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Abstract. We present the design and implementation of the first com-
plete framework for flexible and safe dynamic linking of native code.
Our approach extends Typed Assembly Language with a primitive for
loading and typechecking code, which is flexible enough to support a
variety of linking strategies, but simple enough that it does not signif-
icantly expand the trusted computing base. Using this primitive, along
with the ability to compute with types, we show that we can program
many existing dynamic linking approaches. As a concrete demonstra-
tion, we have used our framework to implement dynamic linking for a
type-safe dialect of C, closely modeled after the standard linking facility
for Unix C programs. Aside from the unavoidable cost of verification,
our implementation performs comparably with the standard, untyped
approach.

1 Introduction

A principle requirement in many modern software systems is dynamic extensibi-
lity—the ability to augment a running system with new code without shutting
the system down. Equally important, especially when extensions may be un-
trusted, is the condition that extension code be safe: an extension should not
be able to compromise the integrity of the running system. Two examples of
systems allowing untrusted extensions are extensible operating systems [4], [11]
and applet-based web browsers [22]. Extensible systems that lack safety typi-
cally suffer from a lack of robustness; for example, if the interface of a newer
version of a dynamically linked library (DLL) changes from what is expected
by the loading program, its functions will be called incorrectly, very possibly
leading to a crash. These sorts of crashes are accidental, so in the arena of un-
trusted extensions the problem is greatly magnified, since malicious extensions
may intentionally violate safety.



The advent of Java [3] and its virtual machine [29] (the JVM) has popularized
the use of language-based technology to ensure the safety of dynamic extensions.
The JVM bytecode format for extension code is such that the system may verify

that extensions satisfy certain safety constraints before it runs them. To boost
performance, most recent JVM implementations use just-in-time (JIT) compil-
ers. However, because JIT compilers are large pieces of software (typically tens
of thousands of lines of code), they unduly expand the trusted computing base

(TCB), the system software that is required to work properly if safety is to be
assured. To minimize the likelihood of a security hole, a primary goal of all such
systems is to have a small TCB.

An alternative approach to verifiable bytecode is verifiable native code, first
proposed by Necula and Lee [35] with Proof-Carrying Code (PCC). In PCC,
code may be heavily optimized, and yet still verified for safety, yielding good
performance. Furthermore, the TCB is substantially smaller than in the JVM:
only the verifier and the security policy are trusted, not the compiler. A variety
of similar architectures have been proposed [2], [25], [33].

While verifiable native code systems are fairly mature, all lack a well-designed
methodology for dynamic linking, the mechanism used to achieve extensibility.
In the PCC Touchstone system, for example, dynamic linking has only been
performed in an ad-hoc manner, entirely within the TCB [35], and the current
Java to PCC compiler, Special J, does not support dynamic linking [6]. Most
general-purpose languages support dynamic linking [3], [9], [13], [27], [36], [37], so
if we are to compile such languages to PCC, then it must provide some support
for implementing dynamic linking. We believe this support should meet three
important criteria:

1. Security. It should only minimally expand the TCB, improving confidence
in the system’s security. Furthermore, soundness should be proved within a
formal model.

2. Flexibility. We should be able to compile typical source language linking
entities, e.g., Java classes, ML modules, or C object files; and their loading
and linking operations.

3. Efficiency. This compilation should result in efficient code, in terms of both
space and time.

In this paper, we present the design and implementation of the first complete
framework for dynamic linking of verifiable native code. We have developed this
framework in the context of Typed Assembly Language [33] (TAL), a system of
typing annotations for machine code, similar to PCC, that may be used to verify
a wide class of safety properties. Our framework consists of several small addi-
tions to TAL that enable us to program dynamic linking facilities in a type-safe
manner, rather than including them as a monolithic addition to the TCB. Our
additions are simple enough that a formal proof of soundness is straightforward.
The interested reader is referred to the companion technical report [20] for the
full formal framework and soundness proof.

To demonstrate the flexibility and efficiency of our framework, we have used
it to program a type-safe implementation of DLopen [9], a UNIX library that



provides dynamic linking services to C programs. Our version of DLopen has
performance comparable to the standard ELF implementation [40], and has the
added benefit of safety. Furthermore, we can program many other dynamic link-
ing approaches within our framework, including Java classloaders [23], Windows
DLLs and COM [7], Objective Caml’s Dynlink [27], [37], Flatt and Felleisen’s
Units [13], and SPIN’s domains [38], among others.

The remainder of this paper is organized as follows. In the next section we
motivate and present our framework, which we call TAL/Load. In Section 3
we describe a type-safe version of DLopen programmed using TAL/Load. In
Section 4 we compare the performance of our type-safe version to the standard
version of DLopen. We discuss how we can program other linking approaches
using TAL/Load in Section 5, and discuss other related work. We conclude in
Section 6.

2 Our Approach

We begin our discussion by considering a straightforward but flawed means of
adding dynamic linking in TAL, to motivate our actual approach, described later.
Consider defining a primitive, load0, that dynamically instantiates, verifies, and
links TAL modules into the running program. Informally, load0 might have the
type:

load0 : ∀α : sig. bytearray→ α option

To dynamically load a module, the application first obtains the binary represen-
tation of the module as a bytearray, and provides it to load0 preceded by the
module’s expected signature type α. Then load0 parses the bytearray, checks it
for well-formedness, and links any unresolved references in the file to their defi-
nitions in the running program. Next, it compares the module’s signature with
the expected one; if the signatures match, it returns the module to the caller.
If any part of this process fails, load0 returns NONE to signal an error. As an
example, suppose the file “extension” contains code believed to implement a
module containing a single function f of type int → int. In informal notation,
that file is dynamically linked as follows:

case load0 [sig f : int -> int end]
(read file "extension") of

NONE => ... handle error ...

| SOME m => m.f(12)

There are many problems with this approach. First, it requires first-class
modules; in the context of a rich type system, first-class modules require a com-
plicated formalization (e.g., Lillibridge [28]) with restrictions on expressiveness;
as a result, in most ML variants (and TAL as well) modules are second-class [17],
[26], [30]. Second, it requires a type-passing semantics as the type passed to load0

must be checked against the actual type of the module at run-time. This kind of
semantics provides implicit type information to polymorphic functions, contrary



to the efforts of TAL to make all computation explicit. Third, all linking opera-
tions, including tracking and managing the exported definitions of the running
program, and rewriting the unresolved references in the loaded file, occur within
load0, and thus within the TCB. Finally, we are constrained to using the par-
ticular linking approach defined within the TCB, diminishing flexibility. As we
show in Sections 3 and 5, linking is the aspect of extensibility that differs most
among source languages. For example, Java links unresolved references incre-
mentally, just before they are accessed, while in C all linking generally occurs at
load-time. Furthermore, extensible systems typically require more fine-grained
control over linking. For example, in SPIN [4], only trusted extensions may link
against certain secure interfaces, and in MMM [37], the runtime interface used
during dynamic linking is a safe subset of the one used during static linking, a
practice called module thinning.

Rather than place all dynamic linking functionality within the TCB, as we
have outlined above with load0, we prefer to place smaller components therein,
forming a dynamic linking framework. Furthermore, these components are them-
selves largely composed of pre-existing TAL functionality. Therefore, this frame-
work does not implement source-level dynamic linking approaches directly, but
may be used to program them.

