Lecture slides for Automated Planning: Theory and Practice

Chapter 16 Planning Based on Markov Decision Processes

Dana S. Nau
University of Maryland

12:48 PM February 29, 2012

Motivation

- Until now, we've assumed that each action has only one possible outcome
- But often that's unrealistic
- In many situations, actions may have more than one possible outcome
- Action failures

» e.g., gripper drops its load
- Exogenous events
» e.g., road closed
- Would like to be able to plan in such situations
- One approach: Markov Decision Processes

Stochastic Systems

- Stochastic system: a triple $\Sigma=(S, A, P)$
- $S=$ finite set of states
- $A=$ finite set of actions
- $P_{a}\left(s^{\prime} \mid s\right)=$ probability of going to s^{\prime} if we execute a in s
- $\sum_{s^{\prime} \in S} P_{a}\left(s^{\prime} \mid s\right)=1$
- Several different possible action representations
- e.g., Bayes networks, probabilistic operators
- The book does not commit to any particular representation
- It only deals with the underlying semantics
- Explicit enumeration of each $P_{a}\left(s^{\prime} \mid s\right)$

Example

- Robot r 1 starts at location I1
- State s1 in the diagram
- Objective is to get r1 to location 14
- State s4 in the diagram

Example

- Robot r 1 starts at location I1
- State s1 in the diagram
- Objective is to get r1 to location 14
- State 54 in the diagram

- No classical plan (sequence of actions) can be a solution, because we can't guarantee we'll be in a state where the next action is applicable

$$
\pi=\langle\operatorname{move}(\mathrm{r} 1, \mathrm{l} 1, \mathrm{l} 2), \text { move }(\mathrm{r} 1, \mathrm{l} 2, \mathrm{l}), \text { move }(\mathrm{r} 1,|3,| 4)\rangle
$$

Policies

$$
\begin{aligned}
\pi_{1}=\{ & (s 1, \operatorname{move}(r 1,|1,| 2)), \\
& (s 2, \text { move }(r 1, l 2, \mid 3)), \\
& (s 3, \text { move }(r 1, \mid 3, l 4)), \\
& (s 4, \text { wait }), \\
& (s 5, \text { wait })\}
\end{aligned}
$$

- Policy: a function that maps states into actions
- Write it as a set of state-action pairs

Initial States

- For every state s, there will be a probability $P(s)$ that the system starts in s
- The book assumes there's a unique state s_{0} such that the system always starts in s_{0}

- In the example, $s_{0}=s 1$
- $P(s 1)=1$
- $P(s)=0$ for all $s \neq s 1$

Histories

- History: a sequence of system states

$$
h=\left\langle s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, \ldots\right\rangle
$$

$$
h_{0}=\langle s 1, s 3, s 1, s 3, s 1, \ldots\rangle
$$

$$
h_{1}=\langle s 1, s 2, s 3, s 4, s 4, \ldots\rangle
$$

$$
h_{2}=\langle s 1, s 2, s 5, s 5, s 5, \ldots\rangle
$$

$$
h_{3}=\langle s 1, s 2, s 5, s 4, s 4, \ldots\rangle
$$

$$
h_{4}=\langle\mathrm{s} 1, \mathrm{~s} 4, \mathrm{~s} 4, \mathrm{~s} 4, \mathrm{~s} 4, \ldots\rangle
$$

$$
h_{5}=\langle s 1, s 1, s 4, s 4, s 4, \ldots\rangle
$$

$$
h_{6}=\langle\mathrm{s} 1, \mathrm{~s} 1, \mathrm{~s} 1, \mathrm{~s} 4, \mathrm{~s} 4, \ldots\rangle
$$

$h_{7}=\langle\mathrm{s} 1, \mathrm{~s} 1, \mathrm{~s} 1, \mathrm{~s} 1, \mathrm{~s} 1, \ldots\rangle$

- Each policy induces a probability distribution over histories
\bullet If $h=\left\langle s_{0}, s_{1}, \ldots\right\rangle$ then $P(h \mid \pi)=P\left(s_{0}\right) \prod_{i \geq 0} P_{\pi\left(S_{i}\right)}\left(s_{i+1} \mid s_{i}\right)$
The book omits this because it assumes a unique starting state

