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Motivation

® Often, planning can be done much more efficiently if we have domain-specific
information

® Example:
¢ classical planning 1s EXPSPACE-complete
# block-stacking can be done in time O(n?)

® But we don’t want to have to write a new domain-specific planning system for
cach problem!

® Domain-configurable planning algorithm
¢ Domain-independent search engine (usually a forward state-space search)

¢ Input includes domain-specific information that allows us to avoid a brute-
force search

» Prevent the planner from visiting unpromising states
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Motivation (Continued)

® If we’re at some state s in a state
space, sometimes a domain-
specific test can tell us that

¢ s doesn’t lead to a solution, or

¢ for any solution below s,
there’s a better solution
along some other path

® In such cases we can
to prune s immediately

Abstract-search(u)

if Terminal(u) then return(u)
u «— Refine(u) refinement step
B «— Branch(u) branching step

B' < Prune(B) pruning step

if B' = () then return(failure)
nondeterministically choose v € B’
return(Abstract-search(v))

end

® Rather than writing the domain-dependent test as low-level computer code, we’d
prefer to talk directly about the planning domain

® One approach:

¢ Write logical formulas giving conditions that states must satisfy; prune states

that don’t satisfy the formulas

® Presentation similar to the chapter, but not identical
¢ Based partly on TLPIlan [Bacchus & Kabanza 2000]
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Quick Review of First Order Logic

® First Order Logic (FOL):
¢ constant symbols, function symbols, predicate symbols
¢ logical connectives (v, A, =, =, <), quantifiers (V, d), punctuation
¢ Syntax for formulas and sentences on(A4,B) A on(B,C)
dx on(x,A)
Vx (ontable(x) = clear(x))
® First Order Theory T:
¢ “Logical” axioms and inference rules — encode logical reasoning in general
¢ Additional “nonlogical” axioms — talk about a particular domain
¢ Theorems: produced by applying the axioms and rules of inference

® Model: set of objects, functions, relations that the symbols refer to
¢ For our purposes, a model is some state of the world s
¢ In order for s to be a model, all theorems of 7 must be true in s
& s |= on(4,B) read “s satisfies on(4,B)” or “s entails on(4,B)”
» means that on(4,B) is true in the state s
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Linear Temporal Logic
® Modal logic: FOL plus modal operators

to express concepts that would be difficult to express within FOL
® Linear Temporal Logic (LTL):

¢ Purpose: to express a limited notion of time
» An infinite sequence (0, 1, 2, ...) of time instants
» An infinite sequence M= (s, s, ...) of states of the world

¢ Modal operators to refer to the states in which formulas are true:

Of - nextf - fholds in the next state, e.g., O on(4,B)

Of - eventually f - feither holds now or in some future state

Of - alwaysf - fholds now and 1n all future states

f[LUf, - funtilf, - f, either holds now or in some future state,
and f, holds until then

¢ Propositional constant symbols TRUE and FALSE
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Linear Temporal Logic (continued)

® Quantifiers cause problems with computability
¢ Suppose f(x) 1s true for infinitely many values of x
¢ Problem evaluating truth of Vx f(x) and dx f(x)

® Bounded quantifiers
¢ Let g(x) be such that {x : g(x)} 1s finite and easily computed

V[x:g(x)] fx)
e means Vx (g(x) = f(x))
e expands into f{x;) A flx)) A ... A fix)

A[x:g(x)] fx)
e means dx (g(x) A fix))
e expands into fx;) v flx,) v ... v flx,)
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Models for LTL

® A model s a triple (M, s;, v)
® M={sy s, ...) is asequence of states
¢ 5. 1s the i’th state in M,
¢ vis avariable assignment function

» a substitution that maps all variables into constants
® To say that v(f) 1s true in s,, write (M,s,v) |=f

® Always require that
(M, s,v) |= TRUE
(M, s,v) |= -FALSE

® For planning, need to augment LTL to refer to goal states

¢ Include a GOAL operator such that GOAL(f) means f1s true in every goal
state

o (Ms,V).) = GOAL() iff (Ms,V) |= f forevery s, E g
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Examples
® Suppose M= (s, sy, ...)

