CMSC 722, Al Planning

Planning and Scheduling

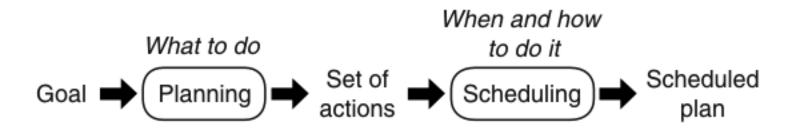
Dana S. Nau

University of Maryland Fall 2009

Scheduling

- Given:
 - actions to perform
 - set of resources to use
 - time constraints
 - » e.g., the ones computed by the algorithms in Chapter 14
- Objective:
 - allocate times and resources to the actions
- What is a resource?
 - Something needed to carry out the action
 - Usually represented as a numeric quantity
 - ◆ Actions modify it in a *relative* way
 - ◆ Several concurrent actions may use the same resource

Planning and Scheduling



- Scheduling has usually been addressed separately from planning
 - ◆ E.g., the temporal planning in Chapter 14 didn't include scheduling
- Thus, will give an overview of scheduling algorithms
- In some cases, cannot decompose planning and scheduling so cleanly
 - ◆ Thus, will discuss how to integrate them

Scheduling Problem

- Scheduling problem
 - set of resources and their future availability
 - actions and their resource requirements
 - constraints
 - cost function
- Schedule
 - allocations of resources and start times to actions
 - » must meet the constraints and resource requirements

Actions

- Action a
 - resource requirements
 - » which resources, what quantities
 - usually, upper and lower bounds on start and end times
 - » Start time $s(a) \in [s_{min}(a), s_{max}(a)]$
 - » End time $e(a) \in [e_{min}(a), e_{max}(a)]$
- Non-preemptive action: cannot be interrupted
 - ♦ Duration d(a) = e(a) s(a)
- Preemptive action: can interrupt and resume
 - Duration $d(a) = \sum_{i \in I} d_i(a) \le e(a) s(a)$
 - can have constraints on the intervals

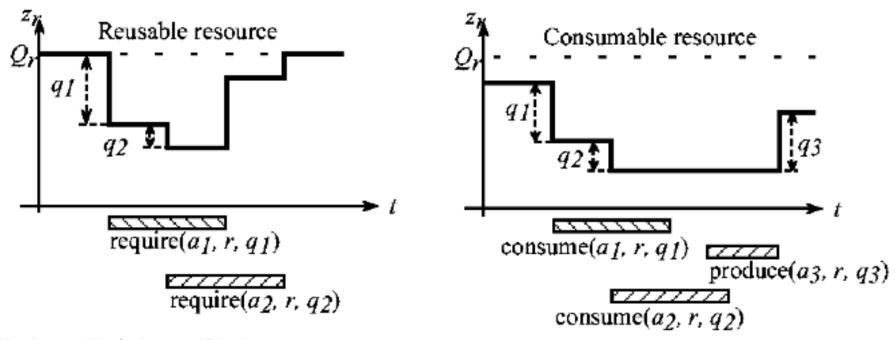
Reusable Resources

- A *reusable* resource is "borrowed" by an action, and released afterward
 - e.g., use a tool, return it when done
- Total capacity Q_i for r_i may be either discrete or continuous
 - ♦ Current level $z_i(t) \in [0,Q_i]$ is
 - » $z_i(t)$ = how much of r_i is currently available
- If action requires quantity q of resource r_i
 - ♦ Then decrease z_i by q at time s(a) and increase z_i by q at time e(a)
- Example: five cranes at location l_i :
 - We might represent this as $Q_i = 5$
 - Two of them in use at time t: $z_i(t) = 5 2 = 3$

Consumable Resources

- A *consumable* resource is used up (or in some cases produced) by an action
 - e.g., fuel
- Like before, we have total capacity Q_i and current level $z_i(t)$
- If action requires quantity q of r_i
 - Decrease z_i by q at time s(a)
 - Don't increase z_i at time e(a)

- An action's resource requirement is a conjunct of assertions
 - consume $(a, r_i, q_i) \& \dots$
- or a disjunct if there are alternatives
 - consume $(a, r_j, q_j) \vee \dots$
- z_i is called the "resource profile" for r_i



