
Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 1

Chapter 14
Temporal Planning

Lecture slides for
Automated Planning: Theory and Practice

Dana S. Nau

University of Maryland

3:11 PM April 18, 2012

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 2

Temporal Planning
●  Motivation: want to do planning in situations where actions

◆  have nonzero duration
◆  may overlap in time

●  Need an explicit representation of time

●  In Chapter 10 we studied a “temporal” logic
◆  Its notion of time is too simple: a sequence of discrete events
◆  Many real-world applications require continuous time
◆  How to get this?

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 3

Temporal Planning
●  The book presents two equivalent approaches:

1. Use logical atoms, and extend the usual planning operators to
include temporal conditions on those atoms

» Chapter 14 calls this the “state-oriented view”
2. Use state variables, and specify change and persistence

constraints on the state variables
» Chapter 14 calls this the “time-oriented view”

●  In each case, the chapter gives a planning algorithm that’s like a
temporal-planning version of PSP

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 4

The Time-Oriented View
●  We’ll concentrate on the “time-oriented view”: Sections 14.3.1–14.3.3

◆  It produces a simpler representation
◆  State variables seem better suited for the task

●  States not defined explicitly
◆  Instead, can compute a state for any time point, from the values of the

state variables at that time

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 5

State Variables
●  A state variable is a partially specified function telling what is true at

some time t
◆  cpos(c1) : time → containers U cranes U robots

»  Tells what c1 is on at time t
◆  rloc(r1) : time → locations

»  Tells where r1 is at time t
●  Might not ever specify the entire function

●  cpos(c) refers to a collection of state variables
◆  But we’ll be sloppy and just call it a state variable

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 6

DWR Example ●  robot r1
◆  in loc1 at time t1
◆  leaves loc1 at time t2
◆  enters loc2 at time t3
◆  leaves loc2 at time t4
◆  enters l at time t5

●  container c1
◆  in pile1 until time t6
◆  held by crane2 until t7
◆  sits on r1 until t8
◆  held by crane4 until t9
◆  sits on p until t10

(or later)
●  ship Uranus

◆  stays at dock5
from t11 to t12

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 7

Temporal Assertions
●  Temporal assertion:

◆  Event: an expression of the form x@t : (v1,v2)
»  At time t, x changes from v1 to v2 ≠ v1

◆  Persistence condition: x@[t1,t2) : v
»  x = v throughout the interval [t1,t2)

◆  where
»  t, t1, t2 are constants or temporal variables
»  v, v1, v2 are constants or object variables

●  Note that the time intervals are semi-open
◆  Why?

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 8

Temporal Assertions
●  Temporal assertion:

◆  Event: an expression of the form x@t : (v1,v2)
»  At time t, x changes from v1 to v2 ≠ v1

◆  Persistence condition: x@[t1,t2) : v
»  x = v throughout the interval [t1,t2)

◆  where
»  t, t1, t2 are constants or temporal variables
»  v, v1, v2 are constants or object variables

●  Note that the time intervals are semi-open
◆  Why?
◆  To prevent potential confusion about x’s value at the endpoints

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 9

Chronicles
●  Chronicle: a pair Φ = (F,C)

◆  F is a finite set of temporal assertions
◆  C is a finite set of constraints

»  temporal constraints and object constraints
◆  C must be consistent

»  i.e., there must exist variable assignments that satisfy it
●  Timeline: a chronicle for a single state variable

●  The book writes F and C in a calligraphic font
◆  Sometimes I will, more often I’ll just use italics

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10

Example

●  Timeline for rloc(r1):

Inconsistency in the book
between Figure 14.5
and Example 14.9

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 11

C-consistency
●  A timeline (F,C) is c-consistent (chronicle-consistent) if

◆  C is consistent, and
◆  Every pair of assertions in F are either disjoint or they refer to the same value

and/or time points:
»  If F contains both x@[t1,t2):v1 and x@[t3,t4):v2, then C must entail

{t2 ≤ t3}, {t4 ≤ t1}, or {v1 = v2}
»  If F contains both x@t:(v1,v2) and x@[t1,t2):v, then C must entail

{t < t1}, {t2 < t}, {v = v2, t1 = t}, or {t2 = t, v = v1}
»  If F contains both x@t:(v1,v2) and x@t':(v'1,v'2), then C must entail

{t ≠ t'} or {v1 = v'1, v2 = v'2}
●  (F,C) is c-consistent iff every timeline in (F,C) is c-consistent
●  The book calls this consistency, not c-consistency

