
Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 1 

Chapter 7 
Propositional Satisfiability Techniques 

Dana S. Nau 

University of Maryland 
 

12:58 PM     February 15, 2012 

Lecture slides for 
Automated Planning: Theory and Practice 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 2 

Motivation 
●  Propositional satisfiability:  given a boolean formula 

» e.g.,    (P ∨ Q) ∧ (¬Q ∨ R ∨ S) ∧ (¬R ∨ ¬P), 
 does there exist a model 

»  i.e., an assignment of truth values to the propositions 
 that makes the formula true? 

●  This was the very first problem shown to be NP-complete 
●  Lots of research on algorithms for solving it 

◆  Algorithms are known for solving all but a small subset in 
average-case polynomial time 

●  Therefore, 
◆  Try translating classical planning problems into satisfiability 

problems, and solving them that way 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 3 

Outline 
●  Encoding planning problems as satisfiability problems 
●  Extracting plans from truth values 
●  Satisfiability algorithms 

◆  Davis-Putnam 
◆  Local search 
◆  GSAT 

●  Combining satisfiability with planning graphs 
◆  SatPlan 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 4 

Overall Approach 
●  A bounded planning problem is a pair (P,n): 

◆  P is a planning problem; n is a positive integer 
◆  Any solution for P of length n is a solution for (P,n) 

●  Planning algorithm: 
●  Do iterative deepening like we did with Graphplan:  

◆  for n = 0, 1, 2, …, 
» encode (P,n) as a satisfiability problem Φ  
»  if Φ is satisfiable, then 

•  From the set of truth values that satisfies Φ, a solution 
plan can be constructed, so return it and exit 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 5 

Notation 
●  For satisfiability problems we need to use propositional logic 
●  Need to encode ground atoms into propositions 

◆  For set-theoretic planning we encoded atoms into propositions 
by rewriting them as shown here: 

» Atom: at(r1,loc1) 
» Proposition: at-r1-loc1 

●  For planning as satisfiability we’ll do the same thing 
◆  But we won’t bother to do a syntactic rewrite 
◆  Just use at(r1,loc1) itself as the proposition 

●  Also, we’ll write plans starting at a0 rather than a1 
◆ π = 〈a0, a1, …, an–1〉 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 6 

Fluents 
●  If π = 〈a0, a1, …, an–1〉 is a solution for (P,n), it generates these states: 

s0,    s1 = γ (s0,a0),    s2 = γ (s1,a1),    …,    sn = γ (sn–1, an–1) 

●  Fluent: proposition saying a particular atom is true in a particular state 
◆  at(r1,loc1,i) is a fluent that’s true iff  at(r1,loc1) is in si  

◆  We’ll use li to denote the fluent for literal l in state si 
»  e.g., if  l = at(r1,loc1) 
      then li = at(r1,loc1,i)  
 

◆  ai is a fluent saying that a is the i’th step of π 
»  e.g., if  a = move(r1,loc2,loc1) 
      then ai = move(r1,loc2,loc1,i) 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 7 

Encoding Planning Problems 
●  Encode (P,n) as a formula Φ such that 

◆  π =  〈a0, a1, …, an–1〉 is a solution for (P,n) if and only if 
Φ can be satisfied in a way that makes the fluents a0, …, an–1 true 

 
●  Let 

◆  A = {all actions in the planning domain} 
◆  S = {all states in the planning domain} 
◆  L = {all literals in the language} 

●   Φ is the conjunct of many other formulas … 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 8 

Formulas in Φ 
1.  Formula describing the initial state: 

◆   /\{l0  | l ∈ s0}  ∧  /\{¬l0  | l ∈ L – s0 } 

2.  Formula describing the goal: 
◆   /\{ln  | l ∈ g+} ∧  /\{¬ln  |  l ∈ g–} 

3.  For every action a in A and for i = 1, …, n, a formula describing what changes a 
would make if it were the i’th step of the plan: 
◆   ai   ⇒  /\{pi  | p ∈ Precond(a)} ∧  /\ {ei+1  |  e ∈ Effects(a)} 

4.  Complete exclusion axiom: 
◆  For every pair of actions a and b, and for i = 0, …, n–1, a formula saying they 

can’t both be the i’th step of the plan 
     ¬ ai  ∨ ¬ bi 

◆  this guarantees there can be only one action at a time 

●  Is this enough? 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 9 

Frame Axioms 
5.  Frame axioms: 

◆  Formulas describing what doesn’t change 
between steps i and i+1 

●  Several ways to write these 

●  One way: explanatory frame axioms 
◆  For i = 0, …, n–1, an axiom for every literal  l 

