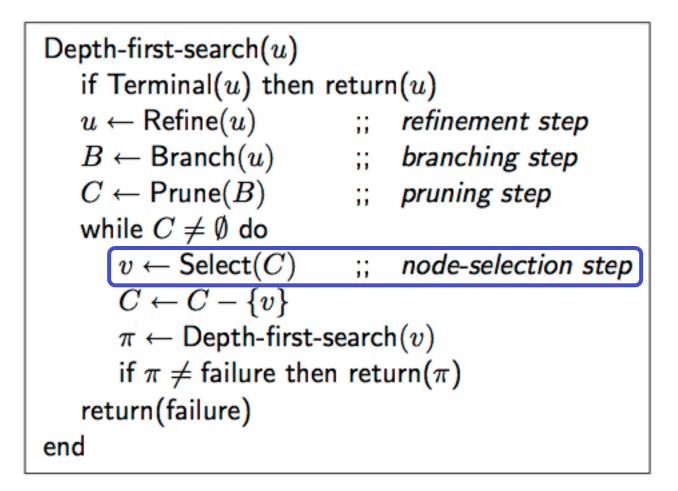
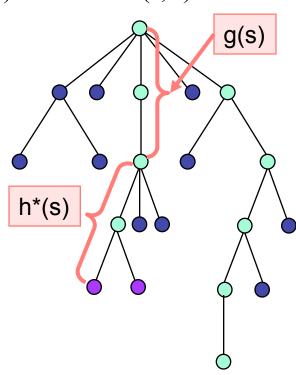
Lecture slides for Automated Planning: Theory and Practice

Chapter 9 Heuristics in Planning


Dana S. Nau University of Maryland

3:08 PM March 7, 2012

Planning as Nondeterministic Search


Abstract-search(u) if Terminal(u) then return(u) $u \leftarrow \text{Refine}(u)$;; refinement step $B \leftarrow \text{Branch}(u)$;; branching step $B' \leftarrow \text{Prune}(B)$;; pruning step if $B' = \emptyset$ then return(failure) nondeterministically choose $v \in B'$ return(Abstract-search(v)) end

Making it Deterministic

Digression: the A* algorithm (on trees)

- Suppose we're searching a **tree** in which each edge (s,s') has a cost c(s,s')
 - If p is a path, let c(p) = sum of the edge costs
 - For classical planning, this is the length of *p*
- For every state *s*, let
 - $g(s) = \text{cost of the path from } s_0 \text{ to } s$
 - $h^*(s) = \text{least cost of all paths from } s \text{ to goal nodes}$
 - *f**(*s*) = *g*(*s*) + *h**(*s*) = least cost of all paths from *s*₀ to goal nodes that go through *s*
- Suppose *h*(*s*) is an estimate of *h**(*s*)
 - Let f(s) = g(s) + h(s)
 - » f(s) is an estimate of $f^*(s)$
 - *h* is *admissible* if for every state *s*, $0 \le h(s) \le h^*(s)$
 - If *h* is admissible then *f* is a lower bound on *f**

The A* Algorithm

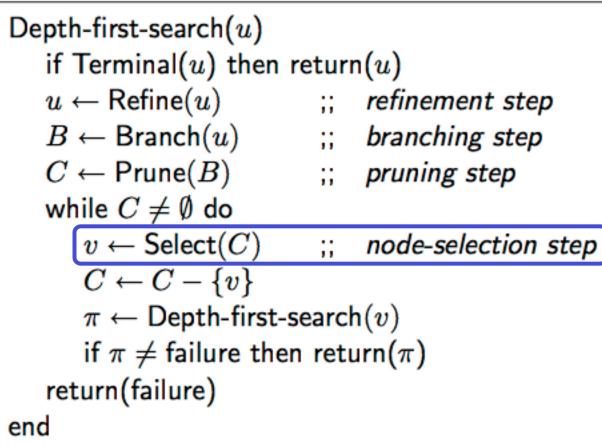
• A* on trees:

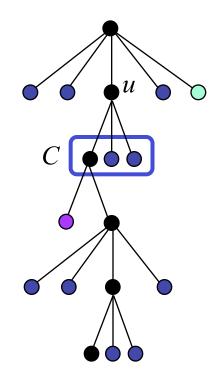
loop

choose the leaf node s such that f(s) is smallest if s is a solution then return it and exit expand it (generate its children)

- On graphs, A* is more complicated
 - additional machinery to deal with multiple paths to the same node
- If a solution exists (and certain other conditions are satisfied), then:
 - If h(s) is admissible, then A* is guaranteed to find an optimal solution
 - The more "informed" the heuristic is (i.e., the closer it is to h*), the smaller the number of nodes A* expands
 - If h(s) is within c of being admissible, then A* is guaranteed to find a solution that's within c of optimal

