (1) and (3.2) have been strengthened to ensure
that values stored in memory can be typed according to the

18

labels assigned to the location. The need for this can be
seen by examining the type-rules (T-LIT) and (T-EBR). (T-
LIT) is used to type non-bracket values v, and clearly these
values can be assigned any label whatsoever. In particu-
lar, a value v stored in location x can always be given the
label Γ(x). However, a pair of values 〈v1 ‖ v2〉 must be
typed using the rule (T-EBR), which forces the label as-
signed to this expression to be in ρM ∪ ρH . The intuition
here is that memory locations whose contents differ in each
of the pair of configurations must be high-security locations.
While clause (4) ensures observational equivalence, clauses
(1) and (3.2) ensure that the RX2 representation of a pair of
configurations does not gratuitously introduce bracket ex-
pressions of the form 〈v ‖ v〉 into low-security locations in
memory.

The final difference is a strengthening of clause (3.3).
Recall the form of clause (3.3) in Definition 8, reproduced
here:

∀x.M(x) 6= M ′(x)⇒ Π ` Ω.pc v Ω.Γ(x)

This clause enforces the condition that all memory effects
of a transaction are bounded below by the pc label that
was used to check the transaction. This condition allows
us to show that the effects to memory that take place when
a transaction is rolled-back does not leak any information.
This requirement is strengthened in Definition 11 so that,
not only are the effects bounded below by the pc, but that
this is provable using the static judgment Q ` `1 v `2.
From the soundness of the static label ordering judgment
(Lemma 9), we that clause (3.3) in Definition 11 is a strictly
stronger condition than that shown in Definition 11. This
stronger form permits a more direct proof of subject reduc-
tion. We show that this stronger form of the clause is pre-
served during execution.

A.4 Operational Semantics of RX2

The operational semantics of RX2 are presented in Fig-
ure 4. The judgment S /i C −→ S′ /i C′ defines a set of
rewriting rules for the program S executing in a context C.
The index i ∈ {0, 1, 2} indicates the execution in which the
step occurs. When i = 0 the the step of computation occurs
in both executions; when i = 1 the step occurs in the left-
side of the bracken; and when i = 2 the step is taken in the
right side of the bracket.

The semantics mimics the behavior of the seman-
tics of RX on two configurations. In doing so, care
must be taken to ensure that the effects of one execu-
tion are limited to the configuration of that execution
only. For this reason, we define the helper functions
updloci, updpsi i, updpi i, rollback i to ensure that the result
of effect-ful steps of computation are confined to the appro-
priate part of the configuration. Similarly, operations that

read parts of the configuration must do so from the part ap-
propriate to the execution. For instance, in the (E-VAR)
rule, the contents of the memory location M(x) is projected
using b·ci before it is read.

The rules in Figure A.4 augment those in Figure 4. The
lifting rules have no computational content. They only serve
to allow computation to proceed in cases where the steps
taken by the two executions are not identical. For instance,
the (IFV) rule of Figure 4 only applies to if-statements
where an RX value v appears in the guard. The rule (L-IFE)
applies in the case where a bracketed value v appears in the
guard. In this case, the brackets around the expression in
the guard are “lifted” to include the if-statement itself. As a
result, each subexecution can now take a step. Note that if
the intention of the RX2 semantics is only to simulate a pair
of RX executions, then it is always permissible to introduce
lift brackets. Designing the semantics such that brackets are
introduced only where essential is key to obtaining a proof.

The following lemma states that these semantics are
sound.

Lemma 12. Given an RX program S and two configura-
tions E1 and E2 such that E1 |R= E2 |R, then there exists
an RX2 configuration C such that bCci = Ei. Further-
more, if there are finite declassification free sub-executions
(E1, S) −→∗ (E ′1, S′) and (E2, S) −→∗ (E ′2, S′′) then there
there exists a finite sub-execution S /0 C −→∗ S /0 C′ such
that bC′ci = E ′i for i ∈ {1, 2}, and vice-versa.

The proof of this statement is, for the most part, entirely
straightforward. Two rules in Figure 4 need special care —
(IFQ-0) and (TR0). Both these rules inspect the roles that
appear in the program text, either in queries or in the anno-
tations that are on trasnactions. Since the semantics of RX2

is only for the purposes of a proof, this is reasonable. The
semantics of RX contain no such checks. We describe here
the purpose of these rules, and then show how an alternative
formulation of the static semantics of RX2 could eliminate
these rules.

The soundness of the premise of (IFQ-0) requires that
a query q that refers only to observable roles (roles(q) ⊆
ρL∪ρM) has the same result when evaluated under policies
that are observationally equivalent. Given that this condi-
tion holds, (IFQ-0) states that since the result of the query
is the same, both executions take the same branch of the if-
statement and therefore no brackets need to be introduced.
In contrast, (L-IFQ) is a lifting rule that states that if a query
contains a role that is not observable then, since the result
of the query can be different in each execution, a bracketed
statement is introduced. Lemma 13 states that the condi-
tions required of a choice of metapolicy are sufficient to
guarantee this requirement. Later, we also state and prove
Lemma 20 for a specific choice of metapolicy based on the
delegation relation.

19

bC.M(x)ci = v

x /i C −→ v /i C
(E-VAR)

E1 /i C −→ E′1 /i C
E1 ⊕ E2 /i C −→ E′1 ⊕ E2 /i C

(E-ADL)
E2 /i C −→ E′2 /i C

v ⊕ E2 /i C −→ v ⊕ E′2 /i C
(E-ADR)

v = v1[[⊕]]v2

v1 ⊕ v2 /i C −→ v /i C
(E-ADV)

S /i C −→ S′ /i C′

S; S /i C −→ S′; S /i C′
(E-SEQ) skip; S /i C −→ S /i C (E-SKP)

E /i C −→ E′ /i C
x := E /i C −→ x := E′ /i C

(E-ASE)
C′ = C[M = updloci(x, v, C.M)]

x := v /i C −→ skip /i C′
(E-ASV)

E /i C −→ E /i C
if (E) S1 S2 /i C −→

if (E) S1 S2 /i C

(E-IFE)

(v 6= 0⇒ j = 1)
(v = 0⇒ j = 2)

if (v) S1 S2 /i C −→
Sj /i C

(E-IFV)
while (E) S /i C −→

if (E) { S; while (E) S } skip /i C
(E-WHL)

roles(q) ⊆ ρL ∪ ρM

C.Π ` q ⇒ j = 1 C.Π 6` q ⇒ j = 2

if (q) S1 S2 /0 C −→ Sj /0 C
(E-IFQ-0)

i ∈ {1, 2}
bC.Πci ` q ⇒ j = 1 bC.Πci 6` q ⇒ j = 2

if (q) S1 S2 /i C −→ Sj /i C
(E-IFQ-i)

