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Scheduling 
●  Given: 

◆  actions to perform 
◆  set of resources to use 
◆  time constraints 

» e.g., the ones computed by the algorithms in Chapter 14 
●  Objective: 

◆  allocate times and resources to the actions 
●  What is a resource? 

◆  Something needed to carry out the action 
◆  Usually represented as a numeric quantity 
◆  Actions modify it in a relative way 
◆  Several concurrent actions may use the same resource 
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Planning and Scheduling 

●  Scheduling has usually been addressed separately from planning 
◆  E.g., the temporal planning in Chapter 14 didn’t include 

scheduling 
●  Thus, will give an overview of scheduling algorithms 
●  In some cases, cannot decompose planning and scheduling so 

cleanly 
◆  Thus, will discuss how to integrate them 
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Scheduling Problem 
●  Scheduling problem 

◆  set of resources and their future availability 
◆  actions and their resource requirements 
◆  constraints 
◆  cost function 

●  Schedule 
◆  allocations of resources and start times to actions 

» must meet the constraints and resource requirements 
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Actions 
●  Action a 

◆  resource requirements 
» which resources, what quantities 

◆  usually, upper and lower bounds on start and end times 
» Start time s(a) ∈ [smin(a),smax(a)] 
» End time e(a) ∈ [emin(a),emax(a)] 

●  Non-preemptive action: cannot be interrupted 
◆  Duration d(a) = e(a) – s(a) 

●  Preemptive action: can interrupt and resume 
◆  Duration d(a) = ∑ i ∈ I di(a) ≤ e(a) – s(a) 
◆  can have constraints on the intervals 
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Reusable Resources 
●  A reusable resource is “borrowed” by an action, and released 

afterward 
◆  e.g., use a tool, return it when done 

●  Total capacity Qi for ri may be either discrete or continuous 
◆  Current level zi(t) ∈ [0,Qi] is  

» zi(t) = how much of ri is currently available 
●  If action requires quantity q of resource ri,  

◆  Then decrease zi by q at time s(a) 
and increase zi by q at time e(a) 

●  Example: five cranes at location li: 
◆  We might represent this as  Qi = 5 
◆  Two of them in use at time t:  zi(t) = 5 – 2 = 3 
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Consumable Resources 
●  A consumable resource is used up (or in some cases produced) by 

an action 
◆  e.g., fuel 

●  Like before, we have total capacity Qi and current level zi(t)  
●  If action requires quantity q of ri 

◆  Decrease zi by q at time s(a) 
◆  Don’t increase zi at time e(a) 
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●  An action’s resource requirement is a conjunct of assertions 
◆  consume(a,rj,qj) & … 

●  or a disjunct if there are alternatives 
◆  consume(a,rj,qj) v … 

●  zi is called the “resource profile” for ri 
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Constraints 
●  Bounds on start and end points of an action 

◆  absolute times  
» e.g., a deadline:  e(a) ≤ u 
»  release date:  s(a) ≥ v 

◆  relative times 
»  latency: u ≤ s(b)–e(a) ≤ v 
»  total extent: u ≤ e(a)–s(a) ≤ v 

●  Constraints on availability of a resource 
◆  e.g., can only communicate with a satellite at certain times 
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Costs 
●  may be fixed 
●  may be a function of quantity and duration 

◆  e.g., a set-up cost to begin some activity, 
plus a run-time cost that’s proportional to the amount of time 

●  e.g., suppose a follows b 
◆  cost cr(a,b) for a 
◆  duration dr (a,b), i.e., s(b) ≥ e(a) + dr (a,b) 
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●  Objective: minimize some function of the various costs and/or end-times 
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Types of Scheduling Problems 
●  Machine scheduling 

◆  machine i: unit capacity (in use or not in use) 
◆  job j: partially ordered set of actions aj1, …, ajk 
◆  schedule: 

» a machine i for each action ajk 
» a time interval during which i processes ajk 
» no two actions can use the same machine at once 

◆  actions in different jobs are completely independent 
◆  actions in the same job cannot overlap 

» e.g., actions to be performed on the same physical object 
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Single-Stage Machine Scheduling 
●  Single-stage machine scheduling 

◆  each job is a single action, and can be processed on any machine 
◆  identical parallel machines 

» processing time pj is the same regardless of which machine 
»  thus we can model all m machines as a single resource of 

capacity m 
◆  uniform parallel machines 

» machine i has speed(i); time for j is pj/speed(i) 
◆  unrelated parallel machines 

