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Motivation 

●  Until now, we’ve assumed 
that each action has only one 
possible outcome 
◆  But often that’s unrealistic 

●  In many situations, actions may have 
more than one possible outcome 
◆  Action failures 

»  e.g., gripper drops its load 
◆  Exogenous events 

»  e.g., road closed 
●  Would like to be able to plan in such situations 
●  One approach: Markov Decision Processes 
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Stochastic Systems 
●  Stochastic system: a triple Σ = (S, A, P) 

◆   S = finite set of states 
◆   A = finite set of actions 
◆   Pa (sʹ′ | s) = probability of going to sʹ′ if we execute a in s 
◆   ∑sʹ′ ∈ S Pa (sʹ′ | s) = 1 

●  Several different possible action representations 
◆  e.g., Bayes networks, probabilistic operators 

●  The book does not commit to any particular representation 
◆  It only deals with the underlying semantics 
◆  Explicit enumeration of each Pa (sʹ′ | s) 
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●  Robot r1 starts 
at location l1 
◆  State s1 in 

the diagram 

●  Objective is to 
get r1 to location l4 
◆  State s4 in 

the diagram 
Goal Start 

m
ove(r1,l2,l1) 

wait 

wait 

2 

Example 

wait 

wait 
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●  Robot r1 starts 
at location l1 
◆  State s1 in 

the diagram 

●  Objective is to 
get r1 to location l4 
◆  State s4 in 

the diagram 

●  No classical plan (sequence of actions) can be a solution, because we can’t 
guarantee we’ll be in a state where the next action is applicable 

 π  = 〈move(r1,l1,l2), move(r1,l2,l3), move(r1,l3,l4)〉  

Goal Start 
m

ove(r1,l2,l1) 

wait 

wait 

wait 

wait 

2 

Example 
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π1 = {(s1, move(r1,l1,l2)), 
    (s2, move(r1,l2,l3)), 
    (s3, move(r1,l3,l4)), 
    (s4, wait), 
    (s5, wait)} 

●  Policy: a function that maps states into actions 
◆  Write it as a set of state-action pairs 

Goal Start 
m

ove(r1,l2,l1) 

wait 

wait 

wait 

wait 

2 

Policies 
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●  For every state s, there 
will be a probability 
P(s) that the system 
starts in s 

●  The book assumes 
there’s a unique state 
s0 such that the system 
always starts in s0 

 

●  In the example, s0 = s1 
◆  P(s1) = 1 
◆  P(s) = 0 for all s ≠ s1 

Goal Start 
m

ove(r1,l2,l1) 

wait 

wait 

wait 

wait 

2 

Initial States 
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●  History: a sequence 
of system states 

h = 〈s0, s1, s2, s3, s4, … 〉 
 

 h0 = 〈s1, s3, s1, s3, s1, … 〉 
 h1 = 〈s1, s2, s3, s4, s4, … 〉 
 h2 = 〈s1, s2, s5, s5, s5, … 〉 
 h3 = 〈s1, s2, s5, s4, s4, … 〉 
 h4 = 〈s1, s4, s4, s4, s4, … 〉 
 h5 = 〈s1, s1, s4, s4, s4, … 〉 
 h6 = 〈s1, s1, s1, s4, s4, … 〉 
 h7 = 〈s1, s1, s1, s1, s1, … 〉 
 

●  Each policy induces a probability distribution over histories 

◆  If h = 〈s0, s1, … 〉    then    P(h|π) = P(s0) ∏i ≥ 0 Pπ(Si) (si+1 | si) 

Goal Start 
m

ove(r1,l2,l1) 

wait 

wait 

wait 

wait 

2 

Histories 

The book omits this because it assumes a unique starting state 



Dana Nau: Lecture slides for Automated Planning 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 9 

goal 

π1 = {(s1, move(r1,l1,l2)), 
    (s2, move(r1,l2,l3)), 
    (s3, move(r1,l3,l4)), 
    (s4, wait), 
    (s5, wait)} 

 
 
 
 
h1 = 〈s1, s2, s3, s4, s4, … 〉  P(h1 | π1) = 1 × 1 × .8 × 1 × … = 0.8 
h2 = 〈s1, s2, s5, s5 … 〉  P(h2 | π1) = 1 × 1 × .2 × 1 × … = 0.2 