Constraints

- Bounds on start and end points of an action
 - absolute times
 - » e.g., a deadline: $e(a) \le u$
 - » release date: $s(a) \ge v$
 - relative times
 - » latency: $u \le s(b) e(a) \le v$
 - » total extent: $u \le e(a) s(a) \le v$
- Constraints on availability of a resource
 - e.g., can only communicate with a satellite at certain times

Costs

- may be fixed
- may be a function of quantity and duration
 - e.g., a set-up cost to begin some activity, plus a run-time cost that's proportional to the amount of time
- e.g., suppose *a* follows *b*
 - cost $c_r(a,b)$ for a
 - duration $d_r(a,b)$, i.e., $s(b) \ge e(a) + d_r(a,b)$

- Objective: minimize some function of the various costs and/or end-times
 - the makespan or maximum ending time of the schedule, i.e., $f = max_i\{e(a_i) | a_i \in A\}$,
 - the total weighted completion time, i.e., $f = \Sigma_i w_i e(a_i)$, where the constant $w_i \in \Re^+$ is the weight of action a_i ,
 - the maximum tardiness, i.e., $f = max\{\tau_i\}$, where the tardiness τ_i is the time distance to the deadline δ_{a_i} when the action a_i is late, i.e., $\tau_i = max\{0, e(a_i) \delta_{a_i}\}$,
 - the total weighted tardiness, i.e., $f = \sum_i w_i \tau_i$,
 - the total number of late actions, i.e., for which $\tau_i > 0$,
 - the weighted sum of late actions, i.e., $f = \sum_i w_i u_i$, where $u_i = 1$ when action i is late and $u_i = 0$ when i meets its deadline,
 - the total cost of the schedule, i.e., the sum of the costs of allocated resources, of setup costs, and of penalties for late actions,
 - the peak resource usage, and
 - the total number of resources allocated.

Types of Scheduling Problems

Machine scheduling

- ◆ machine *i*: unit capacity (in use or not in use)
- job j: partially ordered set of actions $a_{j1}, ..., a_{jk}$
- schedule:
 - » a machine i for each action a_{jk}
 - » a time interval during which i processes a_{jk}
 - » no two actions can use the same machine at once
- actions in different jobs are completely independent
- actions in the same job cannot overlap
 - » e.g., actions to be performed on the same physical object

Single-Stage Machine Scheduling

- Single-stage machine scheduling
 - each job is a single action, and can be processed on any machine
 - identical parallel machines
 - » processing time p_i is the same regardless of which machine
 - » thus we can model all *m* machines as a single resource of capacity *m*
 - uniform parallel machines
 - » machine *i* has speed(*i*); time for *j* is p_i /speed(*i*)
 - unrelated parallel machines
 - » different time for each combination of job and machine

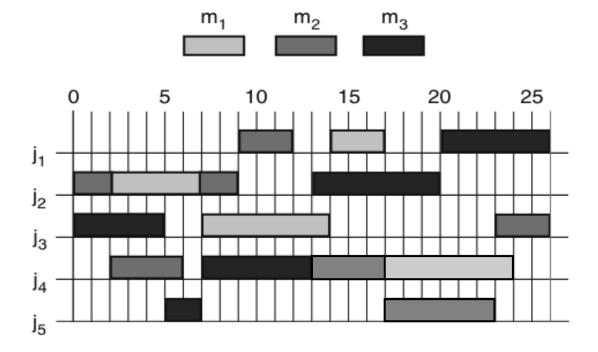
Multiple-Stage Scheduling

- Multiple-stage scheduling problems
 - job contains several actions
 - each requires a particular machine
 - flow-shop problems:
 - » each job j consists of exactly m actions $\{a_{j1}, a_{j2}, ..., a_{jm}\}$
 - » each a_{ii} needs to be done on machine i
 - » actions must be done in order $a_{j1}, a_{j2}, ..., a_{jm}$
 - open-shop problems
 - » like flow-shop, but the actions can be done in any order
 - job-shop problems (general case)
 - » constraints on the order of actions, and which machine for each action

