
Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 1

Lecture slides for
Automated Planning: Theory and Practice

Chapter 3
Complexity of Classical Planning

Dana S. Nau

University of Maryland

1:19 PM January 30, 2012

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 2

Motivation
●  Recall that in classical planning, even simple

problems can have huge search spaces
◆  Example:

»  DWR with five locations, three
piles, three robots, 100 containers

»  10277 states
»  About 10190 times as many states as there are particles in universe

●  How difficult is it to solve classical planning problems?
●  The answer depends on which representation scheme we use

◆  Classical, set-theoretic, state-variable

location 1 location 2

s0

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 3

Outline
●  Background on complexity analysis
●  Restrictions (and a few generalizations) of classical planning
●  Decidability and undecidability
●  Tables of complexity results

◆  Classical representation
◆  Set-theoretic representation
◆  State-variable representation

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 4

Complexity Analysis

●  Complexity analyses are done on decision problems or language-
recognition problems
◆  Problems that have yes-or-no answers

●  A language is a set L of strings over some alphabet A
◆  Recognition procedure for L

»  A procedure R(x) that returns “yes” iff the string x is in L
»  If x is not in L, then R(x) may return “no” or may fail to

terminate

●  Translate classical planning into a language-recognition problem
●  Examine the language-recognition problem’s complexity

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 5

Planning as a Language-Recognition
Problem

●  Consider the following two languages:

PLAN-EXISTENCE = {P : P is the statement of a planning
 problem that has a solution}

PLAN-LENGTH = {(P,n) : P is the statement of a planning
 problem that has a solution of length ≤ n}

●  Look at complexity of recognizing PLAN-EXISTENCE and PLAN-LENGTH
under different conditions
◆  Classical, set-theoretic, and state-variable representations
◆  Various restrictions and extensions on the kinds of operators we allow

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 6

Complexity of Language-Recognition
Problems

●  Suppose R is a recognition procedure for a language L
●  Complexity of R

◆  TR(n) = R’s worst-case time complexity on strings in L of length n
◆  SR(n) = R’s worst-case space complexity on strings in L of length n

●  Complexity of recognizing L
◆  TL = best time complexity

of any recognition procedure for L
◆  SL = best space complexity

of any recognition procedure for L

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 7

Complexity Classes
●  Complexity classes:

◆  NLOGSPACE (nondeterministic procedure, logarithmic space)
 ⊆ P (deterministic procedure, polynomial time)
 ⊆ NP (nondeterministic procedure, polynomial time)
 ⊆ PSPACE (deterministic procedure, polynomial space)
 ⊆ EXPTIME (deterministic procedure, exponential time)
 ⊆ NEXPTIME (nondeterministic procedure, exponential time)
 ⊆ EXPSPACE (deterministic procedure, exponential space)

●  Let C be a complexity class and L be a language
◆  L is C-hard if for every language L' ∈ C, L' can be reduced to L in a

polynomial amount of time
»  NP-hard, PSPACE-hard, etc.

◆  L is C-complete if L is C-hard and L ∈ C
»  NP-complete, PSPACE-complete, etc.

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 8

●  Do we give the operators as input to the planning algorithm, or fix them
in advance?

●  Do we allow infinite initial states?
●  Do we allow function symbols?
●  Do we allow negative effects?
●  Do we allow negative preconditions?
●  Do we allow more than one precondition?
●  Do we allow operators to have conditional effects?*

◆  i.e., effects that only occur when additional preconditions are true

Possible Conditions

These take us
outside classical
planning

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 9

Decidability of Planning

Next: analyze complexity for the decidable cases

Halting problem

Can cut off the
search at every
path of length n

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10

α no operator has
>1 precondition"

γ PSPACE-complete or NP-complete
for some sets of operators

●  In this case, can write domain-specific algorithms
◆  e.g., DWR and Blocks World: PLAN-EXISTENCE

is in P and PLAN-LENGTH is NP-complete

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 11

●  PLAN-LENGTH is never worse than NEXPTIME-complete
◆  We can cut off every search path at depth n

Here , PLAN-LENGTH is harder than PLAN-EXISTENCE

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12

Set-Theoretic and Ground Classical
●  Set-theoretic representation and ground classical representation are basically

identical
◆  For both, exponential blowup in the size of the input
◆  Thus complexity looks smaller as a function of the input size

β every operator with >1 precondition
is the composition of other operators"

α no operator has >1 precondition"

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 13

State-Variable Representation
●  Classical and state-variable representations are equivalent, except that

some of the restrictions aren’t possible in state-variable representations
◆  e.g., classical translation of pos(a) ← b

»  precondition on(a,x)
»  two effects, one is negative ¬on(a,x), on(a,b)

Like
classical
rep, but
fewer
lines in
the table

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 14

Summary
●  If classical planning is extended to allow function symbols

◆  Then we can encode arbitrary computations as planning problems
»  Plan existence is semidecidable
»  Plan length is decidable

●  Ordinary classical planning is quite complex
»  Plan existence is EXPSPACE-complete
»  Plan length is NEXPTIME-complete

◆  But those are worst case results
»  If we can write domain-specific algorithms, most well-known planning

problems are much easier

