
Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 1 

Chapter 2  
Representations for Classical Planning 

Lecture slides for 
Automated Planning: Theory and Practice 

 

Dana S. Nau 

University of Maryland 
 

4:56 PM     January 30, 2012 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 2 

location 1 location 2 

location 1 location 2 

s1 

s3 

s4 

take 

put 

location 1 location 2 

location 1 location 2 

s0 

s2 

s5 

move1 

put 

take 

move1 

move1 move2 

load unload 

Quick Review of Classical Planning 

move2 

move2 

●  Classical planning 
requires all eight of the 
restrictive assumptions: 
A0: Finite 
A1: Fully observable 
A2: Deterministic 
A3: Static 
A4: Attainment goals 
A5: Sequential plans 
A6: Implicit time 
A7: Offline planning 

location 1 location 2 location 1 location 2 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 3 

Representations: Motivation 
●  In most problems, far too many states to try to represent all of 

them explicitly as s0, s1, s2, … 
●  Represent each state as a set of features 

◆  e.g., 
» a vector of values for a set of variables 
» a set of ground atoms in some first-order language L 

●  Define a set of operators that can be used to compute state-
transitions 

●  Don’t give all of the states explicitly 
◆  Just give the initial state 
◆  Use the operators to generate the other states as needed 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 4 

Outline 
●  Representation schemes 

◆  Classical representation 
◆  Set-theoretic representation 
◆  State-variable representation 
◆  Examples: DWR and the Blocks World 
◆  Comparisons 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 5 

Classical Representation 

●  Start with a first-order language 
»  Language of first-order logic 

◆  Restrict it to be  function-free 
»  Finitely many predicate symbols and constant symbols, 

but no function symbols 

●  Example: the DWR domain 
◆  Locations:  l1, l2, … 

◆  Containers:  c1, c2, … 

◆  Piles:  p1, p2, … 
◆  Robot carts:  r1, r2, … 
◆  Cranes:  k1, k2, … 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 6 

Classical Representation 
●  Atom: predicate symbol and args 

◆  Use these to represent both fixed and dynamic relations 
adjacent(l,l’)      attached(p,l)    belong(k,l)  
occupied(l)      at(r,l) 
loaded(r,c)      unloaded(r) 
holding(k,c)      empty(k) 
in(c,p)       on(c,c’) 
top(c,p)       top(pallet,p) 

●  Ground expression: contains no variable symbols    -   e.g.,  in(c1,p3) 
●  Unground expression: at least one variable symbol  -   e.g.,  in(c1,x) 

●  Substitution:  θ  = {x1 ← v1,  x2 ← v2,  …,  xn ← vn} 
◆  Each xi is a variable symbol; each vi is a term 

●  Instance of e: result of applying a substitution θ  to e 
◆  Replace variables of e simultaneously, not sequentially 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 7 

States 
●  State: a set s of ground atoms 

◆  The atoms represent the things that are true in one of Σ’s states 
◆  Only finitely many ground atoms, so only finitely many possible states 

s1 = {attached(p1,loc1), in(c1,p1), in(c3,p1), top(c3,p1), on(c3,c1), 
on(c1,pallet), attached(p2,loc1), in(c2,p2), top(c2,p2), on(c2,palet), 
belong(crane1,loc1), empty(crane1), adjacent(loc1,loc2), 
adjacent(loc2,loc1), at(r1,loc2), occupied(loc2, unloaded(r1)} 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 8 

Operators 
●  Operator: a triple o=(name(o), precond(o), effects(o)) 

◆  precond(o):  preconditions 
»  literals that must be true in order to use the operator 

◆  effects(o): effects 
»  literals the operator will make true 

◆  name(o): a syntactic expression of the form n(x1,…,xk) 
»  n is an operator symbol - must be unique for each operator 
»  (x1,…,xk) is a list of every variable symbol (parameter) that appears in o 

●  Purpose of name(o) is so we can refer unambiguously to instances of o 

●  Rather than writing each operator as a triple, we’ll usually write like this: 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 9 

