
Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 1

CMSC 722, AI Planning

Planning and Scheduling

Dana S. Nau

University of Maryland
Fall 2009

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 2

Scheduling
●  Given:

◆  actions to perform
◆  set of resources to use
◆  time constraints

» e.g., the ones computed by the algorithms in Chapter 14
●  Objective:

◆  allocate times and resources to the actions
●  What is a resource?

◆  Something needed to carry out the action
◆  Usually represented as a numeric quantity
◆  Actions modify it in a relative way
◆  Several concurrent actions may use the same resource

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 3

Planning and Scheduling

●  Scheduling has usually been addressed separately from planning
◆  E.g., the temporal planning in Chapter 14 didn’t include

scheduling
●  Thus, will give an overview of scheduling algorithms
●  In some cases, cannot decompose planning and scheduling so

cleanly
◆  Thus, will discuss how to integrate them

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 4

Scheduling Problem
●  Scheduling problem

◆  set of resources and their future availability
◆  actions and their resource requirements
◆  constraints
◆  cost function

●  Schedule
◆  allocations of resources and start times to actions

» must meet the constraints and resource requirements

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 5

Actions
●  Action a

◆  resource requirements
» which resources, what quantities

◆  usually, upper and lower bounds on start and end times
» Start time s(a) ∈ [smin(a),smax(a)]
» End time e(a) ∈ [emin(a),emax(a)]

●  Non-preemptive action: cannot be interrupted
◆  Duration d(a) = e(a) – s(a)

●  Preemptive action: can interrupt and resume
◆  Duration d(a) = ∑ i ∈ I di(a) ≤ e(a) – s(a)
◆  can have constraints on the intervals

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 6

Reusable Resources
●  A reusable resource is “borrowed” by an action, and released

afterward
◆  e.g., use a tool, return it when done

●  Total capacity Qi for ri may be either discrete or continuous
◆  Current level zi(t) ∈ [0,Qi] is

» zi(t) = how much of ri is currently available
●  If action requires quantity q of resource ri,

◆  Then decrease zi by q at time s(a)
and increase zi by q at time e(a)

●  Example: five cranes at location li:
◆  We might represent this as Qi = 5
◆  Two of them in use at time t: zi(t) = 5 – 2 = 3

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 7

Consumable Resources
●  A consumable resource is used up (or in some cases produced) by

an action
◆  e.g., fuel

●  Like before, we have total capacity Qi and current level zi(t)
●  If action requires quantity q of ri

◆  Decrease zi by q at time s(a)
◆  Don’t increase zi at time e(a)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 8

●  An action’s resource requirement is a conjunct of assertions
◆  consume(a,rj,qj) & …

●  or a disjunct if there are alternatives
◆  consume(a,rj,qj) v …

●  zi is called the “resource profile” for ri

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 9

Constraints
●  Bounds on start and end points of an action

◆  absolute times
» e.g., a deadline: e(a) ≤ u
»  release date: s(a) ≥ v

◆  relative times
»  latency: u ≤ s(b)–e(a) ≤ v
»  total extent: u ≤ e(a)–s(a) ≤ v

●  Constraints on availability of a resource
◆  e.g., can only communicate with a satellite at certain times

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10

Costs
●  may be fixed
●  may be a function of quantity and duration

◆  e.g., a set-up cost to begin some activity,
plus a run-time cost that’s proportional to the amount of time

●  e.g., suppose a follows b
◆  cost cr(a,b) for a
◆  duration dr (a,b), i.e., s(b) ≥ e(a) + dr (a,b)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 11

●  Objective: minimize some function of the various costs and/or end-times

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12

Types of Scheduling Problems
●  Machine scheduling

◆  machine i: unit capacity (in use or not in use)
◆  job j: partially ordered set of actions aj1, …, ajk
◆  schedule:

» a machine i for each action ajk
» a time interval during which i processes ajk
» no two actions can use the same machine at once

◆  actions in different jobs are completely independent
◆  actions in the same job cannot overlap

» e.g., actions to be performed on the same physical object

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 13

Single-Stage Machine Scheduling
●  Single-stage machine scheduling

◆  each job is a single action, and can be processed on any machine
◆  identical parallel machines

» processing time pj is the same regardless of which machine
»  thus we can model all m machines as a single resource of

capacity m
◆  uniform parallel machines

» machine i has speed(i); time for j is pj/speed(i)
◆  unrelated parallel machines