   P(h | π1) = 0 for all other h 
 

so π1 reaches the goal with probability 0.8 

Goal Start 
m

ove(r1,l2,l1) 

wait 

wait 

wait 

wait 

2 

Example 
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goal 

π2 = {(s1, move(r1,l1,l2)), 
    (s2, move(r1,l2,l3)), 
    (s3, move(r1,l3,l4)), 
    (s4, wait), 
    (s5, move(r1,l5,l4))} 

 
 
 
 
h1 = 〈s1, s2, s3, s4, s4, … 〉  P(h1 | π2) = 1 × 0.8 × 1 × 1 × … = 0.8 
h3 = 〈s1, s2, s5, s4, s4, … 〉  P(h3 | π2) = 1 × 0.2 × 1 × 1 × … = 0.2 

   P(h | π1) = 0 for all other h 
 

so π2 reaches the goal with probability 1 

Goal Start 
m

ove(r1,l2,l1) 

wait 

wait 

wait 

wait 

2 

Example 

wait 
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goal 

π3 = {(s1, move(r1,l1,l4)), 
    (s2, move(r1,l2,l1)), 
    (s3, move(r1,l3,l4)), 
    (s4, wait), 
    (s5, move(r1,l5,l4)} 

 
π3 reaches the goal with 

probability 1.0 
 

 
 

h4 = 〈s1, s4, s4, s4, … 〉  P(h4 | π3) = 0.5 ×  1  ×   1  ×  1 × 1 × … = 0.5 

h5 = 〈s1, s1, s4, s4, s4, … 〉  P(h5 | π3) = 0.5 × 0.5 ×  1  ×  1 × 1 × … = 0.25 

h6 = 〈s1, s1, s1, s4, s4, … 〉  P(h6 | π3) = 0.5 × 0.5 × 0.5 × 1 × 1 × … = 0.125 
 • • • 

h7 = 〈s1, s1, s1, s1, s1, s1, … 〉  P(h7 | π3) = 0.5 × 0.5 × 0.5 × 0.5 × 0.5 × … = 0 

Goal Start 
m

ove(r1,l2,l1) 

wait 

wait 

wait 

wait 

2 

Example 
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●  Numeric cost C(s,a) for 
each state s and action a 

●  Numeric reward R(s) 
for each state s 

●  No explicit goals any more 
◆  Desirable states have 

high rewards 

●  Example: 
◆  C(s,wait) = 0 at every state except s3 
◆  C(s,a) = 1 for each“horizontal” action 
◆  C(s,a) = 100 for each “vertical” action 
◆  R as shown 

●  Utility of a history: 
◆  If h = 〈s0, s1, … 〉, then V(h | π) = ∑i ≥ 0 [R(si) – C(si,π(si))] 

r = –100 
Utility 

Start 

wait 

wait 

wait 

wait 
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π1 = {(s1, move(r1,l1,l2)), 

    (s2, move(r1,l2,l3)), 
    (s3, move(r1,l3,l4)), 
    (s4, wait), 
    (s5, wait)} 

 
      h1 = 〈s1, s2, s3, s4, s4, … 〉 

  h2 = 〈s1, s2, s5, s5 … 〉 
 

V(h1|π1)  =   [R(s1) – C(s1,π1(s1))]  +  [R(s2) – C(s2,π1(s2))]  +  [R(s3) – C(s3,π1(s3))]  

      + [R(s4) – C(s4,π1(s4))]  +  [R(s4) – C(s4,π1(s4))]  +  … 
  =   [0 – 100]  +  [0 – 1]  +  [0 – 100]  +  [100 – 0]  +  [100 – 0]  +  … = ∞ 

 

V(h2|π1)  =  [0 – 100]  +  [0 – 1]  +  [–100 – 0]  +  [–100 – 0]  +  [–100 – 0]  +  …  =  –∞ 

r = –100 

Start 

wait 

wait 

wait 

wait 

Example 
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●  We often need to use 
a discount factor, γ 
◆  0 ≤ γ ≤ 1 

●  Discounted utility 
of a history: 
 
V(h | π) = ∑i ≥ 0 γ i [R(si) – C(si,π(si))] 
 
◆  Distant rewards/costs have less influence 
◆  Convergence is guaranteed if 0 ≤ γ < 1 