∃ρ ∈ ρL.bC.Πci ` ` v ρ
C.Ψ = · Ψ∗ = (C.M, trans(`,Q) S)

trans(`,Q) S /0 C −→ trans(`,Q) S /0 C[Ψ = Ψ∗]
(E-TR1-0)

i ∈ {1, 2} bC.Ψci = ·
Ψ′ = updpsi i(C.Ψ, (M, transΦ S))

transΦ S /i C −→ transΦ S /i C[Ψ = Ψ′]
(E-TR1-i)

bC.Ψci 6= · S /i C −→ S′ /i C′

transΦ S /i C −→ transΦ S′ /i C′
(E-TR2)

bC.Ψci 6= · Ψ′ = updpsi i(C.Ψ, ·)
transΦ skip /i C −→ skip /i C[Ψ = Ψ′]

(E-TR3)

Π′ = updpi i(C.Π, ∆) bC.Ψci = (M′, trans(`,Q) S)
i = 0⇒ j = 1 i 6= 0⇒ i = j

dclas2(R, C.Π, Π′) = ∅ ∀q ∈ Q.(bΠcj ` q)⇔ (bΠ′cj ` q)

update ∆ /i C −→ skip /i C[Π = Π′]
(E-UP)

Π′ = updpi i(C.Π, ∆) bC.Ψci = (M, trans(`,Q) S)
i = 0⇒ j = 1 i 6= 0⇒ i = j M′ = rollback i(C.M, M)
dclas2(R, C.Π, Π′) = ∅ ∃q ∈ Q.(bΠcj ` q) 6⇔ (bΠ′cj ` q)

update ∆ /i C trans(`,Q) S /i C[M = M′][Π = Π′]
(R-UP)

S /i C S′ /i C′

S; S /i C S′ /i C′
(R-SEQ)

S /i C S′ /i C′

transΦ S /i C −→ S′ /i C′
(E-TR4)

Si /i C −→ S′i /i C′
{i, j} = {1, 2} S′j = Sj

〈S1 ‖ S2〉 /0 C −→ 〈S′1 ‖ S′2〉 /i C′
(E-BRK)

where

Π ` q ⇐⇒ bΠc1 ` q ∧ bΠc2 ` q dclas2(R, Π1, Π2) ≡ dclas(R, bΠ1c1, bΠ2c1) ∪ dclas(R, bΠ1c2, bΠ2c2)

roles(L1 v L2) = roles(L1) ∪ roles(L2) roles(ρ) = {ρ} roles(CΠ(ρ)) = {ρ} roles(IΠ(ρ)) = {ρ}

Π±i ∆ ≡ (bΠci ∪ {s | add (s) ∈ ∆} \ {s | del (s) ∈ ∆})

updloc0(x, v, M) ≡ M[(x, v)] updpsi0(Ψ, Ψ∗) ≡ Ψ∗

updloc1(x, v, M) ≡ M[(x, 〈v ‖ bM(x)c2〉)] updpsi1(Ψ, Ψ∗) ≡ 〈Ψ∗ ‖ bΨc2〉
updloc2(x, v, M) ≡ M[(x, 〈bM(x)c1 ‖ v〉)] updpsi2(Ψ, Ψ∗) ≡ 〈bΨc1 ‖ Ψ∗〉
updpi0(Π, ∆) ≡ (Π±1 ∆)⊕ (Π±2 ∆) rollback0(M, M′) ≡ M′

updpi1(Π, ∆) ≡ (Π±1 ∆)⊕ bΠc2 rollback1(M, M′) ≡ bM′c1 ⊕ bMc2
updpi2(Π, ∆) ≡ bΠc1 ⊕ (Π±2 ∆) rollback2(M, M′) ≡ bMc1 ⊕ bM′c2

Figure 10. Operational semantics of RX2 excluding lifting rules.

20

The rules (TR-0) and (L-TR) are similar to (IFQ-0) and
(L-IFQ) in that, like (IFQ-0), (TR-0) prevents the introduc-
tion of brackets in the case where the transaction mentions
only low-security policy queries and updates — the condi-
tion that the label ` mentioned on the transaction statement
is “low-security” (` v ρ ρ ∈ ρL) ensures that all policy
queries and update statement refer only to roles in ρL∪ρM .
Lemma 14 guarantees that in such a case, the effect of ev-
ery non-declassifying update statement is the same in both
executions. Thus, no brackets need to be introduced. The
lifting rule (L-TR), like (L-IFQ), introduces a brackets if
this condition is not met since the result of updates in the
two executions need not be identical.

An alternative approach to introducing these role inspec-
tions in the operational semantics of RX2 would have been
to change the form of the static semantics. We could have
defined the static semantics of RX2 to be a compilation pro-
cess where the input RX program is transformed to intro-
duce bracket expressions where necessary. The form of
such a judgment, and a rule in this judgment that handles
policy query statements is given below:

Ω ` S :: S

roles(q) 6⊆ ρL ∪ ρM
. . .

Ω ` if (q) S1 S2 :: if (〈q ‖ q〉) S1 S2

Given such a compilation process, we could eliminate
(E-IFQ-0) and replace it with a lifting rule identical to
(L-IFE). Although this method is equivalent, we chose
not to take this approach since it requires a substantial
conceptual change in the static semantics.

Lemma 13. Given a pair of policies Π1 and Π2, and ob-
servation level R and a metapolicy CΠ(·) such that (1)
Π1 |R≡ Π2 |R; (2) CΠ(·) satisfies the conditions (C1) and
(C2) below:

C1 delΠ(ρ) = {ρ1, . . . , ρn} ⇒ ∀i. [[CΠ(ρ)]]Π ⊆
[[CΠ(ρi)]]Π

C2 ∀i.[[CΠ(ρ)]]Π ⊆ [[CΠ(ρi)]]Π, where CΠ(ρ) or IΠ(ρ) is
a function of ρi.

Then for any query q such that roles(q) ⊆ ρL(Πi, R) ∪
ρM (Πi, R), Π1 ` q ⇐⇒ Π2 ` q.

Proof. Queries q have the form L1 v L2 where L1 and
L2 are atomic labels of the form ρ, CΠ(ρ) and IΠ(ρ). It
suffices to show that if ρ ∈ ρL ∪ ρM then [[ρ]]Π1 = [[ρ]]Π2 ,
[[CΠ(ρ)]]Π1 = [[CΠ(ρ)]]Π2 and [[IΠ(ρ)]]Π1 = [[IΠ(ρ)]]Π2 .

