Lecture slides for *Automated Planning: Theory and Practice*

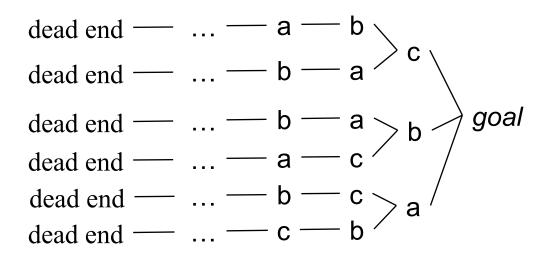
Chapter 5 Plan-Space Planning

Dana S. Nau
University of Maryland

5:10 PM February 6, 2012

Motivation

- Problem with state-space search
 - ◆ In some cases we may try many different orderings of the same actions before realizing there is no solution



• Least-commitment strategy: don't commit to orderings, instantiations, etc., until necessary

Outline

- Basic idea
- Open goals
- Threats
- The PSP algorithm
- Long example
- Comments

Plan-Space Planning - Basic Idea

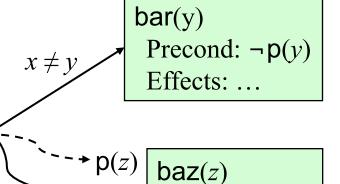
- Backward search from the goal
- Each node of the search space is a partial plan
 - » A set of partially-instantiated actions
 - » A set of constraints
 - Make more and more refinements, until we have a solution
- Types of constraints:
 - precedence constraint:a must precede b
 - binding constraints:
 - » inequality constraints, e.g., $v_1 \neq v_2$ or $v \neq c$
 - » equality constraints (e.g., $v_1 = v_2$ or v = c) and/or substitutions

foo(x)

Precond: ...

Effects: p(x)

- causal link:
 - » use action a to establish the precondition p needed by action b
- How to tell we have a solution: no more *flaws* in the plan
 - Will discuss flaws and how to resolve them



Precond: p(z)

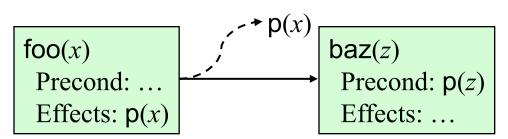
Effects: ...

Flaws: 1. Open Goals

- Open goal:
 - ◆ An action a has a precondition p that we haven't decided how to establish
- Resolving the flaw:
 - Find an action b
 - (either already in the plan, or insert it)
 - that can be used to establish p
 - can precede a and produce p
 - Instantiate variables and/or constrain variable bindings
 - Create a causal link

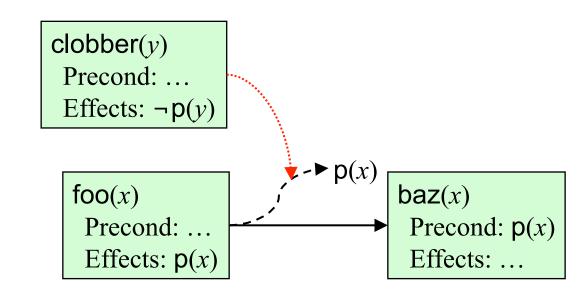
foo(x)
Precond: ...
Effects: p(x)

 $\begin{array}{c|c} \mathsf{p}(z) \\ & \mathsf{baz}(z) \\ & \mathsf{Precond:}\; \mathsf{p}(z) \\ & \mathsf{Effects:}\; \dots \end{array}$



Flaws: 2. Threats

- Threat: a deleted-condition interaction
 - lacktriangle Action a establishes a precondition (e.g., pq(x)) of action b
 - lacktriangle Another action c is capable of deleting p
- Resolving the flaw:
 - ♦ impose a constraint to prevent c from deleting p
- Three possibilities:
 - ◆ Make *b* precede *c*
 - ◆ Make *c* precede *a*
 - Constrain variable(s)
 to prevent c from
 deleting p