●  Expected utility of a policy: 
◆  E(π) = ∑h P(h|π) V(h|π) 

r = –100 

Start 

wait 

wait 

wait 

wait 

Discounted Utility 

γ = 0.9 
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π1 = {(s1, move(r1,l1,l2)), 
    (s2, move(r1,l2,l3)), 
    (s3, move(r1,l3,l4)), 
    (s4, wait), 
    (s5, wait)} 

 
 
 h1 = 〈s1, s2, s3, s4, s4, … 〉 
 h2 = 〈s1, s2, s5, s5 … 〉 
 
V(h1|π1)  = .90[0 – 100] + .91[0 – 1] + .92[0 – 100] + .93[100 – 0] + .94[100 – 0] + …  

  = 547.9 
 
V(h2|π1)  = .90[0 – 100] + .91[0 – 1] + .92[–100 – 0] + .93[–100 – 0] + … = –910.1 
 
    E(π1)  =  0.8 V(h1|π1) + 0.2 V(h2|π1)  =  0.8(547.9) + 0.2(–910.1) = 256.3 

r = –100 

Start 

wait 

wait 

wait 

wait 

Example 

γ = 0.9 
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Planning as Optimization 
●  For the rest of this chapter, a special case: 

◆  Start at state s0 
◆  All rewards are 0 
◆  Consider cost rather than utility 

»  the negative of what we had before 
●  This makes the equations slightly simpler 

◆  Can easily generalize everything to the case of nonzero rewards 
●  Discounted cost of a history h: 

◆  C(h | π) = ∑i ≥ 0 γ i C(si, π(si)) 
●  Expected cost of a policy π: 

◆  E(π) = ∑h P(h | π) C(h | π) 
●  A policy π is optimal if for every π', E(π) ≤ E(π') 
●  A policy π is everywhere optimal if for every s and every π', Eπ(s) ≤ Eπ' (s) 

◆  where Eπ(s) is the expected utility if we start at s rather than s0 
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Bellman’s Theorem 
●  If π is any policy, then for every s, 

◆  Eπ(s) = C(s, π(s)) + γ ∑s ∈ S Pπ(s)(sʹ′ | s) Eπ(sʹ′) 
●  Let Qπ(s,a) be the expected cost in a state s if we start by 

executing the action a, and use the policy π from then onward 
◆  Qπ(s,a) = C(s,a) + γ ∑sʹ′ ∈ S Pa(sʹ′ | s) Eπ(sʹ′) 

●  Bellman’s theorem: Suppose π* is everywhere optimal. 
Then for every s, Eπ*(s) = mina∈A(s) Qπ*(s,a). 

●  Intuition:  
◆  If we use π* everywhere else, then the set of optimal actions at s is  

arg mina∈A(s) Qπ*(s,a) 
◆  If π* is optimal, then at each state it should pick one of those actions 
◆  Otherwise we can construct a better policy by using an action in  

arg mina∈A(s) Qπ*(s,a), instead of the action that π* uses 
●  From Bellman’s theorem it follows that for all s, 

◆  Eπ*(s) = mina∈A(s) {C(s,a) + γ ∑s’ ∈ S Pa(sʹ′ | s) Eπ*(sʹ′)} 

s  

s1 

s2 

sn 

…
 

π(s) 
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Policy Iteration 
●  Policy iteration is a way to find π* 

◆  Suppose there are n states s1, …, sn 
◆  Start with an arbitrary initial policy π1 
◆  For i = 1, 2, … 

»  Compute πi’s expected costs by solving n equations with n unknowns 
•  n instances of the first equation on the previous slide 

 
 
 
 
 

»  For every sj,  
 
 
 

»  If πi+1 = πi then exit 
●  Converges in a finite number of iterations 

Eπ i
(s1) =C(s,π i (s1))+γ Pπ i (s1 )k=1

n
∑ (sk | s1) Eπ i

(sk )
      
Eπ i

(sn ) =C(s,π i (sn ))+γ Pπ i (sn )k=1

n
∑ (sk | sn ) Eπ i

(sk )

π i+1(sj ) = argmina∈A Qπ i
(sj,a)

= argmina∈A C(sj,a)+γ Pak=1

n
∑ (sk | sj ) Eπ i

(sk )
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Example 

r = –100 

Start 

wait 

wait 

wait 

wait 

c = 1 

c=1 
c = 0 

c=100 

γ = 0.9 

●  Modification of the previous example 
◆  To get rid of the rewards but still make s5 undesirable: 