» different time for each combination of job and machine

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 14

Multiple-Stage Scheduling
●  Multiple-stage scheduling problems

◆  job contains several actions
◆  each requires a particular machine
◆  flow-shop problems:

» each job j consists of exactly m actions {aj1, aj2, …, ajm}
» each aji needs to be done on machine i
» actions must be done in order aj1, aj2, …, ajm

◆  open-shop problems
»  like flow-shop, but the actions can be done in any order

◆  job-shop problems (general case)
» constraints on the order of actions, and which machine for

each action

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 15

Example

●  Job shop: machines m1, m2, m3 and jobs j1, …, j5

●  j1: 〈m2(3), m1(3), m3(6)〉
◆  i.e., m2 for 3 time units

then m1 for 3 time units
then m3 for 6 time units

●  j2: 〈m2(2), m1(5), m2(2), m3(7)〉
●  j3: 〈m3(5), m1(7), m2(3)〉
●  j4: 〈m2(4), m3(6), m2(4), m1(7)〉
●  j5: 〈m3(2), m2(6)〉

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 16

Notation
●  Standard notation for designating machine scheduling problems:

α | β | γ
α = type of problem:

•  P (identical), U (uniform), R (unrelated) parallel machines
•  F (flow shop), O (open shop), J (job shop)

β = job characteristics (deadlines, setup times, precedence constraints),
empty if there are no constraints

γ = the objective function
●  Examples:

◆  Pm | δj | Σjwjej
»  m identical parallel machines, deadlines on jobs, minimize weighted

completion time
◆  J | prec | makespan

»  job shop with arbitrary number of machines, precedence constrants
between jobs, minimize the makespan

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 17

Complexity
●  Most machine scheduling problems are

NP-hard
●  Many polynomial-time reductions

Problem types
(α in the α|β|γ notation):
 P - identical parallel machines
 U - uniform parallel machines
 R - unrelated parallel machines
 F - flow shop
 O - open shop
 J - job shop

Reductions for α = type of problem Reductions for γ = the objective function

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 18

Solving Machine Scheduling Problems
●  Integer Programming (IP) formulations

◆  n-dimensional space
◆  Set of constraints C, all are linear inequalities
◆  Linear objective function f
◆  Find a point p=(x1,…, xn) such that

»  p satisfies C
»  p is integer-valued, i.e., every xi is an integer
»  no other integer-valued point p' satisfies C and has f(p') < f(p)

●  A huge number of problems can be translated into this format

●  An entire subfield of Operations Research is devoted to IP
◆  Several commercial IP solvers

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 19

IP Solvers
●  Most IP solvers use depth-first branch-and-bound

◆  Want a solution u that optimizes an objective function f(u)
◆  Node selection is guided by a lower bound function L(u)

»  For every node u, L(u) ≤ {f(v) : v is a solution in the subtree below u}
»  Backtrack if L(u) ≥ f(u*), where u* = the best solution seen so far

procedure DFBB
global u* ← fail; f* ← ∞
call search(r), where r is the initial node
return (u*,f*)

procedure search(u)
if u is a solution and f(u) < f*

then u* ← u; f* ← f(u)
else if u has no unvisited children or L(u) ≥ f*

then do nothing
else call search(v), where v = argmin{L(v) : v is a not-yet-visited child of u}

L(u) very similar to
A*’s heuristic function
f(u) = g(u) + h(u)

Main difference: L isn’t
broken into f’s two
components g and h

A* can be expressed as
a best-first branch-and-
bound procedure

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 20

Planning as Scheduling
●  Some planning problems can be modeled as machine-scheduling problems
●  Example: modified version of DWR

◆  m identical robots, several distinct locations
◆  job: container-transportation(c,l,l')

»  go to l, load c, go to l', unload c
•  All four tasks to be done by the same robot (which can be any robot)

◆  release dates, deadlines, durations
◆  setup time tijk if robot i does job j after performing job k
◆  minimize weighted completion time

●  Can generalize the example to allow cranes for loading/unloading, and
arrangement of containers into piles

●  Problem: the machine-scheduling model can’t handle the part I said to ignore
◆  Can specify a specific robot ri for each job ji, but can’t leave it unspecified