We first consider [[ρ]]Π1 = [[ρ]]Π2 . Note the following
condition for the observability of a role as given in Figure 6,

〈skip ‖ skip〉; S /0 C −→ S /0 C (L-SKIP)

v = 〈bv1c1 + bv2c1 ‖ bv1c2 + bv2c2〉
v1 + v2 /0 C −→ v /0 C

(L-ADD)

if (〈E1 ‖ E2〉) S1 S2 /0 C −→
〈if (E1) S1 S2 ‖ if (E2) S1 S2〉 /0 C

(L-IFE)

roles(q) 6⊆ ρL ∪ ρM

if (q) S1 S2 /0 C −→
〈if (q) S1 S2 ‖ if (q) S1 S2〉 /0 C

(L-IFQ)

C.Ψ = ·
∃i ∈ {1, 2}.∃ρ ∈ ρM ∪ ρH .bC.Πci ` ρ v `

trans(`,Q) S /0 C −→
〈trans(`,Q) S ‖ trans(`,Q) S〉 /0 C

(L-TR)

Figure 11. Lifting rules for RX2.

for i ∈ {1, 2}

ρ ∈ Obs(R,Πi) ⇐⇒ ∃ρR ∈ R.Πi ` CΠ(ρ) v ρR

This condition can be stated equivalently as

[[ρ]]Πi ⊆ [[CΠ(ρ)]]Πi

Now, [[ρ]]Πi is a function of [[ρ1]]Πi . . . [[ρn]]Πi , where
{ρ1, . . . , ρn} = delΠi(ρ). By condition (C1) we have that
∃ρR ∈ R.[[⊆]]Πi [[CΠ(ρi)]]Π. Thus, each {ρ1, . . . , ρn} ⊆
Obs(R,Π1) = Obs(R,Π2); or ∀s.roledef (s) ∈
{ρ, ρ1, . . . , ρ} ⇒ s ∈ Π1 ∧ s ∈ Π2. Hence [[ρ]]Π1 = [[ρ]]Π2 .

To derive [[CΠ(ρ)]]Π1 = [[CΠ(ρ)]]Π2 , we note in a man-
ner similar to the previous case, that if [[CΠ(ρ)]]Πi depends
on {ρ1, . . . , ρn} then, by (C2), each of {ρ1, . . . , ρn} ⊆
Obs(R,Π1) = Obs(R,Π2). Since the constraint on in-
tegrity are identical to confidentiality the equivalence of the
interpretation of IΠ(ρ) follows similarly.

Lemma 14. Let S = trans(`,Q) S′ be an RX statement
such that Ω ` S for some Ω; Given a security level R and
two configurations E1 = (Π1,M1) and E2 = (Π2,M2)
such that E1|R≡ E2|R. If

(L1) ∀i ∈ {1, 2}.∃ρ ∈ ρL(R,Πi).Πi ` ` v ρ

then for any pair of finite executions 〈E1, S〉
and 〈E2, S〉 that are free of declassifica-
tions, the following three properties hold true.
(i) (E1, S) −→∗ (E ′1, transΦ update ∆; S′′) ⇐⇒

(E2, S) −→∗ (E ′2, transΦ update ∆; S′′)

(ii) (E ′1, transΦ update ∆; S′′)
(E-UP)−→ (E ′′1 , transΦ S′′)

⇐⇒

(E ′2, transΦ update ∆; S′′)
(E-UP)−→ (E ′′2 , transΦ S′′)

(iii) E ′1.Π|R≡ E ′2.Π|R⇒ E ′′1 .Π|R≡ E ′′2 .Π|R

21

Proof. We proceed by first showing that the conditions hold
for a program S that contains only a single update ∆ state-
ment. We then use induction to argue that these properties
hold for programs with an arbitrary number of update state-
ments.

First, we assume noninterference for the fragment of RX
that does not contain any policy updates statements. This is
permissible since noninterference of full RX follows from
a modular proof of subject reduction of RX2. The proof
of noninterference for the update-free fragment of RX does
not use the (E-UP) and (E-RB) rules. Similarly, the occur-
rences of the (TR0) and (L-TR) rules can be replaced with
the (E-TR) rules frome the RX semantics. Thus, the proof of
noninterference for the update-free fragment does not rely
on this lemma.

The assumption of noninterference for update-free pro-
grams is manifested by the following statement: let E1 and
E2 be program configurations such that E1|R≡ E2|R and let
S = . . . ;S′; . . . be an update-free program such that Ω ` S.
Then, the derivation of Ω ` S contains a sub-derivation
Ω′ ` S′. Suppose ∃ρ ∈ ρL(R, Ei.Π).Ω′.Q ` Ω′.pc v ρ
and Ω |= E1 and Ω |= E2. Then, for all finite executions
〈E1, S〉 and 〈E2, S〉 we have

E1, S −→ E ′1, S′;S′′ ⇐⇒ E2, S −→ E ′2, S′;S′′

Next, we show, by analysis of the structure of the typ-
ing judgment Ω ` S, that if Ω ` trans(`,Q) S′ contains
a single sub-derivation Ω′ ` skip; update ∆, then ∃ρ ∈
ρL.Ω′.pc v ρ. According to the typing judgment (T-TR)
` = Ω.pc. Now, the derivation Ω′ ` skip; update ∆ must
end with an application of (T-SEQ), with (T-SKIP) and (T-
UP)(Ω′ ` update ∆) in the premise, where Ω′.Φ = (`,Q).
The first premise of (T-UP) asserts Ω.Q ` Ω′.pc v `. Using
the premise (L1), transitivity of the v relation and sound-
ness of the static label ordering judgement, we can conclude
∃ρ ∈ ρL.Ω′.pc v ρ.

Using our assumption of noninterference for
the update-free fragment, we can conclude that
E1, S −→∗ E ′1, trans(`,Q skip; update ∆; S′ ⇐⇒
E2, S −→∗ E ′2, trans(`,Q) skip; update ∆; S′

from which property (i) follows immediately for programs
with a single update statement.

We show properties (ii) and (iii) simulataneously, by
noting first that the application of (T-UP) in the derivation
Ω′ ` update ∆ contains the premise Ω′.Q ` Ω.PC v
lab(∆). This implies that for all s such that adddels ∈
∆ that roledef s ∈ ρL ∪ ρM . Next, we note that if

(E ′1, transΦ update ∆; S′′)
(E-UP)−→ (E ′′1 , transΦ S′′) then

dclas(R, E ′1.Π, E ′′1 .Π) = ∅.
To show (iii), Since revocations (del (s)) are irrelevant,

it suffices to show that if Π1|R≡ Π2|R, roledef s ∈ ρL∪ρM ,
and dclas(R,Π1,Π1∪s) = ∅ then Π1∪s|R≡ Π2∪s|R. But
this follows immediately from the definition of dclas since

s can only add a delegation relation from roles in ρL to ρM .
Since roles in ρL ∪ ρM are already observable in Π2|R we
have Πi|R≡ (Πi ∪ s)|R and (Π1 ∪ s)|R≡ (Π2 ∪ s)|R.