Our framework defines a primitive load similar to load0 above, but with the
following simplifications:

1. Loaded modules are required to be closed with respect to terms. That is,
they are not allowed to reference any values defined outside of the module
itself. We can compile source-language modules that allow externally-defined
references to be loadable by using a “poor man’s functorization,” which we
describe below. Modules may refer to externally-defined (i.e., imported) type
definitions.

2. Rather than return a first-class module, load returns a tuple containing the
module’s exported term definitions (and thus the type variable α now is
expected to be a tuple-type, rather than a signature). Any exported type
definitions are added to the global program type interface, a list of types and
their definitions used by the current program, used to resolve the imported
type definitions of modules loaded later.

3. Rather than require a type-passing semantics for the type argument to load,
we make use of term-level representations of types, in the style of Crary et

al. [8].

These simplifications serve three purposes. First, by eliminating possible type
components from the value returned by load, we avoid a complicated modular
theory, at a small cost to the flexibility of the system. Second, the majority of
the functionality of load—parsing binary representations and typechecking—is
already a part of the TCB. By avoiding term-level linking (since loaded modules
must be closed) we can avoid adding binary rewriting and symbol management
to the TCB (we do have to manage type definitions, however, as we explain
in the next subsection). Finally, by adding term-level type representations, we



preserve TAL’s type-erasure semantics. These representations also allow the im-
plementation of a dynamic type, making it possible to program linking facilities
outside of the TCB. We call our framework TAL/Load.

While TAL/Load only permits loading closed TAL modules, in practice we
wish to dynamically load non-closed source modules by resolving their external
references with definitions in the running program. One way to implement this
linking strategy is by translating source-level external references into “holes”
(i.e. uninitialized reference cells), in a manner similar to closure-converting a
function. After the module is loaded via load, these cells are linked appropriately
using a library added to the program. To track the running program’s symbols,
we can use term-level type representations, existential types [31] and a special
checked cast operator to implement type dynamics [1], amenable to programming
a type-safe symbol table.

We defer a complete discussion of how to effectively use TAL/Load until
Section 3, where we describe our implementation of a full-featured dynamic
linking approach for C programs. For the remainder of this section, we focus on
two things. First, we look more closely at the process of closing a module with
respect to its externally defined types and terms. We explain the difficulty with
closing a module with respect to named types, thus motivating our solution
of using the program type interface. We then describe the implementation of
TAL/Load in the TALx86 [32] implementation of TAL.

2.1 Comparing Types by Name

The complications with first-class structures arise because of their type com-
ponents; if M and N are arbitrary expressions of module type having a type
component t, it is difficult at compile-time to determine if M.t is equal to (is the
same type as) N.t. The problem arises because we do not know the identities of
types M.t and N.t, and therefore must use their names (including the paths) to
compare them.

In the absence of these named types1, closing a module with respect to its
externally-defined terms is fairly simple. For example, consider the following
SML module, perhaps forming part of an I/O library, that supports the opening
and reading of text files.

structure TextIO =

struct

type instream = int

val openIn : string -> instream = ...

val inputLine : instream -> string = ...

...

end

1 Named types are also called branded types, and can be used to implement ab-
stract types (as in first-class modules) and generative types (such as structs in C or
datatypes in ML).



A client of this module might be something like:

fun doit =

let val h = TextIO.openIn "myfile.txt" in

TextIO.inputLine h

end

If we want to close this client code to make it amenable for dynamic loading, we
need to remove the references to the TextIO module. For example, we could do:

val TextIO openIn :

(string -> int) option ref = ref NONE

val TextIO inputLine :

(int -> string) option ref = ref NONE

fun doit () =

let val h = getOpt (!TextIO openIn)

"myfile.txt" in

getOpt (!TextIO inputLine) h

end

We have converted the externally referenced function into a locally defined ref-
erence to a function. When the file is dynamically loaded, the reference can get
filled in. This strategy is essentially a “poor man’s” functorization. This process
closes the file with respect to values. However, we run into difficulty when we
have externally defined values of named type. Consider if TextIO wished to hold
the type instream abstract. If we attempt to close the client code as before, we
get:

val TextIO openIn :

(string -> TextIO.instream) option ref = ...

val TextIO inputLine :

(TextIO.instream -> string) option ref = ...

We still have the external references to the type TextIO.instream itself. We
must have a way to load a module referring to externally defined, named types.
Because types form an integral part of typechecking, a trusted operation, our
solution is to support name-based type equality within the TCB. As we do not
want to overly complicate the TCB, we base the support for named types on that
of TAL’s framework for static link verification [15]. There, paths are disregarded
altogether in comparing types; only one module may export a type with a given
name. A related project, TMAL [10], approaches this problem differently, as we
describe in Section 5.6.

Therefore, loaded code is not closed with respect to externally defined types,
but instead declares a type interface (XI , XE), which is a pair of maps from
type names to implementations. XI mentions the named types provided by other
modules, and XE mentions named types defined by this one. By not including
the implementation of the type inside a map X (just mentioning its name),



we can use this mechanism to implement abstraction. As an example, the type
interface of the client code above would be something like:

({instream}, {})

and the interface for TextIO would be the reverse:

({}, {instream})

Part of the implementation of load maintains a list of the imported and ex-
ported types of all the modules in the program, called the program type interface.
When a new module is loaded, load checks that the named type imports of the
new module are consistent with the program type interface, and that the ex-
ports of the new module do not redefine, or define differently, any types in the
program type interface imports. We do not require that all of a module’s type
imports be defined by the program interface when it is loaded. This relaxation
requires a uniform representation of named types; in our case, all named types
are pointer-types. Not requiring defined imports facilitates loading a file that
has mutually-recursive type definitions. In particular, the loaded file indicates
the type it expects from another file to be loaded. When the other file is loaded,
its export is confirmed to match the previously loaded import.

We have developed a formal calculus for our framework and have proven
it sound. While this formalization is interesting, our real contribution lies in
the way we can program type-safe dynamic linking within our framework. We
refer the interested reader to the companion technical report [20] for the full
theoretical treatment.

2.2 Implementation

We have implemented TAL/Load in the TALx86 [32] implementation of TAL.
The key component of TAL/Load is the load primitive:

load : ∀α. (R(α) × bytearray) → α option

In addition to the bytearray containing the module data, load takes a term
representation of its type argument, following the approach of Crary et al.’s

λR [8]. Informally, λR defines term representations for types, called R-terms, and
types to classify these terms, called R-types. For example, the term to represent
the type int would be Rint, and the type of this term would be R(int). The type
R(τ) is a singleton type; for each τ there is only one value that inhabits it—the
representation of τ . Therefore the typechecker guarantees the correspondence
between a type variable checked statically and the representation of that type
used at runtime.