Let’s ignore this
for a moment

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 21

Limitations
●  Some other characteristics of AI planning problems that don’t fit

machine scheduling
◆  Precedence constraints on ends of jobs

» Beyond the standard classes
» Hard in practice for scheduling problems

•  How to control the end times of actions?
» Could avoid this if we allow containers to be in any order

within a pile
◆  We have ignored some of the resource constraints

» E.g., one robot in a location at a time

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 22

Discussion
●  Overall, machine scheduling is too restricted to handle all the needs

of planning
●  But it is very well studied

◆  Heuristics and techniques that can be useful for planning with
resources

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 23

Integrating Planning and Scheduling
●  Extend the chronicle representation to include resources

◆  finite set Z={z1,…,zm} of resource variables
» zi is the resource profile for resource i

●  Like we did with other state variables, will use function-and-
arguments notation to represent resource profiles
◆  cranes(l) = number of cranes available at location l

●  Will focus on reusable resources
◆  resources are borrowed but not consumed

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 24

Temporal Assertions
●  Resource variable z whose total capacity is Q
●  A temporal assertion on z is one of the following:

◆  Decrease z by amount q at time t: z@t : –q
◆  Increase z by amount q at time t: z@t : +q
◆  Use amount q of z during [t,t'): z@[t,t') : q

» Equivalent to z@t : –q ∧ z@t' : +q
●  Consuming a resource is like using it ad infinitum:

◆  z@t : –q is equivalent to z@[t,∞) : q
●  Producing a resource is like having a higher initial capacity

Q' = Q + q at time 0, and using q of it during [0,t):
◆  z@t : +q is equivalent to z@0 : +q & z@[0,t) : q

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 25

Resource Capacity
●  Also need to specify total capacity of each resource

◆  E.g., suppose we modify DWR so that locations can hold multiple robots
◆  Need to specify how many robots each location can hold

●  One way: fixed total capacity Q: maximum number of spots at each location
◆  E.g., Q = 12 means each location has at most 12 spots
◆  If location loc1 has only 4 spots, then we’ve specified 8 more spots than it

actually has
◆  To make the 8 nonexistent spots unavailable, assert that they’re in use

»  The initial chronicle will contain space(loc1)@[0,∞):8

●  Another way: make Q depend on the location
◆  Q(loc1) = 4, Q(loc2) = 12, …

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 26

Example
●  DWR domain, but locations may hold more than one robot

◆  Resource variable space(l) = number of available spots at location l
◆  Each robot requires one spot

 move(ts, te, t1, t2, r, l, l’)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 27

Possibly Intersecting Assertions
●  Assume distinct resources are completely independent

◆  Using a resource z does not affect another resource z'
◆  Every assertion about a resource concerns just one resource

●  Don’t need consistency requirements for assertions about different resource
variables, just need them for assertions about the same variable

●  Let Φ = (F,C) be a chronicle
◆  Suppose z@[ti,ti

'):qi and z@[tj,tj
'):qj be two temporal assertions in F

»  both are for the same resource z
●  z@[ti,ti

'):qi and z@[tj,tj
'):qj are possibly intersecting

◆  iff [ti,ti
') and [ti,ti

') are possibly intersecting
◆  iff C does not make them disjoint

»  i.e., C does not entail ti
' ≤ tj nor tj

' ≤ ti

●  Similar if there are than two assertions about z

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 28

Conflict and Consistency
●  Intuitively, Rz is conflicting if it is possible for Rz to use more than z’s total

capacity Q.

●  To see if Rz possibly intersects, it’s sufficient to see if each pair of assertions in Rz
possibly intersects:

●  A chronicle is consistent if
◆  Temporal assertions on state variables are consistent, in the sense specified in

Chapter 14
◆  No conflicts among temporal assertions

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 29

Planning Problems

●  Suppose we’re only trying to find a feasible plan, not an optimal one
◆  Then except for the resources, our definitions of planning domain, planning

problem, etc. are basically the same as in Chapter 14

●  Recall that in Chapter 14 we had two kinds of flaws
◆  Open goals
◆  Threats

●  We now have a third kind of flaw
◆  A resource conflict flaw for a resource variable z in a chronicle Φ is a set of

conflicting temporal assertions for z in Φ

●  Given a resource conflict flaw, what are all the possible ways to resolve it?