Actions 

●  An action is a ground instance (via substitution) of an operator 
◆  Let θ  = {k ← crane1, l ← loc1, c  ← c3, d  ← c1, p  ← p1} 
◆  Then  (take(k,l,c,d,p))θ  is the following action: 

take(crane1,loc1,c3,c1,p1) 

  precond:  belong(crane,loc1), attached(p1,loc1), 
empty(crane1), top(c3,p1), on(c3,c1) 

    effects:  holding(crane1,c3), ¬empty(crane1), ¬in(c3,p1), 
¬top(c3,p1), ¬on(c3,c1), top(c1,p1) 
 

◆  i.e., crane crane1 at location loc1 takes c3 off of c1 in pile p1 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10 

Notation 
●  Let S be a set of literals.  Then 

◆  S+ = {atoms that appear positively in S} 
◆  S– = {atoms that appear negatively in S} 

●  Let a be an operator or action. Then 
◆  precond+(a) = {atoms that appear positively in a’s preconditions} 
◆  precond–(a) = {atoms that appear negatively in a’s preconditions} 
◆  effects+(a) = {atoms that appear positively in a’s effects} 
◆  effects–(a) = {atoms that appear negatively in a’s effects} 

 
●  Example:   take(crane1,loc1,c3,c1,p1) 

       precond:  belong(crane,loc1), attached(p1,loc1), 
empty(crane1), top(c3,p1), on(c3,c1) 

        effects:  holding(crane1,c3), ¬empty(crane1), ¬in(c3,p1), 
¬top(c3,p1), ¬on(c3,c1), top(c1,p1) 
 

◆  effects+(take(crane1,loc1,c3,c1,p1)) = {holding(crane1,c3), top(c1,p1)} 
◆  effects–(take(crane1,loc1,c3,c1,p1)) 

   = {empty(crane1), in(c3,p1), top(c3,p1), on(c3,c1)} 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 11 

Applicability 

●  Let s be a state and a be an action 
●  a is applicable to (or executable in) s 

if s satisfies precond(a) 
◆  precond+(a) ⊆ s   
◆  precond–(a) ∩ s = ∅ 

●  An action: 

take(crane1,loc1,c3,c1,p1) 
  precond:  belong(crane,loc1), 

 attached(p1,loc1), 
 empty(crane1), top(c3,p1), 
 on(c3,c1) 

   effects:  holding(crane1,c3), 
 ¬empty(crane1), 
 ¬in(c3,p1), ¬top(c3,p1), 
 ¬on(c3,c1), top(c1,p1) 

 

●  A state it’s applicable to 
 

s1 = {attached(p1,loc1), in(c1,p1), 
in(c3,p1), top(c3,p1), on(c3,c1), 
on(c1,pallet), attached(p2,loc1), 
in(c2,p2), top(c2,p2), on(c2,palet), 
belong(crane1,loc1), 
empty(crane1), 
adjacent(loc1,loc2), 
adjacent(loc2,loc1), at(r1,loc2), 
occupied(loc2, unloaded(r1)} 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12 

Executing an Applicable Action 
●  Remove a’s negative effects, 

and add a’s positive effects 
γ(s,a) = (s – effects–(a)) ∪ effects+(a) 

 

take(crane1,loc1,c3,c1,p1) 

    precond: belong(crane,loc1), 
 attached(p1,loc1), 
 empty(crane1), top(c3,p1), 
 on(c3,c1) 

      effects:  holding(crane1,c3), 
 ¬empty(crane1), 
 ¬in(c3,p1), ¬top(c3,p1), 
 ¬on(c3,c1), top(c1,p1) 

 

s2 = {attached(p1,loc1), in(c1,p1), in(c3,p1), 
top(c3,p1), on(c3,c1), on(c1,pallet), 
attached(p2,loc1), in(c2,p2), top(c2,p2), 
on(c2,palet), belong(crane1,loc1), 
empty(crane1), adjacent(loc1,loc2), 
adjacent(loc2,loc1), at(r1,loc2), 
occupied(loc2, unloaded(r1), 
holding(crane1,c3), top(c1,p1)} 
 