Example

$$
\begin{aligned}
\pi_{1}=\{ & (s 1, \text { move }(r 1,|1,| 2)), \\
& (s 2, \text { move }(r 1,|2,| 3)) \\
& (s 3, \text { move }(\mathrm{r} 1, \mathrm{l}, \mathrm{l} 4)) \\
& (\mathrm{s} 4, \text { wait }) \\
& (\mathrm{s} 5, \text { wait })\}
\end{aligned}
$$

$$
\begin{array}{ll}
h_{1}=\langle\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 3, \mathrm{~s} 4, \mathrm{~s} 4, \ldots\rangle \text { goal } \quad & P\left(h_{1} \mid \pi_{1}\right)=1 \times 1 \times .8 \times 1 \times \ldots=0.8 \\
h_{2}=\langle\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 5, \mathrm{~s} 5 \ldots\rangle \\
& P\left(h_{2} \mid \pi_{1}\right)=1 \times 1 \times .2 \times 1 \times \ldots=0.2 \\
P\left(h \mid \pi_{1}\right)=0 \text { for all other } h
\end{array}
$$

so π_{1} reaches the goal with probability 0.8

Example

$$
\begin{aligned}
\pi_{2}=\{ & (s 1, \text { move }(r 1,|1,| 2)), \\
& (s 2, \text { move }(\mathrm{r} 1,|2,| 3)), \\
& (\mathrm{s} 3, \text { move }(\mathrm{r} 1,|3,| 4)), \\
& (\mathrm{s} 4, \text { wait }) \\
& (\mathrm{s} 5, \text { move }(\mathrm{r} 1,|5,| 4))\}
\end{aligned}
$$

$h_{1}=\langle\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 3, \mathrm{~s} 4, \mathrm{~s} 4, \ldots\rangle$
$h_{3}=\langle\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 5, \mathrm{~s} 4, \mathrm{~s} 4, \ldots\rangle$
goal
$P\left(h_{1} \mid \pi_{2}\right)=1 \times 0.8 \times 1 \times 1 \times \ldots=0.8$
$P\left(h_{3} \mid \pi_{2}\right)=1 \times 0.2 \times 1 \times 1 \times \ldots=0.2$
$P\left(h \mid \pi_{1}\right)=0$ for all other h
so π_{2} reaches the goal with probability 1

Example

$$
\begin{aligned}
\pi_{3}=\{ & (s 1, \operatorname{move}(r 1, \mid 1, l 4)), \\
& (s 2, \operatorname{move}(r 1, l 2, l 1)), \\
& (s 3, \operatorname{move}(r 1, l 3, l 4)) \\
& (s 4, \text { wait }) \\
& (s 5, \text { move }(r 1, l 5, l 4)\}
\end{aligned}
$$

π_{3} reaches the goal with probability 1.0

Utility

- Numeric cost $C(s, a)$ for each state s and action a
- Numeric reward $R(s)$ for each state s
- No explicit goals any more
- Desirable states have high rewards
- Example:

- $C(s$, wait $)=0$ at every state except s3
- $C(s, a)=1$ for each"horizontal" action
- $C(s, a)=100$ for each "vertical" action
- R as shown
- Utility of a history:
- If $h=\left\langle s_{0}, s_{1}, \ldots\right\rangle$, then $V(h \mid \pi)=\sum_{i \geq 0}\left[R\left(s_{i}\right)-C\left(s_{i}, \pi\left(s_{i}\right)\right)\right]$

$$
V\left(h_{2} \mid \pi_{1}\right)=[0-100]+[0-1]+[-100-0]+[-100-0]+[-100-0]+\ldots=-\infty
$$

$$
\begin{aligned}
& \text { Example } \\
& \pi_{1}=\{(\mathrm{s} 1, \operatorname{move}(\mathrm{r} 1, \mathrm{l}, \mathrm{l} 2)), \\
& \text { (s2, move(r1,l2,l3)), } \\
& \text { (s3, move(r1,l3,l4)), } \\
& \text { (s4, wait), } \\
& \text { (s5, wait) }\} \\
& h_{1}=\langle s 1, s 2, s 3, s 4, s 4, \ldots\rangle \\
& \text { Start } \\
& h_{2}=\langle\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 5, \mathrm{~s} 5 \ldots\rangle \\
& V\left(h_{1} \mid \pi_{1}\right)=\left[R(\mathrm{~s} 1)-\mathrm{C}\left(\mathrm{~s} 1, \pi_{1}(\mathrm{~s} 1)\right)\right]+\left[R(\mathrm{~s} 2)-\mathrm{C}\left(\mathrm{~s} 2, \pi_{1}(\mathrm{~s} 2)\right)\right]+\left[R(\mathrm{~s} 3)-\mathrm{C}\left(\mathrm{~s} 3, \pi_{1}(\mathrm{~s} 3)\right)\right] \\
& +\left[R(\mathrm{~s} 4)-\mathrm{C}\left(\mathrm{~s} 4, \pi_{1}(\mathrm{~s} 4)\right)\right]+\left[R(\mathrm{~s} 4)-\mathrm{C}\left(\mathrm{~s} 4, \pi_{1}(\mathrm{~s} 4)\right)\right]+\ldots \\
& =[0-100]+[0-1]+[0-100]+[100-0]+[100-0]+\ldots=\infty
\end{aligned}
$$

