
Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 1

Chapter 9
Heuristics in Planning

Lecture slides for
Automated Planning: Theory and Practice

Dana S. Nau
University of Maryland

3:08 PM March 7, 2012

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 2

Planning as Nondeterministic Search

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 3

Making it Deterministic

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 4

Digression: the A* algorithm (on trees)
●  Suppose we’re searching a tree in which each edge (s,s') has a cost c(s,s')

◆  If p is a path, let c(p) = sum of the edge costs
◆  For classical planning, this is the length of p

●  For every state s, let
◆  g(s) = cost of the path from s0 to s
◆  h*(s) = least cost of all paths from s to goal nodes
◆  f*(s) = g(s) + h*(s) = least cost of all paths

from s0 to goal nodes that go through s

●  Suppose h(s) is an estimate of h*(s)
◆  Let f(s) = g(s) + h(s)

»  f(s) is an estimate of f*(s)
◆  h is admissible if for every state s, 0 ≤ h(s) ≤ h*(s)
◆  If h is admissible then f is a lower bound on f*

g(s)

h*(s)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 5

The A* Algorithm
●  A* on trees:

 loop
choose the leaf node s such that f(s) is smallest
if s is a solution then return it and exit
expand it (generate its children)

●  On graphs, A* is more complicated
◆  additional machinery to deal with

multiple paths to the same node

●  If a solution exists (and certain other
conditions are satisfied), then:
◆  If h(s) is admissible, then A* is guaranteed to find an optimal solution
◆  The more “informed” the heuristic is (i.e., the closer it is to h*),

the smaller the number of nodes A* expands
◆  If h(s) is within c of being admissible, then A* is

guaranteed to find a solution that’s within c of optimal

g(s)

h*(s)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 6

Hill Climbing
●  Use h as a node-selection heuristic

◆  Select the node v in C for which h(v) is smallest
●  Why not use f ?
●  Do we care whether h is admissible?

u

C

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 7

FastForward (FF)
●  Depth-first search
●  Selection heuristic: relaxed Graphplan

◆  Let v be a node in C
◆  Let Pv be the planning problem of getting

from v to a goal
◆  use Graphplan to find a solution for a

relaxation of Pv
◆  The length of this solution is a lower

bound on the length of a solution to Pv

u

C

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 8

Selection Heuristic
●  Given a planning problem Pv, create a relaxed planning problem P'v

and use GraphPlan to solve it
◆  Convert to set-theoretic representation

» No negative literals; goal is now a set of atoms
◆  Remove the delete lists from the actions
◆  Construct a planning graph until a layer is found that contains all

of the goal atoms
◆  The graph will contain no mutexes because the delete lists were

removed
◆  Extract a plan π' from the planning graph

» No mutexes à no backtracking à polynomial time
●  |π'| is a lower bound on the length of the best solution to Pv

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 9

FastForward
●  FF evaluates all the nodes in the set C of u’s successors
●  If none of them has a better heuristic value than u, FF does a

breadth-first search for a state with a strictly better evaluation
●  The path to the new state is added to the current plan, and the

search continues from this state
●  Works well because plateaus and local minima tend to be

small in many benchmark planning problems

●  Can’t guarantee how fast FF will find a solution,
or how good a solution it will find
◆  However, it works pretty well on many problems

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10

AIPS-2000 Planning Competition

●  FastForward did quite well
●  In the this competition, all of the planning problems were classical

problems
●  Two tracks:

◆  “Fully automated” and “hand-tailored” planners
◆  FastForward participated in the fully automated track

»  It got one of the two “outstanding performance” awards
◆  Large variance in how close its plans were to optimal

» However, it found them very fast compared with the other
fully-automated planners

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 11

2002 International Planning Competition
●  Among the automated planners, FastForward was roughly in the middle
●  LPG (graphplan + local search) did much better, and got a “distinguished

performance of the first order” award

●  It’s interesting to see how FastForward did in problems that went beyond
classical planning

»  Numbers, optimization
●  Example: Satellite domain, numeric version

◆  A domain inspired by the Hubble space telescope
(a lot simpler than the real domain, of course)

»  A satellite needs to take observations of stars
»  Gather as much data as possible

before running out of fuel
◆  Any amount of data gathered is a solution

»  Thus, FastForward always returned the null plan

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12

2004 International Planning Competition
●  FastForward’s author was one of the competition chairs

◆  Thus FastForward did not participate

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 13

●  Refine = select next flaw
to work on

●  Branch = generate
resolvers

●  Prune = remove some of
the resolvers

●  nondeterministic choice
= resolver selection

Plan-Space Planning

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 14

●  Must eventually resolve all
of the flaws, regardless of
which one we choose first
◆  an “AND” branch

Flaw Selection

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 15

●  The search space is
an AND/OR tree

●  Deciding what flaw to work on next = serializing this tree (turning it into
a state-space tree)
◆  at each AND branch,

choose a child to
expand next, and
delay expanding
the other children

Serializing and AND/OR Tree

…" …"

…"

Operator o1" Operator on!…"

Goal g1" Goal g2" Constrain  
variable v"

Order 
tasks"

Partial plan p"

Partial plan p"

Goal g1"

Operator o1" Operator on!

Partial plan p1" Partial plan pn"

…" …"Goal g2" Constrain  
variable v"

Order 
tasks"

…" …"Goal g2" Constrain  
variable v"

Order 
tasks"

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 16

One Serialization

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 17

Another Serialization

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 18

Why Does This Matter?
●  Different refinement strategies produce different serializations

◆  the search spaces have different numbers of nodes
●  In the worst case, the planner will search the entire serialized search space
●  The smaller the serialization, the more likely that the planner will be efficient

●  One pretty good heuristic: fewest alternatives first

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 19

A Pretty Good Heuristic
●  Fewest Alternatives First (FAF)

◆  Choose the flaw that has the smallest number of alternatives
◆  In this case, unestablished

precondition g1

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 20

How Much Difference Can the Refinement
Strategy Make?

●  Case study: build an AND/OR graph from repeated occurrences of this pattern:

 b

●  Example:
◆  number of levels k = 3
◆  branching factor b = 2

●  Analysis:
◆  Total number of nodes in the AND/OR graph is n = Θ(bk)
◆  How many nodes in the best and worst serializations?

…

b

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 21

Case Study, Continued

●  The best serialization contains Θ(b2k) nodes
●  The worst serialization contains Θ(2kb2k) nodes

◆  The size differs by an exponential factor
◆  But both serializations are doubly exponentially large

●  This limits how good any flaw-selection heuristic can do
◆  To do better, need good ways to do node selection, branching, pruning

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 22

●  This is an “or” branch

Resolver Selection

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 23