Example

• Job shop: machines m_1 , m_2 , m_3 and jobs j_1 , ..., j_5

- j_1 : $\langle m_2(3), m_1(3), m_3(6) \rangle$
 - i.e., m_2 for 3 time units then m_1 for 3 time units then m_3 for 6 time units
- j_2 : $\langle m_2(2), m_1(5), m_2(2), m_3(7) \rangle$
- j_3 : $\langle m_3(5), m_1(7), m_2(3) \rangle$
- j_4 : $\langle m_2(4), m_3(6), m_2(4), m_1(7) \rangle$
- j_5 : $\langle m_3(2), m_2(6) \rangle$



Notation

Standard notation for designating machine scheduling problems:

$$\alpha \mid \beta \mid \gamma$$

 α = type of problem:

- P (identical), U (uniform), R (unrelated) parallel machines
- F (flow shop), O (open shop), J (job shop)

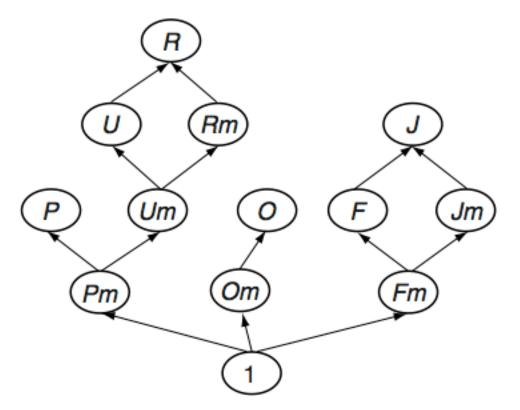
 β = job characteristics (deadlines, setup times, precedence constraints), empty if there are no constraints

 γ = the objective function

- Examples:
 - $Pm \mid \delta_j \mid \Sigma_j w_j e_j$
 - » *m* identical parallel machines, deadlines on jobs, minimize weighted completion time
 - ◆ J | prec | makespan
 - » job shop with arbitrary number of machines, precedence constrants between jobs, minimize the makespan

Complexity

- Most machine scheduling problems are NP-hard
- Many polynomial-time reductions



Reductions for α = type of problem

Problem types $(\alpha \text{ in the } \alpha | \beta | \gamma \text{ notation})$:

P - identical parallel machines

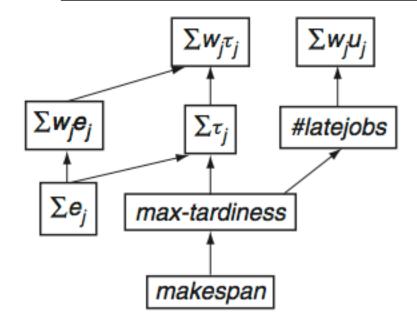
U - uniform parallel machines

R - unrelated parallel machines

F - flow shop

O - open shop

J - job shop



Reductions for γ = the objective function

Solving Machine Scheduling Problems

- Integer Programming (IP) formulations
 - ◆ *n*-dimensional space
 - \bullet Set of constraints C, all are linear inequalities
 - ◆ Linear objective function *f*
 - Find a point $p=(x_1,...,x_n)$ such that
 - » p satisfies C
 - » p is integer-valued, i.e., every x_i is an integer
 - » no other integer-valued point p' satisfies C and has f(p') < f(p)
- A huge number of problems can be translated into this format
- An entire subfield of Operations Research is devoted to IP
 - Several commercial IP solvers

IP Solvers

- Most IP solvers use depth-first branch-and-bound
 - \bullet Want a solution u that optimizes an objective function f(u)
 - lack Node selection is guided by a lower bound function L(u)
 - » For every node $u, L(u) \le \{f(v) : v \text{ is a solution in the subtree below } u\}$
 - » Backtrack if $L(u) \ge f(u^*)$, where $u^* =$ the best solution seen so far

```
procedure DFBB global u^* \leftarrow \text{fail}; f^* \leftarrow \infty call search(r), where r is the initial node return (u^*, f^*)
```

procedure search(*u*)

if *u* is a solution and $f(u) < f^*$ then $u^* \leftarrow u$; $f^* \leftarrow f(u)$

else if u has no unvisited children or $L(u) \ge f^*$ then do nothing

else call search(v), where $v = \operatorname{argmin}\{L(v) : v \text{ is a not-yet-visited child of } u\}$