- We often need to use a discount factor, γ
- $0 \leq \gamma \leq 1$
- Discounted utility of a history:

$$
V(h \mid \pi)=\sum_{i \geq 0} \gamma^{i}\left[R\left(s_{i}\right)-C\left(s_{i}, \pi\left(s_{i}\right)\right)\right]
$$

- Distant rewards/costs have less influence
- Convergence is guaranteed if $0 \leq \gamma<1$
- Expected utility of a policy:
- $E(\pi)=\sum_{h} P(h \mid \pi) V(h \mid \pi)$

Example

$$
\begin{aligned}
\pi_{1}=\{ & (s 1, \text { move }(r 1,|1,| 2)), \\
& (s 2, \text { move }(r 1, \mid 2, I 3)) \\
& (s 3, \text { move }(r 1, \mid 3, l 4)) \\
& (s 4, \text { wait }) \\
& (s 5, \text { wait })\}
\end{aligned}
$$

$$
\begin{aligned}
& h_{1}=\langle s 1, s 2, s 3, s 4, s 4, \ldots\rangle \quad \text { Start } \\
& h_{2}=\langle s 1, s 2, s 5, s 5 \ldots\rangle
\end{aligned}
$$

$$
V\left(h_{1} \mid \pi_{1}\right)=.9^{0}[0-100]+.9^{1}[0-1]+.9^{2}[0-100]+.9^{3}[100-0]+.9^{4}[100-0]+\ldots
$$

$$
=547.9
$$

$$
V\left(h_{2} \mid \pi_{1}\right)=.9^{0}[0-100]+.9^{1}[0-1]+.9^{2}[-100-0]+.9^{3}[-100-0]+\ldots=-910.1
$$

$$
E\left(\pi_{1}\right)=0.8 V\left(h_{1} \mid \pi_{1}\right)+0.2 V\left(h_{2} \mid \pi_{1}\right)=0.8(547.9)+0.2(-910.1)=256.3
$$

Planning as Optimization

- For the rest of this chapter, a special case:
- Start at state s_{0}
- All rewards are 0
- Consider cost rather than utility
» the negative of what we had before
- This makes the equations slightly simpler
- Can easily generalize everything to the case of nonzero rewards
- Discounted cost of a history h :
- $C(h \mid \pi)=\sum_{i \geq 0} \gamma^{i} C\left(s_{i}, \pi\left(s_{i}\right)\right)$
- Expected cost of a policy π :
- $E(\pi)=\sum_{h} P(h \mid \pi) C(h \mid \pi)$
- A policy π is optimal if for every $\pi^{\prime}, E(\pi) \leq E\left(\pi^{\prime}\right)$
- A policy π is everywhere optimal if for every s and every $\pi^{\prime}, E_{\pi}(s) \leq E_{\pi^{\prime}}(s)$
- where $E_{\pi}(s)$ is the expected utility if we start at s rather than s_{0}

Bellman's Theorem

- If π is any policy, then for every s,
- $E_{\pi}(s)=C(s, \pi(s))+\gamma \sum_{s \in S} P_{\pi(s)}\left(s^{\prime} \mid s\right) E_{\pi}\left(s^{\prime}\right)$
- Let $Q_{\pi}(s, a)$ be the expected cost in a state s if we start by
 executing the action a, and use the policy π from then onward
- $Q_{\pi}(s, a)=C(s, a)+\gamma \sum_{s^{\prime} \in S} P_{a}\left(s^{\prime} \mid s\right) E_{\pi}\left(s^{\prime}\right)$
- Bellman's theorem: Suppose π^{*} is everywhere optimal.

