Lecture slides for Automated Planning: Theory and Practice

Chapter 16 Planning Based on Markov Decision Processes

Dana S. Nau University of Maryland

12:48 PM February 29, 2012

Dana Nau: Lecture slides for Automated Planning Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Motivation

- Until now, we've assumed that each action has only one possible outcome
 - But often that's unrealistic
- In many situations, actions may have more than one possible outcome
 - Action failures
 - » e.g., gripper drops its load
 - Exogenous events
 - » e.g., road closed
- Would like to be able to plan in such situations
- One approach: Markov Decision Processes

Stochastic Systems

- Stochastic system: a triple $\Sigma = (S, A, P)$
 - S = finite set of states
 - A = finite set of actions
 - $P_a(s' | s)$ = probability of going to s' if we execute a in s
 - $\sum_{s' \in S} P_a(s' \mid s) = 1$
- Several different possible action representations
 - e.g., Bayes networks, probabilistic operators
- The book does not commit to any particular representation
 - It only deals with the underlying semantics
 - Explicit enumeration of each $P_a(s' | s)$

Robot r1 starts at location l1

- State s1 in the diagram
- Objective is to get r1 to location l4
 - State s4 in the diagram

- Robot r1 starts at location l1
 - State s1 in the diagram
- Objective is to get r1 to location l4
 - State s4 in the diagram
- No classical plan (sequence of actions) can be a solution, because we can't guarantee we'll be in a state where the next action is applicable

 $\pi = \langle \text{move}(r1, I1, I2), \text{move}(r1, I2, I3), \text{move}(r1, I3, I4) \rangle$

• *Policy*: a function that maps states into actions

Write it as a set of state-action pairs

Initial States s, there at(r1,l2) move(r1,l2,l3)wait (192) 0.8

- For every state s, there will be a probability
 P(s) that the system starts in s
- The book assumes there's a unique state s_0 such that the system always starts in s_0
- In the example, s₀ = s1
 P(s1) = 1
 P(s) = 0 for all s ≠ s1

at(r1,l5)

Histories

• Each policy induces a probability distribution over histories

• If
$$h = \langle s_0, s_1, \dots \rangle$$
 then $P(h|\pi) = \frac{P(s_0)}{\pi} \prod_{i \ge 0} P_{\pi(S_i)}(s_{i+1} | s_i)$

The book omits this because it assumes a unique starting state

Dana Nau: Lecture slides for Automated Planning

so π_1 reaches the goal with probability 0.8

Dana Nau: Lecture slides for Automated Planning

so π_2 reaches the goal with probability 1

Dana Nau: Lecture slides for Automated Planning

- Numeric *cost C*(*s*,*a*) for each state *s* and action *a*
- Numeric *reward* R(s) for each state s
- No explicit goals any more
 - Desirable states have high rewards
- Example:
 - C(s,wait) = 0 at every state except s3
 - C(s,a) = 1 for each "horizontal" action
 - C(s,a) = 100 for each "vertical" action
 - R as shown
- Utility of a history:

• If $h = \langle s_0, s_1, ... \rangle$, then $V(h \mid \pi) = \sum_{i \ge 0} [R(s_i) - C(s_i, \pi(s_i))]$

Dana Nau: Lecture slides for Automated Planning

 $V(h_1|\pi_1) = [R(s1) - C(s1,\pi_1(s1))] + [R(s2) - C(s2,\pi_1(s2))] + [R(s3) - C(s3,\pi_1(s3))] + [R(s4) - C(s4,\pi_1(s4))] + [R(s4) - C(s4,\pi_1(s4))] + \dots$ = $[0 - 100] + [0 - 1] + [0 - 100] + [100 - 0] + [100 - 0] + \dots = \infty$

 $V(h_2|\pi_1) = [0-100] + [0-1] + [-100-0] + [-100-0] + [-100-0] + \dots = -\infty$