L(u) very similar to A*'s heuristic function f(u) = g(u) + h(u)

Main difference: *L* isn't broken into *f*'s two components *g* and *h*

A* can be expressed as a *best-first* branch-and-bound procedure

Planning as Scheduling

- Some planning problems can be modeled as machine-scheduling problems
- Example: modified version of DWR
 - *m* identical robots, several distinct locations
 - \bullet job: container-transportation(c, l, l')
 - » go to l, load c, go to l', unload c

- release dates, deadlines, durations
- \bullet setup time t_{ijk} if robot i does job j after performing job k
- minimize weighted completion time

class $P|r_j\delta_j t_{ikj}|\Sigma_j w_j e_j$, where r_j, δ_j , and t_{ikj} denote respectively the release date, the deadline and the setup times of job j.

- Can generalize the example to allow cranes for loading/unloading, and arrangement of containers into piles
- **Problem**: the machine-scheduling model can't handle the part I said to ignore
 - Can specify a *specific* robot r_i for each job j_i , but can't leave it unspecified

Limitations

- Some other characteristics of AI planning problems that don't fit machine scheduling
 - Precedence constraints on ends of jobs
 - » Beyond the standard classes
 - » Hard in practice for scheduling problems
 - How to control the end times of actions?
 - » Could avoid this if we allow containers to be in any order within a pile
 - ◆ We have ignored some of the resource constraints
 - » E.g., one robot in a location at a time

Discussion

- Overall, machine scheduling is too restricted to handle all the needs of planning
- But it is very well studied
 - ◆ Heuristics and techniques that can be useful for planning with resources

Integrating Planning and Scheduling

- Extend the chronicle representation to include resources
 - finite set $Z=\{z_1,...,z_m\}$ of resource variables
 - » z_i is the resource profile for resource i
- Like we did with other state variables, will use function-andarguments notation to represent resource profiles
 - \diamond cranes(l) = number of cranes available at location l
- Will focus on reusable resources
 - resources are borrowed but not consumed

Temporal Assertions

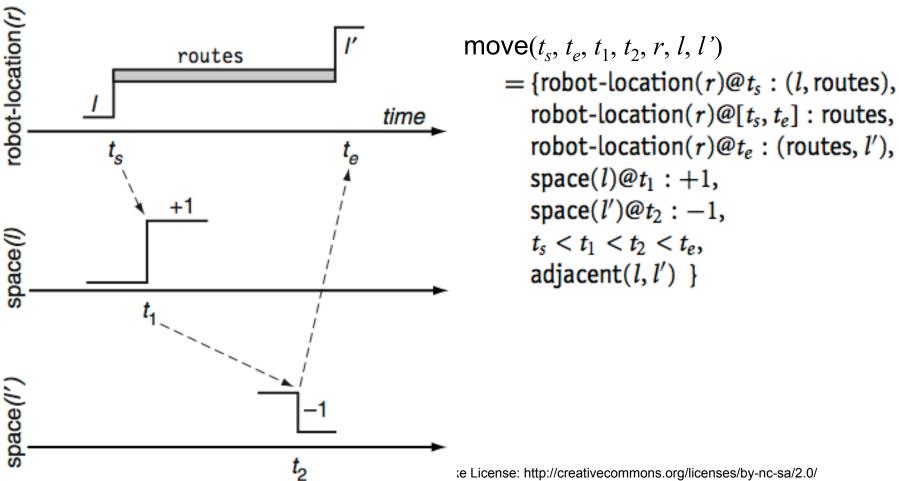
- Resource variable z whose total capacity is Q
- A *temporal assertion* on *z* is one of the following:
 - ♦ Decrease z by amount q at time t: z@t : -q
 - Increase z by amount q at time t: z@t : +q
 - Use amount q of z during [t,t'): z@[t,t'):q
 - » Equivalent to $z@t:-q \land z@t':+q$
- Consuming a resource is like using it *ad infinitum*:
 - ◆ z@t : -q is equivalent to $z@[t, \infty) : q$
- Producing a resource is like having a higher initial capacity Q' = Q + q at time 0, and using q of it during [0,t):
 - z(a)t : +q is equivalent to z(a)0 : +q & z(a)[0,t) : q