Then for every $s, E_{\pi^{*}}(s)=\min _{a \in A(s)} Q_{\pi^{*}}(s, a)$.

- Intuition:
- If we use π^{*} everywhere else, then the set of optimal actions at s is $\arg \min _{a \in A(s)} Q_{\pi^{*}}(s, a)$
- If π^{*} is optimal, then at each state it should pick one of those actions
- Otherwise we can construct a better policy by using an action in $\arg \min _{a \in A(s)} Q_{\pi^{*}}(s, a)$, instead of the action that π^{*} uses
- From Bellman's theorem it follows that for all s,
- $E_{\pi^{*}}(s)=\min _{a \in A(s)}\left\{C(s, a)+\gamma \sum_{s^{\prime} \in S} P_{a}\left(s^{\prime} \mid s\right) E_{\pi^{*}}\left(s^{\prime}\right)\right\}$

Policy Iteration

- Policy iteration is a way to find π^{*}
- Suppose there are n states s_{1}, \ldots, s_{n}
- Start with an arbitrary initial policy π_{1}
- For $i=1,2, \ldots$
» Compute π_{i} 's expected costs by solving n equations with n unknowns
- n instances of the first equation on the previous slide

$$
\begin{aligned}
& E_{\pi_{i}}\left(s_{1}\right)=C\left(s, \pi_{i}\left(s_{1}\right)\right)+\gamma \sum_{k=1}^{n} P_{\pi_{i}\left(s_{1}\right)}\left(s_{k} \mid s_{1}\right) E_{\pi_{i}}\left(s_{k}\right) \\
& \quad \vdots \\
& E_{\pi_{i}}\left(s_{n}\right)=C\left(s, \pi_{i}\left(s_{n}\right)\right)+\gamma \sum_{k=1}^{n} P_{\pi_{i}\left(s_{n}\right)}\left(s_{k} \mid s_{n}\right) E_{\pi_{i}}\left(s_{k}\right)
\end{aligned}
$$

» For every s_{j},

$$
\begin{aligned}
\pi_{i+1}\left(s_{j}\right) & =\arg \min _{a \in A} Q_{\pi_{i}}\left(s_{j}, a\right) \\
& =\arg \min _{a \in A} C\left(s_{j}, a\right)+\gamma \sum_{k=1}^{n} P_{a}\left(s_{k} \mid s_{j}\right) E_{\pi_{i}}\left(s_{k}\right)
\end{aligned}
$$

» If $\pi_{i+1}=\pi_{i}$ then exit

- Converges in a finite number of iterations

Example

- Modification of the previous example
- To get rid of the rewards but still make s5 undesirable:
» $C(\mathrm{~s} 5$, wait $)=100$
- To provide incentive to leave non-goal states:
» $C(\mathrm{~s} 1$, wait $)=C(\mathrm{~s} 2$, wait $)=1$
- All other costs are the same as before
- As before, discount factor $\gamma=0.9$

$E_{\pi_{1}}(\mathrm{~s} 1)=C(\mathrm{~s} 1, \operatorname{move}(\mathrm{r} 1, \mathrm{l} 1, \mathrm{l} 2))+\gamma E_{\pi_{1}}(\mathrm{~s} 2)$
$E_{\pi_{1}}(\mathrm{~s} 2)=C(\mathrm{~s} 2, \operatorname{move}(\mathrm{r} 1, \mathrm{~L}, \mathrm{~L} 3))+\gamma\left(0.8 E_{\pi_{1}}(\mathrm{~s} 3)+0.2 E_{\pi_{1}}(\mathrm{~s} 5)\right)$
$E_{\pi_{1}}(\mathrm{~s} 3)=C(\mathrm{~s} 4, \operatorname{move}(\mathrm{r} 1, \mathrm{l} 3, \mathrm{l} 4))+\gamma E_{\pi_{1}}(\mathrm{~s} 4)$
$E_{\pi_{1}}(\mathrm{~s} 4)=C(\mathrm{~s} 4$, wait $)+\gamma E_{\pi_{1}}(\mathrm{~s} 4)$
$E_{\pi_{1}}(\mathrm{~s} 5)=C(\mathrm{~s} 5$, wait $)+\gamma E_{\pi_{1}}(\mathrm{~s} 5)$
(s2, move(r1,l2,l3)),
(s3, move(r1,l3,l4)),
$E_{\pi_{1}}(\mathrm{~s} 1)=100+(0.9) E_{\pi_{1}}(\mathrm{~s} 2)$
(s4, wait),
$E_{\pi_{1}}(\mathrm{~s} 2)=1+(0.9)\left(0.8 E_{\pi_{1}}(\mathrm{~s} 3)+0.2 E_{\pi_{1}}(\mathrm{~s} 5)\right)$
(s5, wait) \}
$E_{\pi_{1}}(\mathrm{~s} 3)=100+(0.9) E_{\pi_{1}}(\mathrm{~s} 4)$
$E_{\pi_{1}}(\mathrm{~s} 4)=0+(0.9) E_{\pi_{1}}(\mathrm{~s} 4)$
$E_{\pi_{1}}(\mathrm{~s} 5)=100+(0.9) E_{\pi_{1}}(\mathrm{~s} 5)$
$\pi_{1}=\{(s 1, \operatorname{move}(r 1,|1| 2)),$,