Dana Nau: Lecture slides for Automated Planning

$$V(h \mid \pi) = \sum_{i \ge 0} \gamma^i [R(s_i) - C(s_i, \pi(s_i))]$$

- Distant rewards/costs have less influence
- Convergence is guaranteed if $0 \le \gamma < 1$
- Expected utility of a policy:
 - $E(\pi) = \sum_{h} P(h|\pi) V(h|\pi)$

$$\begin{split} V(h_1|\pi_1) &= .9^0[0-100] + .9^1[0-1] + .9^2[0-100] + .9^3[100-0] + .9^4[100-0] + \dots \\ &= 547.9 \end{split}$$

 $V(h_2|\pi_1) = .9^0[0 - 100] + .9^1[0 - 1] + .9^2[-100 - 0] + .9^3[-100 - 0] + \dots = -910.1$

 $E(\pi_1) = 0.8 V(h_1|\pi_1) + 0.2 V(h_2|\pi_1) = 0.8(547.9) + 0.2(-910.1) = 256.3$

Dana Nau: Lecture slides for Automated Planning

Planning as Optimization

- For the rest of this chapter, a special case:
 - Start at state s_0
 - All rewards are 0
 - Consider *cost* rather than *utility*
 - » the negative of what we had before
- This makes the equations slightly simpler
 - Can easily generalize everything to the case of nonzero rewards
- Discounted cost of a history *h*:
 - $C(h \mid \pi) = \sum_{i \ge 0} \gamma^i C(s_i, \pi(s_i))$
- Expected cost of a policy π :
 - $E(\pi) = \sum_{h} P(h \mid \pi) C(h \mid \pi)$
- A policy π is *optimal* if for every π' , $E(\pi) \le E(\pi')$
- A policy π is *everywhere optimal* if for every *s* and every π' , $E_{\pi}(s) \leq E_{\pi'}(s)$
 - where $E_{\pi}(s)$ is the expected utility if we start at s rather than s_0

Bellman's Theorem

• If π is any policy, then for every *s*,

• $E_{\pi}(s) = C(s, \pi(s)) + \gamma \sum_{s \in S} P_{\pi(s)}(s' \mid s) E_{\pi}(s')$

• Let $Q_{\pi}(s,a)$ be the expected cost in a state *s* if we start by executing the action *a*, and use the policy π from then onward

•
$$Q_{\pi}(s,a) = C(s,a) + \gamma \sum_{s' \in S} P_a(s' \mid s) E_{\pi}(s')$$

- **Bellman's theorem:** Suppose π^* is everywhere optimal. Then for every s, $E_{\pi^*}(s) = \min_{a \in A(s)} Q_{\pi^*}(s, a)$.
- Intuition:
 - If we use π* everywhere else, then the set of optimal actions at s is arg min_{a∈A(s)} Q_{π*}(s,a)
 - If π^* is optimal, then at each state it should pick one of those actions
 - Otherwise we can construct a better policy by using an action in arg min_{a∈A(s)} Q_{π*}(s,a), instead of the action that π* uses
- From Bellman's theorem it follows that for all *s*,

•
$$E_{\pi^*}(s) = \min_{a \in A(s)} \{ C(s,a) + \gamma \sum_{s' \in S} P_a(s' \mid s) E_{\pi^*}(s') \}$$

Policy Iteration

- Policy iteration is a way to find π^*
 - Suppose there are *n* states $s_1, ..., s_n$
 - Start with an arbitrary initial policy π_1
 - For i = 1, 2, ...
 - » Compute π_i 's expected costs by solving *n* equations with *n* unknowns
 - *n* instances of the first equation on the previous slide

$$E_{\pi_{i}}(s_{1}) = C(s, \pi_{i}(s_{1})) + \gamma \sum_{k=1}^{n} P_{\pi_{i}(s_{1})}(s_{k} | s_{1}) E_{\pi_{i}}(s_{k})$$

$$\vdots$$

$$E_{\pi_{i}}(s_{n}) = C(s, \pi_{i}(s_{n})) + \gamma \sum_{k=1}^{n} P_{\pi_{i}(s_{n})}(s_{k} | s_{n}) E_{\pi_{i}}(s_{k})$$