The actions of load are illustrated in Figure 1. In the figure, the square boxes
indicate unconditional actions, and the diamond boxes indicate actions that
may succeed or fail. Each square and diamond box has data inputs and outputs,
indicated as wavy boxes; the arrows illustrate both data- and control-flow. Using
components of the TALx86 system, load performs two functions:
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Fig. 1. The implementation of load

1. Disassembly The first argument Rt indicates the expected type t of the
exports, and must be disassembled into the internal representation of TAL
types. Type t should always be of tuple type, where each element type rep-
resents the type of one of the object file’s exported values. The second ar-
gument to load is a byte array representing the object file and the typing
annotations on it; while conceptually a single argument, in practice TALx86
separates the annotations from the object code, resulting in an object file

and a types file. The contents of these two files, stored in buffers, are disas-
sembled and combined to produce the appropriate internal representation:
a TAL implementation.

2. Verification The TAL implementation is then typechecked in the context
of the program’s current type interface Θ, following the procedure described
in the previous subsection. If typechecking succeeds, the result is a list of
exported values and exported types. The values are gathered into a tuple,
the type of which is compared to the expected type. If the types match, the
tuple is returned (within an option type) to the caller, and the exported
types are combined with Θ to form the new program type interface. On
failure, null (i.e., NONE) is returned.

The majority of the functionality described above results in no addition to the
TAL trusted computing base. In particular, the TAL link verifier, typechecker,
and disassembler are already an integral part of the the TCB; TAL/Load only
makes these facilities available to programs through load. Three pieces of trusted
functionality are needed, however, beyond that already provided by TAL: loading
the object code into the address space of the running program, representing types
as runtime values, and maintaining the program type interface Θ at runtime. We
explain how these elements impact the TCB below.



Loading Following the verification process, before returning to the caller, some
C code is invoked to load the object code into the address space. This loading
code is based on that used by the Linux kernel to dynamically load modules. We
describe the code for ELF object files, used in TALx86 Linux implementation;
COFF files, used in the Windows implementation, are similar.

First, the file is parsed, performing well-formedness checks and extracting
the ELF file’s section headers, which describe the file’s format. The file must be
a relocatable object file, as is normally produced by a compiler for separate com-
pilation, e.g. by cc -c. The sections of interest are the code and data sections,
the relocations section, and the symbol tables. Second, the code and data are
logically arranged in the order and alignment specified by the file and the ELF
standard, and the total required size is computed. Third, any externally-defined
symbols are resolved—more on this below. Finally, an appropriately-sized buffer
is allocated and the code and data are copied to that buffer (TAL uses garbage
collection, so the buffer is allocated using the GC allocator).2 This code is then
relocated to work relative to the allocated buffer’s address. Finally, the address
of the buffer is returned to the caller (which is the result of load).

It is troublesome that we resolve (i.e. link) external symbols during the load-
ing process. Much of the motivation of our approach is to perform linking outside
the TCB, in part to avoid the additional complexity. In fact, the overwhelming
majority of symbols are linked by mechanisms outside the TCB, as we show in
the next section. However, there are some trusted symbols that cannot easily be
linked in this way. These symbols are part of the macro instructions of TALx86.
Macro instructions do not map directly to a machine instruction, but instead to
a machine instruction sequence; this sequence may include references to external
symbols. For example, the macro for the TALx86 malloc instruction consists of
six machine instructions, of which two are calls to external functions, one to
GC malloc (to actually allocate the memory), and the other to out of memory

(in case the GC allocator returns null). The file cannot be closed with respect
to these calls, because they are primitive.

As a result, when a file containing a malloc instruction is dynamically loaded,
the external calls to must be resolved by the loader. We do this by rewriting
the code directly, using the relocations provided in the object file. Patching
symbols in this manner has the unfortunate consequence that loaded code can-
not be shared between (OS-level) processes because the patched symbols, like
GC malloc, may be at different addresses in each process.

Given that we must link some symbols implicitly—that the module does not
truly have to be ‘closed’—it is reasonable to ask “why not link all symbols in this
way?” The answer is that it would greatly reduce our flexibility and our security.

2 Note that this allocation is necessary; we cannot reuse the buffer containing the
object file data to avoid the copy. The reason is that load effectively changes the
type of the buffer argument from bytearray to some type α. Placing the object
file contents in a fresh buffer prevents surreptitiously modifying the given buffer via
an alias still having bytearray type. We could avoid this copy by proving that no
aliases exist, e.g. by using alias types [41].



As motivated in §2, by moving symbol management outside of the TCB, we can
better control how symbols are stored (i.e. what datastructure), how they are
apportioned among users of various privilege levels, how they are interfaced, etc.,
without changing to trusted computing base; instead we can rely on the system
to verify that this ‘untrusted’ code is safe.

While implicit linking seems to be necessary for TALx86 macro instructions,
it may be that our approach could be improved. In particular, if the symbols
referred to by macro sequences (e.g. GC malloc) were always loaded at the same
address, then we could share the code between processes. Given that most mod-
ern operating systems support separate, per-process address spaces, and that
both ELF and COFF files allow the loaded address for a program component
to be specified, this should be possible. It would furthermore allow the reloca-
tion process to take place outside of the TCB, preceding the call to load. The
disassembler would then check for the particular, fixed address when checking
the well-formedness of macro instruction sequences, rather than looking for an
external symbol reference.

Passing Types at Runtime Term representations for types are used, among
other things, to preserve TAL’s type-erasure semantics. So that this addition to
the TAL trusted computing base can be kept small, we do two things. First,
we represent R-terms using the binary format for types already used by the
TAL disassembler. Note that the binary representation of a named type is a
string containing the name. Second, we do not provide any way within TAL to
dynamically introduce or deconstruct R-terms, such as via appropriate syntax
and typecase [8]. Doing so would require that we reflect the entire binary format
of types into the type system of TAL. Instead, we only allow the introduction
of R-terms in the static data segment by a built-in directive. Consequently, only
closed types may be represented.

Aside from providing type information to load, R-types are also useful for
implementing dynamic types. Dynamic types may be used to implement type-
safe symbol management, as we describe in the next section. Therefore we allow
limited examination of R-terms with a simple primitive called checked cast:

checked cast : ∀α. ∀β. (R(α) × R(β) × β) → α option

Informally, checked cast takes a value of type β and casts it to one of type α if
the types α and β are equal. This operation is trivial to add as comparing types
is part of the TAL typechecker. Therefore it does not add to the TCB. With a
full implementation of λR including typecase, checked cast does not need to be
primitive [42].

Maintaining the Program Type Interface As explained in the previous
subsection, the need to maintain the program’s type interface at runtime derives
directly from the presence of named types in TAL. We may use elements already
within the TCB to implement the program type interface. Representations of



type interfaces (XI , XE) already exist as a part of object files; they are used in
verifying static link consistency. The initial Θ is initialized in a small bit of code
generated by the TAL static linker after it has determined the program’s type
interface. Computing the new type interface at run time is done using this same
trusted code for static link verification, so maintaining this information at run
time does not significantly expand the TCB.

3 Programming Dynamic Linking

Having defined our dynamic linking framework TAL/Load, we now describe
how to use TAL/Load to program dynamic linking services as typically defined
in source languages like C and Java. As a concrete demonstration, we present
a type-safe version of DLopen [9], a standard dynamic-linking methodology for
C, that we have written using TAL/Load. Our version, called DLpop, provides
the same functionality for Popcorn [32], a type-safe dialect of C. We chose to
implement DLopen over several other dynamic linking approaches because it is
the most general; we describe informal encodings of other approaches, including
Java classloaders [23], in Section 5. We begin by describing DLpop and the
ways in which it differs from DLopen, and then follow with a description of our
implementation written in TAL/Load.