»  C(s5, wait) = 100 
◆  To provide incentive to leave non-goal states: 

»  C(s1,wait) = C(s2,wait) = 1 
◆  All other costs are the same as before 
◆  As before, discount factor γ = 0.9 
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π1 = {(s1, move(r1,l1,l2)), 
  (s2, move(r1,l2,l3)), 
  (s3, move(r1,l3,l4)), 
  (s4, wait), 
  (s5, wait)} 

r = –100 

Start 

wait 

wait 

wait 

wait 

c = 1 

c=1 
c = 0 

c=100 

γ = 0.9 
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Example (Continued) 

●  At each state s, let 
π2(s) = arg mina∈A(s) Qπ (s,a): 
 

●  π2 = {(s1, move(r1,l1,l4)), 
         (s2, move(r1,l2,l1)), 
         (s3, move(r1,l3,l4)), 
         (s4, wait), 
         (s5, move(r1,l5,l4)} 

π1 = {(s1, move(r1,l1,l2)), 
  (s2, move(r1,l2,l3)), 
  (s3, move(r1,l3,l4)), 
  (s4, wait), 
  (s5, wait)} 

r = –100 

Start 

wait 

wait 

wait 

wait 

c = 1 

c=1 
c = 0 

c=100 

γ = 0.9 

1 
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Value Iteration 
●  Start with an arbitrary cost E0(s) for each s and a small ε > 0 
●  For i = 1, 2, … 

◆  for every s in S and a in A, 
•  Qi (s,a) := C(s,a) + γ ∑sʹ′ ∈ S Pa (sʹ′ | s) Ei–1(sʹ′) 

»  Ei(s) = mina∈A(s) Qi (s,a) 
»  πi(s) = arg mina∈A(s) Qi (s,a) 

◆  If maxs ∈ S |Ei(s) – Ei–1(s)| < ε  for every s then exit 

●  πi converges to π* after finitely many iterations, but how to tell it has converged? 
◆  In Policy Iteration, we checked whether πi stopped changing 
◆  In Value Iteration, that doesn’t work 

●  In general, Ei ≠ Eπi 
◆  When πi doesn’t change, Ei may still change 
◆  The changes in Ei may make πi start changing again 
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Value Iteration 
●  Start with an arbitrary cost E0(s) for each s and a small ε > 0 
●  For i = 1, 2, … 

◆  for each s in S do 
»  for each a in A do 
•  Q(s,a) := C(s,a) + γ ∑sʹ′ ∈ S Pa (sʹ′ | s) Ei–1(sʹ′) 

»  Ei(s) = mina∈A(s) Q(s,a) 
»  πi(s) = arg mina∈A(s) Q(s,a) 

◆  If maxs ∈ S |Ei(s) – Ei–1(s)| < ε  for every s then exit 
 
●  If Ei changes by < ε and if ε is small enough, then πi will no longer change 

◆  In this case πi has converged to π* 

●  How small is small enough? 
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Example 
●  Let aij be the action that moves from si to sj  

◆  e.g., a11= wait and a12 = move(r1,l1,l2)) 
●  Start with E0(s) = 0 for all s, and ε = 1 

 Q(s1, a11) = 1 + .9×0 = 1 
 Q(s1, a12) = 100 + .9×0 = 100 
 Q(s1, a14) = 1 + .9(.5×0 + .5×0) = 1 

 

 Q(s2, a21) = 100 + .9×0 = 100 
 Q(s2, a22) = 1 + .9×0 = 1 
 Q(s2, a23) = 1 + .9(.5×0 + .5×0) = 1 

 

 Q(s3, a32) = 1 + .9×0 = 1 
 Q(s3, a34) = 100 + .9×0 = 100 

 

 Q(s4, a41) = 1 + .9×0 = 1 
 Q(s4, a43) = 100 + .9×0 = 1 
 Q(s4, a44) = 0 + .9×0 = 0 
 Q(s4, a45) = 100 + .9×0 = 100 

 

 Q(s5, a52) = 1 + .9×0 = 1 
 Q(s5, a54) = 100 + .9×0 = 100 
 Q(s5, a55) = 100 + .9×0 = 100 

r = –100 

Start 

wait 

wait 

wait 

wait 

c = 1 

c=1 
c = 0 

E1(s1) = 1;  π1(s1) = a11 = wait 
E1(s2) = 1;  π1(s2) = a22 = wait 
E1(s3) = 1;  π(s3) = a32 = move(r1,l3,l2) 
E1(s4) = 0;  π1(s4) = a44 = wait 
E1(s5) = 1;  π1(s3) = a52 = move(r1,l5,l2) 
 

●  What other actions could we have chosen? 
●  Is ε small enough? 

