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Temporal Planning 
●  Motivation: want to do planning in situations where actions 

◆  have nonzero duration 
◆  may overlap in time 

●  Need an explicit representation of time 

●  In Chapter 10 we studied a “temporal” logic 
◆  Its notion of time is too simple: a sequence of discrete events 
◆  Many real-world applications require continuous time 
◆  How to get this? 
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Temporal Planning 
●  The book presents two equivalent approaches: 

1. Use logical atoms, and extend the usual planning operators to 
include temporal conditions on those atoms 

» Chapter 14 calls this the “state-oriented view” 
2. Use state variables, and specify change and persistence 

constraints on the state variables 
» Chapter 14 calls this the “time-oriented view” 

●  In each case, the chapter gives a planning algorithm that’s like a 
temporal-planning version of PSP 
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The Time-Oriented View 
●  We’ll concentrate on the “time-oriented view”: Sections 14.3.1–14.3.3 

◆  It produces a simpler representation 
◆  State variables seem better suited for the task 

●  States not defined explicitly 
◆  Instead, can compute a state for any time point, from the values of the 

state variables at that time 
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State Variables 
●  A state variable is a partially specified function telling what is true at 

some time t 
◆  cpos(c1) : time → containers U cranes U robots 

»  Tells what c1 is on at time t 
◆  rloc(r1) : time → locations 

»  Tells where r1 is at time t 
●  Might not ever specify the entire function 

●  cpos(c) refers to a collection of state variables 
◆  But we’ll be sloppy and just call it a state variable 
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DWR Example ●  robot r1 
◆  in loc1 at time t1 
◆  leaves loc1 at time t2 
◆  enters loc2 at time t3 
◆  leaves loc2 at time t4 
◆  enters l at time t5 

●  container c1  
◆  in pile1 until time t6 
◆  held by crane2 until t7 
◆  sits on r1 until t8 
◆  held by crane4 until t9  
◆  sits on p until t10  

(or later) 
●  ship Uranus 

◆  stays at dock5  
from t11 to t12 
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Temporal Assertions 
●  Temporal assertion: 

◆  Event: an expression of the form x@t : (v1,v2) 
»  At time t, x changes from v1 to v2 ≠ v1  

◆  Persistence condition: x@[t1,t2) : v 
»   x = v throughout the interval [t1,t2) 

◆  where 
»  t, t1, t2 are constants or temporal variables 
»  v, v1, v2 are constants or object variables 

●  Note that the time intervals are semi-open 
◆  Why? 
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Temporal Assertions 
●  Temporal assertion: 

◆  Event: an expression of the form x@t : (v1,v2) 
»  At time t, x changes from v1 to v2 ≠ v1  

◆  Persistence condition: x@[t1,t2) : v 
»   x = v throughout the interval [t1,t2) 

◆  where 
»  t, t1, t2 are constants or temporal variables 
»  v, v1, v2 are constants or object variables 

●  Note that the time intervals are semi-open 
◆  Why? 
◆  To prevent potential confusion about x’s value at the endpoints 
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Chronicles 
●  Chronicle: a pair Φ = (F,C) 

◆  F is a finite set of temporal assertions 
◆  C is a finite set of constraints 

»  temporal constraints and object constraints 
◆  C must be consistent  

»  i.e., there must exist variable assignments that satisfy it 
●  Timeline: a chronicle for a single state variable 

●  The book writes F and C in a calligraphic font 
◆  Sometimes I will, more often I’ll just use italics 
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Example 

●  Timeline for rloc(r1): 

Inconsistency in the book 
between Figure 14.5 
and Example 14.9 
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C-consistency 
●  A timeline (F,C) is c-consistent (chronicle-consistent) if  

◆  C is consistent, and  
◆  Every pair of assertions in F are either disjoint or they refer to the same value 

and/or time points: 
»  If F contains both x@[t1,t2):v1 and x@[t3,t4):v2, then C must entail 

{t2 ≤ t3}, {t4 ≤ t1}, or {v1 = v2} 
»  If F contains both x@t:(v1,v2) and x@[t1,t2):v, then C must entail 

{t < t1}, {t2 < t}, {v = v2, t1 = t}, or {t2 = t, v = v1} 
»  If F contains both x@t:(v1,v2) and  x@t':(v'1,v'2), then C must entail 

{t ≠ t'} or {v1 = v'1, v2 = v'2} 
●  (F,C) is c-consistent iff every timeline in (F,C) is c-consistent 
●  The book calls this consistency, not c-consistency 

◆  But it’s a stronger requirement than ordinary mathematical consistency 
●  Mathematical consistency: C doesn’t contradict the separation constraints 
●  c-consistency: C must actually entail the separation constraints 