 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 13 

●  Planning domain: language 
plus operators 
◆  Corresponds to a 

set of state-transition 
systems 

◆  Example: 
operators for the DWR 
domain 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 14 

Planning Problems  
●  Given a planning domain (language L, operators O) 

◆  Statement of a planning problem: a triple P=(O,s0,g) 
»   O is the collection of operators 
»   s0 is a state (the initial state) 
»   g is a set of literals (the goal formula) 

◆  Planning problem: P = (Σ,s0,Sg) 
»   s0 = initial state 
»  Sg = set of goal states 
»   Σ = (S,A,γ) is a state-transition system that satisfies all of the 

restrictive assumptions in Chapter 1 
»   S = {all sets of ground atoms in L} 
»   A = {all ground instances of operators in O} 
»   γ = the state-transition function determined by the operators 

●  I’ll often say “planning problem” to mean the statement of the problem 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 15 

Plans and Solutions 
●  Let  P=(O,s0,g) be a planning problem 
●  Plan: any sequence of actions π  =  〈a1, a2, …, an〉 such that 

each ai is an instance of an operator in O 
●  π is a solution for P=(O,s0,g) if it is executable and achieves g 

◆  i.e., if there are states s0, s1, …, sn such that 
»   γ (s0,a1) = s1 

»   γ (s1,a2) = s2 
»  … 
»   γ (sn–1,an) = sn 

»  sn satisfies g 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 16 

Example 

●  Let P1 = (O, s1, g1), where 
◆  O = {the four DWR operators given earlier} 
◆  s1 = {attached(p1,loc1), in(c1,p1),  

 in(c3,p1), top(c3,p1),  
 on(c3,c1), on(c1,pallet),  
 attached(p2,loc1),  
 in(c2,p2), top(c2,p2),  
 on(c2,palet),   
 belong(crane1,loc1), empty(crane1), 
 adjacent(loc1,loc2), adjacent(loc2,loc1),  
 at(r1,loc2), occupied(loc2), unloaded(r1)} 

◆   g1={loaded(r1,c3), at(r1,loc2)} 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 17 

●  Two redundant solutions 
(can remove actions and  
still have a solution): 
 

〈move(r1,loc2,loc1),  
take(crane1,loc1,c3,c1,p1),  
move(r1,loc1,loc2),  
move(r1,loc2,loc1),  
load(crane1,loc1,c3,r1),  
move(r1,loc1,loc2)〉  

〈take(crane1,loc1,c3,c1,p1),  
put(crane1,loc1,c3,c2,p2),  
move(r1,loc2,loc1),  
take(crane1,loc1,c3,c2,p2),  
load(crane1,loc1,c3,r1),   
move(r1,loc1,loc2)〉  
 

●  A solution that is both irredundant and shortest: 

〈move(r1,loc2,loc1),  take(crane1,loc1,c3,c1,p1), 
load(crane1,loc1,c3,r1),  move(r1,loc1,loc2)〉 
  

●  Are there any other shortest solutions? Are irredundant 
solutions always shortest? 

s1  



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 18 

Set-Theoretic Representation 

●  Like classical representation, but restricted to propositional logic 
◆  Equivalent to a classical representation in which all of the atoms are ground 

 

●  States:  
◆  Instead of ground atoms, use propositions (boolean variables): 

     {on(c1,pallet), on(c1,r1), on(c1,c2), …, at(r1,l1), at(r1,l2), …} 
 
 
     {on-c1-pallet,  on-c1-r1,  on-c1-c2, …,  at-r1-l1,  at-r1-l2, …} 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 19 