The PSP Procedure

```
PSP(\pi)
    flaws \leftarrow \mathsf{OpenGoals}(\pi) \cup \mathsf{Threats}(\pi)
    if flaws = \emptyset then return(\pi)
    select any flaw \phi \in flaws
    resolvers \leftarrow \mathsf{Resolve}(\phi, \pi)
    if resolvers = \emptyset then return(failure)
    nondeterministically choose a resolver 
ho \in resolvers
   \pi' \leftarrow \mathsf{Refine}(\rho, \pi)
    return(PSP(\pi'))
end
```

- PSP is both sound and complete
- It returns a partially ordered solution plan
 - Any total ordering of this plan will achieve the goals
 - Or could execute actions in parallel if the environment permits it

Example

• Similar (but not identical) to an example in Russell and Norvig's *Artificial Intelligence: A Modern Approach* (1st edition)

Operators:

Start

Precond: none

Start and **Finish** are dummy actions that we'll use instead of the initial state and goal

Effects: At(Home), sells(HWS,Drill), Sells(SM,Milk), Sells(SM,Banana)

Finish

Precond: Have(Drill), Have(Milk), Have(Banana), At(Home)

• Go(l,m)

Precond: At(l)

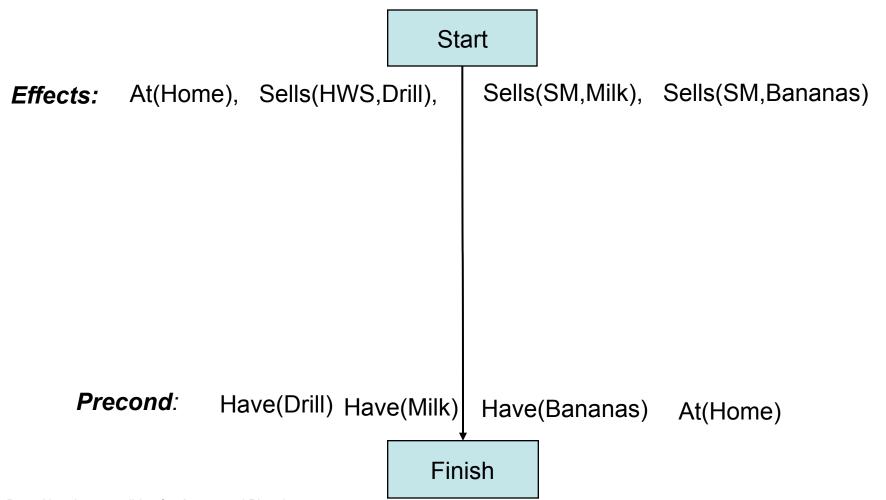
Effects: At(m), $\neg At(l)$

 \bullet Buy(p,s)

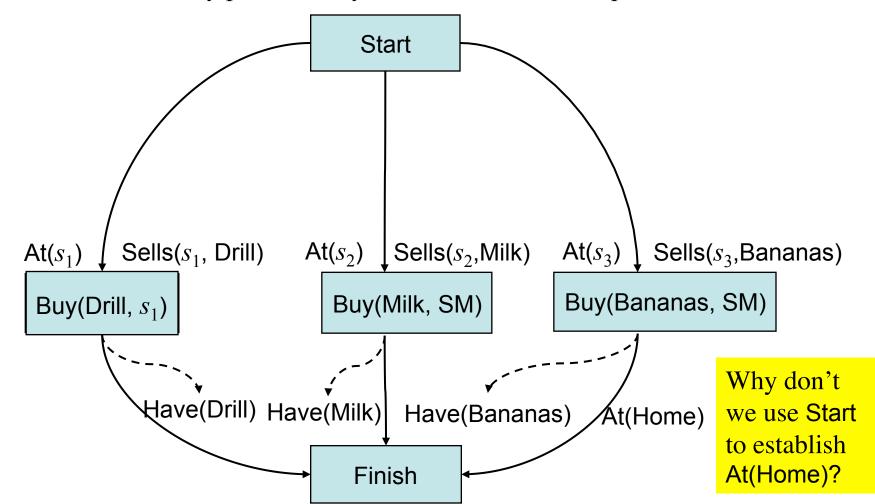
Precond: At(s), Sells(s,p)