$E_{\pi_{1}}(\mathrm{~s} 1)=$	181.9
$E_{\pi_{1}}(\mathrm{~s} 2)$	$=91$
$E_{\pi_{1}}(\mathrm{~s} 3)$	$=100$
$E_{\pi_{1}}(\mathrm{~s} 4)$	$=0$
$E_{\pi_{1}}(\mathrm{~s} 5)$	$=1000$

Example (Continued)

$$
\begin{array}{lr}
E_{\pi_{1}}(\mathrm{~s} 1)=181.9 \\
E_{\pi_{1}}(\mathrm{~s} 2)= & 91 \\
E_{\pi_{1}}(\mathrm{~s} 3)=100 \\
E_{\pi_{1}}(\mathrm{~s} 4)=0 \\
E_{\pi_{1}}(\mathrm{~s} 5)=1000
\end{array}
$$

- At each state s, let $\pi_{2}(s)=\arg \min _{a \in A(s)} Q_{\pi}(s, a):$
- $\pi_{2}=\{(\mathrm{s} 1$, move $(\mathrm{r} 1, \mathrm{l}, \mathrm{l4}))$, (s2, move(r1,l2,l1)), (s3, move(r1,l3,l4)), (s4, wait),
(s5, move(r1,l5,l4)\}

Value Iteration

- Start with an arbitrary $\operatorname{cost} E_{0}(s)$ for each s and a small $\varepsilon>0$
- For $i=1,2, \ldots$
- for every s in S and a in A,
- $Q_{i}(s, a):=C(s, a)+\gamma \sum_{s^{\prime} \in S} P_{a}\left(s^{\prime} \mid s\right) E_{i-1}\left(s^{\prime}\right)$
${ }^{»} E_{i}(s)=\min _{a \in A(s)} Q_{i}(s, a)$
» $\pi_{i}(s)=\arg \min _{a \in A(s)} Q_{i}(s, a)$
- If $\max _{s \in S}\left|E_{i}(s)-E_{i-1}(s)\right|<\varepsilon$ for every s then exit
- π_{i} converges to π^{*} after finitely many iterations, but how to tell it has converged?
- In Policy Iteration, we checked whether π_{i} stopped changing
- In Value Iteration, that doesn't work
- In general, $E_{i} \neq E \pi_{i}$
- When π_{i} doesn't change, E_{i} may still change
- The changes in E_{i} may make π_{i} start changing again

Value Iteration

- Start with an arbitrary $\operatorname{cost} E_{0}(s)$ for each s and a small $\varepsilon>0$
- For $i=1,2, \ldots$
- for each s in S do
» for each a in A do
- $Q(s, a):=C(s, a)+\gamma \sum_{s^{\prime} \in S} P_{a}\left(s^{\prime} \mid s\right) E_{i-1}\left(s^{\prime}\right)$
» $E_{i}(s)=\min _{a \in A(s)} Q(s, a)$
" $\pi_{i}(s)=\arg \min _{a \in A(s)} Q(s, a)$
- If $\max _{s \in S}\left|E_{i}(s)-E_{i-1}(s)\right|<\varepsilon$ for every s then exit
- If E_{i} changes by $<\varepsilon$ and if ε is small enough, then π_{i} will no longer change
- In this case π_{i} has converged to π^{*}
- How small is small enough?