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 30

●  Let Rz = {z@[t1,t1'):q1, …, z@[tn,tn'):qn} be all temporal assertions about z in a
chronicle (F,C)

●  The Possibly Intersecting Assertions (PIA) graph is Hz = (V,E), where:
◆  V contains a vertex vi for each assertion z@[ti,ti'):qi
◆  E contains an edge (vi,vj) for each pair of intervals [ti,ti'), [tj,tj') that possibly

intersect
●  Example:

◆ 

◆  C contains ti < ti
' for all i, and also contains

t1
' < t2, t1

' < t6, t2
' < t3, t2

' < t4, t5
' < t6, t5

' < t7, t7 < t6
', t7

' < t4
'

PIA Graphs

50

70
40

50

20 60

50

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 31

Minimal Critical Sets
●  Minimal Critical Set (MCS): a subset U of V such that

◆  U is an over-consuming clique
◆  No proper subset of U is over-consuming

●  Example, continued:
◆ 

◆  Suppose z’s capacity is Q=100

●  {v1, v5} is a clique, but is not over-consuming
●  {v3, v4, v6, v7} is an over-consuming clique, but is not minimal
●  {v6, v7}, {v4, v6}, and {v3, v4, v7} are minimal critical sets (MCSs) for z

50

70
40

50

20 60

50

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 32

Finding Every Minimax Critical Set

●  Assume the set of vertices is V = {v1, …, vn}
●  Depth-first search; each node p is a pair (clique(p), pending(p))

◆  clique(p) is the current clique
◆  pending(p) is the set of candidate vertices to add to clique(p)

●  Initially, p = (∅, V)
●  Two kinds of leaf nodes:

◆  clique(p) is not over-consuming but pending(p) is empty => dead end
◆  clique(p) is over-consuming => found an MCS

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 33

●  MCS =
{{v2,v5},
 {v3,v4,v5},
 {v2,v6},
 {v4,v6},
 {v3,v4,v7},
 {v6,v7}}

50

70
40

50

60

50

20

vertices “below” vi
that are adjacent to vi

Initial clique(p)
and pending(p)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 34

Resolving Resource-Conflict Flaws
●  Suppose U = {z@[ti,ti'):qi : i in I} is a minimal critical set for z in a chronicle

Φ=(F,C)
◆  For every pair of assertions ri = z@[ti,ti'):qi and rj = z@[tj,tj'):qj in I,

let cij be the constraint ti' ≤ tj (i.e., cij makes ri precede rj)
●  Each cij is a possible resolver of the resource conflict

◆  If we add cij to C it will make [ti,ti') and [tj,tj') disjoint
 => U won’t be a clique any more

◆  Various subsets of U may be cliques
»  But none of them is overconsuming, since U is a minimal critical set

●  If U is the only MCS in Rz, then adding cij makes Rz non-conflicting
●  If Rz contains several MCSs, add one constraint to C for each MCS in Rz

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 35

Continuing the Previous Example …

70
40

50
50

●  Recall that
◆  Capacity is Q = 100
◆  Each vi starts at ti and ends at ti’
◆  The MCSs are {{v2,v5}, {v3,v4,v5}, {v2,v6}, {v4,v6}, {v3,v4,v7}, {v6,v7}}

●  For the MCS U = {v3, v4, v7}, there are six possible resolvers:
 t3

' ≤ t4, t4
' ≤ t3, t3

' ≤ t7, t7
' ≤ t3, t4

' ≤ t7, t7
' ≤ t4

◆  t4
' ≤ t7 is inconsistent with C because C contains t7

' < t4
'

◆  t4
' ≤ t3 is over-constraining because it implies t7

' ≤ t3
●  Thus the only resolvers for U that we need to consider are

◆  { t3'
' ≤ t4, t3

' ≤ t7, t7
' ≤ t3, t7

' ≤ t4}

50 20 60
C contains t1

'<t2, t1
'<t6, t2

'<t3, t2
'<t4, t5

'<t6, t5
'<t7, t7<t6

', t7
'<t4

’,
 and ti < ti

' for all i

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 36

More about Over-Constraining Resolvers
●  In general, a set of resolvers r' is equivalent to r if both

◆  r' U C entails r
◆  r U C entails r'

●  There is a unique minimal set of resolvers r' that is equivalent to r
◆  Desirable because it produces a smaller branching factor in the search space
◆  Can be found in time O(|U|3) by removing over-constraining resolvers

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 37

 Three main steps:
 • solve open-goal flaws
 • solve threat flaws
 • solve resource-conflict flaws

{ },