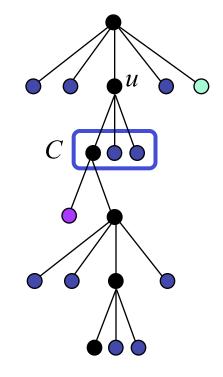
Dana Nau: Lecture slides for Automated Planning


Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/


g(s)

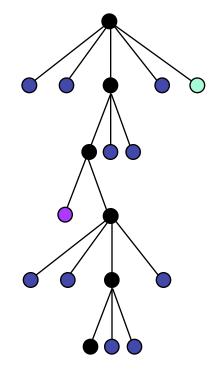
h*(s)

Hill Climbing


- Use *h* as a node-selection heuristic
 - Select the node v in C for which h(v) is smallest
- Why not use f?
- Do we care whether *h* is admissible?

FastForward (FF)

- Depth-first search
- Selection heuristic: relaxed Graphplan
 - Let v be a node in C
 - Let P_v be the planning problem of getting from v to a goal
 - use Graphplan to find a solution for a relaxation of P_{v}
 - The length of this solution is a lower bound on the length of a solution to P_v



Selection Heuristic

- Given a planning problem P_{ν} , create a relaxed planning problem P'_{ν} and use GraphPlan to solve it
 - Convert to set-theoretic representation
 - » No negative literals; goal is now a set of atoms
 - Remove the delete lists from the actions
 - Construct a planning graph until a layer is found that contains all of the goal atoms
 - The graph will contain no mutexes because the delete lists were removed
 - ♦ Extract a plan π' from the planning graph
 » No mutexes → no backtracking → polynomial time
- $|\pi'|$ is a lower bound on the length of the best solution to P_{ν}

FastForward

- FF evaluates all the nodes in the set *C* of *u*'s successors
- If none of them has a better heuristic value than *u*, FF does a breadth-first search for a state with a strictly better evaluation
- The path to the new state is added to the current plan, and the search continues from this state
- Works well because plateaus and local minima tend to be small in many benchmark planning problems
- Can't guarantee how fast FF will find a solution, or how good a solution it will find
 - However, it works pretty well on many problems

AIPS-2000 Planning Competition

- FastForward did quite well
- In the this competition, all of the planning problems were classical problems
- Two tracks:
 - "Fully automated" and "hand-tailored" planners
 - FastForward participated in the fully automated track
 » It got one of the two "outstanding performance" awards
 - Large variance in how close its plans were to optimal
 » However, it found them very fast compared with the other fully-automated planners

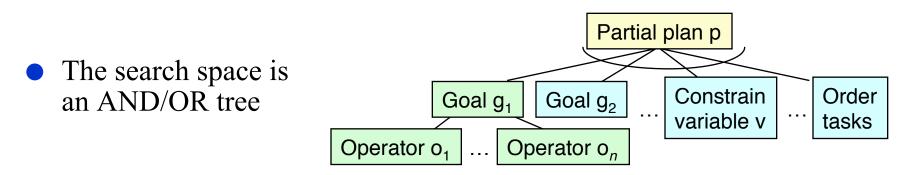
2002 International Planning Competition

- Among the automated planners, FastForward was roughly in the middle
- LPG (graphplan + local search) did much better, and got a "distinguished performance of the first order" award
- It's interesting to see how FastForward did in problems that went beyond classical planning
 - » Numbers, optimization
- Example: Satellite domain, numeric version
 - A domain inspired by the Hubble space telescope (a lot simpler than the real domain, of course)
 - » A satellite needs to take observations of stars
 - » Gather as much data as possible before running out of fuel
 - Any amount of data gathered is a solution
 - » Thus, FastForward always returned the null plan