γ = 0.9 

c=100 
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Discussion 
●  Policy iteration computes an entire policy in each iteration, 

and computes values based on that policy 
◆  More work per iteration, because it needs to solve a set of simultaneous 

equations 
◆  Usually converges in a smaller number of iterations 

●  Value iteration computes new values in each iteration, 
and chooses a policy based on those values 
◆  In general, the values are not the values that one would get from the chosen 

policy or any other policy 
◆  Less work per iteration, because it doesn’t need to solve a set of equations 
◆  Usually takes more iterations to converge 
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Discussion (Continued) 
●  For both, the number of iterations is polynomial in the number of states 

◆  But the number of states is usually quite large 
◆  Need to examine the entire state space in each iteration 

●  Thus, these algorithms can take huge amounts of time and space 

●  To do a complexity analysis, we need to get explicit about the syntax of the 
planning problem 
◆  Can define probabilistic versions of set-theoretic, classical, and state-variable 

planning problems 
◆  I will do this for set-theoretic planning 
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Probabilistic Set-Theoretic Planning 
●  The statement of a probabilistic set-theoretic planning problem is P = (S0, g, A) 

◆  S0 = {(s1, p1), (s2, p2), …, (sj, pj)} 
»  Every state that has nonzero probability of being the starting state 

◆  g is the usual set-theoretic goal formula - a set of propositions 
◆  A is a set of probabilistic set-theoretic actions 

»  Like ordinary set-theoretic actions, but multiple possible outcomes, 
with a probability for each outcome 

»  a = (name(a), precond(a),  
 effects1

+(a),  effects1
–(a),  p1(a), 

 effects2
+(a),  effects2

–(a),  p2(a), 
 …, 
 effectsk

+(a),  effectsk
–(a),  pk(a)) 
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Probabilistic Set-Theoretic Planning 
●  Probabilistic set-theoretic planning is EXPTIME-complete 

◆  Much harder than ordinary set-theoretic planning, which was only PSPACE-
complete 

●  Worst case requires exponential time 
●  Unknown whether worst case requires exponential space 

◆  PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE 

●  What does this say about the complexity of solving an MDP? 

●  Value Iteration and Policy Iteration take exponential amounts of time and space 
because they iterate over all states in every iteration 
◆  In some cases we can do better 
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Real-Time Value Iteration 
●  A class of algorithms that work roughly as follows 

●  loop 
◆  Forward search from the initial state(s), following the current policy π 

»  Each time you visit a new state s, use a heuristic function to estimate its 
expected cost E(s) 

»  For every state s along the path followed 
•  Update π to choose the action a that minimizes Q(s,a) 
•  Update E(s) accordingly 

●  Best-known example: Real-Time Dynamic Programming 

Dana Nau: Lecture slides for Automated Planning 
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Real-Time Dynamic Programming 
●  Need explicit goal states 

◆  If s is a goal, then actions at s have no cost and produce no change 
●  For each state s, maintain a value V(s) that gets updated as the algorithm proceeds 

◆  Initially V(s) = h(s), where h is a heuristic function 
●  Greedy policy: π(s) = arg mina∈A(s) Q(s,a) 

◆  where Q(s,a) = C(s,a) + γ ∑sʹ′ ∈ S Pa (sʹ′|s) V(sʹ′) 

●  procedure RTDP(s) 
◆  loop until termination condition 

»  RTDP-trial(s) 

●  procedure RTDP-trial(s) 
◆  while s is not a goal state 

»  a := arg mina∈A(s) Q(s,a) 
»  V(s) := Q(s,a) 
»  randomly pick s' with probability Pa (sʹ′|s) 
»  s := s' 
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Real-Time Dynamic Programming 

r = –100 

wait 

wait 

wait 

wait 

c = 1 

c=1 
c = 0 

c = 
100 

●  procedure RTDP(s)   (the outer loop on the previous slide) 
◆  loop until termination condition 