» For every s_j , $\pi_{i+1}(s_j) = \arg \min_{a \in A} Q_{\pi_i}(s_j, a)$ $= \arg \min_{a \in A} C(s_j, a) + \gamma \sum_{k=1}^n P_a(s_k | s_j) E_{\pi_i}(s_k)$ » If $\pi_{i+1} = \pi_i$ then exit

• Converges in a finite number of iterations

Dana Nau: Lecture slides for Automated Planning

Example

- Modification of the previous example
 - To get rid of the rewards but still make s5 undesirable:
 - » *C*(**s5**, wait) = 100
 - To provide incentive to leave non-goal states:
 - » *C*(s1,wait) = *C*(s2,wait) = 1
 - All other costs are the same as before
 - As before, discount factor $\gamma = 0.9$

Dana Nau: Lecture slides for Automated Planning

Dana Nau: Lecture slides for Automated Planning

Example (Continued)

 $E_{\pi_1}(s1) =$ 181.9 $E_{\pi_1}(s2) =$ 91 $E_{\pi_1}(s3) =$ 100 $E_{\pi_1}(s4) =$ 0 $E_{\pi_1}(s5) = 1000$ At each state *s*, let $\pi_2(s) = \arg \min_{a \in A(s)} Q_{\pi}(s, a)$: $\pi_2 = \{(s1, move(r1, l1, l4)), \}$ (s2, move(r1, l2, l1)),(s3, move(r1,l3,l4)),

(s4, wait), (s5, move(r1,l5,l4)}

Dana Nau: Lecture slides for Automated Planning

Value Iteration

- Start with an arbitrary cost $E_0(s)$ for each *s* and a small $\varepsilon > 0$
- For i = 1, 2, ...
 - for every s in S and a in A,

•
$$Q_i(s,a) := C(s,a) + \gamma \sum_{s' \in S} P_a(s' \mid s) E_{i-1}(s')$$

 $\gg E_i(s) = \min_{a \in A(s)} Q_i(s,a)$

$$\pi_i(s) = \arg\min_{a \in A(s)} Q_i(s,a)$$

• If $\max_{s \in S} |E_i(s) - E_{i-1}(s)| < \varepsilon$ for every *s* then exit

• π_i converges to π^* after finitely many iterations, but how to tell it has converged?

- In Policy Iteration, we checked whether π_i stopped changing
- In Value Iteration, that doesn't work
- In general, $E_i \neq E\pi_i$
 - When π_i doesn't change, E_i may still change
 - The changes in E_i may make π_i start changing again

Value Iteration

- Start with an arbitrary cost $E_0(s)$ for each *s* and a small $\varepsilon > 0$
- For i = 1, 2, ...
 - for each s in S do
 - » for each a in A do
 - $Q(s,a) := C(s,a) + \gamma \sum_{s' \in S} P_a(s' \mid s) E_{i-1}(s')$ » $E_i(s) = \min_{a \in A(s)} Q(s,a)$
 - » $\pi_i(s) = \arg \min_{a \in A(s)} Q(s, a)$
 - If $\max_{s \in S} |E_i(s) E_{i-1}(s)| < \varepsilon$ for every *s* then exit
- If E_i changes by < ε and if ε is small enough, then π_i will no longer change
 In this case π_i has converged to π*
- How small is small enough?

Example

Dana Nau: Lecture slides for Automated Planning

Discussion

- Policy iteration computes an entire policy in each iteration, and computes values based on that policy
 - More work per iteration, because it needs to solve a set of simultaneous equations
 - Usually converges in a smaller number of iterations
- Value iteration computes new values in each iteration, and chooses a policy based on those values
 - In general, the values are not the values that one would get from the chosen policy or any other policy
 - Less work per iteration, because it doesn't need to solve a set of equations
 - Usually takes more iterations to converge

Discussion (Continued)