◆  But it’s a stronger requirement than ordinary mathematical consistency
●  Mathematical consistency: C doesn’t contradict the separation constraints
●  c-consistency: C must actually entail the separation constraints

◆  It’s sort of like saying that (F,C) contains no threats

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12

●  Let (F,C) include the
timelines given earlier,
plus some additional
constraints:
◆  t1 ≤ t6, t7 < t2, t3 ≤ t8, t9 < t4, attached(p, loc2)

●  Above, I’ve drawn the entire set of time constraints
●  (F,C) is c-consistent

Example

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 13

Support and Enablers
●  Let α be either x@t:(v,v') or x@[t,t'):v

◆  Note that α requires x = v either at t or just before t
●  Intuitively, a chronicle Φ = (F,C) supports α if

◆  F contains an assertion β that we can use to establish x = v at some time s <t,
»  β is called the support for α

◆  and if it’s consistent with Φ for v to persist over [s,t) and for α be true
●  Formally, Φ = (F,C) supports α if

◆  F contains an assertion β of the form β = x@s:(w',w) or β = x@[s',s):w, and
◆  ∃ separation constraints C' such that the following chronicle is c-consistent:

»  (F ∪ {x@[s,t):v, α}, C ∪ C' ∪ {w=v, s < t})
◆  C' can either be absent from Φ or already in Φ

●  The chronicle δ = ({x@[s,t):v, α}, C' ∪ {w=v, s < t}) is an enabler for α
◆  Analogous to a causal link in PSP

●  Just as there could be more than one possible causal link in PSP, there can be more
than one possible enabler

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 14

Example

●  Let Φ be as shown
●  Then Φ supports
α1 = rloc(r1)@t:(routes, loc3)
in two different ways:
◆  β1 establishes rloc(r1) = routes at time t2

»  this can support α1 if we constrain t2 < t < t3
»  enabler is δ1 = ({rloc(r1)@[t2,t):routes, α1}, {t2 < t < t3}

◆  β2 establishes rloc(r1) = routes at time t4

»  this can support α1 if we constrain t4 < t < t5
»  enabler is δ2 = ({rloc(r1)@[t4,t):routes, α1}, {t4 < t < t5}

 β1 = rloc(r1)@t2:(loc1, routes)

 β2 = rloc(r1)@t4:(loc2, routes)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 15

Enabling Several Assertions at Once
●  Φ = (F,C) supports a set of assertions E = {α1, …, αk} if both of the following

are true
◆  F ∪ E contains a support βi for αi other than αi itself
◆  There are enablers δ1, …, δk for α1, …, αk such that

the chronicle Φ ∪ δ1 ∪ … ∪ δk is c-consistent

●  Note that some of the assertions in E may support each other!
●  φ = {δ1, …, δk} is an enabler for E

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 16

Example
●  Let Φ be as shown
●  Let α1 be the same as before:
α1 = rloc(r1)@t:(routes, loc3)

●  Let α2 = rloc(r1)@[t',t''):loc3

●  Then Φ supports{α1, α2}
in four different ways:
◆  As before, for α1 we can

use either β1 and δ1
or β2 and δ2

◆  We can support α2 with β3 = rloc(r1)@t5:(routes,l)
»  Enabler is δ3 = ({rloc(r1)@[t5,t'):loc3, α2}, {l = loc3, t5 < t'})

◆  Or we can support α2 with α1
»  If we supported α1 with β1 and enabled it with δ1, the enabler for α2 is
δ4 = ({rloc(r1)@[t,t'):loc3, α2}, {t < t' < t3})

»  If we supported α1 with β1 and enabled it with δ2, then replace t3 with t5 in δ4

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 17

One Chronicle Supporting Another

●  Let Φ' = (F',C') be a chronicle, and suppose Φ = (F,C) supports F'.
●  Let δ1, …, δk be all the possible enablers of Φ'

◆  For each δi, let δ'i = δ1 ∪ C'
●  If there is a δ'i such that Φ ∪ δ'i is c-consistent,

◆  Then Φ supports Φ', and δ'i is an enabler for Φ'
◆  If δ'i ⊆ Φ, then Φ entails Φ'

●  The set of all enablers for Φ' is θ(Φ/Φ') = {δ'i : Φ ∪ δ'i is c-consistent}

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 18

Chronicles as Planning Operators
●  Chronicle planning operator: a pair o = (name(o), (F(o),C(o)), where

◆  name(o) is an expression of the form o(ts, te, …, v1, v2, …)
»  o is an operator symbol
»  ts, te, …, v1, v2, … are all the temporal and object variables in o