Resource Capacity

- Also need to specify total capacity of each resource
 - ◆ E.g., suppose we modify DWR so that locations can hold multiple robots
 - Need to specify how many robots each location can hold
- One way: fixed total capacity Q: maximum number of spots at each location
 - \bullet E.g., Q = 12 means each location has at most 12 spots
 - ◆ If location loc1 has only 4 spots, then we've specified 8 more spots than it actually has
 - ◆ To make the 8 nonexistent spots unavailable, assert that they're in use
 - » The initial chronicle will contain space(loc1)@ $[0,\infty)$:8
- Another way: make *Q* depend on the location
 - Q(loc1) = 4, Q(loc2) = 12, ...

Example

- DWR domain, but locations may hold more than one robot
 - Resource variable space(l) = number of available spots at location l
 - Each robot requires one spot



Possibly Intersecting Assertions

- Assume distinct resources are completely independent
 - lacktriangle Using a resource z does not affect another resource z'
 - Every assertion about a resource concerns just one resource
- Don't need consistency requirements for assertions about different resource variables, just need them for assertions about the same variable
- Let $\Phi = (F, C)$ be a chronicle
 - Suppose $z@[t_i,t_i]:q_i$ and $z@[t_j,t_j]:q_j$ be two temporal assertions in F
 - » both are for the same resource z
- $z@[t_i, t_i]:q_i$ and $z@[t_j, t_j]:q_j$ are possibly intersecting
 - iff $[t_i, t_i]$ and $[t_i, t_i]$ are possibly intersecting
 - iff C does not make them disjoint
 - » i.e., C does not entail $t_i' \le t_j$ nor $t_j' \le t_i$
- Similar if there are than two assertions about z

Conflict and Consistency

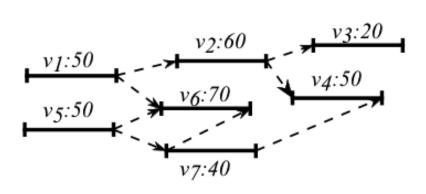
- Intuitively, R_z is conflicting if it is possible for R_z to use more than z's total capacity Q.
- **Definition 15.2** A set R_z of temporal assertions about the resource variable z is conflicting iff there is a possibly intersecting set of assertions $\{z@[t_i, t_i'): q_i \mid i \in I\} \subseteq R_z$ such that $\sum_{i \in I} q_i > Q$.
- To see if R_z possibly intersects, it's sufficient to see if each pair of assertions in R_z possibly intersects:
- **Proposition 15.1** A set R_z of temporal assertions on the resource variable z is conflicting iff there is a subset $\{z@[t_i,t_i'):q_i \mid i \in I\} \subseteq R_z$ such that every pair $i,j \in I$ is possibly intersecting, and $\sum_{i \in I} q_i > Q$.
- A chronicle is *consistent* if
 - ◆ Temporal assertions on state variables are consistent, in the sense specified in Chapter 14
 - No conflicts among temporal assertions

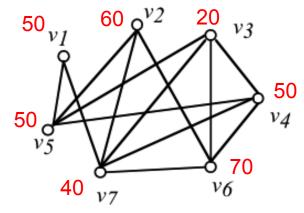
Planning Problems

- Suppose we're only trying to find a feasible plan, not an optimal one
 - ◆ Then except for the resources, our definitions of planning domain, planning problem, etc. are basically the same as in Chapter 14
- Recall that in Chapter 14 we had two kinds of flaws
 - Open goals
 - Threats
- We now have a third kind of flaw
 - A resource conflict flaw for a resource variable z in a chronicle Φ is a set of conflicting temporal assertions for z in Φ
- Given a resource conflict flaw, what are all the possible ways to resolve it?