»  Says that if l changes between si and si+1,  
then the action at step i must be responsible: 

 
       (¬li ∧ li+1 ⇒ Va in A{ai | l ∈ effects+(a)}) 
   ∧ (li ∧ ¬li+1 ⇒ Va in A{ai | l ∈ effects–(a)}) 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10 

Example 
●  Planning domain: 

◆  one robot r1 
◆  two adjacent locations l1, l2 
◆  one planning operator (to move the robot from one location to another) 

●  Encode (P,n) where n = 1 

1.  Initial state:  {at(r1,l1)} 
 Encoding:  at(r1,l1,0) ∧ ¬at(r1,l2,0) 

2.  Goal:   {at(r1,l2)} 
 Encoding:  at(r1,l2,1) ∧ ¬at(r1,l1,1) 

3.  Operator: see next slide 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 11 

Example (continued) 
●  Operator:  move(r,l,l' ) 

      precond: at(r,l) 
      effects:   at(r,l' ), ¬at(r,l) 

 Encoding: 
 move(r1,l1,l2,0) ⇒ at(r1,l1,0) ∧ at(r1,l2,1) ∧ ¬at(r1,l1,1) 
 move(r1,l2,l1,0) ⇒ at(r1,l2,0) ∧ at(r1,l1,1) ∧ ¬at(r1,l2,1) 
 move(r1,l1,l1,0) ⇒ at(r1,l1,0) ∧ at(r1,l1,1) ∧ ¬at(r1,l1,1) 
 move(r1,l2,l2,0) ⇒ at(r1,l2,0) ∧ at(r1,l2,1) ∧ ¬at(r1,l2,1) 
 move(l1,r1,l2,0) ⇒ … 
 move(l2,l1,r1,0) ⇒ … 
 move(l1,l2,r1,0) ⇒ … 
 move(l2,l1,r1,0) ⇒ … 

●  Operator:  move(r : robot, l : location, l' : location) 
       precond: at(r,l) 
       effects:   at(r,l' ), ¬at(r,l) 

nonsensical, and we can avoid generating 
them if we use data types like we did for 
state-variable representation 

contradictions 
(easy to detect) 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12 

Example (continued) 
4.  Complete-exclusion axiom: 

 ¬move(r1,l1,l2,0) ∨ ¬move(r1,l2,l1,0) 

5.  Explanatory frame axioms: 
 ¬at(r1,l1,0) ∧ at(r1,l1,1) ⇒ move(r1,l2,l1,0) 
 ¬at(r1,l2,0) ∧ at(r1,l2,1) ⇒ move(r1,l1,l2,0) 
 at(r1,l1,0) ∧ ¬at(r1,l1,1) ⇒ move(r1,l1,l2,0) 
 at(r1,l2,0) ∧ ¬at(r1,l2,1) ⇒ move(r1,l2,l1,0) 
 
 

●  Φ is the conjunct of all of these 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 13 

Summary of the Example 
●  P is a planning problem with one robot and two locations 

◆  initial state {at(r1,l1)} 
◆  goal {at(r1,l2)} 

●  Encoding of (P,1) 
◆  Φ = [at(r1,l1,0) ∧ ¬at(r1,l2,0)]  (initial state) 

∧ [at(r1,l2,1) ∧ ¬at(r1,l1,1)]  (goal) 
∧ [move(r1,l1,l2,0) 

  ⇒ at(r1,l1,0) ∧ at(r1,l2,1) ∧ ¬at(r1,l1,1)]  (action) 
∧ [move(r1,l2,l1,0) 

  ⇒ at(r1,l2,0) ∧ at(r1,l1,1) ∧ ¬at(r1,l2,1)]  (action) 
∧ [¬move(r1,l1,l2,0) ∨ ¬move(r1,l2,l1,0)]  (complete exclusion) 
∧ [¬at(r1,l1,0) ∧ at(r1,l1,1) ⇒ move(r1,l2,l1,0)]  (frame axiom) 
∧ [¬at(r1,l2,0) ∧ at(r1,l2,1) ⇒ move(r1,l1,l2,0)]  (frame axiom) 
∧ [at(r1,l1,0) ∧ ¬at(r1,l1,1) ⇒ move(r1,l1,l2,0)]  (frame axiom) 
∧ [at(r1,l2,0) ∧ ¬at(r1,l2,1) ⇒ move(r1,l2,l1,0)]  (frame axiom) 

 
 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 14 

Extracting a Plan 
●  Let Φ be an encoding of (P,n) 
●  Suppose we find an assignment of truth values that satisfies Φ. 

◆  This means P has a solution of length n 

●  For i=1,…,n, there will be exactly one action a such that ai = true 
◆  This is the i’th action of the plan. 

