Lecture slides for Automated Planning: Theory and Practice

Chapter 7 Propositional Satisfiability Techniques

Dana S. Nau
University of Maryland

12:58 PM February 15, 2012

Motivation

- Propositional satisfiability: given a boolean formula

$$
» \text { e.g., } \quad(P \vee Q) \wedge(\neg Q \vee R \vee S) \wedge(\neg R \vee \neg P) \text {, }
$$

does there exist a model
» i.e., an assignment of truth values to the propositions that makes the formula true?

- This was the very first problem shown to be NP-complete
- Lots of research on algorithms for solving it
- Algorithms are known for solving all but a small subset in average-case polynomial time
- Therefore,
- Try translating classical planning problems into satisfiability problems, and solving them that way

Outline

- Encoding planning problems as satisfiability problems
- Extracting plans from truth values
- Satisfiability algorithms
- Davis-Putnam
- Local search
- GSAT
- Combining satisfiability with planning graphs
- SatPlan

Overall Approach

- A bounded planning problem is a pair (P, n) :
- P is a planning problem; n is a positive integer
- Any solution for P of length n is a solution for (P, n)
- Planning algorithm:
- Do iterative deepening like we did with Graphplan:
- for $n=0,1,2, \ldots$,
» encode (P, n) as a satisfiability problem Φ
\geqslant if Φ is satisfiable, then
- From the set of truth values that satisfies Φ, a solution plan can be constructed, so return it and exit

Notation

- For satisfiability problems we need to use propositional logic
- Need to encode ground atoms into propositions
- For set-theoretic planning we encoded atoms into propositions by rewriting them as shown here:
» Atom: at(r1,loc1)
» Proposition: at-r1-loc1
- For planning as satisfiability we'll do the same thing
- But we won't bother to do a syntactic rewrite
- Just use at(r1,loc1) itself as the proposition
- Also, we'll write plans starting at a_{0} rather than a_{1}
$\bullet \pi=\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle$

Fluents

- If $\pi=\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle$ is a solution for (P, n), it generates these states: $s_{0}, \quad s_{1}=\gamma\left(s_{0}, a_{0}\right), \quad s_{2}=\gamma\left(s_{1}, a_{1}\right), \quad \ldots, \quad s_{n}=\gamma\left(s_{n-1}, a_{n-1}\right)$
- Fluent: proposition saying a particular atom is true in a particular state
- at($\mathrm{r} 1, \operatorname{loc} 1, i)$ is a fluent that's true iff at(r1,loc1) is in s_{i}
- We'll use l_{i} to denote the fluent for literal l in state s_{i}

$$
\begin{aligned}
\text { » e.g., if } l & =\operatorname{at}(\mathrm{r} 1, \mathrm{loc} 1) \\
\text { then } l_{i} & =\operatorname{at}(\mathrm{r} 1, \operatorname{loc} 1, i)
\end{aligned}
$$

$-a_{i}$ is a fluent saying that a is the i th step of π
» e.g., if $a=$ move($\mathrm{r} 1, \operatorname{loc} 2, \operatorname{loc} 1$) then $a_{i}=\operatorname{move}(\mathrm{r} 1, \operatorname{loc} 2, \operatorname{loc} 1, i)$

Encoding Planning Problems

- Encode (P, n) as a formula Φ such that
- $\pi=\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle$ is a solution for (P, n) if and only if Φ can be satisfied in a way that makes the fluents a_{0}, \ldots, a_{n-1} true
- Let
- $A=$ \{all actions in the planning domain $\}$
- $S=$ \{all states in the planning domain $\}$
- $L=$ \{all literals in the language $\}$
- Φ is the conjunct of many other formulas ...

Formulas in Φ

1. Formula describing the initial state:

- $\bigwedge\left\{l_{0} \mid l \in s_{0}\right\} \wedge \bigwedge\left\{\neg l_{0} \mid l \in L-s_{0}\right\}$

2. Formula describing the goal:

- $\wedge\left\{l_{n} \mid l \in g^{+}\right\} \wedge \Lambda\left\{\neg l_{n} \mid l \in g^{-}\right\}$

3. For every action a in A and for $i=1, \ldots, n$, a formula describing what changes a would make if it were the i 'th step of the plan:

- $a_{i} \Rightarrow \wedge\left\{p_{i} \mid p \in \operatorname{Precond}(a)\right\} \wedge \wedge\left\{e_{i+1} \mid e \in \operatorname{Effects}(a)\right\}$

4. Complete exclusion axiom:

- For every pair of actions a and b, and for $i=0, \ldots, n-1$, a formula saying they can't both be the i 'th step of the plan

$$
\neg a_{i} \vee \neg b_{i}
$$

- this guarantees there can be only one action at a time
- Is this enough?