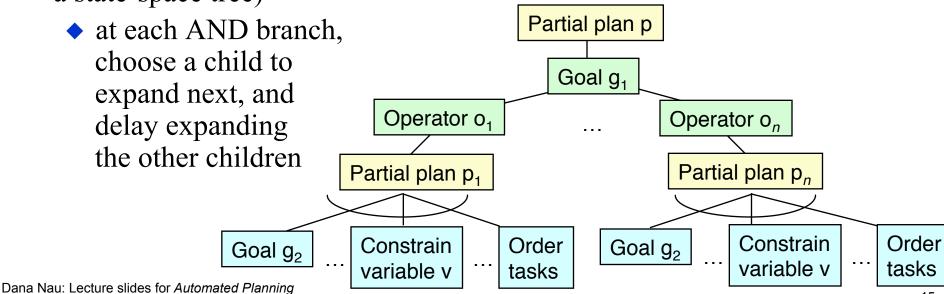
2004 International Planning Competition

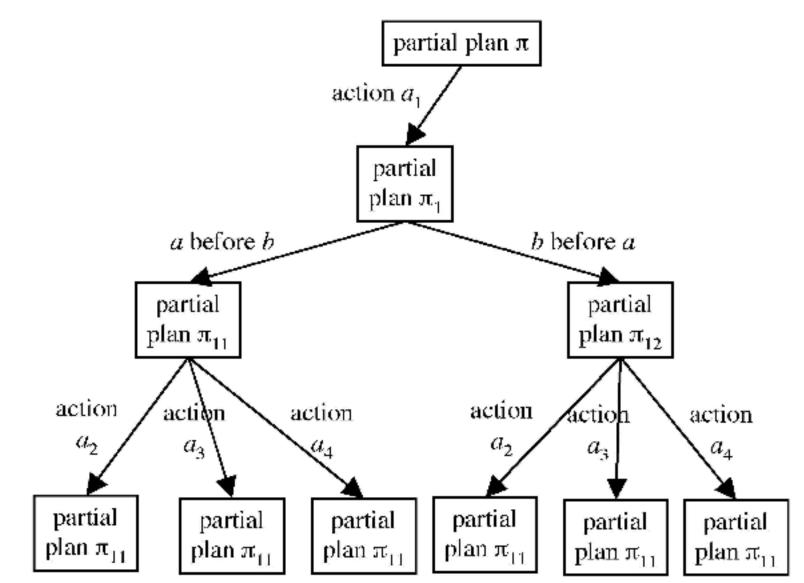
- FastForward's author was one of the competition chairs
 - Thus FastForward did not participate

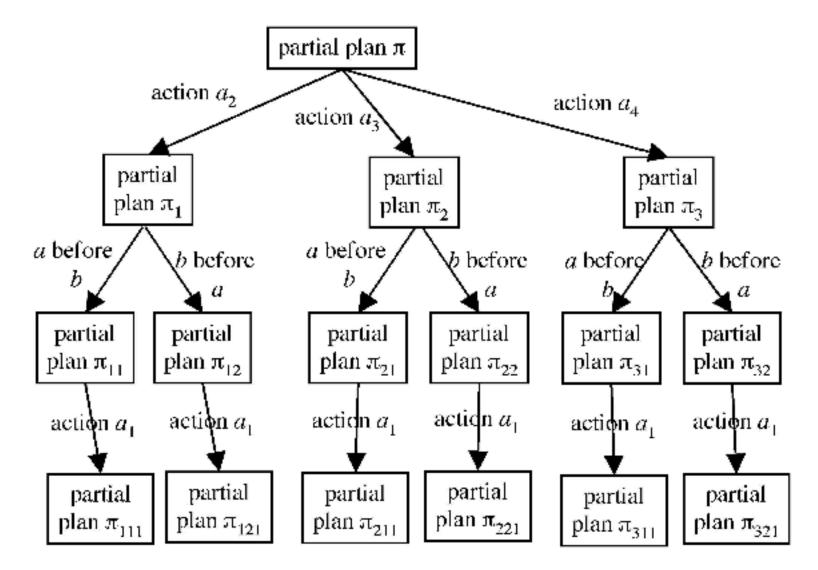
Plan-Space Planning


Abstract-search(u) if Terminal(u) then return(u) $u \leftarrow \text{Refine}(u)$;; refinement step $B \leftarrow \text{Branch}(u)$;; branching step $B' \leftarrow \text{Prune}(B)$;; pruning step if $B' = \emptyset$ then return(failure) nondeterministically choose $v \in B'$ return(Abstract-search(v)) end

- *Refine* = select next flaw to work on
- Branch = generate resolvers
- *Prune* = remove some of the resolvers
- *nondeterministic choice* resolver selection


Dana Nau: Lecture slides for Automated Planning Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/


Serializing and AND/OR Tree

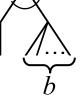

Deciding what flaw to work on next = *serializing* this tree (turning it into a state-space tree)

One Serialization

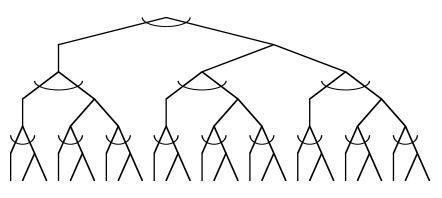
Another Serialization

Why Does This Matter?