» different time for each combination of job and machine 
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Multiple-Stage Scheduling 
●  Multiple-stage scheduling problems 

◆  job contains several actions 
◆  each requires a particular machine 
◆  flow-shop problems: 

» each job j consists of exactly m actions {aj1, aj2, …, ajm} 
» each aji needs to be done on machine i 
» actions must be done in order aj1, aj2, …, ajm 

◆  open-shop problems 
»  like flow-shop, but the actions can be done in any order 

◆  job-shop problems (general case) 
» constraints on the order of actions, and which machine for 

each action 
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Example 

●  Job shop: machines m1, m2, m3 and jobs j1, …, j5 

●  j1: 〈m2(3), m1(3), m3(6)〉 
◆  i.e., m2 for 3 time units 

then m1 for 3 time units 
then m3 for 6 time units 

●  j2: 〈m2(2), m1(5), m2(2), m3(7)〉 
●  j3: 〈m3(5), m1(7), m2(3)〉 
●  j4: 〈m2(4), m3(6), m2(4), m1(7)〉 
●  j5: 〈m3(2), m2(6)〉 
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Notation 
●  Standard notation for designating machine scheduling problems: 

α | β | γ  
α = type of problem:  

•  P (identical), U (uniform), R (unrelated) parallel machines 
•  F (flow shop), O (open shop), J (job shop) 

β = job characteristics (deadlines, setup times, precedence constraints), 
empty if there are no constraints 

γ = the objective function 
●  Examples: 

◆   Pm | δj | Σjwjej 
»  m identical parallel machines, deadlines on jobs, minimize weighted 

completion time 
◆  J | prec | makespan 

»  job shop with arbitrary number of machines, precedence constrants 
between jobs, minimize the makespan 
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Complexity 
●  Most machine scheduling problems are 

NP-hard 
●  Many polynomial-time reductions 

Problem types 
(α in the α|β|γ  notation): 
   P - identical parallel machines 
   U - uniform parallel machines 
   R - unrelated parallel machines 
   F - flow shop 
   O - open shop 
   J  - job shop 

Reductions for α = type of problem Reductions for γ = the objective function 
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Solving Machine Scheduling Problems 
●  Integer Programming (IP) formulations 

◆  n-dimensional space  
◆  Set of constraints C, all are linear inequalities 
◆  Linear objective function f 
◆  Find a point p=(x1,…, xn) such that 

»  p satisfies C 
»  p is integer-valued, i.e., every xi is an integer 
»  no other integer-valued point p' satisfies C and has f(p') < f(p) 

●  A huge number of problems can be translated into this format 

●  An entire subfield of Operations Research is devoted to IP 
◆  Several commercial IP solvers 
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IP Solvers 
●  Most IP solvers use depth-first branch-and-bound 

◆  Want a solution u that optimizes an objective function f(u) 
◆  Node selection is guided by a lower bound function L(u) 

»  For every node u, L(u) ≤ {f(v) : v is a solution in the subtree below u} 
»  Backtrack if L(u) ≥ f(u*), where u* = the best solution seen so far 

procedure DFBB 
global u* ← fail; f* ← ∞  
call search(r), where r is the initial node 
return (u*,f*) 

procedure search(u) 
if u is a solution and f(u) < f*  

then u* ← u; f* ← f(u) 
else if u has no unvisited children or L(u) ≥ f* 

then do nothing 
else call search(v), where v = argmin{L(v) : v is a not-yet-visited child of u} 

L(u) very similar to 
A*’s heuristic function 
f(u) = g(u) + h(u) 

Main difference: L isn’t 
broken into f’s two 
components g and h 

A* can be expressed as  
a best-first branch-and-
bound procedure 
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Planning as Scheduling 
●  Some planning problems can be modeled as machine-scheduling problems 
●  Example: modified version of DWR  

◆  m identical robots, several distinct locations 
◆  job: container-transportation(c,l,l') 

»  go to l, load c, go to l', unload c 
•  All four tasks to be done by the same robot (which can be any robot) 

◆  release dates, deadlines, durations 
◆  setup time tijk if robot i does job j after performing job k 
◆  minimize weighted completion time 

●  Can generalize the example to allow cranes for loading/unloading, and 
arrangement of containers into piles 

●  Problem: the machine-scheduling model can’t handle the part I said to ignore 
◆  Can specify a specific robot ri for each job ji, but can’t leave it unspecified 