Set-Theoretic Representation, continued 

No operators, just actions: 
●  Instead of ground atoms, use 

propositions 
●  Instead of negative effects, use a 

delete list 
●  If there are any negative 

preconditions, create new atoms 
to represent them 

●  E.g., instead of using ¬foo as a 
precondition, use not-foo 
◆  Delete foo iff you add not-foo 
◆  Delete not-foo iff you add foo 

   take(crane1,loc1,c3,c1,p1) 
        precond:  belong(crane,loc1), 

 attached(p1,loc1), empty(crane1), 
 top(c3,p1), on(c3,c1) 

          effects:  holding(crane1,c3), 
 ¬empty(crane1), 
 ¬in(c3,p1), ¬top(c3,p1), ¬on(c3,c1), 
 top(c1,p1) 

 

   
 

   take-crane1-loc1-c3-c1-p1 
        precond:  belong-crane1-loc1, 

 attached-p1-loc1, empty-crane1, 
 top-c3-p1, on-c3-c1 

           delete:  empty-crane1, 
 in-c3-p1, top-c3-p1, on-c3-p1 

               add:  holding-crane1-c3, top-c1-p1 
 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 20 

Exponential Blowup 
●  Suppose the language contains c constant symbols 
●  Let o be a classical operator with k parameters 
●  Then there are ck ground instances of o 

◆  Hence ck set-theoretic actions 
●  Example:  

 take(crane1,loc1,c3,c1,p1)       
◆  k = 5 
◆  1 crane, 2 locations,  

3 containers, 2 piles 
»  8 constant symbols 

◆  85 = 32768 ground instances 
●  Can reduce this by assigning data types to the parameters 

»  e.g., first arg must be a crane, second must be a location, etc. 
»  Number of ground instances is now 1 * 2 * 3 * 3 * 2 = 36 

◆  Worst case is still exponential 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 21 

●  Use ground atoms for properties that do not change, e.g., adjacent(loc1,loc2) 
●  For properties that can change, assign values to state variables 

◆  Like fields in a record structure 
●  Classical and state-variable representations take similar amounts of space 

◆  Each can be translated into the other in low-order polynomial time 

State-Variable Representation 

s1 = {top(p1)=c3, 
      cpos(c3)=c1, 
      cpos(c1)=pallet, 
      holding(crane1)=nil, 
      rloc(r1)=loc2, 
      loaded(r1)=nil, …} 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 22 

Example: The Blocks World 
●  Infinitely wide table, finite number of children’s blocks 
●  Ignore where a block is located on the table 
●  A block can sit on the table or on another block 
●  There’s a robot gripper that can hold at most one block 

●  Want to move blocks from one configuration to another 
◆  e.g., 
 

 initial state         goal 

●  Like a special case of DWR with one location, one crane, some containers, 
and many more piles than you need 

c 

a 
b c 

a b e 

d 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 23 

Classical Representation: Symbols 
●  Constant symbols: 

◆  The blocks: a, b, c, d, e 
●  Predicates: 

◆  ontable(x)  - block x is on the table 
◆  on(x,y)  - block x is on block y 
◆  clear(x)  - block x has nothing on it 
◆  holding(x)  - the robot hand is holding block x 
◆  handempty  - the robot hand isn’t holding anything 
 

c 
a b e 

d 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 24 

unstack(x,y) 
   Precond:  on(x,y), clear(x), handempty 
   Effects:   ¬on(x,y), ¬clear(x), ¬handempty, 

                    holding(x), clear(y) 

stack(x,y) 
   Precond:   holding(x), clear(y) 
   Effects:    ¬holding(x), ¬clear(y), 

                     on(x,y), clear(x), handempty 

pickup(x) 
   Precond:  ontable(x), clear(x), handempty 
   Effects:   ¬ontable(x), ¬clear(x), 

                    ¬handempty, holding(x) 

putdown(x) 
   Precond:   holding(x) 
   Effects:    ¬holding(x), ontable(x), 

                     clear(x), handempty 

Classical Operators c 

a b 

c 
a b 

c 

a 
b 

c 

a b 

unstack(c,a) stack(c,a) 

putdown(b) pickup(b) 

d 

e 

d 

e 

d 

e 

d 

e 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 25 

●  For five blocks, there are 36 propositions 
●  Here are 5 of them: 

ontable-a  - block a is on the table 
on-c-a  - block c is on block a 
clear-c  - block c has nothing on it 
holding-d  - the robot hand is holding block d 
handempty  - the robot hand isn’t holding anything 
 

c 
a b 

d 

e 

Set-Theoretic Representation: Symbols 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 26 

