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Planning as Nondeterministic Search 
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Making it Deterministic 
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Digression: the A* algorithm (on trees) 
●  Suppose we’re searching a tree in which each edge (s,s') has a cost c(s,s') 

◆  If p is a path, let c(p) = sum of the edge costs 
◆  For classical planning, this is the length of p 

●  For every state s, let 
◆  g(s) = cost of the path from s0 to s 
◆  h*(s) = least cost of all paths from s to goal nodes 
◆  f*(s) = g(s) + h*(s) = least cost of all paths 

from s0 to goal nodes that go through s 

●  Suppose h(s) is an estimate of h*(s) 
◆  Let f(s) = g(s) + h(s) 

»  f(s) is an estimate of f*(s) 
◆  h is admissible if for every state s, 0 ≤ h(s) ≤ h*(s) 
◆  If h is admissible then f is a lower bound on f* 

g(s) 

h*(s) 
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The A* Algorithm 
●  A* on trees: 

    loop 
choose the leaf node s such that f(s) is smallest 
if s is a solution then return it and exit 
expand it (generate its children) 

●  On graphs, A* is more complicated 
◆  additional machinery to deal with 

multiple paths to the same node 

●  If a solution exists (and certain other 
conditions are satisfied), then: 
◆  If h(s) is admissible, then A* is guaranteed to find an optimal solution 
◆  The more “informed” the heuristic is (i.e., the closer it is to h*), 

the smaller the number of nodes A* expands 
◆  If h(s) is within c of being admissible, then A* is 

guaranteed to find a solution that’s within c of optimal 

g(s) 

h*(s) 
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Hill Climbing 
●  Use h as a node-selection heuristic 

◆  Select the node v in C for which h(v) is smallest  
●  Why not use f ? 
●  Do we care whether h is admissible? 

u 

C 
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FastForward (FF) 
●  Depth-first search 
●  Selection heuristic: relaxed Graphplan 

◆  Let v be a node in C 
◆  Let Pv be the planning problem of getting 

from v to a goal 
◆  use Graphplan to find a solution for a 

relaxation of Pv 
◆  The length of this solution is a lower 

bound on the length of a solution to Pv 

u 

C 
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Selection Heuristic 
●  Given a planning problem Pv, create a relaxed planning problem P'v 

and use GraphPlan to solve it 
◆  Convert to set-theoretic representation 

» No negative literals; goal is now a set of atoms 
◆  Remove the delete lists from the actions 
◆  Construct a planning graph until a layer is found that contains all 

of the goal atoms 
◆  The graph will contain no mutexes because the delete lists were 

removed 
◆  Extract a plan π' from the planning graph 

» No mutexes à no backtracking à polynomial time 
●  |π'| is a lower bound on the length of the best solution to Pv 
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FastForward 
●  FF evaluates all the nodes in the set C of u’s successors 
●  If none of them has a better heuristic value than u, FF does a 

breadth-first search for a state with a strictly better evaluation  
●  The path to the new state is added to the current plan, and the 

search continues from this state  
●  Works well because plateaus and local minima tend to be 

small in many benchmark planning problems  

●  Can’t guarantee how fast FF will find a solution, 
or how good a solution it will find 
◆  However, it works pretty well on many problems 
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AIPS-2000 Planning Competition 

●  FastForward did quite well 
●  In the this competition, all of the planning problems were classical 

problems 
●  Two tracks: 

◆  “Fully automated” and “hand-tailored” planners 
◆  FastForward participated in the fully automated track 

»  It got one of the two “outstanding performance” awards 
◆  Large variance in how close its plans were to optimal 

» However, it found them very fast compared with the other 
fully-automated planners 
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2002 International Planning Competition 
●  Among the automated planners, FastForward was roughly in the middle  
●  LPG (graphplan + local search) did much better, and got a “distinguished 

performance of the first order” award 

●  It’s interesting to see how FastForward did in problems that went beyond 
classical planning 

»  Numbers, optimization 
●  Example:  Satellite domain, numeric version 

◆  A domain inspired by the Hubble space telescope 
(a lot simpler than the real domain, of course) 

»  A satellite needs to take observations of stars 
»  Gather as much data as possible 

before running out of fuel  
◆  Any amount of data gathered is a solution 

»  Thus, FastForward always returned the null plan 
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2004 International Planning Competition 
●  FastForward’s author was one of the competition chairs 

◆  Thus FastForward did not participate 
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●  Refine = select next flaw 
to work on 

●  Branch = generate 
resolvers 

●  Prune = remove some of 
the resolvers 

●  nondeterministic choice 
= resolver selection 

Plan-Space Planning 
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●  Must eventually resolve all 
of the flaws, regardless of 
which one we choose first 
◆  an “AND” branch 

Flaw Selection 
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●  The search space is 
an AND/OR tree 
 
  

●  Deciding what flaw to work on next = serializing this tree (turning it into 
a state-space tree) 
◆  at each AND branch, 

choose a child to 
expand next, and 
delay expanding 
the other children 

Serializing and AND/OR Tree 
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One Serialization 
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Another Serialization 
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Why Does This Matter? 
●  Different refinement strategies produce different serializations 

◆  the search spaces have different numbers of nodes 
●  In the worst case, the planner will search the entire serialized search space 
●  The smaller the serialization, the more likely that the planner will be efficient  

●  One pretty good heuristic: fewest alternatives first 
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A Pretty Good Heuristic 
●  Fewest Alternatives First (FAF) 

◆  Choose the flaw that has the smallest number of alternatives 
◆  In this case, unestablished 

precondition g1 
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How Much Difference Can the Refinement 
Strategy Make? 

●  Case study:  build an AND/OR graph from repeated occurrences of this pattern: 
 

 
 
                b 
 

●  Example: 
◆  number of levels k = 3 
◆  branching factor b = 2 

●  Analysis: 
◆  Total number of nodes in the AND/OR graph is n = Θ(bk) 
◆  How many nodes in the best and worst serializations?  

…

b
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Case Study, Continued 

●  The best serialization contains Θ(b2k) nodes 
●  The worst serialization contains Θ(2kb2k) nodes 

◆  The size differs by an exponential factor 
◆  But both serializations are doubly exponentially large 

●  This limits how good any flaw-selection heuristic can do 
◆  To do better, need good ways to do node selection, branching, pruning 
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●  This is an “or” branch 

Resolver Selection 
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