Let Π ·∆ denote the policy that results from transform-
ing the policy Π according the the add (s) and del (s)
statements that appear in ∆. To show (ii), i.e., that
(E ′1, transΦ update ∆) takes a step under (E-UP) if and
only if (E ′2, transΦ update ∆) takes a step under (E-
UP) too, if suffices to show that ∀q ∈ Q.(E ′1.Π · ∆) `
q ⇐⇒ (E ′2.Π · ∆) ` q. However, from the third
premise of (T-UP) (Ω′.Q ` lab(()Q) v `) to deduce that
∀q ∈ Q.roles(q) ⊆ ρL ∪ ρM . From (iii) we conclude that
E ′1.Π ·∆|R≡ E ′1.Π ·∆|R and using Lemma 13 we prove the
necessary.

Finally, we note that this result is easily extended to pro-
grams with more that one update statement. This can be
seen by noting that after update statements the policies re-
main observationally equivalent. If an update statement suc-
ceeds in updating the policy from Π to Π′ (makes a transi-
tion using (E-UP)), an equivalent execution of the transac-
tion is obtained by executing the entire transaction under Π′

and removing the update statement to result in a program
with one less update statement. The same basic argument
holds true when an update statement takes a step using (E-
RB), except since mutually incompatible update statements
can result in non-termination we cannot simply remove up-
date statements. However, the statement of the Lemma
explicitly requires that both executions terminate. Thus,
when considering (E-RB) for terminating transactions, we
can safely ignore update statements that are re-encountered
when the transaction resumes.

B Proving Noninterference

Our objective is to show subject reduction for RX2, from
which noninterference for RX follows directly. This is be-
cause our definition of well-formedness for RX2 configura-
tions C includes a clause that states that the pair of RX confi-
urations embedded within C, (i.e. bCc1 and bCc2) are obser-
vationally equivalent. A proof of subject reduction would
guarantee that observational equivalence of these configura-
tions is preserved, which is precisely the property we desire
for noninterference.

In preparation for the statement and proof of subject re-
duction, we need to introduce an additional judgment.

B.1 An Auxiliary Judgment

Our proof of subject reduction will proceed by induction
on the structure of the derivation based on the operational
rules in Figure A.4. However, some technicalities in the
form of the operational rule (E-TR2) and the type rule (T-
TR) requires special attention. In this section we present

22

an auxiliary judgment Ω `C,i,R S which permits us to for-
mulate an induction hypothesis sufficiently strong to show
subject reduction.

We consider (E-TR2) first. (E-TR2) is a congruence
rule in which a statement S enclosed within a transaction
as transΦ S takes a step in the premise independently of
the transaction declaration. Suppose S ≡ if (q) S1 S2,
then due to the structure of the type rule (T-IFQ), S is
not well-typed — all policy query statements must appear
within a transaction. Thus, even though we might have
Ω ` transΦ S, Ω ` S does not hold, and so any induc-
tive proof of subject reduction for RX2 faces the problem
that the inductive hypothesis of a well-typed program does
not hold in the premise of (E-TR2).

An alternative formulation of the operational rules would
have been to eliminate the congruence rule (E-TR2), an
replace it instead with a collection of rules to handle
transΦ E1 +E2, transΦ x := E, transΦ if (S) E1 E2e,
etc. separately. This proliferation of rules is clearly unde-
sirable as it obscures the true structure of the semantics.

The second issue to contend with here is the structure
of the type rule (T-TR). The conclusion of (T-TR) requires
that a statement transΦ S be typed in a context Ω, where
Ω.Q = ∅. The need for this condition is illustrated by the
following example.

trans(`,{A.rvB.r})
x := y;
update del (A.r ←− B.r)

Ω.Γ ≡ {(x,B.r), (y, A.r)}
Ω.Q ≡ {A.r v B.r}

Φ.pc = pc Q ⊆ Φ.Q
Γ; pc; Q; Φ ` S

Γ; pc; Q; . ` transΦ S
(T-TR-BAD)

If (T-TR) were replaced with (T-TR-BAD), then the pro-
gram above would typecheck since the assigment x := y
is permitted when Q ` A.r v B.r. If we consider an
unchanged operational semantics and suppose the update
statement del (A.r ←− B.r) resulted in a policy that vio-
lated the ordering A.r v B.r, then the transaction would be
rolled-back. This would undo the effect of the assignment
x := y but on resumption of the transaction, x := y would
be re-executed even though the new policy does not permit
the flow. The condition in (T-TR) which requires that the
policy context Ω.Q be empty prevents such a bad situation
from occuring.

When combined with (E-TR2), this requirement cre-
ates a problem when stating an induction hypothesis
for subject reduction. Consider the program S ≡
transΦ if (q) S1 S2, Ω ` S, which takes a step using
(E-TR2) with (E-IFQ) in the premise to S′ = transΦ S1.
The derivation of Ω ` S, contains a subderivation Ω[Q =

{q}][. . .] ` S1, since we may statically assume q to be true
when S1 is executed. However, any derivation of Ω′ ` S′

must end with an application of (T-TR) which requires
Ω′.Q = ∅.

Ω `C,i,R S

Ω |=R C
bC.Ψci = · Ω ` S

Ω `C,i,R S
(T-A1)

Ω |=R C bC.Ψci = (M, transΦ′ S1)
(S = transΦ′ S2 ⇒ S′ = S2)
(S 6= transΦ′ S2 ⇒ S′ = S)

Q′ ⊆ Φ.Q ∀q ∈ Q.bC.Πci ` q
Ω.pc = Φ.pc Ω.Γ; Ω.pc; Q = Q′; Φ = Φ′ ` S′

Ω `C,i,R S
(T-A2)

C.Ψ = 〈Ψ∗1 ‖ Ψ∗2〉
Ω |=R C ρ ∈ ρM (R, C.Π) ∪ ρH(R, C.Π)

pc′ = Ω.pc t ρ ∀i ∈ {1, 2}.Ω[pc = pc′] `C,i,R Si

Ω `C,0,R 〈S1 ‖ S2〉
(T-A3)

Ω `C,i,R transΦ S Ω ` S′

Ω `C,i,R transΦ S; S′
(T-A4)

Figure 12. Augmented typing judgment.

