
Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 1

Chapter 4
State-Space Planning

Dana S. Nau

University of Maryland

4:56 PM February 1, 2012

Lecture slides for
Automated Planning: Theory and Practice

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 2

Motivation
●  Nearly all planning procedures are search procedures
●  Different planning procedures have different search spaces

◆  Two examples:
●  State-space planning

◆  Each node represents a state of the world
» A plan is a path through the space

●  Plan-space planning
◆  Each node is a set of partially-instantiated operators, plus some

constraints
»  Impose more and more constraints, until we get a plan

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 3

Outline
●  State-space planning

◆  Forward search
◆  Backward search
◆  Lifting
◆  STRIPS
◆  Block-stacking

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 4

Forward Search

take c3

move r1

take c2
…

…

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 5

Properties
●  Forward-search is sound

◆  for any plan returned by any of its nondeterministic traces, this
plan is guaranteed to be a solution

●  Forward-search also is complete
◆  if a solution exists then at least one of Forward-search’s

nondeterministic traces will return a solution.

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 6

Deterministic Implementations
●  Some deterministic implementations

of forward search:
◆  breadth-first search
◆  depth-first search
◆  best-first search (e.g., A*)
◆  greedy search

●  Breadth-first and best-first search are sound and complete
◆  But they usually aren’t practical because they require too much memory
◆  Memory requirement is exponential in the length of the solution

●  In practice, more likely to use depth-first search or greedy search
◆  Worst-case memory requirement is linear in the length of the solution
◆  In general, sound but not complete

»  But classical planning has only finitely many states
»  Thus, can make depth-first search complete by doing loop-checking

s0

s1

s2

s3

a1

a2

a3

s4

s5
sg

a4

a5 …

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 7

Branching Factor of Forward Search

●  Forward search can have a very large branching factor
◆  E.g., many applicable actions that don’t progress toward goal

●  Why this is bad:
◆  Deterministic implementations can waste time trying lots of

irrelevant actions
●  Need a good heuristic function and/or pruning procedure

◆  See Section 4.5 (Domain-Specific State-Space Planning)
and Part III (Heuristics and Control Strategies)

a3"

a1"
a2"

…"a1" a2" a50"a3"

initial state goal

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 8

Backward Search
●  For forward search, we started at the initial state and computed state

transitions
◆  new state = γ(s,a)

●  For backward search, we start at the goal and compute inverse state
transitions
◆  new set of subgoals = γ–1(g,a)

●  To define γ-1(g,a), must first define relevance:
◆  An action a is relevant for a goal g if

» a makes at least one of g’s literals true
•  g ∩ effects(a) ≠ ∅

» a does not make any of g’s literals false
•  g+ ∩ effects–(a) = ∅ and g– ∩ effects+(a) = ∅

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 9

Inverse State Transitions

●  If a is relevant for g, then
◆  γ–1(g,a) = (g – effects(a)) ∪ precond(a)

●  Otherwise γ–1(g,a) is undefined

●  Example: suppose that
◆  g = {on(b1,b2), on(b2,b3)}
◆  a = stack(b1,b2)

●  What is γ–1(g,a)?

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10

g0

g1

g2

g3

a1

a2

a3

g4

g5
s0

a4

a5

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 11

Efficiency of Backward Search

●  Backward search can also have a very large branching factor
◆  E.g., an operator o that is relevant for g may have many ground

instances a1, a2, …, an such that each ai’s input state might be
unreachable from the initial state

●  As before, deterministic implementations can waste lots of time
trying all of them

b1"

…"b1" b2" b50"b3"

initial state goal

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12

Lifting

●  Can reduce the branching factor of backward search if we partially
instantiate the operators
◆  this is called lifting

holding(b1) . . .

ontable(b1)

on(b1,b1)

on(b1,b2)

on(b1,b50)

pickup(b1)

unstack(b1,b1)

unstack(b1,b2)

unstack(b1,b50)

holding(b1)
ontable(b1)

on(b1,y)

pickup(b1)

unstack(b1,y)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 13

Lifted Backward Search
●  More complicated than Backward-search

◆  Have to keep track of what substitutions were performed
●  But it has a much smaller branching factor