(M,s,,v) |= OO on(4,B) means A is on B in s,
® Abbreviations:

(M,s,) |= OO on(4,B) no free variables, so v is irrelevant:
M |= OO on(4,B) if we omit the state, it defaults to s,
® Equivalently,
(M,s,,v) |= on(4,B) same meaning with no modal operators
s, |= on(4,B) same thing in ordinary FOL

® M |= U-holding(C)
¢ 1n every state in M, we aren’t holding C

® M |= U(on(B, C) = (on(B, C) U on (4, B)))
¢ whenever we enter a state in which B is on C, B remains on C until 4 is on B.
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TLPlan

Basic i1dea: forward search,
using LTL for pruning tests

Let s, be the initial state, and £, be
the 1nitial LTL control formula

Current recursive call includes
current state s, and current control
formula f

Let P be the path that TLPlan
followed to get to s

Procedure TLPlan (s, 1, g, 7)
if f = FALSE then return failure
if s satisfies g then return «
f* < Progress (f, s)
if /= FALSE then return failure
A < {actions applicable to s}
if A 1s empty then return failure
nondeterministically choose a € 4
s T < y(s,a)
return TLPlan (s ¥, /™, g, m.a)

¢ The proposed model M 1s P plus some (not yet determined) states after s
If f evaluates to FALSE in s, no M that starts with P can satisfy f, => backtrack

Otherwise, consider the applicable actions, to see if one of them can produce an

acceptable “next state” for M

¢ Compute a formula /™ that must be true in the next state

» f 1s called the progression of f through s
¢ If /" =FALSE, then there are no acceptable successors of s => backtrack
¢ Otherwise, produce s * by applying an action to s, and call TLPlan recursively
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Classical Operators

unstack(x,y)
Precond: on(x,y), clear(x), handempty
Effects: -on(x,y), —clear(x), ~handempty,
holding(x), clear(y)

stack(x,y)
Precond: holding(x), clear(y)
Effects: -holding(x), —clear(y),
on(x,y), clear(x), handempty

pickup(x)
Precond: ontable(x), clear(x), handempty
Effects: -ontable(x), —clear(x),
~handempty, holding(x)

putdown(x)
Precond: holding(x)
Effects: —holding(x), ontable(x),
clear(x), handempty
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Supporting Axioms

® Want to define conditions under which a stack of blocks will never need to be
moved

® If x 1s the top of a stack of blocks, then we want goodrower(x) to hold if
¢ x doesn’t need to be anywhere else
¢ None of the blocks below x need to be anywhere else
® Axioms to support this:
& goodtower(x) < clear(x) n = GOAL(holding(x)) A goodtowerbelow(x)
& goodtowerbelow(x) <
[ontable(x) A —3[y:GOAL(on(x,y)]]
v d[y:on(x,y)] {~GOAL(ontable(x)) n -~GOAL(holding(y))
A =GOAL(clear(y)) n V[z:GOAL(on(x,z))] (z =y)
A Y[z:GOAL(on(z,y))] (z =x) A goodtowerbelow(y)}

& badtower(x) < clear(x) A ~goodtower(x)
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Blocks World Example (continued)

Three different control formulas:

(1) Every goodtower must always remain a goodtower:
0 (V[a::clear(a:)] goodtower(z) = O(clear(z) V [y:on(y, =) goodtower(y)))

(2) Like (1), but also says never to put anything onto a badtower:
O (V[m:clear(m)] goodtower(z) = O(clear(z) V [y:on(y, ¢)] goodtower(y)
A badtower(z) = O(—3[y:on(y, )] ))

(3) Like (2), but also says never to pick up a block from the table unless you can
put it onto a goodtower:
O (V[x:clear(m)] goodtower(z) = O(clear(z) V I[y:on(y, x)] goodtower(y))
A badtower(z) = O(—3[y:on(y, z)])
A {ontable(z) A I[y:GOAL{on(z,y))} ~goodtower(y))
= O(—rholding(:c}))
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Outline of How TLPlan Works

® Recall that TLPLan’s input includes a current state s, and a control formula f
written in LTL

¢ How can TLPLan determine whether there exists a sequence of states M
beginning with s, such that M satisfies f 7

® We can compute a formula /* such that for every sequence M = (s, s™, s7,...),
& M satisfies f iff M* = (s*, s**,...) satisfies /"
® /" is called the progression of f through s

® If /" =FALSE then there is no M that satisfies f*
¢ Thus there’s no M that begins with s and satisfies f, so TLPLan can backtrack
® Otherwise, need to determine whether there is an M™ that satisfies
¢ For every action a applicable to s,
» Lets* =1v(s,a), and call TLPLan recursively on f* and s *

® Next: how to compute /™
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Procedure Progress(f,s)