- For both, the number of iterations is polynomial *in the number of states*
 - But the number of states is usually quite large
 - Need to examine the entire state space in each iteration
- Thus, these algorithms can take huge amounts of time and space
- To do a complexity analysis, we need to get explicit about the syntax of the planning problem
 - Can define probabilistic versions of set-theoretic, classical, and state-variable planning problems
 - I will do this for set-theoretic planning

Probabilistic Set-Theoretic Planning

• The statement of a probabilistic set-theoretic planning problem is $P = (S_0, g, A)$

• $S_0 = \{(s_1, p_1), (s_2, p_2), \dots, (s_j, p_j)\}$

- » Every state that has nonzero probability of being the starting state
- ◆ *g* is the usual set-theoretic goal formula a set of propositions
- ◆ *A* is a set of probabilistic set-theoretic actions
 - » Like ordinary set-theoretic actions, but multiple possible outcomes, with a probability for each outcome

$$a = (name(a), precond(a),$$

effects₁⁺(a), effects₁⁻(a), $p_1(a)$, effects₂⁺(a), effects₂⁻(a), $p_2(a)$,

..., effects_k⁺(a), effects_k⁻(a), $p_k(a)$)

Probabilistic Set-Theoretic Planning

- Probabilistic set-theoretic planning is EXPTIME-complete
 - Much harder than ordinary set-theoretic planning, which was only PSPACEcomplete
- Worst case requires exponential time
- Unknown whether worst case requires exponential space
 - ◆ PSPACE \subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE
- What does this say about the complexity of solving an MDP?
- Value Iteration and Policy Iteration take exponential amounts of time *and* space because they iterate over all states in every iteration
 - In some cases we can do better

Real-Time Value Iteration

- A class of algorithms that work roughly as follows
- loop

• Forward search from the initial state(s), following the current policy π

- » Each time you visit a new state s, use a heuristic function to estimate its expected cost E(s)
- » For every state *s* along the path followed
 - Update π to choose the action a that minimizes Q(s,a)
 - Update *E*(*s*) accordingly
- Best-known example: Real-Time Dynamic Programming

- Need explicit goal states
 - If *s* is a goal, then actions at *s* have no cost and produce no change
- For each state s, maintain a value V(s) that gets updated as the algorithm proceeds
 - Initially V(s) = h(s), where *h* is a heuristic function
- **Greedy policy**: $\pi(s) = \arg \min_{a \in A(s)} Q(s, a)$
 - where $Q(s,a) = C(s,a) + \gamma \sum_{s' \in S} P_a(s'|s) V(s')$
- procedure RTDP(s)
 - loop until *termination condition*
 - » RTDP-trial(s)
- procedure RTDP-trial(s)
 - while s is not a goal state
 - » $a := \arg \min_{a \in A(s)} Q(s,a)$
 - » V(s) := Q(s,a)
 - » randomly pick s' with probability $P_a(s'|s)$

$$\gg s := s'$$

Dana Nau: Lecture slides for Automated Planning

procedure RTDP(*s*)

(the outer loop on the previous slide)

- loop until *termination condition* » RTDP-trial(s)
- procedure RTDP-trial(*s*)
 - while *s* is not a goal state
 - » $a := \arg \min_{a \in A(s)} Q(s,a)$
 - » V(s) := Q(s,a)
 - » randomly pick s' with probability $P_a(s'|s)$
- s5 0.2 wait C =0.8s2 s3 100 wai c = 1c = 100 C =c = 100c = 1**s**1 s4 c=1 wait 0.5 wait c = 0

 $\gg s := s'$

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

(the forward search on the previous slide)

- procedure RTDP(*s*)
 - loop until *termination condition* » RTDP-trial(s)
- procedure RTDP-trial(s)
 - while s is not a goal state
 - $a := \arg \min_{a \in A(s)} Q(s,a)$
 - » V(s) := Q(s,a)
 - » randomly pick s' with probability $P_a(s'|s)$
 - $\gg s := s'$

Example: $\gamma = 0.9$ h(s) = 0 for all s

Dana Nau: Lecture slides for Automated Planning

- procedure RTDP(s)
 - loop until *termination condition* » RTDP-trial(s)
- procedure RTDP-trial(*s*)
 - while s is not a goal state