3.1 DLpop: A type-safe DLopen

extern handle;

extern handle dlopen(string fname);

extern a dlsym<a>(handle h, string sym, <a>rep typ);

extern void dlclose(handle h);

extern exception WrongType(string);

extern exception FailsTypeCheck;

extern exception SymbolNotFound(string);

Fig. 2. DLpop library interface

Most Unix systems provide some compiler support and a library of utilities
(interfaced in the C header file dlfcn.h) for dynamically linking object files. We
call this methodology DLopen, after the principal function it provides. We have
implemented a version of DLopen for our type-safe C-like language, Popcorn [32],
which we call DLpop. The library interface is essentially identical to DLopen
except that it is type-safe; it is depicted in Figure 2. We describe this interface in
detail below, noting differences with DLopen; a thorough description of DLopen
may be found in Unix documentation [9]. DLpop and DLopen both provide three
core functions:



handle dlopen(string fname)

Given the name of an object file, dlopen dynamically loads the file and re-
turns a handle to it for future operations. Imports in the file (i.e., symbols
declared extern therein) are resolved with the exports (i.e., symbols not
declared static) of the running program and any previously loaded object
files. Before it returns, dlopen will call the function init if that function is
defined in the loaded file. In DLpop (but not DLopen), dlopen typechecks
the object file, throwing the exception FailsTypeCheck on failure. In addi-
tion, the exception SymbolNotFound will be raised if the loaded file imports
a symbol not present in the running program, or WrongType if a symbol in
the running program does not match the type expected by the import in the
loaded file. DLopen functions, in general report errors with an errno-like
facility.

a dlsym<a>(handle h, string sym, <a>rep typ)

In DLpop, dlsym takes a handle for a loaded object file h, a string naming
the symbol s, and the representation of the symbol’s type typ, dlsym returns
a pointer to the symbol’s value. The syntax <a> refers to the type argument
a (not its representation) to dlsym. In lambda-calculus notation, dlsym

therefore has the type

dlsym : ∀a. handle× string× R(a) → a

In DLopen, dlsym does not receive a type argument, and the function re-
turns an untyped pointer (null on failure), of C-type void *, which requires
the programmer to perform an unchecked cast to the expected type. The
fact that our version takes a type representation argument typ to indicate
the expected type means that this type can be (and is) checked against
the actual type at runtime. In practice, this type always has the form of a
pointer type since the value returned is a reference to the requested symbol.
As in TAL, we have extended Popcorn with representation types (<a>rep),
implementing them with TAL R-types. The term representing type t in
Popcorn is denoted repterm@<t>. Because we cannot create the represen-
tation of a type with free type variables in TAL, the type argument a to
dlsym must also be a closed type. If the requested symbol is not present in
the object file, the exception SymbolNotFound is thrown; if the passed type
does not match the type of the symbol, the exception WrongType is thrown.

void dlclose(handle h)

In DLopen, dlclose unloads the file associated with the given handle. In
particular, the file’s symbols are no longer used in linking, and the memory
for the file is freed; the programmer must make sure there are no dangling
pointers to symbols in the file. In DLpop, dlclose only removes symbols
from future linkages; if the user program does not reference the object file,
then it can be garbage collected.

The current version of DLpop does not implement all of the features of DLopen,
most notably: DLopen automatically loads object files upon which a dynami-



Dynamically linked code: loadable.pop

extern int foo(int);

int bar(int i) {
return foo(i);

}

Static code: main.pop

int foo(int i) {
return i+1;

}

void pop_main(){
handle h = dlopen("loadable");

int bar(int) = dlsym(h,"bar", repterm@<int(int)>);

bar(3);

dlclose(h);

}

Fig. 3. DLpop dynamic loading example

cally loaded file depends, allowing for recursive references; DLopen supports the
ability to optionally resolve function references on-demand, rather than all at
load-time, assuming the underlying mechanisms (e.g. an ELF procedure link-
age table [40]) are present in the object file; and DLopen provides a sort of
finalization by calling the user-defined function fini when unloading object
files. We foresee no technical difficulties in adding these features should the need
arise. In a later version of DLpop, we implemented a variant of dlopen that
allows the caller to specify a list of object files to load, and these files may have
mutually-recursive (value) references. On-demand function symbol resolution is
also feasible; a possible compilation strategy to support it is described below, and
another approach is described in Section 5.1. Finally, finalization is implemented
in most garbage collectors, in particular the Boehm-Demers-Weiser collector [5]
used in the current TAL implementation.

Figure 3 depicts a simple use of DLpop. The user statically links the file
main.pop, which, during execution, dynamically loads the object file loadable.o
(the result of compiling loadable.pop), looks up the function bar, and then
executes it; the type argument to dlsym is inferred by the Popcorn compiler.
The dynamically linked file also makes an external reference to the function
foo, which is resolved at load time from the exports of main.pop.
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}

static int bar(int i) {

}

}

return GOT.foo(i);

struct got t {

struct got t GOT = { dummy };

raise (Failure);
static int dummy(int i) {

int (int) foo;

void dyninit(a lookup<a>(string, <a>rep),

int (int) foo = lookup("foo",repterm@<int (int)>);

void update<a>(string,a,<a>rep)) {

GOT.foo = foo;

}
update("bar",bar,repterm@<int (int)>);

Fig. 4. Compilation of dynamically loadable code

3.2 Implementing DLpop in TAL/Load

Our implementation of DLpop is similar to implementations of DLopen that
follow the ELF standard [40] for dynamic linking, which requires both library
and compiler support. In ELF, dynamically loadable files are compiled so that
all references to data are indirected through a global offset table (GOT) present
in the object file. Each slot in the table is labeled with the name of the symbol
to be resolved. When the file is loaded dynamically, the dynamic linker fills each
slot with the address of the actual exported function or value in the running
program; these exported symbols are collected in a dynamic symbol table, used
by the dynamic linker. This table consists of a list of hashtables, one per object
file, each constructed at compile-time and stored as a special section in the object
file. As files are loaded and unloaded, the hashtables are linked and unlinked from
the list, respectively.

We describe our DLpop implementation below, pointing out differences with
the ELF approach. We first describe the changes we made to the Popcorn com-
piler, and then describe how we implemented the DLpop library.

Compilation As in the ELF approach, dynamically loadable files must be
specially compiled, an operation that we perform in three stages. First, the
compiler must define a GOT for the file, and translate references to externally
defined functions and data to refer to slots in the GOT. In ELF, the GOT is
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int foo(int i) {
return i+1;

}

bar(3);

void pop main() {

handle h = dlopen("loadable");
int bar(int) = dlsym(h,"bar",repterm@<int (int)>);

dlclose(h);
}

void dyninit(a lookup<a>(string, <a>rep),
void update<a>(string,a,<a>rep)) {

update("foo",foo,repterm@<int (int)>);
}

Fig. 5. Compilation of statically linked code

a trusted part of the object file, while in DLpop the GOT is implemented in
the verifiable language, TAL. As a consequence, the table is well-typed with
the compiler initializing each slot to a dummy value of the correct type, where
possible. For slots of abstract type, we cannot create this dummy value, so we
initialize the slot to null and insert null checks for each table access in order to
satisfy the typechecker.