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 14

The Search Space is Still Too Large
●  Lifted-backward-search generates a smaller search space than

Backward-search, but it still can be quite large
◆  Suppose actions a, b, and c are independent, action d must

precede all of them, and there’s no path from s0 to d’s input
state

◆  We’ll try all possible orderings of a, b, and c before realizing
there is no solution

◆  More about this in Chapter 5 (Plan-Space Planning)

c

b

a

goal

a b

b a

b a

a c

b c

c b

d

d

d

d

d

d

s0

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 15

Pruning the Search Space
●  I’ll say a lot about this later, in Part III of the book
●  For now, just two examples:

◆  STRIPS
◆  Block stacking

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 16

STRIPS
●  Basic idea: given a compound goal g = {g1, g1, …}, try to solve each gi

separately
◆  Works if the goals are serializable (can be solved in some linear order)

π ← the empty plan
do a modified backward search from g:

instead of γ-1(s,a), each new set of subgoals is just precond(a)
whenever you find an action that’s executable in the current state,

go forward on the current search path as far as possible,
executing actions and appending them to π

repeat until all goals are satisfied

g1
g2

g11

g21
g22

g3 a1

a2
g4

g5

π = 〈π1,π2〉 or 〈π2,π1〉
π2 = 〈π11,π12,a2〉 or 〈π12,π11,a2〉
π21 = 〈a7,a4〉
π22 = 〈a7,a5〉

a5

g6

g7

a3

a4
a6

a7

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 17

The Sussman Anomaly

 Initial state goal

●  On this problem, STRIPS can’t produce an irredundant solution

◆  Try it and see

c"
a" b" c"

a"
b"

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 18

The Register Assignment Problem

●  Interchange the values stored in two registers
◆  State-variable formulation:

»  registers r1, r2, r3

s0: {value(r1)=3, value(r2)=5, value(r3)=0}

g: {value(r1)=5, value(r2)=3}

Operator: assign(r,v,r',v')
 precond: value(r)=v, value(r')=v'
 effects: value(r)=v'

●  STRIPS cannot solve this problem at all

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 19

How to Handle Problems like These?

●  Several ways:

◆  Use a planning algorithm other than state-space search
» e.g., Chapters 5–8

◆  Write a domain-specific algorithm
» Example: the blocks world

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 20

Domain-Specific Knowledge
●  A blocks-world planning problem P = (O,s0,g) is solvable

iff s0 and g satisfy some simple consistency conditions
◆  no block can be on two other blocks at once, every block in g must also

be in s0, etc.
»  Can check these in time O(n log n)

●  If P is solvable, can easily construct a solution of length O(2m), where m is
the number of blocks
◆  Move all blocks to the table, then build up stacks from the bottom

»  Can do this in time O(n)
●  With additional domain-specific knowledge, can do even better (next slide)

initial state

e
d

b a
c

intermediate state

d b a c e

final state

d e
c

a
b

goal

d
c

a
b

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 21

Block-Stacking Algorithm
●  All of the possible situations in which a block x needs to be moved:

◆  s contains ontable(x) and g contains on(x,y) - e.g., a	

◆  s contains on(x,y) and g contains ontable(x) - e.g., d
◆  s contains on(x,y) and g contains on(x,z) for some y≠z - e.g., c
◆  s contains on(x,y) and y needs to be moved - e.g., e ���

	

loop
 if there is a clear block x that needs to be moved
 and x can be moved to a place where it won’t need to be moved
 then move x to that place
 else if there’s a clear block x that needs to be moved
 then move x to the table
 else if the goal is satisfied then return the plan
 else return failure

repeat
initial state

e
d

b a
c

goal

d
c

a
b

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 22

Properties of the Block-Stacking Algorithm
●  Sound, complete, guaranteed to terminate

●  Easily solves problems like the Sussman anomaly

●  Runs in time O(n3)
◆  Can be modified to run in time O(n)

●  Often finds optimal (shortest) solutions
●  But sometimes only near-optimal (Exercise 4.22 in the book)

◆  Recall that PLAN LENGTH for the blocks world is NP-complete