- Different refinement strategies produce different serializations
 - the search spaces have different numbers of nodes
- In the worst case, the planner will search the entire serialized search space
- The smaller the serialization, the more likely that the planner will be efficient
- One pretty good heuristic: fewest alternatives first

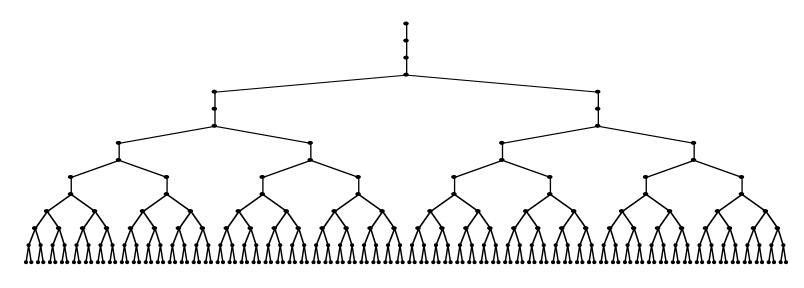

A Pretty Good Heuristic

- Fewest Alternatives First (FAF)
 - Choose the flaw that has the smallest number of alternatives
 - In this case, unestablished precondition g_1 partial plan π action a unestablished unestablished threatens b's flaws: precondition g_1 precondition g_i precondition p resolvers: resolvers: resolvers: action action action action b before a a before b an a, a_{2} a_A partial partial partial partial partial partial plan π_5 plan π_6 plan π_1 plan π_2 plan π_{χ} plan π₄

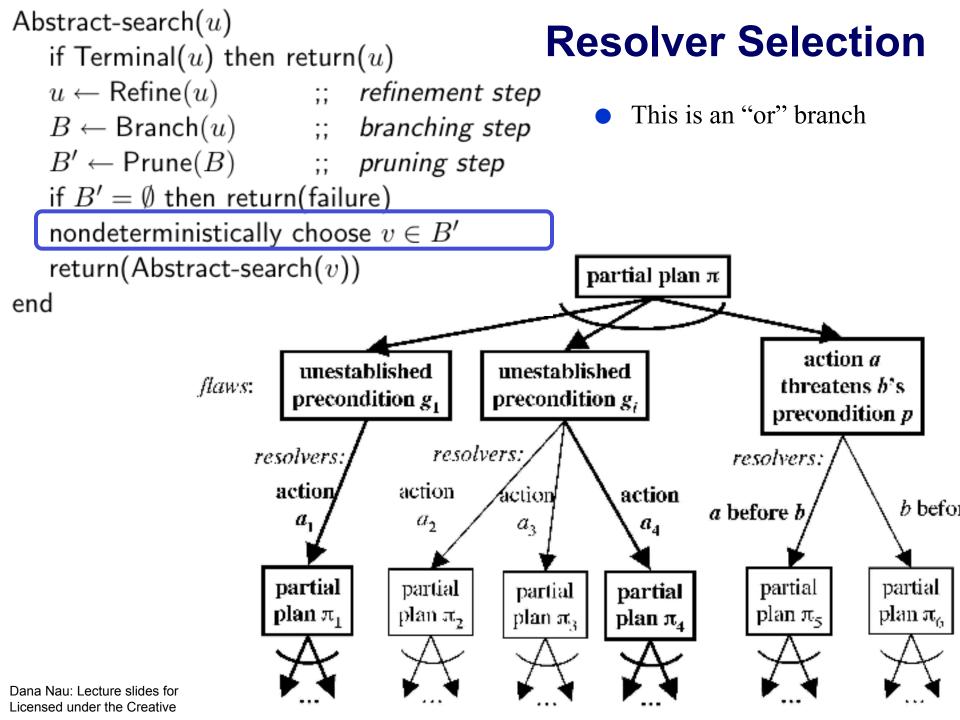

Dana Nau: Lecture slides for Automated Planning

How Much Difference Can the Refinement Strategy Make?

• Case study: build an AND/OR graph from repeated occurrences of this pattern:



- Example:
 - number of levels k = 3
 - branching factor b = 2



- Analysis:
 - Total number of nodes in the AND/OR graph is $n = \Theta(b^k)$
 - How many nodes in the best and worst serializations?

Case Study, Continued

- The best serialization contains $\Theta(b^{2^k})$ nodes
- The worst serialization contains $\Theta(2^k b^{2^k})$ nodes
 - The size differs by an exponential factor
 - But both serializations are *doubly* exponentially large
- This limits how good *any* flaw-selection heuristic can do
 - To do better, need good ways to do node selection, branching, pruning