Second, the compiler adds a special dyninit function that will be called at
load-time to fill in the slots in the GOT with the proper symbols. This approach
differs from ELF, in which the GOT is filled by a dynamic linker contained in the
running program. From the loading program’s point of view, the dyninit func-
tion abstracts the linking process. The dyninit function takes as arguments
two other functions, lookup and update, that provide access to the dynamic
symbol table. For each symbol address to be stored in the GOT, dyninit will
look up that address by name and type using the lookup function, and fill in
the appropriate GOT slot with the result. Similarly, dyninit will call update
with the name, type, and address of each symbol that it wishes to export. Be-
cause the dyninit function consists only of TAL code, all linking operations
are verifiably type-safe. This verification prevents, for example, lookup from re-
questing a symbol by name, then receiving a symbol of an unexpected type. In
an untypechecked setting, as in DLopen, this operation could result in a crash.

Finally, because the exports of dynamically linked files are designated by
dyninit, the object file should only export dyninit itself; therefore the compiler
makes all global symbols static. Figure 4 shows the entire translation for the
dynamic code in Figure 3.

Statically linked files are only changed by adding a dyninit to export symbols
to dynamically linked files. At startup, the program calls the dyninit functions
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replace dummy in the GOT

call it
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note the lookup function

}

struct got t {

struct got t GOT = { dummy };

static int dummy(int i) {

int (int) foo;

static int bar(int i) {

}
return GOT.foo(i);

static a dynlookup<a>(string, <a>rep) = ...;

void dyninit(a lookup<a>(string, <a>rep),

void update<a>(string,a,<a>rep)) {

dynlookup = lookup;

GOT.foo = foo;

return GOT.foo(i);
}

int (int) foo = dynlookup("foo",repterm@<int (int)>);

update("bar",bar,repterm@<int (int)>);
}

Fig. 6. Compilation of dynamically loadable code to resolve functions on-demand. Only
the parts that differ from Figure 4 are commented.

of each of its statically linked files. Figure 5 shows the static code of Figure 3
compiled in this manner.

Rather than add the dyninit function to fill in the GOT’s of loaded files and
note their exported symbols, we could have easily followed the ELF approach of
writing a monolithic dynamic linker, called at startup and from dlopen. However,
we have found that abstracting the process of linking to calling a function in the
loaded file has a number of benefits. First, it allows the means by which an object
file resolves its imported symbols to change without affecting the DLpop library.
For example, in order to save space, we could allow GOT entries to be null
by changing them to option type, or we could eliminate the GOT altogether
by using runtime code generation, as described in Section 5. If we knew that
many symbols may not be used by the loading program (as is likely with a
large shared library), we could resolve them on-demand by making the dummy
functions perform the symbol resolution, rather than doing so in the dyninit

function; this approach is shown in Figure 6.

Second, dyninit simplifies the implementation of policy decisions made by
the loading code with regard to symbol management. For example, the loading
code may wish to restrict access to some of its symbols based on security crite-



ria [38]; in this case, it could customize the lookup function provided to dyninit

to throw an exception if a restricted symbol is requested.
Finally, using dyninit allows the loaded file to customize operations per-

formed at link-time. For example, by adding a flag to prevent calls to update

from occurring on subsequent calls to dyninit (and thus only the lookup calls
are performed), we can enable code relinking. This allows us to dynamically up-

date the module in a running program: we load a new version of a module, link
it as usual, and then relink the other modules in the program to use the new
module by calling their dyninit functions. Any needed state translation can be
performed by the new module’s init function. Though not described here, we
have fully explored this idea with an alternative version of DLpop [19], [18], and
used it to build a dynamically updateable webserver, FlashEd [12].

The DLpop Library The DLpop interface in Figure 2 is implemented as a
Popcorn library. The central element of the library is a type-safe implementation
of the dynamic symbol table for managing the symbols exported by the running
program. We first describe this symbol table, and then describe how the DLpop
functions are used in conjunction with it.

DLpop encodes the dynamic symbol table as in ELF, as a list of hashtables
mapping symbol names to their addresses, one hashtable per linked object file.
Each time a new object file is loaded, a new hashtable is added. The dynamic
symbol table is constructed at start-up time by calling the dyninit functions
for all of the statically linked object files.

Each entry of the hashtable contains the name, value, and type representation
of a symbol in the running program, with the name as the key. So that entries
have uniform type, we use existential types [31] to hide the actual type of the
value:3

objfile ht : <string, ∃α. (α × R(α))> hashtable

To update the table with a new symbol (the result of calling update from
dyninit), we pack the value (say of type β) and type representation (of type
R(β)) together in an existential package, hiding the value’s type, and insert that
package into the table under the symbol’s key. When looking up a symbol ex-
pected to have type α, and given a term representation r of type R(α), we do
the following. First, the symbol’s name is used to index the symbol hashtable,
returning a package having type ∃β.β × R(β). During unpacking, the tuple is
destructed, binding a type variable β, and two term variables, table value and
table rep, of type β and R(β), respectively. We then call

checked cast[α][β](r, table rep, table value)

which compares r and table rep, and coerces table value from type β to
type α if they match. This value is then returned to the caller. Otherwise, the
exception WrongType is raised.

The DLpop library essentially consists of wrapper functions for load and the
dynamic symbol table manipulation routines:

3 The type <τ1, τ2> hashtable contains mappings from τ1 to τ2.



dlopen

Recall that dlopen takes as its argument the name of an object file to
load. First it opens and reads this object file into a bytearray. Because
of the compilation strategy we have chosen, all loadable files should export
a single symbol, the dyninit function. Therefore, we call load with the
dyninit function’s type and the bytearray, and should receive back the
dyninit function itself as a result. If load returns NONE, indicating an error,
dlopen raises the exception FailsTypeCheck. Otherwise, a new hashtable
is created, and a custom update function is crafted that adds symbols to it.
The returned dyninit function is called with this custom update function,
as well as with a lookup function that works on the entire dynamic symbol
table. After dyninit completes, the new hashtable is added to the dynamic
symbol table, and then returned to the caller with abstract type handle.

dlsym

This function receives a type argument (call it α) and three term arguments:
a handle, h; a string representing the symbol name, s; and the representa-
tion of the type α, r. Because the handle object returned by dlopen is in
actuality the hashtable for the object file, dlsym simply attempts to look
up the given symbol in that hashtable, following the procedure outlined
above, raising the exception SymbolNotFound if the symbol is not present,
or WrongType if the types do not match.

dlclose

The dlclose operation simply removes the hashtable associated with the
handle from the dynamic symbol table. Future attempts to look up symbols
using this handle will be unsuccessful. Once the rest of the program no longer
references the handle’s object file, it will be safely garbage-collected.

As a closing remark, we emphasize the value of implementing DLpop. We have
not intended DLpop to be a significant contribution in itself; rather, the contribu-
tion lies in the way in which DLpop is implemented. By using TAL/Load, much
of DLpop was implemented within the verifiable language, and was therefore
provably safe. Only load and λR constitute trusted elements in its implementa-
tion, and these elements are themselves small. If some flaw exists in DLpop, the
result will be object files that fail to verify, not a security hole.