●  Example 
●  The formula on the previous slide 

◆  Φ can be satisfied with move(r1,l1,l2,0) = true 
»  Thus 〈move(r1,l1,l2,0)〉 is a solution for (P,1) 

◆  It’s the only solution - no other way to satisfy Φ  



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 15 

Planning 
●  How to find an assignment of truth values that satisfies Φ? 

◆  Use a satisfiability algorithm 

●  Example: the Davis-Putnam algorithm 

◆  First need to put Φ into conjunctive normal form 
	
e.g., Φ = D ∧ (¬D ∨ A ∨ ¬B) ∧ (¬D ∨ ¬A ∨ ¬B) ∧ (¬D ∨ ¬A ∨ B) ∧ A 

◆  Write Φ as a set of clauses (disjuncts of literals) 
	
 Φ = {{D},   {¬D, A, ¬B},   {¬D, ¬A, ¬B},   {¬D, ¬A, B},  {A}} 

◆  Some special cases: 
»  If Φ = ∅ then Φ is always true 
»  If Φ = {…, ∅, …} then Φ is always false (hence unsatisfiable) 
»  If Φ contains a unit clause, l, then l must be true in order to satisfy Φ 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 16 

The Davis-Putnam Procedure 
Backtracking search through alternative assignments of truth values to literals 
●  µ = {literals to which we have assigned the value TRUE} 

◆  initially empty 

●  For every unit clause l 
◆  add l to µ 

◆  remove clauses  
that contain l 

◆  modify clauses 
that contain ¬l 

●  If Φ contains ∅, µ fails 
●  If Φ = ∅, µ is a solution 

●  Select a Boolean 
variable P in Φ 

●  do two recursive calls  
◆  Φ ∧ P 
◆  Φ ∧ ¬P 

Unit-propagate(Φ,µ) 
if ∅ ∈ Φ then return    error in the book here 
if Φ = ∅ then exit with µ 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 17 

Local Search 
●  Let u be an assignment of truth values to all of the variables 

◆  cost(u,Φ) = number of clauses in Φ that aren’t satisfied by u 
◆  flip(P,u) = u except that P’s truth value is reversed 

●  Local search: 
◆  Select a random assignment u 
◆  while cost(u,Φ) ≠ 0 

»  if there is a P such that cost(flip(P,u),Φ) < cost(u,Φ) then 
•  randomly choose any such P 
•  u ← flip(P,u) 

»  else return failure 

●  Local search is sound  
●  If it finds a solution it will find it very quickly 
●  Local search is not complete: can get trapped in local minima 

Boolean variable 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 18 

GSAT 
●  Basic-GSAT: 

◆  Select a random assignment u 
◆  while cost(u,Φ) ≠ 0 

»  choose a P that minimizes cost(flip(P,u),Φ), and flip it 
●  Not guaranteed to terminate 

●  GSAT: 
◆  restart after a max number of flips 
◆  return failure after a max number of restarts 

●  The book discusses several other stochastic procedures 
◆  One is Walksat 

»  works better than both local search and GSAT 
◆  I’ll skip the details 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 19 

Discussion 
●  Recall the overall approach: 

◆  for n = 0, 1, 2, …, 
»  encode (P,n) as a satisfiability problem Φ  
»  if Φ is satisfiable, then 

•  From the set of truth values that satisfies Φ, extract a solution plan  
and return it 

●  By itself, not very practical (takes too much memory and time) 
●  But it can work well if combined with other techniques 

◆  e.g., planning graphs 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 20 

SatPlan 
●  SatPlan combines planning-graph expansion and satisfiability checking 
●  Works roughly as follows: 

◆  for k = 0, 1, 2, … 
»  Create a planning graph that contains k levels 
»  Encode the planning graph as a satisfiability problem 
»  Try to solve it using a SAT solver 

•  If the SAT solver finds a solution within some time limit, 
-  Remove some unnecessary actions 
-  Return the solution 

●  Memory requirement still is combinatorially large 
◆  but less than what’s needed by a direct translation into satisfiability 

●  BlackBox (predecessor to SatPlan) was one of the best planners in the 1998 
planning competition 

●  SatPlan was one of the best planners in the 2004 and 2006 planning competitions 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 21 

Other Translation Approaches 
●  Translate planning problems into 0-1 integer programming problems 

◆  Then solve them using an integer programming package such as CPLEX 
◆  Techniques are somewhat similar to translation of planning to satisfiability 

●  Translate planning problems into constraint satisfaction problems 
◆  Then solve them using CSP techniques such as arc consistency and path 

consistency 
◆  For details, see Chapter 8 