PIA Graphs

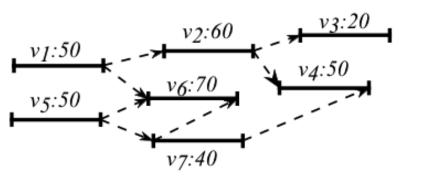
- Let $R_z = \{z@[t_1,t_1'):q_1, ..., z@[t_n,t_n'):q_n\}$ be all temporal assertions about z in a chronicle (F,C)
- The Possibly Intersecting Assertions (PIA) graph is $H_z = (V, E)$, where:
 - V contains a vertex v_i for each assertion $z@[t_i,t_i'):q_i$
 - E contains an edge (v_i, v_j) for each pair of intervals $[t_i, t_i')$, $[t_j, t_j')$ that possibly intersect
- Example:
 - ◆ $R_z = \{ z@[t_1, t'_1):50, z@[t_2, t'_2):60, z@[t_3, t'_3):20, z@[t_4, t'_4):50, z@[t_5, t'_5):50, z@[t_6, t'_6):70, z@[t_7, t'_7):40 \}.$
 - ◆ *C* contains $t_i < t_i'$ for all *i*, and also contains $t_1' < t_2$, $t_1' < t_6$, $t_2' < t_3$, $t_2' < t_4$, $t_5' < t_6$, $t_5' < t_7$, $t_7 < t_6'$, $t_7' < t_4'$

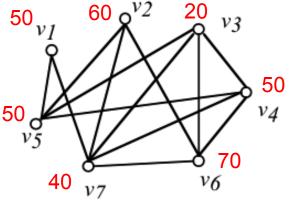




Minimal Critical Sets

- Minimal Critical Set (MCS): a subset U of V such that
 - lacktriangledow U is an over-consuming clique
 - lacktriangle No proper subset of U is over-consuming
- Example, continued:
 - ◆ $R_z = \{ z@[t_1, t'_1):50, z@[t_2, t'_2):60, z@[t_3, t'_3):20, z@[t_4, t'_4):50, z@[t_5, t'_5):50, z@[t_6, t'_6):70, z@[t_7, t'_7):40 \}.$
 - Suppose z's capacity is Q=100
- $\{v_1, v_5\}$ is a clique, but is not over-consuming
- $\{v_3, v_4, v_6, v_7\}$ is an over-consuming clique, but is not minimal
- $\{v_6, v_7\}, \{v_4, v_6\}, \text{ and } \{v_3, v_4, v_7\} \text{ are minimal critical sets (MCSs) for } z$