To address these two idiosyncracies of (E-TR2) and (T-
TR) we formulate an auxiliary judgment Ω `C,i,R S in Fig-
ure B.1 which takes into account the state of the program
configuration C when typing a program S. Intuitively, given
a configuration pair C,S, where C.Ψ = (M, transΦ S)
then we can treat S as being enclosed within a transaction
declaration as transΦ S. This is reasonable since the pol-
icy update rules inspect C.Ψ to determine whether or not S
is enclosed within a transaction. We have to take care in the
second rule to ensure that we do not introduce nested trans-
actions; hence the second predicate. This solves the prob-
lem presented by the structure of the congruence rule (E-
TR2). Additionally, as long as the program transΦ S that
appears in the snapshot can be typed in a context Ω[Q = ∅]
(as required by the well-formedness condition Ω |=R C),
then it is permissible to type transΦ S in a context Ω where
all queries Ω.Q are compatible with Φ and the current pol-
icy C.Π. This is reasonable since the program that executes
after a transaction is rolled-back (the one in the snapshot)
makes no static assumption about the policy. Thus, the
problem illustrated by the example program cannot occur.

This judgment is sound with respect to the typing judg-
ment Ω ` S according to the following lemma.

Lemma 15. Given a program S, a context Ω, a con-
figuration C, an observation level R and an index i ∈
{0, 1, 2}, Ω `C,i,R S, if and only if, ∃S0, C′.Ω ` S0 and
S0 /i C′ −→∗ S1 /i C and either S1 = S, or the derivation

23

of S1 /i C −→ S2 /i C′ contains a small-step using −→ or
 starting from S /i C.

B.2 Interpretation of the effect lower bound

In this section we present two lemmas that simplify the
proof of subject reduction that follows. These lemmas, in
essence, guarantee that observational equivalence of a pair
of configurations is maintained when an RX2 program takes
a single step. Given these lemmas, the proof of subject
reduction in the next section is concerned primarily with
showing that the program that results after a single step of
execution of a well typed program is also well typed.

Lemma 16. Suppose for a program S and a configuration
C such that Ω `C,i,R S, S /i C −→ S′ /i C′ or S /i C
S′ /i C′. Then, if ∀ρ ∈ R.C.Π 6 `Ω.pc v ρi then C|R= C′|R.

Proof. We proceed by induction on the structure of the
derivation S /i C −→ S′ /i C′. Clearly, if C = C′ then
the lemma holds trivially. The only observable components
of a configuration C are C.M and C.Π. We consider memory
and policy effects separately.

Let us first consider the memory effects of a pro-
gram. All updates to memory occur through the func-
tion updloci(x, v,M) and rollback i(M,M′). Applications
of these functions appear in the premises of (E-ASV) and
(R-UP). If the derivation of S /i C −→ S′ /i C′ ends
with an application of (E-ASV) rule, then Ω `C,i,R S con-
tains an application (T-ASN) for Ω′ ` x := v, where
∀Π.Π ` Ω.pc v Ω′.pc. The final premise of (T-ASN)
requires that for x, the location being written to, we have
that Ω′.Q ` Ω′.pc v Ω′.Γ(x).

Suppose, for contradiction, that C.M |R,C.Π 6=
C′.M |R,C′.Π, then, since C.Π = C′.Π, for the
change to be observable, we must have that
x ∈ dom(C.M |R,C.Π) = dom(C′.M |R,C′.Π). By the
definition of memory observability, this is possible if and
only if ∃ρ ∈ R such that C.Π ` Ω.Γ(x) v ρ. However,
by assumption and transitivity of the label ordering v, and
Lemma 9 (soundness of the static decision procedure for
label ordering) we have that ∀ρ ∈ R.C.Π ` Ω.Γ(x) v ρ;
i.e. a contradiction.

An effect on memory as a result of the (R-UP) rule is
combined with a policy effect. Suppose the derivation of
S /i C S′ /i C′ concludes with an application of the (R-
UP) rule. This implies that the derivation of Ω `C,i,R S
must contain a subderivation that contains an application of
(T-UP), for Ω′ ` update ∆, where ∀Π.Π ` Ω.pc v Ω′.pc.
At the conclusion of a step of evaluation using (R-UP), we
have that C′.M ≡ C.Ψ.M. From clause (3.3) of the Defini-
tion 11 (Ω |=R C), we have that C.Π ` Ω.pc v Ω.Γ(x) for
all changed locations in the transaction x. Suppose, for con-
tradiction, that after the policy is updated bC′.Mc1 is not ob-

servationally equivalent to bC′.Mc2, at observation level R.
By the definition of memory observability in Figure 6, this
can only occur if for one of the locations x modified dur-
ing the transaction, we have ∃ρ ∈ ρL.bC′.Πci ` Γ(x) v ρ.
However, by hypothesis with have that bC.Πci ` Ω.pc 6v ρ.
Thus we have that Γ(x) ∈ ρM (R, bC.Πci)∪ρH(R, bC.Πci),
but Γ(x) ∈ ρL(R, bC.Πci). But this is precisely the condi-
tion under which dclas(R, bC.Πci, bCTX ′.Πci) 6= ∅; so,
(R-UP) is not applicable. Thus, we have reached a contra-
diction. cannot take a step.

Finally we consider policy effects. Here we have that a
single step of evaluation causes policy C.Π to differ from
C′.Π. The only function that causes a change to policy
is updpi(Π,Π′) which appears in the premises of the (E-
UP) and (R-UP) rules. Thus, the derivation of Ω `C,i,R
S contains an application of (T-UP) for the subderivation
Ω′ ` update ∆, ∀Π.Ω.pc v Ω′.pc. The premise of (T-
UP) guarantees that bC.Πci ` Ω′.pc v lab(∆). Therefore,
all changes are to roles ρ where Ω′.PC v CΠ(ρ). Since
there are no declassification to roles in ρL, ρM , we have
that C.Π|R= C′.Π|R.

Corollary 17. If 〈S1 ‖ S2〉 /0 C −→ 〈S′1 ‖ S′2〉 /0 C′ and
Ω `C,0,R 〈S1 ‖ S2〉 then C|R= C′|R.

Proof. Follows immediately from Lemma 16 and premise
of (T-SBR) and (A-T3) which requires S1 and S2 to be
checked in Ω′ where Ω′.pc ∈ ρM ∪ ρH .

Lemma 18. If S /0 C −→ S′ /0 C′, then if Ω `C,i,R S,
bC′c1|R= bC′c2|R.

Proof. Proceeds in similarly to the proof of Lemma 14, us-
ing the premise of (T-EBR) to show that v in (E-ASV) does
not contain a bracket.

B.3 Subject Reduction

Theorem 19 (Subject Reduction). Given a program S and
a configuration C such that S /i C −→ S′ /i C′ or S /i C
S′ /i C′; if there is a context Ω such that i ∈ {1, 2} ⇒
Ω.pc ∈ ρM ∪ ρH and Ω `C,i,R S; then Ω `C′,i,R S′. Sim-
ilarly, if E /i C −→ E′ /i C, and Ω |=R C and Ω ` E : `
then Ω ` E′ : `.