Frame Axioms

5. Frame axioms:

- Formulas describing what doesn't change between steps i and $i+1$
- Several ways to write these
- One way: explanatory frame axioms
- For $i=0, \ldots, n-1$, an axiom for every literal l
" Says that if l changes between s_{i} and s_{i+1}, then the action at step i must be responsible:

$$
\begin{aligned}
\quad\left(\neg l_{i} \wedge l_{i+1}\right. & \left.\Rightarrow \bigvee_{a \text { in } A}\left\{a_{i} \mid l \in \operatorname{effects}^{+}(a)\right\}\right) \\
\wedge\left(l_{i} \wedge \neg l_{i+1}\right. & \left.\Rightarrow \mathrm{V}_{a \text { in } A}\left\{a_{i} \mid l \in \operatorname{effects}^{-}(a)\right\}\right)
\end{aligned}
$$

Example

- Planning domain:
- one robot r1
- two adjacent locations I1, I2
- one planning operator (to move the robot from one location to another)
- Encode (P, n) where $n=1$

1. Initial state:	$\{a t(r 1, \mid 1)\}$
Encoding:	$\operatorname{at}(\mathrm{r} 1, \mid 1,0) \wedge \neg \mathrm{at}(\mathrm{r} 1, \mathrm{l} 2,0)$

2. Goal:

Encoding:

```
{at(r1,l2)}
at(r1,I2,1)^ ᄀat(r1,|1,1)
```

3. Operator: see next slide

Example (continued)

- Operator: $\operatorname{move}\left(r, l, l^{\prime}\right)$

$$
\text { precond: at }(r, l)
$$

effects: at $\left(r, l^{\prime}\right), \neg \mathrm{at}(r, l)$
Encoding:

$$
\begin{aligned}
& \operatorname{move}(\mathrm{r} 1, \mathrm{I}, \mathrm{l}, 0) \Rightarrow \mathrm{at}(\mathrm{r} 1, \mathrm{I}, 0) \wedge \mathrm{at}(\mathrm{r} 1, \mathrm{l} 2,1) \wedge \neg \mathrm{at}(\mathrm{r} 1, \mathrm{I}, 1,1) \\
& \operatorname{move}(\mathrm{r} 1, \mathrm{l} 2, \mathrm{l}, 0) \Rightarrow \mathrm{at}(\mathrm{r} 1, \mathrm{l} 2,0) \wedge \mathrm{at}(\mathrm{r} 1, \mathrm{I}, 1,1) \wedge \neg \mathrm{at}(\mathrm{r} 1, \mathrm{l}, 1,1) \\
& \text { move }(\mathrm{r} 1, \mathrm{I}, \mathrm{I}, 0) \Rightarrow \mathrm{at}(\mathrm{r} 1, \mathrm{I}, 0) \wedge \mathrm{at}(\mathrm{r} 1, \mathrm{I}, 1,1) \wedge \neg \mathrm{at}(\mathrm{r} 1, \mid 1,1)\} \text { contradictions } \\
& \operatorname{move}(r 1, I 2, I 2,0) \Rightarrow a t(r 1, \mid 2,0) \wedge a t(r 1,12,1) \wedge \neg a t(r 1, \mid 2,1)\} \text { (easy to detect) } \\
& \operatorname{move}(11, \mathrm{r} 1, \mathrm{I} 2,0) \Rightarrow \ldots \\
& \operatorname{move}(12, I 1, r 1,0) \Rightarrow \ldots \\
& \text { move }(11, I 2, r 1,0) \Rightarrow \ldots \\
& \operatorname{move}(\mathrm{I}, \mathrm{I}, \mathrm{r} 1,0) \Rightarrow \ldots \text {. } \\
& \text { nonsensical, and we can avoid generating } \\
& \text { them if we use data types like we did for } \\
& \text { state-variable representation }
\end{aligned}
$$

- Operator: $\quad \operatorname{move}\left(r\right.$: robot, l : location, l^{\prime} : location)

$$
\begin{aligned}
& \text { precond: at }(r, l) \\
& \text { effects: at }\left(r, l^{\prime}\right), \neg \operatorname{at}(r, l)
\end{aligned}
$$