- procedure RTDP(s)
 - loop until *termination condition* » RTDP-trial(s)
- procedure RTDP-trial(*s*)
 - while s is not a goal state

- procedure RTDP(s)
 - loop until *termination condition* » RTDP-trial(s)
- procedure RTDP-trial(*s*)
 - while s is not a goal state

- procedure RTDP(s)
 - loop until *termination condition* » RTDP-trial(s)
- procedure RTDP-trial(*s*)
 - while s is not a goal state

- procedure RTDP(s)
 - loop until *termination condition* » RTDP-trial(s)
- procedure RTDP-trial(*s*)
 - while *s* is not a goal state
 - $a := \arg \min_{a \in A(s)} Q(s,a)$

- procedure RTDP(s)
 - loop until *termination condition* » RTDP-trial(s)
- procedure RTDP-trial(*s*)
 - while s is not a goal state

- procedure RTDP(s)
 - loop until *termination condition* » RTDP-trial(s)
- procedure RTDP-trial(*s*)
 - while s is not a goal state

- procedure RTDP(s)
 - loop until *termination condition* » RTDP-trial(s)
- procedure RTDP-trial(*s*)
 - while s is not a goal state

- procedure RTDP(s)
 - loop until *termination condition* » RTDP-trial(s)
- procedure RTDP-trial(*s*)
 - while *s* is not a goal state
 - $a := \arg \min_{a \in A(s)} Q(s, a)$

- procedure RTDP(s)
 - loop until *termination condition* » RTDP-trial(s)
- procedure RTDP-trial(*s*)
 - while s is not a goal state
 - $a := \arg \min_{a \in A(s)} Q(s,a)$

- In practice, it can solve much larger problems than policy iteration and value iteration
- Won't always find an optimal solution, won't always terminate
 - If *h* doesn't overestimate, and if a goal is reachable (with positive probability) at every state
 - » Then it will terminate
 - If in addition to the above, there is a positive-probability path between every pair of states
 - » Then it will find an optimal solution

POMDPs

• Partially observable Markov Decision Process (POMDP):

- a stochastic system $\Sigma = (S, A, P)$ as defined earlier
- A finite set *O* of *observations*
 - » $P_a(o|s) =$ probability of observation *o* after executing action *a* in state *s*
- Require that for each *a* and *s*, $\sum_{o \in O} P_a(o|s) = 1$
- O models partial observability
 - The controller can't observe *s* directly; it can only do *a* then observe *o*
 - The same observation *o* can occur in more than one state
- Why do the observations depend on the action *a*?
 - » Why do we have $P_a(o|s)$ rather than P(o|s)?

POMDPs

• Partially observable Markov Decision Process (POMDP):

- a stochastic system $\Sigma = (S, A, P)$ as defined earlier
 - » $P_a(s'|s) =$ probability of being in state s' after executing action a in state s
- A finite set *O* of *observations*
 - » $P_a(o|s) =$ probability of observation *o* after executing action *a* in state *s*
- Require that for each *a* and *s*, $\sum_{o \in O} P_a(o|s) = 1$
- *O* models partial observability
 - The controller can't observe *s* directly; it can only do *a* then observe *o*
 - The same observation *o* can occur in more than one state
- Why do the observations depend on the action *a*?
 - » Why do we have $P_a(o|s)$ rather than P(o|s)?
 - This is a way to model sensing actions
 - » e.g., *a* is the action of obtaining observation *o* from a sensor

More about Sensing Actions

• Suppose *a* is an action that never changes the state

• $P_a(s|s) = 1$ for all s

• Suppose there are a state *s* and an observation *o* such that *a* gives us observation *o* iff we're in state *s*

•
$$P_a(o|s) = 0$$
 for all $s' \neq s$

- $\bullet P_a(o|s) = 1$
- Then to tell if you're in state *s*, just perform action *a* and see whether you observe *o*

Two states *s* and *s'* are *indistinguishable* if for every *o* and *a*, $P_a(o|s) = P_a(o|s')$