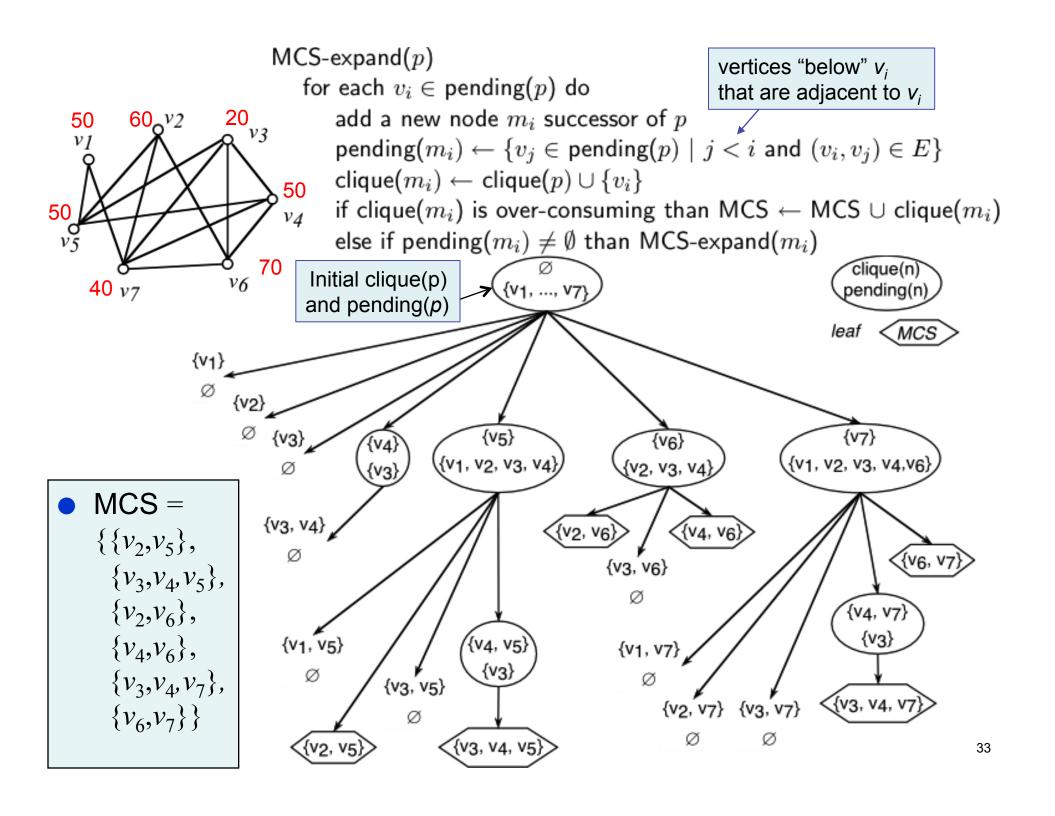




Finding Every Minimax Critical Set

```
\begin{aligned} \mathsf{MCS-expand}(p) & \text{for each } v_i \in \mathsf{pending}(p) \text{ do} \\ & \text{add a new node } m_i \text{ successor of } p \\ & \text{pending}(m_i) \leftarrow \{v_j \in \mathsf{pending}(p) \mid j < i \text{ and } (v_i, v_j) \in E\} \\ & \text{clique}(m_i) \leftarrow \mathsf{clique}(p) \cup \{v_i\} \\ & \text{if clique}(m_i) \text{ is over-consuming than MCS} \leftarrow \mathsf{MCS} \cup \mathsf{clique}(m_i) \\ & \text{else if pending}(m_i) \neq \emptyset \text{ than MCS-expand}(m_i) \end{aligned}
```

- Assume the set of vertices is $V = \{v_1, ..., v_n\}$
- Depth-first search; each node p is a pair (clique(p), pending(p))
 - clique(p) is the current clique
 - \bullet pending(p) is the set of candidate vertices to add to clique(p)
- Initially, $p = (\emptyset, V)$
- Two kinds of leaf nodes:
 - \bullet clique(p) is not over-consuming but pending(p) is empty => dead end
 - clique(p) is over-consuming => found an MCS



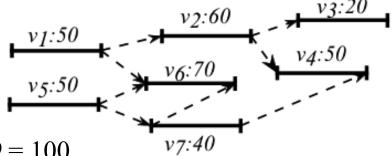
Resolving Resource-Conflict Flaws

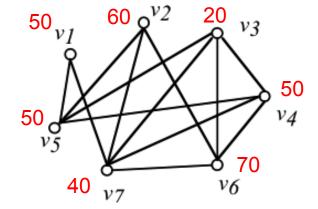
- Suppose $U = \{z@[t_i,t_i'):q_i: i \text{ in } I\}$ is a minimal critical set for z in a chronicle $\Phi=(F,C)$
 - For every pair of assertions $r_i = z@[t_i,t_i'):q_i$ and $r_j = z@[t_j,t_j'):q_j$ in I, let c_{ij} be the constraint $t_i' \le t_j$ (i.e., c_{ij} makes r_i precede r_j)
- Each c_{ii} is a possible resolver of the resource conflict
 - If we add c_{ij} to C it will make $[t_i,t_i')$ and $[t_j,t_j')$ disjoint => U won't be a clique any more
 - lacktriangle Various subsets of U may be cliques
 - » But none of them is overconsuming, since U is a *minimal* critical set
- If U is the only MCS in R_z , then adding c_{ij} makes R_z non-conflicting
- If R_z contains several MCSs, add one constraint to C for each MCS in R_z

Continuing the Previous Example ...

$$R_z = \{ z@[t_1, t_1'):50, z@[t_2, t_2'):60, z@[t_3, t_3'):20, z@[t_4, t_4'):50, z@[t_5, t_5'):50, z@[t_6, t_6'):70, z@[t_7, t_7'):40 \}.$$