Effects: Have(*p*)

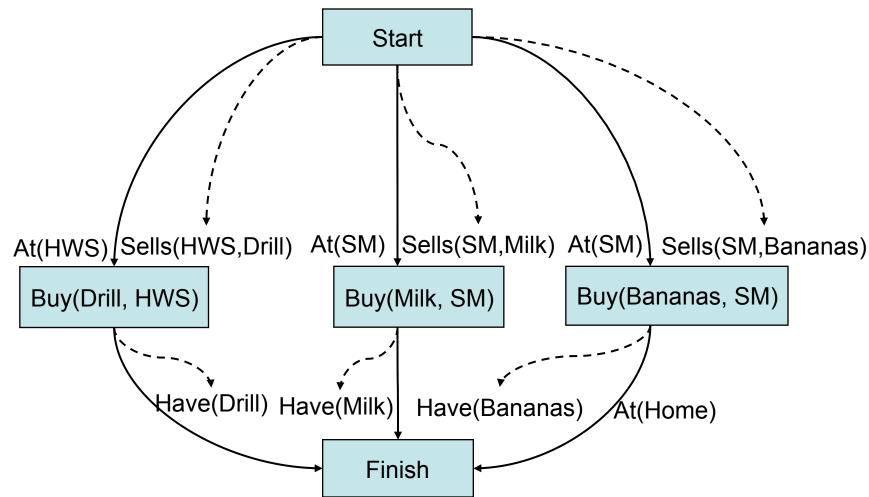
- Need to give PSP a plan π as its argument
 - Initial plan: Start, Finish, and an ordering constraint



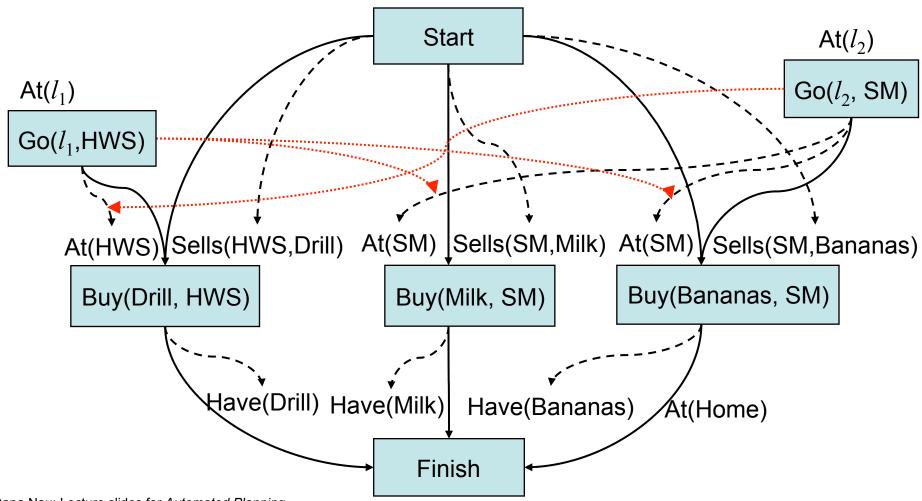
- The first three refinement steps
 - These are the only possible ways to establish the Have preconditions



