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Motivation 
●  Recall that in classical planning, even simple 

problems can have huge search spaces 
◆  Example: 

»  DWR with five locations, three 
piles, three robots, 100 containers 

»  10277 states 
»  About 10190 times as many states as there are particles in universe 

●  How difficult is it to solve classical planning problems? 
●  The answer depends on which representation scheme we use 

◆  Classical, set-theoretic, state-variable  

location 1 location 2 

s0 
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Outline 
●  Background on complexity analysis 
●  Restrictions (and a few generalizations) of classical planning 
●  Decidability and undecidability 
●  Tables of complexity results 

◆  Classical representation 
◆  Set-theoretic representation 
◆  State-variable representation 
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Complexity Analysis 

●  Complexity analyses are done on decision problems or language-
recognition problems 
◆  Problems that have yes-or-no answers 

●  A language is a set L of strings over some alphabet A  
◆  Recognition procedure for L 

»  A procedure R(x) that returns “yes” iff the string x is in L 
»  If x is not in L, then R(x) may return “no” or may fail to 

terminate 

●  Translate classical planning into a language-recognition problem 
●  Examine the language-recognition problem’s complexity 
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Planning as a Language-Recognition 
Problem 

●  Consider the following two languages: 
 

PLAN-EXISTENCE = {P : P is the statement of a planning 
    problem that has a solution} 
 

PLAN-LENGTH = {(P,n) : P is the statement of a planning 
            problem that has a solution of length ≤ n} 
 

●  Look at complexity of recognizing PLAN-EXISTENCE and PLAN-LENGTH 
under different conditions 
◆  Classical, set-theoretic, and state-variable representations 
◆  Various restrictions and extensions on the kinds of operators we allow 
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Complexity of Language-Recognition 
Problems 

●  Suppose R is a recognition procedure for a language L 
●  Complexity of R 

◆  TR(n) = R’s worst-case time complexity on strings in L of length n 
◆  SR(n) = R’s worst-case space complexity on strings in L of length n 

●  Complexity of recognizing L 
◆  TL = best time complexity 

of any recognition procedure for L 
◆  SL = best space complexity 

of any recognition procedure for L 
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Complexity Classes 
●  Complexity classes: 

◆  NLOGSPACE  (nondeterministic procedure, logarithmic space)  
 ⊆ P   (deterministic procedure, polynomial time) 
 ⊆ NP   (nondeterministic procedure, polynomial time) 
 ⊆ PSPACE  (deterministic procedure, polynomial space)  
 ⊆ EXPTIME  (deterministic procedure, exponential time) 
 ⊆ NEXPTIME  (nondeterministic procedure, exponential time) 
 ⊆ EXPSPACE  (deterministic procedure, exponential space) 

●  Let C be a complexity class and L be a language 
◆  L is C-hard if for every language L' ∈ C, L' can be reduced to L in a 

polynomial amount of time 
»  NP-hard, PSPACE-hard, etc. 

◆  L is C-complete if L is C-hard and L ∈ C 
»  NP-complete, PSPACE-complete, etc. 
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●  Do we give the operators as input to the planning algorithm, or fix them 
in advance? 

●  Do we allow infinite initial states? 
●  Do we allow function symbols? 
●  Do we allow negative effects? 
●  Do we allow negative preconditions? 
●  Do we allow more than one precondition? 
●  Do we allow operators to have conditional effects?* 

◆  i.e., effects that only occur when additional preconditions are true 

Possible Conditions 

These take us 
outside classical 
planning 
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Decidability of Planning 

Next: analyze complexity for the decidable cases 

Halting problem 

Can cut off the  
search at every  
path of length n 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10 

α no operator has 
>1 precondition"

γ PSPACE-complete or NP-complete  
for some sets of operators 

●  In this case, can write domain-specific algorithms 
◆  e.g., DWR and Blocks World: PLAN-EXISTENCE 

is in P and PLAN-LENGTH is NP-complete 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 11 

●  PLAN-LENGTH is never worse than NEXPTIME-complete 
◆  We can cut off every search path at depth n 

Here  , PLAN-LENGTH is harder than PLAN-EXISTENCE 
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Set-Theoretic and Ground Classical 
●  Set-theoretic representation and ground classical representation are basically 

identical 
◆  For both, exponential blowup in the size of the input 
◆  Thus complexity looks smaller as a function of the input size 

β every operator with >1 precondition 
is the composition of other operators"

α no operator has >1 precondition"
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State-Variable Representation 
●  Classical and state-variable representations are equivalent, except that 

some of the restrictions aren’t possible in state-variable representations 
◆  e.g., classical translation of pos(a) ← b 

»  precondition   on(a,x) 
»  two effects, one is negative   ¬on(a,x), on(a,b) 

 
Like 
classical 
rep, but 
fewer 
lines in 
the table 
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Summary 
●  If classical planning is extended to allow function symbols 

◆  Then we can encode arbitrary computations as planning problems 
»  Plan existence is semidecidable 
»  Plan length is decidable 

●  Ordinary classical planning is quite complex 
»  Plan existence is EXPSPACE-complete  
»  Plan length is NEXPTIME-complete 

◆  But those are worst case results 
»  If we can write domain-specific algorithms, most well-known planning 

problems are much easier 