C contains $t_1' < t_2$, $t_1' < t_6$, $t_2' < t_3$, $t_2' < t_4$, $t_5' < t_6$, $t_5' < t_7$, $t_7 < t_6'$, $t_7' < t_4'$, and $t_i < t_i'$ for all i





- Recall that
 - Capacity is Q = 100
 - Each v_i starts at t_i and ends at t_i
 - ◆ The MCSs are $\{\{v_2,v_5\}, \{v_3,v_4,v_5\}, \{v_2,v_6\}, \{v_4,v_6\}, \{v_3,v_4,v_7\}, \{v_6,v_7\}\}$
- For the MCS $U = \{v_3, v_4, v_7\}$, there are six possible resolvers:

$$t_{3}' \leq t_{4}, \quad t_{4}' \leq t_{3}, \quad t_{3}' \leq t_{7}, \quad t_{7}' \leq t_{3}, \quad t_{4}' \leq t_{7}, \quad t_{7}' \leq t_{4}$$

- $t_4' \le t_7$ is inconsistent with C because C contains $t_7' < t_4'$
- $t_4' \le t_3$ is over-constraining because it implies $t_7' \le t_3$
- Thus the only resolvers for *U* that we need to consider are
 - $\{t_{3'} \leq t_4, t_3' \leq t_7, t_7' \leq t_3, t_7' \leq t_4\}$

More about Over-Constraining Resolvers

- In general, a set of resolvers r' is equivalent to r if both
 - $ightharpoonup r' \cup C$ entails r
 - \bullet r U C entails r'
- There is a unique minimal set of resolvers r' that is equivalent to r'
 - ◆ Desirable because it produces a smaller branching factor in the search space
 - Can be found in time $O(|U|^3)$ by removing over-constraining resolvers

```
CPR(\Phi, G, \mathcal{K}, \mathcal{M}, \pi)
if G = \mathcal{K} = \mathcal{M} = \emptyset then return(\pi)
perform the three following steps in any order
     if G \neq \emptyset then do
          select any \alpha \in G
          if \theta(\alpha/\Phi) \neq \emptyset then return(CPR(\Phi, G - \{\alpha\}, \mathcal{K} \cup \theta(\alpha/\Phi), \mathcal{M}, \pi))
          else do
               relevant \leftarrow \{a \mid a \text{ applicable to } \Phi \text{ and has a provider for } \alpha\}
               if relevant = \emptyset then return(failure)
               nondeterministically choose a \in relevant
               \mathcal{M}' \leftarrow \text{the update of } \mathcal{M} \text{ with respect to } \Phi \cup (\mathcal{F}(a), \mathcal{C}(a))
               \mathsf{return}(\mathsf{CPR}(\Phi \cup (\mathcal{F}(a), \mathcal{C}(a)), G \cup \mathcal{F}(a), \mathcal{K} \cup \{\theta(a/\Phi)\}, \mathcal{M}', \pi \cup \{a\}))
     if \mathcal{K} \neq \emptyset then do
          select any C \in \mathcal{K}
                                                                                               Three main steps:
          threat-resolvers \leftarrow \{\phi \in C \mid \phi \text{ consistent with } \Phi\}

solve open-goal flaws

          if threat-resolvers = \emptyset then return(failure)

solve threat flaws

          nondeterministically choose \phi \in threat\text{-}resolvers
          \mathsf{return}(\mathsf{CPR}(\Phi \cup \phi, G, \mathcal{K} - C, \mathcal{M}, \pi))

solve resource-conflict flaws

     if \mathcal{M} \neq \emptyset then do
          select U \in \mathcal{M}
          resource-resolvers \leftarrow \{\phi \text{ resolver of } U \mid \phi \text{ is consistent with } \Phi\}
          if resource-resolvers = \emptyset then return(failure)
          nondeterministically choose \phi \in resource-resolvers
          \mathcal{M}' \leftarrow \text{the update of } \mathcal{M} \text{ with respect to } \Phi \cup \phi
          \mathsf{return}(\mathsf{CPR}(\Phi \cup \phi, G, \mathcal{K}, \mathcal{M}', \pi))
```