◆  It’s sort of like saying that (F,C) contains no threats 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12 

●  Let (F,C) include the 
timelines given earlier, 
plus some additional 
constraints: 
◆  t1 ≤ t6,   t7 < t2,   t3 ≤ t8,   t9 < t4,   attached(p, loc2) 

●  Above, I’ve drawn the entire set of time constraints 
●  (F,C) is c-consistent 

Example 
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Support and Enablers 
●  Let α be either x@t:(v,v') or x@[t,t'):v 

◆  Note that α requires x = v either at t or just before t 
●  Intuitively, a chronicle Φ = (F,C) supports α if 

◆  F contains an assertion β that we can use to establish x = v at some time s <t, 
»  β is called the support for α  

◆  and if it’s consistent with Φ for v to persist over [s,t) and for α be true 
●  Formally, Φ = (F,C) supports α if 

◆  F contains an assertion β of the form β = x@s:(w',w) or β = x@[s',s):w, and  
◆  ∃ separation constraints C' such that the following chronicle is c-consistent: 

»  (F ∪ {x@[s,t):v, α},  C ∪ C' ∪ {w=v, s < t}) 
◆  C' can either be absent from Φ  or already in Φ 

●  The chronicle δ = ({x@[s,t):v, α},  C' ∪ {w=v, s < t}) is an enabler for α 
◆  Analogous to a causal link in PSP 

●  Just as there could be more than one possible causal link in PSP, there can be more 
than one possible enabler 
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Example 

●  Let Φ be as shown 
●  Then Φ supports 
α1 = rloc(r1)@t:(routes, loc3) 
in two different ways: 
◆   β1 establishes  rloc(r1) = routes at time t2 

»  this can support α1 if we constrain t2 < t < t3 
»  enabler is δ1 = ({rloc(r1)@[t2,t):routes, α1}, {t2 < t < t3}  

◆   β2 establishes  rloc(r1) = routes at time t4 

»  this can support α1 if we constrain t4 < t < t5 
»  enabler is δ2 = ({rloc(r1)@[t4,t):routes, α1}, {t4 < t < t5}  

 

 β1 = rloc(r1)@t2:(loc1, routes) 

 β2 = rloc(r1)@t4:(loc2, routes)  
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Enabling Several Assertions at Once 
●  Φ = (F,C) supports a set of assertions E = {α1, …, αk} if both of the following 

are true 
◆  F ∪ E contains a support βi for αi other than αi itself 
◆  There are enablers δ1, …, δk for α1, …, αk such that 

the chronicle Φ ∪ δ1 ∪ … ∪ δk is c-consistent 

●  Note that some of the assertions in E may support each other! 
●  φ = {δ1, …, δk} is an enabler for E 
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Example 
●  Let Φ be as shown 
●  Let α1 be the same as before: 
α1 = rloc(r1)@t:(routes, loc3) 

●  Let α2 = rloc(r1)@[t',t''):loc3 

●  Then Φ supports{α1, α2} 
in four different ways: 
◆  As before, for α1 we can 

use either β1 and δ1 
or β2 and δ2 

◆  We can support α2 with β3 = rloc(r1)@t5:(routes,l) 
»  Enabler is δ3 = ({rloc(r1)@[t5,t'):loc3, α2}, {l = loc3, t5 < t'}) 

◆  Or we can support α2 with α1 
»  If we supported α1 with β1 and enabled it with δ1, the enabler for α2 is 
δ4 = ({rloc(r1)@[t,t'):loc3, α2}, {t < t' < t3}) 

»  If we supported α1 with β1 and enabled it with δ2, then replace t3 with t5 in δ4 
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One Chronicle Supporting Another 

●  Let Φ' = (F',C') be a chronicle, and suppose Φ = (F,C) supports F'. 
●  Let δ1, …, δk be all the possible enablers of Φ' 

◆  For each δi, let δ'i = δ1 ∪  C' 
●  If there is a δ'i such that Φ ∪  δ'i is c-consistent, 

◆  Then Φ supports Φ', and δ'i is an enabler for Φ' 
◆  If δ'i ⊆ Φ, then Φ entails Φ' 

●  The set of all enablers for Φ' is θ(Φ/Φ') = {δ'i : Φ ∪ δ'i is c-consistent} 
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Chronicles as Planning Operators 
●  Chronicle planning operator: a pair o = (name(o), (F(o),C(o)), where 

◆  name(o) is an expression of the form o(ts, te, …, v1, v2, …) 
»  o is an operator symbol 
»  ts, te, …, v1, v2, … are all the temporal and object variables in o 