We should point out that the implementation described here (and measured
in the next section) is the first of two DLpop implementations. Our most re-
cent implementation, described fully in [18], differs in two key ways from the
one described here. First, rather than perform the dynamic transformation for
files within the compiler, we do it source-to-source, preceding compilation. De-
coupling the transformation from the compiler results in a more modular and
flexible implementation, but required the addition of some features to Popcorn.
Second, the newer implementation is more full-featured. It supports loading mod-
ules with mutually-recursive references, and allows for dynamically updating a
module, as described above. The principles behind the two implementations are
essentially the same.



4 Measurements

Much of the motivation behind TAL and PCC is to provide safe execution of
untrusted code without paying the price of byte-code interpretation (as in the
JVM) or sandboxing (as in the Exokernel [11]). Therefore, while the chief goal
of our work is to provide flexible and safe dynamic linking for verifiable native
code, another goal is to do so efficiently.

In this section we examine the time and space costs imposed by load and
DLpop. We compare these overheads with those of DLopen (using the ELF im-
plementation) and show that our overheads are competitive. In particular, our
run-time overhead is exactly the same, and our space overhead is comparable.
The verification operation constitutes an additional load-time cost, but we be-
lieve that the cost is commensurate with the benefit of safety, and does not
significantly reduce the applicability of dynamic linking in most programs. All
measurements presented in this section were taken on a 400 MHz Pentium II
with 128 MB of RAM, running Linux kernel version 2.2.5. DLopen/ELF mea-
surements were generated using gcc version egcs-2.91.66.

4.1 Time Overhead

The execution time overhead imposed by dynamic linking, relative to Popcorn
programs that use static linking only, occurs on three time scales: run-time,
load-time, and start-time. At run-time, each reference to an externally defined
symbol must be indirected through the GOT. At load-time, the running program
must verify and copy the loaded code with load, and then link it by executing its
dyninit function. At startup, statically linked code must construct the initial
dynamic symbol table. DLopen/ELF has similar overheads, but lacks verification
and its associated benefit of safety.

Run-time Overhead In most cases, the only run-time overhead of dynamic
code is the need to access imported symbols through the GOT; this overhead
is exactly the same as that imposed by the ELF approach. Each access requires
one additional instruction, which we have measured in practice to cost one extra
cycle. A null function call in our system costs about 7 cycles, so the dynamic
overhead of an additional cycle is about 14%.

For imported values of abstract type, there is also the cost of the null check
before accessing each GOT element. However, we have yet to see this overhead
occur in practice. Most files do not export abstract values, but instead “con-
structor” functions that produce abstract values; an exception in our current
code base is the Popcorn Core library, which defines stdin, stdout, and stderr

to have abstract type FILE. These cases typically define the abstract type to
allow a null value (a sort of abstract option type), meaning that a null-check
would have occurred anyway.



Load-time Overhead The largest load-time cost in DLpop is verification. Ver-
ification in load consists of two conceptual steps, disassembly and verification,
as pictured in Figure 1, and described in Section 2.2. Verification itself is per-
formed in two phases: consistency checking (labeled typecheck in the figure) and
interface checking (labeled t = typeof (vs)? in the figure). For the loadable.pop

file, presented in Figure 3, the total time of these operations is 47 ms, where 2%
is disassembly, 96% is consistency checking, and the remaining 2% is interface
checking. Detailed measurements concerning the cost of TAL verification may
be found in [16], which notes that in general, verification costs are linear in the
size of the file being verified.

The remaining cost is to copy the verified code and to execute the file’s
dyninit function. For loadable.pop, the total cost of these two operations is
negligible: about 0.73 ms. This time is roughly twice the time of 0.35 ms for
DLopen/ELF. The main difference here is simply that the ELF loader is more
optimized. Because of its small weight relative to verification, there is little reason
to optimize linking in DLpop.

Verification is by far the most expensive load-time operation, but its cost
could be reduced, in three ways. First, the verification code could be more op-
timized for speed. In particular, proof-carrying code’s Touchstone compiler [34]
has demonstrated small verification times, albeit with a different type system,
and even TAL’s implementors recognize that further gains could be made [16].
Furthermore, disassembly has not been optimized. Second, verification could be
performed in parallel with normal service. After verification completes, only link-
ing remains, which has negligible overhead. Finally, in the case of a trusted sys-
tem, we could turn off the consistency-checking phase during verification, since it
can be run for each loaded file on some other machine. Leaving on link-checking
and interface-checking still ensures that the loaded code meshes with the run-
ning program at the module level, but trusts that the contents of the loaded
module are well-formed. Since consistency-checking is the most time-consuming
operation, we greatly reduce our total update times as a result. Breaking up the
verification operation onto server and client machines has been explored for Java
in [39].

Even with current overheads, verification occurs but once per extension, and
so should not pose a problem for most applications. Applications that load code
at larger time scales, and/or for which loaded code is long-lived, will amortize
the cost of verification over the entire computation. Long running systems that
load extensions or updates, such as operating systems and network servers, and
productivity applications that use dynamically loaded libraries fall into this cat-
egory. Even those applications for which loaded code is short-lived, e.g., agent
systems, could be accommodated, because while verification time may be large,
execution time (thanks to native code) will be small, balancing out the total
cost.

Start-time Overhead At start-time, before execution begins, each statically
linked file’s dyninit function is executed to create the initial dynamic symbol



table for the program. In addition, the program type interface, generated by
the linker, is properly instantiated for use by load. The costs of these operations
depend on the number of symbols and type definitions exported by each file, and
which libraries are used. A typical delay is on the order of tens of milliseconds,
which is meaningless over the life programs that will perform dynamic linking.

In contrast, ELF imposes no start-time cost, because no type interface is used,
and because the static linker generates the hashtables that make up the dynamic
symbol table, storing them in the object file. This implementation trades space
for time.

4.2 Space Overhead

Both DLpop and DLopen/ELF increase the size of object files relative to their
compilation without dynamic linking support. Based on some simple measure-
ments, they appear to be fairly comparable in practice. For the most part the
per-symbol costs for DLpop are higher than that of DLopen/ELF, but there is
a significantly smaller fixed cost. For the remainder of this section we break the
down the space costs of DLpop, and compare them to those of DLopen/ELF.

For both imported and exported symbols, DLpop imposes three space costs:
the string representation of the symbol name,4 its type representation, and the
instructions in the dyninit function that perform its linking. For imported
symbols, there is the additional cost of the symbol’s GOT slot and its default
value. These costs are summarized in Table 1, and compared to the overheads
DLopen/ELF. DLopen/ELF overheads were determined from [40] and from ex-
amining object files on our platform. The fixed cost was estimated by subtracting
the per-symbol costs from the total calculated overhead shown in Figure 7.

The per-symbol cost of DLpop is about one and a half times as much as
DLopen/ELF when not including type representations t. Type representations
tend to be large, between 128 and 200 bytes for functions, increasing total over-
head when they are considered. We mitigate this cost somewhat by sharing
type representations among elements of the same type. One factor that adds
to function type representation size is that the representation encodes not only
the types of the function arguments and returned values, but also the calling
convention. This fact suggests that sharing type components among represen-
tations would net a larger savings, since the calling convention is the same for
all Popcorn functions. We could also reduce per-symbol overhead by eliminating
dyninit and moving the linking code into the DLpop library. However, dyninit
is a convenient, flexible way to perform linking, justifying the extra space cost.