Proof. By induction on the structure of the deriva-
tions S /i C −→ S′ /i C′, S /i C S′ /i C′ and
E /i C −→ E′ /i C.

(E-VAR): If i ∈ {1, 2} then since bM(x)ci is of the
form of v (no brackets) then by replacing the occurence of
(T-VAR) for x in Ω `C,i,R x with (T-LIT) for v, we can
derive Ω `C,i,R v is immediately applicable. If i = 0, then
by clause (1) of Ω |=R C, and since bM(x)c0 = M(x), we
have that Ω ` v : Ω.Γ(x), and once again we can replace

24

the occurence of (T-VAR) for x with the appropriate
judgment for v.

(E-ADL), (E-ADR), (E-ADV): Trivial.

(E-SEQ): If the derivation of Ω `C,i,R S;S ends with
an application of (T-A1), and bC′.Ψci = · then (T-A1) is
applicable again simply replacing Ω ` S with Ω ` S′ from
the inductive hypothesis. If bC′.Ψci 6= ·, then S must be
of the form transΦ S′. Thus (T-A4) is applicable, using
Ω ` S from (T-A1) of the hypothesis.

If the derivation of Ω `C,i,R S;S ends with (T-A2), then
since no rollback has occured, bC′.Πci ` q ⇐⇒ bC.Πci,
the derivation of Ω `C′,i,R S′;S can pick a Q′ in the
premise is at least as big as the Q′ picked in the applica-
tion of (T-A2) in the hypothesis.

The derivation of Ω `C,i,R S;S cannot end with (T-A3).
If the derivation of Ω `C,i,R S;S ends with (T-A4), then

either (T-A1) or (T-A4) is applicable for Ω `C′,i,R S′;S
depending on whether bC′.Ψci = ·. In either case, the
necessary judgment Ω ` S is provided by the hypothesis.

(E-SKP), (E-ASE): Trivial.

(E-ASV): If we can show Ω |=R C′ then the rest is
trivial. From the premise Ω `C,i,R x := v, we have that
Ω ` v : Ω.Γ(x). This is sufficient to show clause 1. Since
updloc does not change C.Π we have clause 2 trivially. To
show clause (3.3), note that if bC.Ψci = (M′, transΦ S)
then the derivation of Ω `C,i,R x := v ends with an applica-
tion of (T-A2). The premise of (T-A2) requires that x := v
be checked in a context Ω′ where Ω′.pc = Ω.pc, using the
(T-ASN) rule. But the premise of the (T-ASN) rule requires
that Ω′.Q ` Ω.pc v Ω.Γ(x), while the premise of (T-A2)
guarantees that Ω′.Q ⊆ Φ.Q and ∀q ∈ Ω′.Q.bC.Πci ` q.
This is precisely the requirement of clause (3.3). When
i ∈ {1, 2} clause (4) follows from Corollary 17. When
i = 0 clause (4) follows from Lemma 18.

(E-IFE), (E-IFV), (E-WHL): Trivial.

(E-IFQ-0), (E-IFQ-i): For i ∈ {0, 1, 2} the derivation
of Ω `C,i,R if (q) S1 S2 must end with an application of
(T-A2), since the premise of (T-IFQ) requires that policy
queries appear within transactions. If j = 2 we can derive
Ω `C,i,R Sj using the same choice of Q′ in the premise
of (T-A2) as that used in the hypothesis. If j = 1, we can
augment Q′ with q since bC.Πci ` q and (T-IFQ) ensures
that q ∈ Φ.Q.

(E-TR1-0): Since C.Ψ = · the derivation of
Ω `C,i,R transΦ S ends with an application of (T-
A1). Since C′.Ψ 6= ·, (T-A2) applies, which essentially

inlines the derivartion of Ω ` transΦ S from (T-A1) into
(T-A2). It remains to be shown that Ω |=R C′. Clause 3
is relevant here, but since C′.Ψ.M = C′.M clause 3.1 and
3.3 are satisfied directly. Ω ` C′.Ψ.S is shown using the
premise of (T-A1) from the hypothesis.

(E-TR1-i): Identical to (E-TR1-0) except updpsi i en-
sures that bC′.Ψ.Mci = bC.Mci, which is sufficient for
clause (3.3) of Ω |=R C′.

(E-TR2), (E-TR3): Trivial.

(E-UP): Since skip is typeable in any context Ω, the
interesting part here is showing that Ω |=R C′. Clause (1)
is satisfied by hypothesis since C′.M = C.M. Clause (2)
is satisfied since, the premise of (E-UP) guarantees that
by using updpi , bC′.Πcj = bC.Πcj . Furthermore, since
Ω.Q ⊆ Φ.Q, and the premise of (E-UP) guarantees that
bC′.Πci ` q ⇐⇒ bC.Πci ` q. We use the same identity
to show clause (3.3) — by the hypothesis we have that for
all locations x such that its value in the memory snapshot
differs from the value in memory, Q ` Ω.pc v Ω.Γ(x),
where ∀q ∈ Q.bC.Πci ` q, and Q ⊆ Φ.Q. But by
the policy consistency condition we have also have that
∀q ∈ Q.bC.Πci ` q. Thus, since Φ is unchanged, we can
use the same Q used in the hypothesis to show that clause
(3.3) hold for C′. If i ∈ {1, 2} clause (4) is satisfied by
Corollary 17. If i = 0 clause (4) is satisfied by Lemma 18.

(R-UP): By assumption of Ω |=R C we have that
transΦ S is type-able in a context with an empty set of
policy assumptions Q. To show that Ω |=R C′, we note
that since bC′.Mci ≡ bC.Ψ.Mci and from clause (3.2),
we can derive clause (1) of Ω |=R C′. For clause (2)
we note that Ω.Q is empty. For clause (3) we note that
bC′.Mci ≡ bC′.Ψ.Mci. Finally, clause (4) follows from
Corollary 17 or from Lemma 18.

(R-SEQ), (E-TR4): Trivial.

(E-BRK): The derivation of Ω `C,0,R 〈S1 ‖ S2〉 ends
with an application of (A-T3). Since bC′cj ≡ bCcj
and Sj = S′j , we can once again apply (A-T3) for
Ω `C,0,R 〈S′1 ‖ S′2〉 reusing the sub-derivation of Sj from
Ω `C,0,R 〈S1 ‖ S2〉.

(L-SKIP), (L-ADD): Trivial.