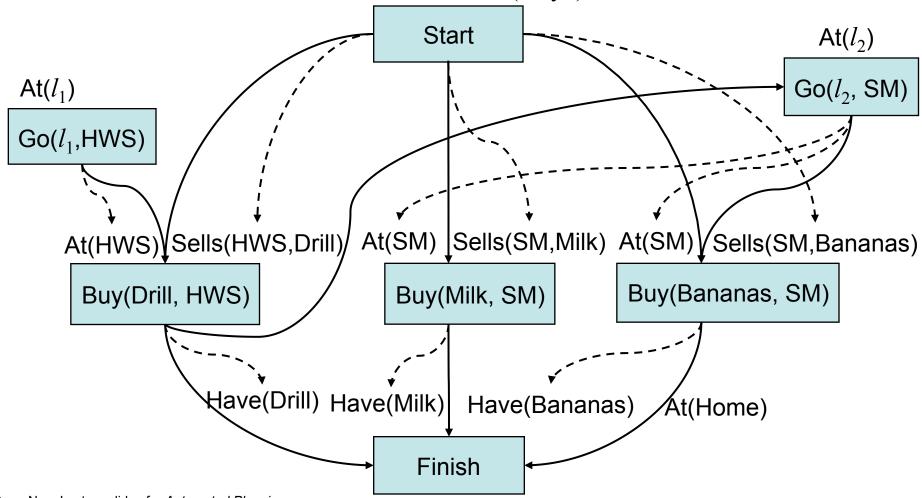
- Three more refinement steps
 - The only possible ways to establish the Sells preconditions



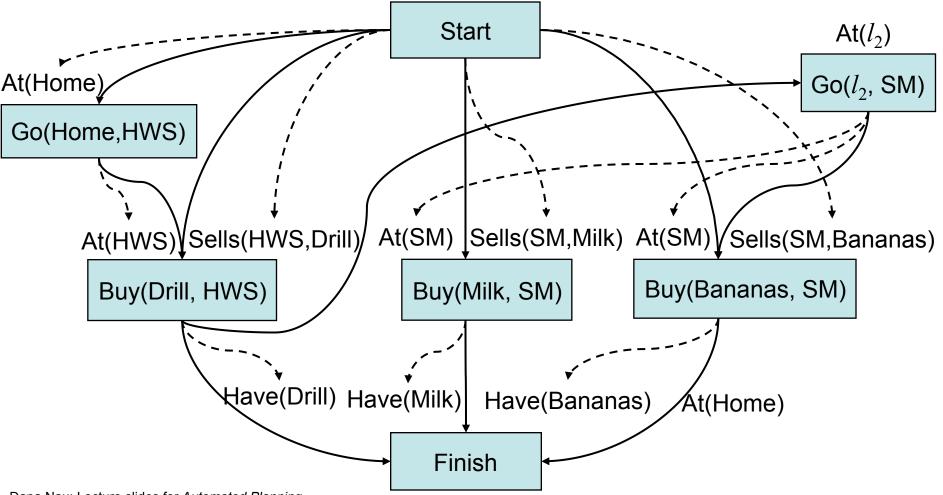
- Two more refinements: the only ways to establish At(HWS) and At(SM)
 - This time, several threats occur



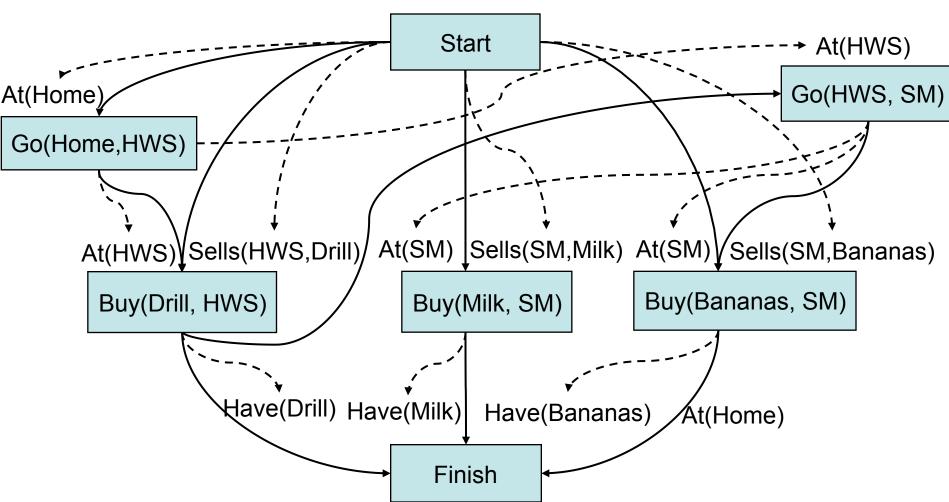
- Nondeterministic choice: how to resolve the threat to $At(s_1)$?
 - Our choice: make Buy(Drill) precede Go(l_2 , SM)
 - This also resolves the other two threats (why?)