Let’s ignore this 
for a moment 
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Limitations 
●  Some other characteristics of AI planning problems that don’t fit 

machine scheduling 
◆  Precedence constraints on ends of jobs 

» Beyond the standard classes 
» Hard in practice for scheduling problems 

•  How to control the end times of actions? 
» Could avoid this if we allow containers to be in any order 

within a pile 
◆  We have ignored some of the resource constraints 

» E.g., one robot in a location at a time 
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Discussion 
●  Overall, machine scheduling is too restricted to handle all the needs 

of planning 
●  But it is very well studied 

◆  Heuristics and techniques that can be useful for planning with 
resources 
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Integrating Planning and Scheduling 
●  Extend the chronicle representation to include resources 

◆  finite set Z={z1,…,zm} of resource variables 
» zi is the resource profile for resource i 

●  Like we did with other state variables, will use function-and-
arguments notation to represent resource profiles 
◆  cranes(l) = number of cranes available at location l 

●  Will focus on reusable resources 
◆  resources are borrowed but not consumed 
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Temporal Assertions 
●  Resource variable z whose total capacity is Q 
●  A temporal assertion on z is one of the following: 

◆  Decrease z by amount q at time t:     z@t : –q 
◆  Increase z by amount q at time t:      z@t : +q 
◆  Use amount q of z during [t,t'):         z@[t,t') : q 

» Equivalent to     z@t : –q  ∧  z@t' : +q 
●  Consuming a resource is like using it ad infinitum: 

◆  z@t : –q  is equivalent to  z@[t,∞) : q  
●  Producing a resource is like having a higher initial capacity 

Q' = Q + q at time 0, and using q of it during [0,t): 
◆  z@t : +q  is equivalent to  z@0 : +q  &  z@[0,t) : q  
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Resource Capacity 
●  Also need to specify total capacity of each resource 

◆  E.g., suppose we modify DWR so that locations can hold multiple robots 
◆  Need to specify how many robots each location can hold 

●  One way: fixed total capacity Q: maximum number of spots at each location 
◆  E.g., Q = 12 means each location has at most 12 spots 
◆  If location loc1 has only 4 spots, then we’ve specified 8 more spots than it 

actually has 
◆  To make the 8 nonexistent spots unavailable, assert that they’re in use 

»  The initial chronicle will contain space(loc1)@[0,∞):8 

●  Another way: make Q depend on the location 
◆  Q(loc1) = 4, Q(loc2) = 12, … 
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Example 
●  DWR domain, but locations may hold more than one robot 

◆  Resource variable space(l) = number of available spots at location l 
◆  Each robot requires one spot 

             move(ts, te, t1, t2, r, l, l’) 
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Possibly Intersecting Assertions 
●  Assume distinct resources are completely independent 

◆  Using a resource z does not affect another resource z' 
◆  Every assertion about a resource concerns just one resource 

●  Don’t need consistency requirements for assertions about different resource 
variables, just need them for assertions about the same variable 

●  Let Φ = (F,C) be a chronicle 
◆  Suppose z@[ti,ti

'):qi and z@[tj,tj
'):qj be two temporal assertions in F 

»  both are for the same resource z 
●  z@[ti,ti

'):qi and z@[tj,tj
'):qj are possibly intersecting 

◆  iff [ti,ti
') and [ti,ti

') are possibly intersecting 
◆  iff C does not make them disjoint 

»  i.e., C does not entail ti
' ≤ tj nor tj

' ≤ ti 

●  Similar if there are than two assertions about z 
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Conflict and Consistency 
●  Intuitively, Rz is conflicting if it is possible for Rz to use more than z’s total 

capacity Q. 

●  To see if Rz possibly intersects, it’s sufficient to see if each pair of assertions in Rz 
possibly intersects: 

●  A chronicle is consistent if  
◆  Temporal assertions on state variables are consistent, in the sense specified in 

Chapter 14 
◆  No conflicts among temporal assertions 
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Planning Problems 

●  Suppose we’re only trying to find a feasible plan, not an optimal one 
◆  Then except for the resources, our definitions of planning domain, planning 

problem, etc. are basically the same as in Chapter 14 

●  Recall that in Chapter 14 we had two kinds of flaws 
◆  Open goals 
◆  Threats 

●  We now have a third kind of flaw 
◆  A resource conflict flaw for a resource variable z in a chronicle Φ is a set of 

conflicting temporal assertions for z in Φ 

●  Given a resource conflict flaw, what are all the possible ways to resolve it? 
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●  Let Rz = {z@[t1,t1'):q1, …, z@[tn,tn'):qn} be all temporal assertions about z in a 
chronicle (F,C) 