(L-IFE): By (T-EBR), we are assured that if
Ω ` 〈E1 ‖ E2〉 : `, then ∃ρ ∈ ρM ∪ ρH .ρ t ell.
Thus, in Ω `C,i,R if (〈S1 ‖ S2〉) E1 E2 we have
that S1 and S2 are checked in contexts Ω′ where
ρ v Ω′.pc. This is sufficient to guarantee the premise

25

of (T-A3) necessary in the application of (A-T3) for
Ω `C,i,R 〈if (E1) E1 E2 ‖ if (E2) E1 E2〉.

(L-IFQ): By a similar argument to (L-IFE) and using
the definition of lab(q) to deduce that roles(q) 6⊆ ρL ∪ ρM
implies ∃ρ ∈ roleM ∪ ρH .ρ v CΠ(q).

(L-TR): Using (A-T3) with (A-T1) in the premise for
Ω `C,0,R 〈transΦ S ‖ transΦ S〉, and noticing that
(T-TR) requires that in Ω ` transΦ S, Ω.pc = Φ.`.

C A Specific Choice of Metapolicy

In this section we show how a particular instantiation of
the metapolicy CΠ(ρ) and IΠ(ρ) in terms of the delega-
tion structure of an RT0 policy satisfies the requirements
of Lemma 13.

C.1 The Full RT0 Language

In the paper so far we have only presented a restricted
version of the RT0 policy language. Table 1 shows the se-
mantics of the the full RT0 language, where the new state-
ment forms that were previously elided are boxed. Role ρ is
defined by statements of the form ρ←− e whose semantics
is described informally at the top of Table 1. The semantics
is formalized by interpreting the policy Π as a datalog pro-
gram SP (Π), called the semantic program of Π, defined
in terms of one ternary predicate m(A, r,D). Intuitively,
m(A, r,D) means that the principal D is a member of the
role A.r. SP (Π) is the set of all datalog clauses produced
from policy statements in Π. The rules to generate SP (Π)
from Π are shown at the bottom of Table 1. Symbols that
start with “?” represent logical variables.

The semantics of SP (Π) is given using a model-
theoretic approach. SP (Π) is viewed as a set of first or-
der sentences interpreted in the minimal Herbrand model.
We write SP (Π) |= m(A, r,D) when m(A, r,D) is in the
minimal Herbrand model of SP (Π). The formal develop-
ment of the Herbrand model is standard and is not repeated
here. With this, we can define the semantics of role A.r
with respect to policy Π as

[[A.r]]Π ≡ {Z | SP (Π) |= m(A, r, Z)}

C.2 The Metapolicy Cdel(ρ, Π)

Table 1 also shows a metapolicy Cdel(ρ,Π) which can
be used to instantiate the confidentiality of a role definition
CΠ(ρ). The same metapolicy can also be used to instantiate
the integrity of a role definition, IΠ(role).

Intuitively, Cdel(ρ,Π), treats the policy as though it were
an undirected graph where the nodes represents roles ρ, and

an edge (ρ1, ρ2) is present in the graph if ρ1 delegates di-
rectly to ρ2 or vice-versa. Cdel(()ρ,Π) is the set of roles ρ′

in the graph that belong to the same connected component
as ρ.

The intention here is to show that it is possible to in-
stantiate a metapolicy in terms of the struture of the policy
itself, while still maintaining the requirements presented in
Section 3.5. Thus, the semantics of this metapolicy is con-
ditional on the state of the current policy itself. It might
be possible to articulate more restrictive metapolicies if we
make the conditions of policy observability more restric-
tive. For instance, a member of a role ρ can observe [[ρ]]Π

while not being able to observe the statement s ∈ Π where
roledef s = ρ.

This metapolicy places all roles related by delegation
into an equivalence class. Thus, the premises of (C1) and
(C2) of Lemma 13 are obviously satisfied. We provide be-
low a Lemma similar to Lemma 13 that relies directly on
the semantics of a policy, SP (Π) rather than on premises
(C1) and (C2), to show that Cdel(ρ,Π) is a valid choice of
metapolicy.

Lemma 20. Given policies Π1 and Π2 and an observation
level R such that Π1|R= Π2|R; then for any query q such
that roles(q) ⊆ ρL ∪ ρM , Π1 ` q ⇐⇒ Π2 ` q.

Proof. We show that Π ` q ⇐⇒ Π |R` q. Since we
have Π1 |R= Π2 |R, the statement of the lemma follows
immediately.

A formula q is decided by the interpretation of the policy
Π as the semantic program SP (Π). That is, Π ` L1 v L2

iff [[L2]]Π ⊆ [[L2]]Π, where [[L]]Π is defined by the semantic
program SP (Π). To show that Π ` L1 v L2 ⇐⇒ Π|R`
L1 v L2, it suffices to show that [[Li]]Π = [[Li]]Π|R .

Under the choice of metapolicy where CΠ(ρ) =
Cdel(ρ,Π) and IΠ(ρ) = Cdel(ρ,Π), it suffices to show the
following two cases:

∀ρ ∈ ρL(R,Π) ∪ ρM (R,Π).
(1) [[ρ]]Π = [[ρ]]Π|R
(2) [[Cdel(ρ,Π)]]Π = [[Cdel(ρ,Π)]]Π|R

We first consider the interpretation of roles ρ. From the se-
mantics of RT0 we have that [[A.r]]Π ≡ {Z | SP (Π) |=
m(A, r, Z)}, where SP (Π) denotes the semantic program
of the policy Π. The evaluation of SP (Π) is given in terms
of the Herbrand universe of SP (Π). Let TΠ ↑k denote
the kth iterate in the generation of the Herbrand universe
of SP (Π). We have that SP (Π) |= m(A, r, Z) ⇐⇒
∃k.m(A, r, Z) ∈ TΠ↑k. We show by induction on k that
interpretation [[ρ]]Π = [[ρ]]Π|R .

Base case (k=1): m(A, r, Z) ∈ TΠ ↑1 ⇐⇒
m(A, r, Z) ∈ SP (Π) ⇐⇒ A.r ← Z ∈ Π. But, by as-
sumption since A.r ∈ ρL∪ρM we have that ∀s.roledef s =
A.r ⇒ s ∈ Π|R. Thus, m(A, r, Z) ∈ TΠ|R↑1.

26

Informal meaning of RT0 policy statements s

Statement Name Statement Syntax Meaning
Simple Member A.r ←− X All principals in X are member of A’s r role.
Simple Inclusion A.r ←− B.r1 A’s r role includes (all members of) B’s r1 role. This represents

a delegation from A to B, as B may add principals to become
members of the role A.r by issuing statements defining B.r1.

Linking Inclusion A.r ←− B.r1.r2 A.r includes D.r2 for every D that is a member of B.r1. This
represents a delegation from A to B and all the members of the
role B.r1. We call B.r1.r2 a linked role.