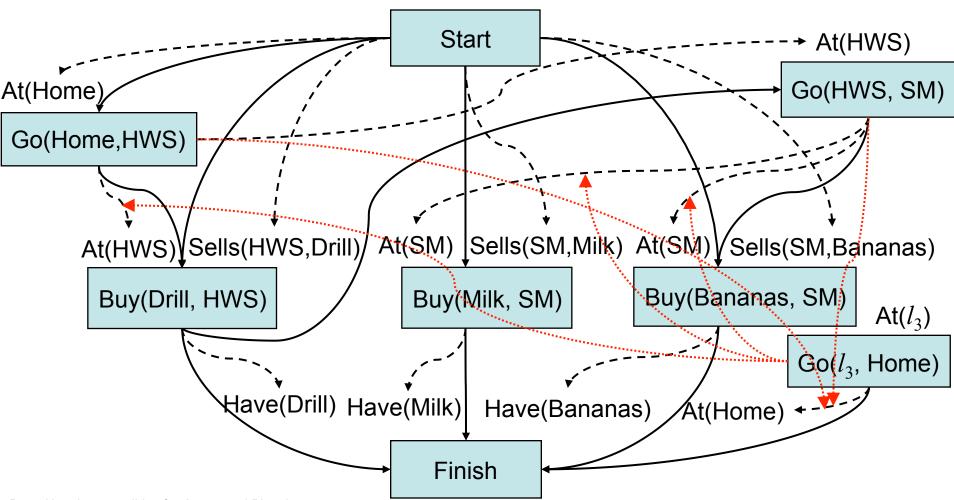
- Nondeterministic choice: how to establish $At(l_1)$?
 - We'll do it from Start, with l_1 =Home
 - How else could we have done it?



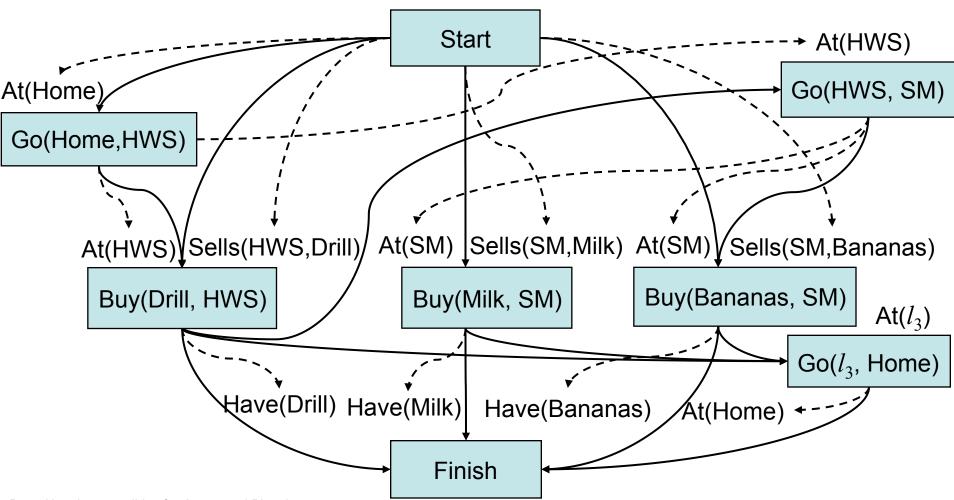
- Nondeterministic choice: how to establish $At(l_2)$?
 - We'll do it from Go(Home, HWS), with l_2 = HWS



- The only feasible way to establish At(Home) for Finish
 - This creates a bunch of threats