Example (continued)

4. Complete-exclusion axiom:

$$
\neg \operatorname{move}(\mathrm{r} 1, \mathrm{l} 1, \mathrm{l} 2,0) \vee \neg \operatorname{move}(\mathrm{r} 1, \mathrm{l} 2, \mathrm{I} 1,0)
$$

5. Explanatory frame axioms:

$$
\begin{aligned}
& \neg \text { at }(\mathrm{r} 1, \mathrm{I} 1,0) \wedge \text { at }(\mathrm{r} 1, \mathrm{I}, 1,1) \Rightarrow \operatorname{move}(\mathrm{r} 1, \mathrm{I}, \mathrm{I} 1,0) \\
& \neg \text { at }(\mathrm{r} 1, \mathrm{I} 2,0) \wedge \mathrm{at}(\mathrm{r} 1, \mathrm{l} 2,1) \Rightarrow \operatorname{move}(\mathrm{r} 1, \mathrm{I}, \mathrm{I} 2,0) \\
& a t(r 1, I 1,0) \wedge \neg a t(r 1, I 1,1) \Rightarrow \operatorname{move}(r 1, I 1, I 2,0) \\
& \text { at(} \mathrm{r} 1, \mathrm{l}, 0 \text {) } \wedge \neg \mathrm{at}(\mathrm{r} 1, \mathrm{l}, 1) \Rightarrow \operatorname{move}(\mathrm{r} 1, \mathrm{l}, \mathrm{I}, 0)
\end{aligned}
$$

- Φ is the conjunct of all of these

Summary of the Example

- P is a planning problem with one robot and two locations
- initial state $\{a t(r 1,11)\}$
- goal \{at(r1,l2)\}
- Encoding of $(P, 1)$
- $\Phi=[\operatorname{at}(\mathrm{r} 1, \mathrm{l}, 0) \wedge \neg \operatorname{at}(\mathrm{r} 1, \mathrm{l}, 0)]$
(initial state)
$\wedge[a t(r 1, l 2,1) \wedge \neg a t(r 1,11,1)]$
^ [move(r1,l1,l2,0)
$\Rightarrow a t(r 1, I 1,0) \wedge a t(r 1, \mid 2,1) \wedge \neg a t(r 1, I 1,1)] \quad$ (action)
$\wedge[$ move $(\mathrm{r} 1, \mathrm{l} 2, \mathrm{l} 1,0)$
$\Rightarrow \operatorname{at}(\mathrm{r} 1, \mathrm{l}, 0) \wedge \mathrm{at}(\mathrm{r} 1, \mathrm{I} 1,1) \wedge \neg \mathrm{at}(\mathrm{r} 1, \mathrm{l} 2,1)] \quad$ (action)
$\wedge[\neg$ move $(\mathrm{r} 1, \mathrm{I} 1, \mathrm{l}, 0) \vee \neg$ move $(\mathrm{r} 1, \mathrm{l}, \mathrm{l} 1,0)]$
$\wedge[\neg a t(r 1, I 1,0) \wedge \operatorname{at}(r 1, I 1,1) \Rightarrow \operatorname{move}(r 1, \mid 2, I 1,0)]$
(frame axiom)
$\wedge[\neg a t(r 1, l 2,0) \wedge a t(r 1, I 2,1) \Rightarrow \operatorname{move}(r 1, I 1, \mid 2,0)] \quad$ (frame axiom)
$\wedge[a t(r 1,11,0) \wedge \neg a t(r 1,11,1) \Rightarrow \operatorname{move}(r 1,11,12,0)] \quad$ (frame axiom)
$\wedge[a t(r 1, \mid 2,0) \wedge \neg a t(r 1, \mid 2,1) \Rightarrow \operatorname{move}(r 1,|2| 1,0)$,$] \quad (frame axiom)$

Extracting a Plan

- Let Φ be an encoding of (P, n)
- Suppose we find an assignment of truth values that satisfies Φ.
- This means P has a solution of length n
- For $i=1, \ldots, n$, there will be exactly one action a such that $a_{i}=$ true
- This is the i 'th action of the plan.
- Example
- The formula on the previous slide
- Φ can be satisfied with move(r1,11,12,0)= true
» Thus \langle move $(\mathrm{r} 1, \mathrm{I} 1, \mathrm{I} 2,0)\rangle$ is a solution for $(P, 1)$
- It's the only solution - no other way to satisfy Φ