»  RTDP-trial(s) 
 

●  procedure RTDP-trial(s)  (the forward search on the previous slide) 
◆  while s is not a goal state 

»  a := arg mina∈A(s) Q(s,a) 
»  V(s) := Q(s,a) 
»  randomly pick s' with  

probability Pa (sʹ′|s) 
»  s := s' 
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●  procedure RTDP(s) 
◆  loop until termination condition 

»  RTDP-trial(s) 
 

●  procedure RTDP-trial(s) 
◆  while s is not a goal state 

»  a := arg mina∈A(s) Q(s,a) 
»  V(s) := Q(s,a) 
»  randomly pick s' with  

probability Pa (sʹ′|s) 
»  s := s' 

r = –100 

wait 

wait 

wait 

wait 

c = 1 

c=1 
c = 0 

c = 
100 

Example: 
γ = 0.9 
h(s) = 0 for all s 

Real-Time Dynamic Programming 

s1 
V=0 
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Q = 100+.9*0 
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●  procedure RTDP(s) 
◆  loop until termination condition 

»  RTDP-trial(s) 
 

●  procedure RTDP-trial(s) 
◆  while s is not a goal state 

»  a := arg mina∈A(s) Q(s,a) 
»  V(s) := Q(s,a) 
»  randomly pick s' with  

probability Pa (sʹ′|s) 
»  s := s' 
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Real-Time Dynamic Programming 

s2 

s1 
γ = 0.9 

V=0 s4 

Q = 100+.9*0 
    = 100 

Example: 
γ = 0.9 
h(s) = 0 for all s 

V=0 

V=0 

Q = 1+.9(½*0+½*0) 
    = 1 
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Real-Time Dynamic Programming 

●  In practice, it can solve much larger problems than policy iteration and value 
iteration 

●  Won’t always find an optimal solution, won’t always terminate 
◆  If h doesn’t overestimate, and if a goal is reachable (with positive probability) 

at every state 
»  Then it will terminate 

◆  If in addition to the above, there is a positive-probability path between every 
pair of states 

»  Then it will find an optimal solution  
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POMDPs 
●  Partially observable Markov Decision Process (POMDP):  

◆  a stochastic system Σ = (S, A, P) as defined earlier 
◆  A finite set O of observations 

»  Pa(o|s) = probability of observation o after executing action a in state s  
◆  Require that for each a and s,  ∑o∈O Pa(o|s) = 1 

●  O models partial observability 
◆  The controller can’t observe s directly; it can only do a then observe o 
◆  The same observation o can occur in more than one state 

●  Why do the observations depend on the action a? 
»  Why do we have Pa(o|s) rather than P(o|s)? 
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POMDPs 
●  Partially observable Markov Decision Process (POMDP):  

◆  a stochastic system Σ = (S, A, P) as defined earlier 
»  Pa(s'|s) = probability of being in state s' after executing action a in state s  

◆  A finite set O of observations 
»  Pa(o|s) = probability of observation o after executing action a in state s  

◆  Require that for each a and s,  ∑o∈O Pa(o|s) = 1 

●  O models partial observability 
◆  The controller can’t observe s directly; it can only do a then observe o 
◆  The same observation o can occur in more than one state 

●  Why do the observations depend on the action a? 
»  Why do we have Pa(o|s) rather than P(o|s)? 

◆  This is a way to model sensing actions 
»  e.g., a is the action of obtaining observation o from a sensor 
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More about Sensing Actions 
●  Suppose a is an action that never changes the state 

◆  Pa(s|s) = 1 for all s 
●  Suppose there are a state s and an observation o such that a gives us 

observation o iff we’re in state s 
◆  Pa(o|s) = 0 for all s' ≠ s 
◆  Pa(o|s) = 1 

●  Then to tell if you’re in state s, just perform action a and see whether you 
observe o 

●  Two states s and s' are indistinguishable if for every o and a, 
Pa(o|s) = Pa(o|s') 
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Belief States 
●  At each point we will have a probability distribution b(s) over the states in S 

◆  b is called a belief state 
◆  Our current belief about what state we’re in 

●  Basic properties:  
◆  0 ≤ b(s) ≤ 1 for every s in S 
◆  ∑s ∈ S b(s) = 1 

●  Definitions: 
◆  ba =  the belief state after doing action a in belief state b 