●  The Possibly Intersecting Assertions (PIA) graph is Hz = (V,E), where: 
◆  V contains a vertex vi for each assertion z@[ti,ti'):qi 
◆  E contains an edge (vi,vj) for each pair of intervals [ti,ti'), [tj,tj') that possibly 

intersect 
●  Example: 

◆    

◆  C contains ti < ti
' for all i, and also contains 

t1
' < t2,   t1

' < t6,   t2
' < t3,   t2

' < t4,   t5
' < t6,   t5

' < t7,   t7 < t6
',   t7

' < t4
' 

PIA Graphs 
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50 
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Minimal Critical Sets 
●  Minimal Critical Set (MCS): a subset U of V such that 

◆  U is an over-consuming clique 
◆  No proper subset of U is over-consuming 

●  Example, continued: 
◆    

◆  Suppose z’s capacity is Q=100 

●  {v1, v5} is a clique, but is not over-consuming 
●  {v3, v4, v6, v7} is an over-consuming clique, but is not minimal 
●  {v6, v7}, {v4, v6}, and {v3, v4, v7} are minimal critical sets (MCSs) for z 

50 

70 
40 

50 

20 60 

50 
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Finding Every Minimax Critical Set 

●  Assume the set of vertices is V = {v1, …, vn} 
●  Depth-first search; each node p is a pair (clique(p), pending(p)) 

◆  clique(p) is the current clique 
◆  pending(p) is the set of candidate vertices to add to clique(p) 

●  Initially, p = (∅, V) 
●  Two kinds of leaf nodes: 

◆  clique(p) is not over-consuming but pending(p) is empty => dead end 
◆  clique(p) is over-consuming => found an MCS 
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●  MCS = 
{{v2,v5},  
  {v3,v4,v5}, 
  {v2,v6}, 
  {v4,v6},  
  {v3,v4,v7}, 
  {v6,v7}} 

50 

70 
40 

50 

60 

50 

20 

vertices “below” vi 
that are adjacent to vi 

Initial clique(p) 
and pending(p) 
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Resolving Resource-Conflict Flaws 
●  Suppose U = {z@[ti,ti'):qi : i in I} is a minimal critical set for z in a chronicle 

Φ=(F,C) 
◆  For every pair of assertions ri = z@[ti,ti'):qi and rj = z@[tj,tj'):qj in I, 

let cij be the constraint ti' ≤ tj   (i.e., cij makes ri precede rj) 
●  Each cij is a possible resolver of the resource conflict 

◆  If we add cij to C it will make [ti,ti') and [tj,tj') disjoint 
 => U won’t be a clique any more 

◆  Various subsets of U may be cliques 
»  But none of them is overconsuming, since U is a minimal critical set 

●  If U is the only MCS in Rz, then adding cij makes Rz non-conflicting 
●  If Rz contains several MCSs, add one constraint to C for each MCS in Rz 
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Continuing the Previous Example … 

70 
40 

50 
50 

●  Recall that  
◆  Capacity is Q = 100 
◆  Each vi starts at ti and ends at ti’ 
◆  The MCSs are {{v2,v5}, {v3,v4,v5}, {v2,v6}, {v4,v6}, {v3,v4,v7}, {v6,v7}} 

●  For the MCS U = {v3, v4, v7}, there are six possible resolvers: 
 t3

' ≤ t4,   t4
' ≤ t3,   t3

' ≤ t7,   t7
' ≤ t3,   t4

' ≤ t7,   t7
' ≤ t4  

◆  t4
' ≤ t7 is inconsistent with C because C contains t7

' < t4
' 

◆  t4
' ≤ t3 is over-constraining because it implies t7

' ≤ t3 
●  Thus the only resolvers for U that we need to consider are 

◆  { t3'
' ≤ t4,   t3

' ≤ t7,   t7
' ≤ t3,   t7

' ≤ t4} 

50 20 60 
C contains t1

'<t2, t1
'<t6, t2

'<t3, t2
'<t4, t5

'<t6, t5
'<t7, t7<t6

', t7
'<t4

’, 
    and ti < ti

' for all i 
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More about Over-Constraining Resolvers 
●  In general, a set of resolvers r' is equivalent to r if both 

◆  r' U C entails r 
◆  r U C entails r' 

●  There is a unique minimal set of resolvers r' that is equivalent to r 
◆  Desirable because it produces a smaller branching factor in the search space 
◆  Can be found in time O(|U|3) by removing over-constraining resolvers 
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 Three main steps: 
  •  solve open-goal flaws 
  •  solve threat flaws 
  •  solve resource-conflict flaws 

{ }, 