DLopen/ELF has a much higher fixed space cost than DLpop. This comes
from a number of sources, including load-time and unload-time code sequences,
and datastructures that aid in linking. In ELF, each of the hashtables of the
dynamic symbol table is constructed at compile-time and stored in the object
file. Some of the hashtable overhead is per-symbol, but there is also a large fixed

4 Popcorn strings have a length field and an extra pointer (for easier translation
to/from C-style strings), adding 2 words to a C-style representation.



DLpop DLopen
symbol dyninit type GOT default (ELF)
name function rep slot value total

import function 8 + l 24 t 8 8 48 + l + t 58 + l

data 8 + l 24 t 8 8⋆ 48 + l + t 32 + l

export 8 + l 24 t - - 32 + l + t 24 + l

fixed 4 ˜2500

Table 1. Object file overheads, in bytes, for both DLpop and ELF. DLpop overheads
are broken down into component costs; l is the length of a symbol’s name and t is the
size of its TAL type representation.

cost for the empty buckets in order to improve the hash function accuracy. In
DLpop, these tables are constructed at start-time, creating a start-up penalty
but avoiding the extra space cost per object file.

Figure 7 compares DLpop to DLopen/ELF for some benchmark files. Each of
the four clusters of bars in the graph represents a different source file, with vary-
ing numbers of imported and exported functions, notated xi ye at the bottom
of the cluster, where x and y are the number of imports and exports, respec-
tively. When there is one exported function, its code consists of calling all of
the imported functions; when there are fifteen functions, each one calls a single
imported function. All functions are void (void) functions.5 Each bar in the
cluster represents a different compilation approach. The leftmost is the stan-
dard DLpop approach, and the rightmost is DLopen/ELF. The center bar is
DLpop without the sharing of type representations, to show worst case behavior
(when sharing, only one type representation for void (void) is needed). Each
bar shows the size of object files when compiled statically, compiled to export
symbols to dynamic code, and compiled to be dynamically loadable (thus im-
porting and exporting symbols). The export-only case is not shown for ELF, as
this support is added at static link time, rather than compile-time.

The figure shows that DLpop is competitive with DLopen/ELF. The figure
also illustrates the benefit of type representation sharing; the overhead for the
15i 15e when not sharing is almost twice that when sharing is enabled. As the
number of symbols in the file increases, the ELF approach will begin to out-
perform DLpop, but not by a wide margin for typical files (exporting tens of
symbols). In general, we do not feel that space overheads are a problem (nor
did the designers of ELF dynamic linking, it seems). We could structure our
object files so that the dyninit function, which is used once, and type repre-
sentations, which are used infrequently, will not affect the cache, and may be
easily paged out. Type representations are highly compressible (up to 90% using

5 This is the Popcorn (C-like) notation for the type unit → unit.
⋆ For one-word values, this is the cost of the value plus a pointer; structured values

are larger.
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Fig. 7. Comparing the space overhead of DLpop, DLpop without type representation
sharing, and DLopen/ELF for some microbenchmarks.

gzip), and therefore need not contribute to excessive network transmission time
for extensions.

5 Programming other Linking Strategies
(Related Work)

Using our framework TAL/Load, we can implement safe, flexible, and efficient
dynamic linking for native code, which we have illustrated by programming a safe
DLopen library for Popcorn. Many other dynamic linking approaches have been
proposed, for both high and low level languages. In this section we do two things.
First, we describe the dynamic linking interfaces of some high level languages,
describe their typical implementations, and finally explain how to program them
in TAL/Load, resulting in better security due to type safety and/or reduced TCB
size. Second, we look at some low-level mechanisms used to implement dynamic
linking, and explain how we can program them in our framework. Overall, we
demonstrate that TAL/Load is flexible enough to encode typical dynamic linking
interfaces and mechanisms, but with a higher level of safety and security.



5.1 Java

In Java, user-defined classloaders [23] may be invoked to retrieve and instantiate
the bytes for a class, ultimately returning a Class object to the caller. A class-
loader may use any means to locate the bytes of a class, but then relies on the
trusted functions Classloader.defineClass and Classloader.resolveClass

to instantiate and verify the class, respectively. When invoked directly, a class-
loader is analogous to dlopen. Returned classes may be accessed directly, as
with dlsym, if they can be cast to some entity that is known statically, such as
an interface or superclass. In the standard JVM implementation, linking occurs
incrementally as the program executes: when an unresolved class variable is ac-
cessed, the classloader is called to obtain and instantiate the referenced class.
In the standard JVM implementation, all linking operations occur within the
TCB: checks for unresolved class variables occur as part of JVM execution, and
symbol management occurs within resolveClass.

We can implement classloaders in TAL/Load by following our approach for
DLpop: we compile classes to have a GOT and an dyninit function to resolve
and register symbols. A classloader may locate the class bytes exactly as in
Java (i.e., through any means programmable in TAL), and defineClass simply
becomes a wrapper for a function similar to dlopen, which calls load and then
invokes the dyninit function of the class with the dynamic symbol table.

To support incremental linking, we can alter the compilation of Java to TAL
(hypothetically speaking) in two ways. We first compile the GOT, which holds
references to externally defined classes, to allow null values (in contrast to DLpop
where we had default values). Each time a class is referenced through the GOT,
a null check is performed; if the reference is null then we call the classloader to
load the class, filling in the result in the GOT. Otherwise, we simply follow the
pointer that is present. As in the strategy depicted in Figure 6, the dyninit

function no longer fills in the GOT at load-time; it simply registers its symbols
in the dynamic symbol table. This approach moves both symbol management
and the check for unresolved references into the verifiable language, reducing the
size of the TCB.

5.2 Windows DLLs and COM

Windows allows applications to load Dynamically Linked Libraries (DLLs) into
running applications, following an interface and implementation quite similar to
DLopen and ELF, respectively, with some minor differences (see Levine [24, pps
217–222]). Like DLopen and ELF, DLLs are not type-safe and would therefore
benefit in this regard from an implementation in TAL/Load.

DLLs are often used as vehicle to load and manipulate Common Object
Model [7] (COM) objects. COM objects are treated abstractly by their clients,
providing access through one or more interfaces, each consisting of one or more
function pointers. All COM objects must implement the interface IUnknown,
which provides the function QueryInterface, to be called at runtime to deter-
mine if the object implements a particular interface. QueryInterface is called



with the globally unique identifier (GUID) that names the desired interface.
GUIDs are not incorporated into the type-system (at least not for source lan-
guages like C and C++), and thus, as with dlsym, the user is forced to cast the
object’s returned interface to the type expected, with a mistake likely resulting
in a crash.

Implementing COM in TAL/Load would be straightforward, with the added
benefit of proven type-safety for interfaces. QueryInterface could be changed
to take type parameter R(t) in addition to the GUID of the expected interface,
ensuring the proper type of the returned interface.