»  ba(s)  = P(we’re in s after doing a in b) = ∑s' ∈ S Pa(s|s') b(s') 
◆  ba(o) = P(observe o after doing a in b) = ∑s' ∈ S Pa(o|s') b(s') 
◆  ba

o(s) = P(we’re in s | we observe o after doing a in b) 
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Belief States (Continued) 
●  According to the book, 

◆  ba
o(s) = Pa(o|s) ba(s) / ba(o)    (16.14) 

●  I’m not completely sure whether that formula is correct 
●  But using it (possibly with corrections) to distinguish states that would otherwise 

be indistinguishable 
◆  Example on next page 
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Example 

move(r1,l1,l2) 

ba 

ba 

ba 

ba 

b 

b 

b 

b 

●  Modified version of DWR 
●  Robot r1 can move 

between l1 and l2 
» move(r1,l1,l2) 
» move(r1,l2,l1) 

◆  With probability 0.5, there’s a 
container c1 in location l2 

»  in(c1,l2) 

◆  O = {full, empty} 
»  full: c1 is present 
»  empty: c1 is absent 
»  abbreviate full as f, and 

empty as e 

belief state b' = bmove(r1,l1,l2) 

belief state b 

ba 

ba 

ba 

ba 

b' 

b' 

b' 

b' 
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●  move doesn’t return a useful 
observation 

●  For every state s and for  
 move action a, 
◆  Pa(f|s) = Pa(e|s) = 

Pa(f|s) = Pa(e|s) = 0.5 

●  Thus if there are no other actions, 
then 
◆  s1 and s2 are 

indistinguishable 
◆  s3 and s4 are 

indistinguishable 

move(r1,l1,l2) 

b 

b 

b 

b 

Example (Continued) 

belief state b' = bmove(r1,l1,l2) 

belief state b 

b' 

b' 

b' 

b' 
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●  Suppose there’s a sensing action 
see that works perfectly in 
location l2 
Psee(f|s4) = Psee(e|s3) = 1 
Psee(f|s3) = Psee(e|s4) = 0 
●  Then s3 and s4 are 

distinguishable 

●  Suppose see doesn’t work 
elsewhere 

Psee(f|s1) = Psee(e|s1) = 0.5 
Psee(f|s2) = Psee(e|s2) = 0.5 

Example (Continued) 

move(r1,l1,l2) 

b 

b 

b 

b 

belief state b' = bmove(r1,l1,l2) 

belief state b 

b' 

b' 

b' 

b' 
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●  In b, see doesn’t help us any 
bsee

e(s1) 
= Psee(e|s1) bsee(s1) / bsee(e) 
= 0.5 • 0.5 / 0.5 = 0.5 

●  In b', see tells us what state we’re in 
b'see

e(s3) 
= Psee(e|s3)  b'see(s3) / b'see(e) 
= 1 • 0.5 / 0.5 = 1 

Example (Continued) 

move(r1,l1,l2) 

belief state b' = bmove(r1,l1,l2) 

b 

b 

b 

b 

belief state b 

b' 

b' 

b' 

b' 
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Policies on Belief States 
●  In a fully observable MDP, a policy is a partial function from S into A 
●  In a partially observable MDP, a policy is a partial function from B into A 

◆  where B is the set of all belief states 
●  S was finite, but B is infinite and continuous 

◆  A policy may be either finite or infinite 
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●  Suppose we know the 
initial belief state is b 

●  Policy to tell if there’s a 
container in l2: 
◆  π = {(b, move(r1,l1,l2)), 

        (b', see)} 

Example 

move(r1,l1,l2) 

b 

b 

b 

b 

belief state b' = bmove(r1,l1,l2) 

belief state b 

b' 

b' 

b' 

b' 
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Planning Algorithms 
●  POMDPs are very hard to solve 
●  The book says very little about it 
●  I’ll say even less! 
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Reachability and Extended Goals 

●  The usual definition of MDPs does not contain explicit goals 
◆  Can get the same effect by using absorbing states 

●  Can also handle problems where there the objective is more general, such as 
maintaining some state rather than just reaching it 

●  DWR example: whenever a ship delivers cargo to l1, move it to l2 
◆  Encode ship’s deliveries as nondeterministic outcomes of the robot’s actions 