Belief States

- At each point we will have a probability distribution b(s) over the states in S
 - *b* is called a *belief state*
 - Our current belief about what state we're in
- Basic properties:
 - $0 \le b(s) \le 1$ for every *s* in *S*
 - $\sum_{s \in S} b(s) = 1$
- Definitions:
 - b_a = the belief state after doing action *a* in belief state *b*
 - » $b_a(s) = P(\text{we're in } s \text{ after doing } a \text{ in } b) = \sum_{s' \in S} P_a(s|s') b(s')$
 - $b_a(o) = P(\text{observe } o \text{ after doing } a \text{ in } b) = \sum_{s' \in S} P_a(o|s') b(s')$
 - $b_a^{o}(s) = P(\text{we're in } s \mid \text{we observe } o \text{ after doing } a \text{ in } b)$

Belief States (Continued)

• According to the book,

 $\bullet \ b_a^{o}(s) = P_a(o|s) \ b_a(s) \ / \ b_a(o)$

- (16.14)
- I'm not completely sure whether that formula is correct
- But using it (possibly with corrections) to distinguish states that would otherwise be indistinguishable
 - Example on next page

Example

- Modified version of DWR
- Robot r1 can move between 11 and 12
 - » move(r1,l1,l2)
 - » move(r1,l2,l1)
 - With probability 0.5, there's a container c1 in location l2
 » in(c1,l2)
 - $O = \{$ full, empty $\}$
 - » full: c1 is present
 - » empty: c1 is absent
 - » abbreviate full as f, and empty as e

Dana Nau: Lecture slides for *Automated Planning* Licensed under the Creative Commons Attribution-NonCommercial-Sł

Example (Continued)

- move doesn't return a useful observation
- For every state s and for move action a,
 - $P_a(\mathbf{f}|s) = P_a(\mathbf{e}|s) =$ $P_a(\mathbf{f}|s) = P_a(\mathbf{e}|s) = 0.5$
- Thus if there are no other actions, then
 - s1 and s2 are indistinguishable
 - s3 and s4 are indistinguishable

belief state h

Dana Nau: Lecture slides for Automated Planning Licensed under the Creative Commons Attribution-NonCommercial-Sl

Example (Continued)

Suppose there's a sensing action
 see that works perfectly in
 location I2

$$P_{see}(f|s4) = P_{see}(e|s3) = 1$$

$$P_{see}(f|s3) = P_{see}(e|s4) = 0$$

- Then s3 and s4 are distinguishable
- Suppose see doesn't work elsewhere

 $P_{see}(\mathbf{f}|\mathbf{s1}) = P_{see}(\mathbf{e}|\mathbf{s1}) = 0.5$ $P_{see}(\mathbf{f}|\mathbf{s2}) = P_{see}(\mathbf{e}|\mathbf{s2}) = 0.5$

belief state h

Dana Nau: Lecture slides for *Automated Planning* Licensed under the Creative Commons Attribution-NonCommercial-SI

Policies on Belief States

- In a fully observable MDP, a policy is a partial function from *S* into *A*
- In a partially observable MDP, a policy is a partial function from *B* into *A*
 - where *B* is the set of all belief states
- *S* was finite, but *B* is infinite and continuous
 - A policy may be either finite or infinite

belief state b

Example

- Suppose we know the initial belief state is *b*
- Policy to tell if there's a container in 12:
 - π = {(b, move(r1,l1,l2)),
 (b', see)}

Dana Nau: Lecture slides for Automated Planning Licensed under the Creative Commons Attribution-NonCommercial-St

Planning Algorithms

- POMDPs are very hard to solve
- The book says very little about it
- I'll say even less!

Reachability and Extended Goals

- The usual definition of MDPs does not contain explicit goals
 - Can get the same effect by using *absorbing* states
- Can also handle problems where there the objective is more general, such as maintaining some state rather than just reaching it
- DWR example: whenever a ship delivers cargo to 11, move it to 12
 - Encode ship's deliveries as nondeterministic outcomes of the robot's actions

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/