◆  (F(o), C(o)) is a chronicle

●  Action: a (partially) instantiated operator, a
●  If a chronicle Φ supports (F(a),C(a)), then a is applicable to Φ

◆  a may be applicable in several ways, so the result is a set of chronicles
»  γ(Φ,a) = {Φ ∪ φ | φ ∈ θ(a/Φ)}

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 19

Example: Operator for Moving a Robot

move(ts, te, t1, t2, r, l, l') =

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 20

Applying a Set of
Actions

●  Just like several temporal assertions can
support each other, several actions
can also support each other
◆  Let π = {a1, …, ak} be a set of actions
◆  Let Φπ = ∪i (F(ai),C(ai))
◆  If Φ supports Φπ then π is applicable to Φ
◆  Result is a set of chronicles
γ(Φ,π) = {Φ ∪ φ | φ ∈ θ(Φπ/Φ)}

●  Example:
◆  Suppose Φ asserts that at time t0,

robots r1 and r2 are at
adjacent locations loc1 and loc2

◆  Let a1 and a2 be as shown
◆  Then Φ supports {a1, a2} with

l1 = loc1, l2 = loc2, l'1 = loc2, l'2 = loc1,
t0 < ts < t1 < t'2, t0 < t's < t'1 < t2

a1

a2

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 21

Domains and Problems
●  Temporal planning domain: a pair D = (ΛΦ,O)

◆  O = {all chronicle planning operators in the domain}
◆ ΛΦ = {all chronicles allowed in the domain}

●  Temporal planning problem on D: a triple P = (D,Φ0,Φg)
◆  D is the domain
◆ Φ0 and Φg are initial chronicle and goal chronicle
◆  O is the set of chronicle planning operators

●  Statement of the problem P: a triple P = (O, Φ0, Φg)
◆  O is the set of chronicle planning operators
◆ Φ0 and Φg are initial chronicle and goal chronicle

●  Solution plan: a set of actions π = {a1, …, an} such that at least one
chronicle in γ(Φ0,π) entails Φg

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 22

●  As in plan-space planning, there are two
kinds of flaws:
◆  Open goal: a tqe that isn’t yet enabled
◆  Threat: an enabler that hasn’t yet been

incorporated into Φ

set of sets of enablers
set of open goals

{θ(α/Φ)}

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 23

Resolving Open Goals
●  Let α ∈ G be an open goal
●  Case 1: Φ supports α

◆  Resolver: any enabler for α that’s consistent with Φ
◆  Refinement:

»  G ← G – {α}
»  K ← K ∪ θ(α/Φ)

●  Case 2: Φ doesn’t support α
◆  Resolver: an action a = (F(a),C(a)) that supports α

»  We don’t yet require a to be supported by Φ
◆  Refinement:

»  π ← π ∪ {a}
»  Φ ← Φ ∪ (F(a), C(a))
»  G ← G ∪ F(a) Don’t remove α yet: we haven’t chosen an enabler for it

- We’ll choose one in a later call to CP, in Case 1 above
»  K ← K ∪ θ(a/Φ) put a’s set of enablers into K

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 24

Resolving Threats
●  Threat: each enabler in K that isn’t yet entailed by Φ is threatened

◆  For each C in K, we need only one of the enablers in C
»  They’re alternative ways to achieve the same thing

◆  “Threat” means something different here than in PSP, because we won’t try
to entail all of the enablers

»  Just the one we select
◆  Resolver: any enabler φ in C that is consistent with Φ
◆  Refinement:

»  K ← K – C
»  Φ ← Φ ∪ φ

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 25

Example

●  Let Φ0 be as shown, and
Φg = Φ0 U ({α1,α2},{}),
where α1 and α2 are
the same as before:
◆  α1 = rloc(r1)@t:(routes, loc3)
◆  α2 = rloc(r1)@[t',t''):loc3

●  As we saw earlier, we can support {α1,α2} from Φ0
◆  Thus CP won’t add any actions
◆  It will return a modified version of Φ0 that includes the enablers for {α1,α2}

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 26

Modified
Example

●  Let Φ0 be as shown, and
Φg = Φ0 U ({α1,α2},{}),
where α1 and α2 are
the same as before:
◆  α1 = rloc(r1)@t:(routes, loc3)
◆  α2 = rloc(r1)@[t',t''):loc3
◆  This time, CP will need to insert an action move(ts, te, t1, t2, r1, loc4, loc3)

»  with t5 < ts < t1 < t2 < te

loc4