Planning

- How to find an assignment of truth values that satisfies Φ ?
- Use a satisfiability algorithm
- Example: the Davis-Putnam algorithm
- First need to put Φ into conjunctive normal form

$$
\text { e.g., } \Phi=\mathrm{D} \wedge(\neg \mathrm{D} \vee \mathrm{~A} \vee \neg \mathrm{~B}) \wedge(\neg \mathrm{D} \vee \neg \mathrm{~A} \vee \neg \mathrm{~B}) \wedge(\neg \mathrm{D} \vee \neg \mathrm{~A} \vee \mathrm{~B}) \wedge \mathrm{A}
$$

- Write Φ as a set of clauses (disjuncts of literals)

$$
\Phi=\{\{\mathrm{D}\}, \quad\{\neg \mathrm{D}, \mathrm{~A}, \neg \mathrm{~B}\}, \quad\{\neg \mathrm{D}, \neg \mathrm{~A}, \neg \mathrm{~B}\}, \quad\{\neg \mathrm{D}, \neg \mathrm{~A}, \mathrm{~B}\}, \quad\{\mathrm{A}\}\}
$$

- Some special cases:
" If $\Phi=\varnothing$ then Φ is always true
» If $\Phi=\{\ldots, \varnothing, \ldots\}$ then Φ is always false (hence unsatisfiable)
» If Φ contains a unit clause, l, then l must be true in order to satisfy Φ

The Davis-Putnam Procedure

Backtracking search through alternative assignments of truth values to literals

- $\mu=\{$ literals to which we have assigned the value TRUE $\}$
- initially empty
- For every unit clause l
- add l to μ
- remove clauses that contain l
- modify clauses that contain $\neg l$
- If Φ contains \varnothing, μ fails
- If $\Phi=\varnothing, \mu$ is a solution
- Select a Boolean variable P in Φ
- do two recursive calls
- $\Phi \wedge P$
- $\Phi \wedge \neg P$

Local Search

- Let u be an assignment of truth values to all of the variables
- $\operatorname{cost}(u, \Phi)=$ number of clauses in Φ that aren't satisfied by u
- flip $(P, u)=u$ except that P 's truth value is reversed

Boolean variable

- Local search:
- Select a random assignment u
- while $\operatorname{cost}(u, \Phi) \neq 0$
» if there is a P such that $\operatorname{cost}(\mathrm{flip}(P, u), \Phi)<\operatorname{cost}(u, \Phi)$ then
- randomly choose any such P
- $u \leftarrow$ flip (P, u)
» else return failure
- Local search is sound
- If it finds a solution it will find it very quickly
- Local search is not complete: can get trapped in local minima

GSAT

- Basic-GSAT:
- Select a random assignment u
- while $\operatorname{cost}(u, \Phi) \neq 0$
» choose a P that minimizes $\operatorname{cost}(\operatorname{flip}(P, u), \Phi)$, and flip it
- Not guaranteed to terminate
- GSAT:
- restart after a max number of flips
- return failure after a max number of restarts
- The book discusses several other stochastic procedures
- One is Walksat
» works better than both local search and GSAT
- I'll skip the details

Discussion

- Recall the overall approach:
- for $n=0,1,2, \ldots$,
» encode (P, n) as a satisfiability problem Φ
$»$ if Φ is satisfiable, then
- From the set of truth values that satisfies Φ, extract a solution plan and return it
- By itself, not very practical (takes too much memory and time)
- But it can work well if combined with other techniques
- e.g., planning graphs

SatPlan

- SatPlan combines planning-graph expansion and satisfiability checking
- Works roughly as follows:
- for $k=0,1,2, \ldots$
» Create a planning graph that contains k levels
» Encode the planning graph as a satisfiability problem
» Try to solve it using a SAT solver
- If the SAT solver finds a solution within some time limit,
- Remove some unnecessary actions
- Return the solution
- Memory requirement still is combinatorially large
- but less than what's needed by a direct translation into satisfiability
- BlackBox (predecessor to SatPlan) was one of the best planners in the 1998 planning competition
- SatPlan was one of the best planners in the 2004 and 2006 planning competitions

Other Translation Approaches

- Translate planning problems into 0-1 integer programming problems
- Then solve them using an integer programming package such as CPLEX
- Techniques are somewhat similar to translation of planning to satisfiability
- Translate planning problems into constraint satisfaction problems
- Then solve them using CSP techniques such as arc consistency and path consistency
- For details, see Chapter 8