◆  (F(o), C(o)) is a chronicle 

●  Action: a (partially) instantiated operator, a 
●  If a chronicle Φ supports (F(a),C(a)), then a is applicable to Φ 

◆  a may be applicable in several ways, so the result is a set of chronicles 
»  γ(Φ,a) = {Φ ∪ φ | φ ∈ θ(a/Φ)} 
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Example: Operator for Moving a Robot 

move(ts, te, t1, t2, r, l, l') =  
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Applying a Set of 
Actions 

●  Just like several temporal assertions can 
support each other, several actions 
can also support each other 
◆  Let π = {a1, …, ak} be a set of actions 
◆  Let Φπ = ∪i (F(ai),C(ai)) 
◆  If Φ supports Φπ then π is applicable to Φ 
◆  Result is a set of chronicles  
γ(Φ,π) = {Φ ∪ φ | φ ∈ θ(Φπ/Φ)} 

●  Example: 
◆  Suppose Φ asserts that at time t0, 

robots r1 and r2 are at 
adjacent locations loc1 and loc2 

◆  Let a1 and a2 be as shown 
◆  Then Φ supports {a1, a2} with 

l1 = loc1, l2 = loc2, l'1 = loc2, l'2 = loc1, 
t0 < ts < t1 < t'2, t0 < t's < t'1 < t2 

    

    

    

    

a1 

a2 
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Domains and Problems 
●  Temporal planning domain: a pair D = (ΛΦ,O) 

◆  O = {all chronicle planning operators in the domain} 
◆ ΛΦ = {all chronicles allowed in the domain} 

●  Temporal planning problem on D: a triple P = (D,Φ0,Φg) 
◆  D is the domain 
◆ Φ0 and Φg are initial chronicle and goal chronicle 
◆  O is the set of chronicle planning operators 

●  Statement of the problem P: a triple P = (O, Φ0, Φg) 
◆  O is the set of chronicle planning operators 
◆ Φ0 and Φg are initial chronicle and goal chronicle 

●  Solution plan: a set of actions π = {a1, …, an} such that at least one 
chronicle in γ(Φ0,π) entails Φg 
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●  As in plan-space planning, there are two 
kinds of flaws: 
◆  Open goal: a tqe that isn’t yet enabled 
◆  Threat: an enabler that hasn’t yet been 

incorporated into Φ  

set of sets of enablers 
set of open goals 

{θ(α/Φ)} 
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Resolving Open Goals 
●  Let α ∈ G be an open goal 
●  Case 1: Φ supports α 

◆  Resolver: any enabler for α that’s consistent with Φ 
◆  Refinement: 

»  G ← G – {α} 
»  K ← K ∪ θ(α/Φ) 

●  Case 2: Φ doesn’t support α 
◆  Resolver: an action a = (F(a),C(a)) that supports α 

»  We don’t yet require a to be supported by Φ 
◆  Refinement: 

»  π ← π ∪ {a} 
»  Φ ← Φ ∪ (F(a), C(a)) 
»  G ← G ∪ F(a)  Don’t remove α yet: we haven’t chosen an enabler for it 

- We’ll choose one in a later call to CP, in Case 1 above 
»  K ← K ∪ θ(a/Φ)  put a’s set of enablers into K 
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Resolving Threats 
●  Threat: each enabler in K that isn’t yet entailed by Φ is threatened 

◆  For each C in K, we need only one of the enablers in C 
»  They’re alternative ways to achieve the same thing 

◆  “Threat” means something different here than in PSP, because we won’t try 
to entail all of the enablers 

»  Just the one we select 
◆  Resolver: any enabler φ in C that is consistent with Φ 
◆  Refinement: 

»  K ← K – C 
»  Φ ← Φ ∪ φ 
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Example 

●  Let Φ0 be as shown, and 
Φg = Φ0 U ({α1,α2},{}), 
where α1 and α2 are  
the same as before: 
◆  α1 = rloc(r1)@t:(routes, loc3) 
◆  α2 = rloc(r1)@[t',t''):loc3 

●  As we saw earlier, we can support {α1,α2} from Φ0 
◆  Thus CP won’t add any actions 
◆  It will return a modified version of Φ0 that includes the enablers for {α1,α2} 
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Modified 
Example 

●  Let Φ0 be as shown, and 
Φg = Φ0 U ({α1,α2},{}), 
where α1 and α2 are  
the same as before: 
◆  α1 = rloc(r1)@t:(routes, loc3) 
◆  α2 = rloc(r1)@[t',t''):loc3 
◆  This time, CP will need to insert an action move(ts, te, t1, t2, r1, loc4, loc3)  

»  with t5 < ts < t1 < t2 < te 

loc4 