5.3 OCaml Modules

Objective Caml [27] (OCaml) provides dynamic linking for its bytecode-based
runtime system with a special Dynlink module; these facilities have been used to
implement an OCaml applet system, MMM [37]. Dynlink essentially implements
dlopen, but not dlsym and dlclose, and would thus be easy to encode in
TAL/Load. In contrast to the JVM, OCaml does not verify that its extensions
are well-formed, and instead relies on a trusted compiler. OCaml dynamic linking
is similar to that of other type-safe, functional languages, e.g. Haskell [36].

A TAL/Load implementation of the OCaml interface would improve on its
current implementation [27] in two ways. First, all linking operations would occur
outside of the TCB. Second, extension well-formedness would be verified rather
than assumed.

5.4 Units

Units [13] are software construction components, quite similar to modules. A
unit may be dynamically linked into a static program with the invoke primitive,
which takes as arguments the unit itself (perhaps in some binary format) and
a list of symbols needed to resolve its imports. Linking consists of resolving the
imports and executing the unit’s initialization function. Invoke is similar to
dlopen, but the symbols to link are provided explicitly, rather than maintained
in a global table.

Units could be implemented following DLpop, but without a dynamic symbol
table. Rather than compiling the dyninit function to take two functions, lookup
and update, it would take as arguments the list of symbols needed to fill the
imports. The function would then fill in the GOT entries with these symbols, and
then call the user-defined init function for the unit. The implementation for
invoke would call load, and then call the dyninit function with the arguments
supplied to invoke.

The current Units implementation [13] is similar to the one we have described
above, but is written in Scheme (rather than TAL), a dynamically typed lan-
guage. Therefore, while linking errors within dyninit may be handled gracefully
in our system (since they will result in thrown exceptions), in Scheme they will
result in run-time type errors, halting system service. Alternatively, run-time
type checks would have to be provided for each access of the GOT.



5.5 SPIN

The extensible operating systems community has explored a number of ap-
proaches to dynamic linking. For example, the SPIN [4] kernel may load un-
trusted extensions written in the type-safe language Modula-3. In SPIN, dy-
namic linking operates on objects called domains [38], which are collections of
code, data, and exported symbols. Domains are quite similar to Units, with the
functionality of invoke spread among separate functions for creation, linking,
and initialization, along with other useful operations, including unlinking and
combining. All of these operations are provided by the trusted Domain module.
Furthermore, all operations are subject to security checks based on runtime cri-
teria. For example, when one domain is linked against the interface of another,
the interface seen may depend on the caller’s privilege.

We can implement domains using techniques described above, with the ad-
dition of filters to take security information into account. TAL/Load would im-
prove on the security of the current SPIN implementation in the same ways as
OCaml: less of the domain implementation must be trusted, and integrity of
extensions can be verified, rather than relegated to a trusted compiler.

5.6 TMAL

The TAL module system implemented for TALx86, MTAL (Modular Typed As-
sembly Language [15]), provides a typed version of standard static linking facil-
ities. Typed Module Assembly Language (TMAL) [10] is an alternative module
system for TAL that provides a different model of linking, including dynamic
linking. Our work in TAL/Load is an extension to TAL to allow dynamically
linking MTAL modules. Therefore, TMAL and TAL/Load can be seen as two
ways to solve similar problems. TMAL has not been implemented.

TMAL adds a simple notion of first-class modules to TAL; by using explicit
coercions accompanied by runtime checks, the type system remains decidable.
The operations provided for TMAL module values are much like those for SPIN
domains, described above. Two modules can be linked together to form a third
module, and the circumstances of linking can be customized. In particular, co-
ercions are provided to remove exported names from a module, and to rename
its types and/or values. In addition, modules can be linked with symbols from
the program (rather than other modules).

TMAL also provides primitives for reflection. In particular, TMAL’s dlsym v

is essentially the same as DLpop’s dlsym. MTAL, and thus TAL/Load, makes
the simplification that all named types are global, as we explained in §2.1. As
a module is loaded, its type components are added into the global namespace.
However, in TMAL, first-class modules can contain type components, which
introduces a level of hierarchy. As a result, TMAL provides a dlsym t operation
for looking up a type component of a module, to be used prior to retrieving a
value that has that type.

Finally, TMAL provides primitives for creating and loading dynamically-
linked libraries, respectively; the latter operation is similar to load, and the
former is something that we do at compile-time.



The major difference between TAL/Load and TMAL is that TAL/Load is
intended for programming the sorts of operations that TMAL provides as prim-
itive; the result is a smaller TCB. On the other hand, the goal of TMAL is to
preserve and statically verify the constraints expressed by the source module
language at the assembly language level. We could easily implement the major-
ity of TMAL using TAL/Load, where the notion of handle as implemented in
DLpop is analogous to a first-class module TMAL. Breaking the linking func-
tionality out of DLpop’s dlopen into the various TMAL linking primitives would
be straightforward for values, but tricky for types, though still possible; e.g. our
technical report [20] describes a way to implement load to hide global types from
loaded modules, and we could use existential types to implement something like
dlsym t. However, in such an implementation, some properties that could be
statically verified by TMAL, would have to be dynamically checked by load.

On the other hand, programming provides flexibility. In the case of values, we
could even program additional module coercions, since they essentially control
a module’s symbol table. For example, we could add security information to the
table to be used during linking, as is done in SPIN.

5.7 Low-level Dynamic Linking Mechanisms

A useful reference of low-level, dynamic linking mechanisms may be found in
Franz [14]. One technique that he presents, which has been used to implement
some versions of DLopen (as opposed to the ELF methodology [40]), is called
load-time rewriting. Rather than pay the indirection penalty of using a GOT,
the dynamic linker rewrites each of the call-sites for an external reference with
the correct address.

This technique is a simple form of run-time code generation. Popcorn and
the TAL implementation provide facilities for type-safe run-time code generation,
called Cyclone [21], that we can use to implement load-time rewriting. Rather
than compile functions to indirect external references through a GOT, we instead
create template functions that abstract their external references. When dyninit

is called, each template function is invoked with the appropriate symbols (found
by calling lookup), returning a custom version of the original function, closed
with respect to the provided symbols. This function is then registered with the
dynamic symbol table using update. The advantage of this approach is that the
process of rewriting can be proven completely safe.

There are two notable disadvantages. First, mutually recursive functions are
problematic because their template functions must be called in a particular or-
der. One possible solution is to use one level of indirection for recursive calls,
backpatching the correct values. Another disadvantage is that template func-
tions make copies of the functions they abstract, rather than filling in the holes
in place; Cyclone’s approach is more general, but not necessary in our context.
However, the overall cost of doing this should be low (especially relative to ver-
ification). We plan to experiment with this approach in future work.



6 Conclusions

We have designed, implemented, and demonstrated TAL/Load, the first com-
plete type-safe dynamic linking framework for native code. Our approach has
many advantages:

– It supports linking of native code so dynamic extensions may be written in
many source languages.

– It is composed largely of components already present in the TAL trusted
computing base, therefore its addition does not overly complicate the code
verification system.

– It is expressive enough to support a variety of dynamic linking strategies in
an efficient manner.

Furthermore, there is nothing specific to TAL in this strategy—we believe
that in principle it would also be applicable to Proof Carrying Code (with some
changes to verification condition generation). We see this work as the first step
in a larger study of type-safe extensible systems.
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