® Case:
1. fcontains no temporal ops: f*:=TRUE if s |=f, FALSE otherwise
2. f=finf, . fT:=Progress(f,, s) A Progress(f,, s)
3. f=fiVv/ . fT:=Progress(f,, s) v Progress(ft,, s)
4. == . fT:=-=Progress(f,, s)
5. f=0}/ L T E=A
6. =0CF, . fT:=Progress(f;,s) v f
7. f=0£ . fT:=Progress(f,s) A f
8. f=f Uf, . fT:=Progress(f,, s) v (Progress(f,, s) A f)
9. f=V]x:g(x)] h(x) . f*:=Progress(h,,s) A ... A Progress(s,, s)
10. f=d[x:g(x)] h(x) . fT:=Progress(h,, s) v ... v Progress(#,, s)

where h; 1s h with x replaced by the i’th element of {x : s |= g(x)}
® Next, simplify /* and return it
¢ Boolean simplification rules:

1. [FALSE A ¢|¢ A FALSE] > FALSE, 3. —TRUE > FALSE,

2. [TRUE A @|¢ A TRUE] — &, 4. -FALSE — TRUE.
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® Suppose f= Oon(a,b)

Two Examples o f=on@b) -
Of O & s*1is acceptable iff on(a,b) is true in s*

® Suppose = O0Oon(a,b)
¢ /7= 0on(a,b)
¢ s* is acceptable iff Oon(a,b) is true in
S+

» iff on(a,b) is true in s**

Case:
1. fcontains no temporal ops: f*:=TRUE if s |=f, FALSE otherwise
2. f=fing . fT:=Progress(f;, s) A Progress(f,, s)
3. f=ivh . f*:=Progress(f;, s) v Progress(f,, s)
4. f=-f . fT:=-Progress(f,, s)
(5. f[=0f : fr=f ]
6. =01 . fr=Progress(f},s) v f
7. f=04 . fr=Progress(f;,s) A f
8. f=fiUfs . fT:=Progress(f,, s) v (Progress(f,, s) A f)
9. f=V[x:g(x)] h(x) . fr=Progress(h, s) A ... A Progress(4,, s)
10. f=3[x:g(x)] A(x) . f*:=Progress(h,,s) v ... v Progress(h,, s) vy-ncsar.o



® Suppose /= on(a,b) A Oon(b,c)
¢ /" =Progress(on(a,b), s) A Progress(Oon(b,c), s)
Example of A« Progresson(a,b), s)
= TRUE if on(a,b) is true in s, else FALSE
¢ Progress(Oon(b,c), s) = on(b,C)

® Ifon(a,b)is truein s, then f*=on(b,C)
¢ i.c., on(b,c) must be true in s*
® Otherwise, /™ =FALSE

¢ 1.c., there 1s no acceptable s*

Case:
1. fcontains no temporal ops: f*:=TRUE if s |=f, FALSE otherwise
[2. f=fing . fT:=Progress(f;, s) A Progress(f,, s) ]
3. f=ivh . f*:=Progress(f;, s) v Progress(f,, s)
4. f=-f . fT:=-Progress(f,, s)
5. f=0f . fr=f
6. =01 . fr=Progress(f},s) v f
7. f=04 . fr=Progress(f;,s) A f
8. f=fiUfs . fT:=Progress(f,, s) v (Progress(f,, s) A f)
9. f=V[x:.g(x)] h(x) . fr=Progress(h, s) A ... A Progress(4,, s)

10. f=3[x.g(x)] h(x) : fr=Progress(h,s) v ... v Progress(h,, s) vby-nc-sar2.0 16



Example of [

Suppose /= L1 on(a,b)
¢ /" =Progress(on(a,b), s) A Lon(a,b)

If on(a,b) is true in s, then

¢ /= TRUE A Oon(a,b) = Qon(a,b) = f
¢ i.c.,on(a,b) must be true in 57, s, 57, ...

If on(a,b) is false in s, then

¢ f* = FALSE A Oon(a,b) = FALSE

¢ There is no acceptable s*

:= Progress(f,, s) v (Progress(f,, s) A f)
:= Progress(h,, s) A ... A Progress(4,,, s)

Case:
1. fcontains no temporal ops: f*:=TRUE if s |=f, FALSE otherwise
D= f ST :=Progress(f;, s) A Progress(f,, s)
3. f=fivh St :=Progress(f,, s) v Progress(f,, s)
4. f=-f f*:=-Progress(f,, s)
5 =G e
6. =01 ST :=Progress(f;,s) v f

Sl f*:=Progress(f;, s) A f ]
8 f=FUf e
9. f=Vlx:g(x)] h(x) i

10. f=3[x:g(x)] A(x) o

:= Progress(h,, s) v ... v Progress(#,, s) by-ncsa2.0/
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Example
of U ® Ifon(c,d) is true in s, then Progress(on(c,d), s) = TRUE

® Suppose f=on(a,b) U on(c,d)

¢ /T =Progress(on(c,d), s) v (Progress(on(a,b), s) A f)