Set-Theoretic Actions 

●  60 actions 
●  50 if we 

exclude 
nonsensical 
ones, e.g., 
unstack-e-e 

●  Here are 
four of 
them: 

unstack-c-a 
 Pre:  on-c-a, clear-c, handempty 
 Del:  on-c-a, clear-c, handempty 
 Add:  holding-c, clear-a 

stack-c-a 
 Pre:  holding-c, clear-a 
 Del:  holding-c, clear-a 
 Add:  on-c-a, clear-c, handempty 

pickup-b 
 Pre:  ontable-b, clear-b, handempty 
 Del:  ontable-b, clear-b, handempty 
 Add:  holding-b 

putdown-b 
 Pre:  holding-b 
 Del:  holding-b 
 Add:  ontable-b, clear-b, handempty 

c 

a b 

c 
a b 

c 

a 
b 

c 

a b 

unstack-c-a stack-c-a 

putdown-b pickup-b 

d 

e 

d 

e 

d 

e 

d 

e 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 27 

●  Constant symbols: 
a, b, c, d, e  of type block 
0, 1, table, nil  of type other 

●  State variables: 
pos(x) = y  if block x is on block y 
pos(x) = table  if block x is on the table 
pos(x) = nil  if block x is being held 
clear(x) = 1  if block x has nothing on it 
clear(x) = 0  if block x is being held or has another block on it 
holding = x  if the robot hand is holding block x 
holding = nil  if the robot hand is holding nothing 

c 
a b e 

d 

State-Variable Representation: Symbols 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 28 

State-Variable Operators 

unstack(x : block, y : block) 
  Precond:  pos(x)=y, clear(y)=0, clear(x)=1, holding=nil 
  Effects:    pos(x)←nil, clear(x)←0, holding←x, clear(y)←1 

stack(x : block, y : block) 
  Precond:  holding=x, clear(x)=0, clear(y)=1 
  Effects:    holding←nil, clear(y)←0, pos(x)←y, clear(x)←1 

pickup(x : block) 
  Precond:  pos(x)=table, clear(x)=1, holding=nil 
  Effects:  pos(x)←nil, clear(x)←0, holding←x 

putdown(x : block) 
  Precond:  holding=x 
  Effects:  holding←nil, pos(x)←table, clear(x)←1 

With data types:	


c 

a b 

c 
a b 

c 

a 
b 

c 

a b 

unstack(c,a) stack(c,a) 

putdown(b) pickup(b) 

d 

e 

d 

e 

d 

e 

d 

e 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 29 

Expressive Power 
●  Any problem that can be represented in one representation can also be 

represented in the other two 
●  Can convert in linear time and space in all cases except one: 

◆  Exponential blowup when converting to set-theoretic 

Classical 
representation 

State-variable 
representation 

Set-theoretic 
representation 

Trivial:  
Each proposition is 

a 0-ary predicate 

P(x1,…,xn) 
becomes 

fP(x1,…,xn)=1 

Write all of 
the ground 
instances 

f(x1,…,xn)=y 
becomes 

Pf(x1,…,xn,y) 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 30 

Comparison 
●  Classical representation 

◆  The most popular for classical planning, partly for historical reasons 

●  Set-theoretic representation 
◆  Can take much more space than classical representation 
◆  Useful in algorithms that manipulate ground atoms directly 

»  e.g., planning graphs (Chapter 6), satisfiability (Chapters 7) 
◆  Useful for certain kinds of theoretical studies 

●  State-variable representation 
◆  Equivalent to classical representation in expressive power 
◆  Less natural for logicians, more natural for engineers and most computer 

scientists 
◆  Useful in non-classical planning problems as a way to handle numbers, 

functions, time 