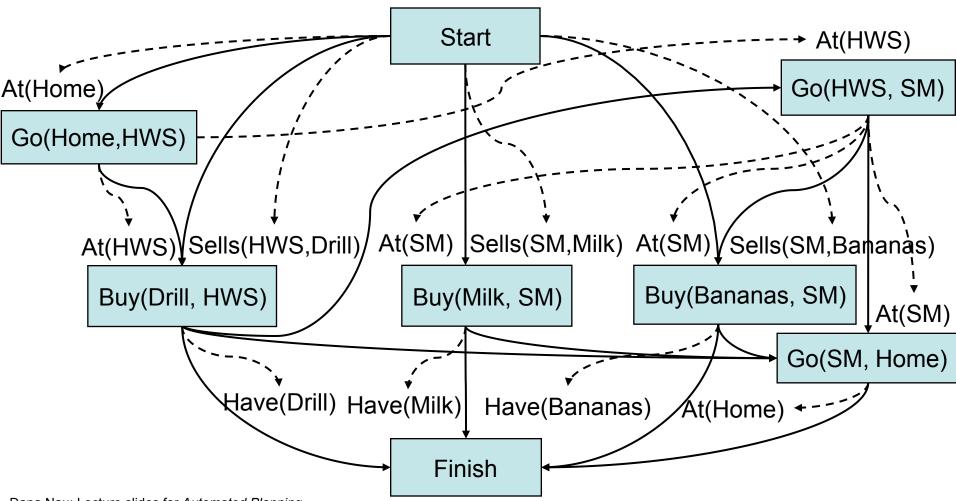


- To remove the threats to At(SM) and At(HWS), make them precede $Go(l_3, Home)$
 - This also removes the other threats



Final Plan

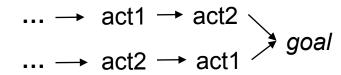
- Establish $At(l_3)$ with l_3 =SM
- We're done!



Discussion

- How to choose which flaw to resolve first and how to resolve it?
 - ◆ We'll return to these questions in Chapter 10
- PSP doesn't commit to orderings and instantiations until necessary
 - Avoids generating search trees like this one:

Backward statespace search:



- Problem: how to prune infinitely long paths?
 - ◆ Loop detection is based on recognizing states we've seen before
 - ◆ In a partially ordered plan, we don't know the states
- Can we prune if we see the same *action* more than once?

$$\dots \rightarrow \text{act1} \rightarrow \text{act2} \rightarrow \text{act1} \rightarrow \dots$$

- No. Sometimes we might need the same action several times in different states of the world
 - » Example on next slide

Example

3-digit binary counter starts at 000, want to get to 111

$$s_0 = \{d_3 = 0, d_2 = 0, d_1 = 0\}, \text{ i.e., } 000$$

$$g = \{d_3=1, d_2=1, d_1=1\}, i.e., 111$$

Operators to increment the counter by 1:

incr-xx0-to-xx1

Precond: $d_1=0$

Effects: $d_1=1$

incr-x01-to-x10

Precond: $d_2=0$, $d_1=1$

Effects: $d_2=1$, $d_1=0$

incr-011-to-100

Precond: d₃=0, d₂=1, d₁=1

Effects: $d_3=1$, $d_2=0$, $d_1=0$

Plan:

			d_3	d_2	d_1
	initia	al state:	0	0	0
incr-xx0-to-	xx1	\rightarrow	0	0	1
incr-x01-to-	x10	\rightarrow	0	1	0
incr-xx0-to-	xx1	\rightarrow	0	1	1
incr-011-to-	100	\rightarrow	1	0	0
incr-xx0-to-	xx1	\rightarrow	1	0	1
incr-x01-to-	x10	\rightarrow	1	1	0
incr-xx0-to-	xx1	\rightarrow	1	1	1

A Weak Pruning Technique

- Can prune all partial plans of *n* or more actions, where $n = |\{\text{all possible states}\}|$
 - ◆ This doesn't help very much
- I'm not sure whether there's a good pruning technique for plan-space planning