¢ f"=TRUE, so any s™ is acceptable

® Ifon(c,d)is false in s, then Progress(on(c,d), s) = FALSE

¢ /T =Progress(on(a,b), s) A f
¢ Ifon(a,b) is false in s then f*=FALSE: no s* is acceptable
¢ Ifon(a,b)is true in s then f*=f

Case:
1. fcontains no temporal ops: f*:=TRUE if s |=f, FALSE otherwise
2. f=fing fT:=Progress(f,, s) A Progress(f,, s)
3. f=ivh f*:=Progress(f,, s) v Progress(f,, s)
4. f=-f f*:=-Progress(f,, s)
5. f=0f, fr=f
6. =01 ST :=Progress(f;,s) v f
7. f=04 f*:=Progress(f, s) A f
(8. f[=fiUf, f*+:=Progress(f;, s) v (Progress(f;, s) A /)]
9. f=V[x:.g(x)] h(x) f*:=Progress(h,, s) A ... A Progress(s,, s)

10.

f=3[x:g(x)] h(x)

f*:=Progress(h,, s) v ... v Progress(k,, s) by-nc-saz.o
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Another Example
® Suppose f = (on(a,b) =0Oclear(a))
& f* = Progressfon(a,b) =0clear(a), s] A f
= (=Progress|on(a,b)] v clear(a)) A f

¢ Ifon(a,b)is false in s, then f* = (TRUE v clear(a)) A f = f
» So s must satisfy f

¢ Ifon(a,b) is true in s, then f* = clear(a) A f
» So s* must satisfy both clear(a) and f

Case:

1. fcontains no temporal ops: f*:=TRUE if s |=f, FALSE otherwise

2. f=fing . fT:=Progress(f;, s) A Progress(f,, s)

3. f=ivh . f*:=Progress(f;, s) v Progress(f,, s)

4. f=-f . fT:=-Progress(f,, s)

5. f=0f . fr=f

6. =01 . fr=Progress(f},s) v f

7. f=04 . fr=Progress(f;,s) A f

8. f=fiUfs . fT:=Progress(f,, s) v (Progress(f,, s) A f)

9. f=V[x:.g(x)] h(x) . fr=Progress(h, s) A ... A Progress(4,, s)
10. f=3[x:g(x)] A(x) . f*:=Progress(h,,s) v ... v Progress(h,, s) vy-ncsar.o



Pseudocode for TLPIlan

® Nondeterministic forward search
¢ Input includes a control formula ffor the current state s
¢ If /"= FALSE then s has no acceptable successors => backtrack
¢ Otherwise the progressed formula is the control formula for s’s children

Procedure TLPlan (s, f, g, 7)
if / = FALSE then return failure
if s satisfies g then return ©
f* < Progress (f, s)
if /* = FALSE then return failure
A < {actions applicable to s}
if A 1s empty then return failure
nondeterministically choose a € 4
st < y(s.a)
return TLPlan (s ¥, /™, g, m.a)
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Example Planning Problem

C
al|lb a

® s = {ontable(a), ontable(b), clear(a), clear(c), on(c,b)}

® g={on(b,a)}

® f=L[1IV[x:.clear(x)] {(ontable(x) A =3[y:GOAL(on(x,y))]) = O-holding(x)}
¢ never pick up a block x if x is not required to be on another block y

® /' =Progress(f,,s) A f, where
o f, = V|x:clear(x)]{(ontable(x) A =3[y:GOAL(on(x,y))]) = O-holding(x)}
® {x:clear(x)} ={a, C}, so
Progress(f,,s) = Progress((ontable(a) n =3[y:GOAL(0on(a,y))]) = O-holding(a)},s)
A Progress((ontable(C) A =3[y:GOAL(on(C,y))]) = O-holding(b)},s)
= (TRUE = -holding(a)) A TRUE = =holding(a)
® f*=-holding(a) A f
= =holding(a) A
LIV [x:clear(x)] {(ontable(x) A =3[y:GOAL(on(x,y))]) = O-holding(x)}
® Two applicable actions: pickup(a) and pickup(C)
¢ Trys™=y(s, pickup(a)): f* simplifies to FALSE = backtrack
¢ Try s™=y(s, pickup(c)):  f* doesn’t simplify to FALSE = keep going
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Discussion

® 2000 International Planning Competition
¢ TALplanner: similar algorithm, different temporal logic

» received the top award for a “hand-tailored” (i.e., domain-configurable)
planner

® TLPIlan won the same award in the 2002 International Planning Competition
® Both of them:

¢ Ran several orders of magnitude faster than the “fully automated” (i.e.,
domain-independent) planners

» especially on large problems

¢ Solved problems on which the domain-independent planners ran out of time
Or memory
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