Intersection Inclusion A.r ←− B1.r1 ∩B2.r2 A.r includes every principal who is a member of both B1.r1

and B2.r2. This represents partial delegations from A to B1

and to B2. We call B1.r1 ∩B2.r2 an intersection.

Translation of an RT0 policy Π into a datalog program SP (Π) to interpret roles

(A.r ←− X) ∈ Π ⇐⇒ ∀B ∈ X.(m(A, r,B)) ∈ SP (Π)
(A.r ←− B.r1) ∈ Π ⇐⇒ (m(A, r, ?Z) :−m(B, r1, ?Z)) ∈ SP (Π)
(A.r ←− B.r1.r2) ∈ Π ⇐⇒ (m(A, r, ?Z) :−m(B, r1, ?Y),m(?Y, r2, ?Z)) ∈ SP (Π)
(A.r ←− B.r1 ∩ C.r2) ∈ Π ⇐⇒ (m(A, r, ?Z) :−m(B, r1, ?Z),m(C, r2, ?Z)) ∈ SP (Π)

A metapolicy, Cdel(ρ,Π), based on the closure of the delegation relation

Cdel(ρ, Π) ≡ lim
i→∞

Cdel
i (ρ, Π) [[Cdel(ρ, Π)]]Π ≡

[
ρ′∈Cdel(ρ,Π)

[[ρ′]]Π

where

Cdel
0 (ρ, Π) ≡ {ρ}

Cdel
i+1(ρ, Π) ≡ Cdel

i (ρ, Π) ∪ {ρ′ | ∃ρ′′ ∈ Cdel
i (ρ, Π).ρ′′ ∈ dlgΠ(ρ′) ∨ ρ′ ∈ dlgΠ(ρ′′)}

dlgΠ(A.r) ≡ dlg0 (Π, A.r, Π)
dlg0 (Π0, A.r, ∅) ≡ ∅
dlg0 (Π0, A.r, {B.r1 ←− e} ∪Π) ≡ dlg0 (Π0, A.r, Π) (where A.r 6= B.r1)
dlg0 (Π0, A.r, {A.r ←− X} ∪Π) ≡ dlg0 (Π0, A.r, Π)
dlg0 (Π0, A.r, {A.r ←− ρ} ∪Π) ≡ dlg0 (Π0, A.r, Π) ∪ {ρ}
dlg0 (Π0, A.r, {A.r ←− ρ1 ∩ ρ2} ∪Π) ≡ dlg0 (Π0, A.r, Π) ∪ {ρ1, ρ2}
dlg0 (Π0, A.r, {A.r ←− B.r1.r2} ∪Π) ≡ dlg0 (Π0, A.r, Π) ∪ {B.r1} ∪ {D.r2 | D ∈ [[B.r1]]

Π0}

Table 1. Semantics of full RT0 policies Π and a metapolicy Cdel(ρ,Π).

27

Inductive Hypothesis: ∀i < k.m(A, r, z) ∈ TΠ↑i ⇐⇒
m(A, r, Z) ∈ TΠ|R↑i where A.r ∈ ρL ∪ ρM .

Inductive Step: Suppose m(A, r, Z) ∈ TΠ ↑k.
m(A, r, Z) ∈ TΠ↑k ⇐⇒ m(A, r, Z) : −b1, . . . , bn ∈
SP (Π)INST and bi ∈ TΠ↑k−1; where SP (Π)INST is the
ground instantiation of SP (Π) and each bi is a ground pred-
icate. By the definition of SP (Π)INST , this is only possi-
ble if there exists role predicates B1 . . . Bn such that bi is
an instantiation of Bi and m(A, r, ?X) : −B1, . . . , Bn ∈
SP (Π). Let ρi denote the role defined by the predicate Bi.
To show that m(A, r, Z) ∈ TΠ|R↑k, it is sufficient to show
that ∀i.ρi ∈ ρL ∪ ρM , since bi is in TΠ↑k−1.

Note, however, that if m(A, r, ?X) : −B1, . . . , Bn ∈
SP (Π) then we must have ρi ∈ dlgΠ(A.r). This follows
immediately from the definitions of SP (Π) and ∇(ρ,Π).
Thus, for each i, [[Cdel(ρi,Π)]]Π = [[Cdel(A.r, Π)]]Π. From
the definition of Obs(R,Π) we have that A.r ∈ ρL(R,Π)∪
ρM (R,Π) ⇐⇒ ∃ρR ∈ R.Cdel(A.r, Π) t ρR. Thus,
∀i.ρi ∈ ρL(R,Π) ∪ ρM (R,Π).

Now, we consider the interpretation of metapolicy
Cdel(ρ,Π). From the previous case, we have shown that
∀ρ ∈ ρL ∪ ρM .[[ρ]]Π = [[ρ]]Π|R . From the definition of
[[Cdel(ρ,Π)]]Π, if we are to show

[[Cdel(ρ,Π)]]Π = [[Cdel(ρ,Π|R)]]Π|R

then, it suffices to show that (1) ∀ρ′ ∈ Cdel(ρ,Π).ρ′ ∈ ρL∪
ρM ; and (2) ∀ρ1, ρ2 ∈ ρL ∪ρM .ρ2 ∈ dlgΠ(ρ1) ⇐⇒ ρ2 ∈
dlgΠ|R(ρ1). The proof of (2) is trivial, since dlgΠ(ρ1) is a
function of statements s where roledef s = ρ1 and

∀s.roledef s ∈ ρL ∪ ρM ⇒ s ∈ Π ⇐⇒ s ∈ Π|R

To prove (1) we use the definition of Cdel(ρ,Π) as the
limi→∞ Cdel

i (ρ,Π). We proceed by induction on i.
Base Case (i=0): ρ ∈ ρL ∪ ρM ⇒ Cdel

0 (ρ,Π) ⊆ ρL ∪
ρM . Since Cdel

0 (ρ,Π) = {ρ} this is immediate.
Inductive Hypothesis: ∀i < k.ρ ∈ ρL ∪ ρM ⇒

Cdel
i (ρ,Π) ⊆ ρL ∪ ρM .
Inductive Step: ρ ∈ ρL ∪ ρM ; consider Cdel

k (ρ,Π) =
Cdel
k−1(ρ,Π) ∪ {ρ1, . . . , ρn}. But, by the inductive hypoth-

esis we have that Cdel
k−1(ρ,Π) ⊆ ρL ∪ ρM , ∀ρi.∃ρ′ ∈

Cdel
k−1(ρ,Π), such that, ρi ∈ Cdel

1 (ρ′,Π). Thus, by the in-
ductive hypothesis ρi ∈ ρL ∪ ρM .

28