Example

- Let $a_{i j}$ be the action that moves from s_{i} to s_{j}
- e.g., $a_{11}=$ wait and $\left.a_{12}=\operatorname{move}(\mathrm{r} 1, \mathrm{I} 1, \mathrm{I} 2)\right)$
- Start with $E_{0}(s)=0$ for all s, and $\varepsilon=1$

$$
\begin{aligned}
& Q\left(\mathrm{~s} 1, a_{11}\right)=1+.9 \times 0=1 \\
& Q\left(\mathrm{~s} 1, a_{12}\right)=100+.9 \times 0=100 \\
& Q\left(\mathrm{~s} 1, a_{14}\right)=1+.9(.5 \times 0+.5 \times 0)=1 \\
& Q\left(\mathrm{~s} 2, a_{21}\right)=100+.9 \times 0=100 \\
& Q\left(\mathrm{~s} 2, a_{22}\right)=1+.9 \times 0=1 \\
& Q\left(\mathrm{~s} 2, a_{23}\right)=1+.9(.5 \times 0+.5 \times 0)=1 \\
& Q\left(\mathrm{~s} 3, a_{32}\right)=1+.9 \times 0=1 \\
& Q\left(\mathrm{~s} 3, a_{34}\right)=100+.9 \times 0=100 \\
& Q\left(\mathrm{~s} 4, a_{41}\right)=1+.9 \times 0=1 \\
& Q\left(\mathrm{~s} 4, a_{43}\right)=100+.9 \times 0=1 \\
& Q\left(\mathrm{~s} 4, a_{44}\right)=0+.9 \times 0=0 \\
& Q\left(\mathrm{~s} 4, a_{45}\right)=100+.9 \times 0=100 \\
& Q\left(\mathrm{~s} 5, a_{52}\right)=1+.9 \times 0=1 \\
& Q\left(\mathrm{~s} 5, a_{54}\right)=100+.9 \times 0=100 \\
& Q\left(\mathrm{~s} 5, a_{55}\right)=100+.9 \times 0=100
\end{aligned}
$$

$$
\begin{array}{ll}
E_{1}(\mathrm{~s} 1)=1 ; & \pi_{1}(\mathrm{~s} 1)=a_{11}=\text { wait } \\
E_{1}(\mathrm{~s} 2)=1 ; & \pi_{1}(\mathrm{~s} 2)=a_{22}=\text { wait } \\
E_{1}(\mathrm{~s} 3)=1 ; & \pi(\mathrm{s} 3)=a_{32}=\text { move }(\mathrm{r} 1, \mathrm{l} 3, \mathrm{l} 2) \\
E_{1}(\mathrm{~s} 4)=0 ; & \pi_{1}(\mathrm{~s} 4)=a_{44}=\text { wait } \\
E_{1}(\mathrm{~s} 5)=1 ; & \pi_{1}(\mathrm{~s} 3)=a_{52}=\text { move }(\mathrm{r} 1, \mathrm{l}, \mathrm{l} 2)
\end{array}
$$

- What other actions could we have chosen?
- Is ε small enough?

Discussion

- Policy iteration computes an entire policy in each iteration, and computes values based on that policy
- More work per iteration, because it needs to solve a set of simultaneous equations
- Usually converges in a smaller number of iterations
- Value iteration computes new values in each iteration, and chooses a policy based on those values
- In general, the values are not the values that one would get from the chosen policy or any other policy
- Less work per iteration, because it doesn't need to solve a set of equations
- Usually takes more iterations to converge

Discussion (Continued)

- For both, the number of iterations is polynomial in the number of states
- But the number of states is usually quite large
- Need to examine the entire state space in each iteration
- Thus, these algorithms can take huge amounts of time and space
- To do a complexity analysis, we need to get explicit about the syntax of the planning problem
- Can define probabilistic versions of set-theoretic, classical, and state-variable planning problems
- I will do this for set-theoretic planning

Probabilistic Set-Theoretic Planning

- The statement of a probabilistic set-theoretic planning problem is $P=\left(S_{0}, g, A\right)$
- $S_{0}=\left\{\left(s_{1}, p_{1}\right),\left(s_{2}, p_{2}\right), \ldots,\left(s_{j}, p_{j}\right)\right\}$
» Every state that has nonzero probability of being the starting state
- g is the usual set-theoretic goal formula - a set of propositions
- A is a set of probabilistic set-theoretic actions
» Like ordinary set-theoretic actions, but multiple possible outcomes, with a probability for each outcome
» $a=(\operatorname{name}(a), \operatorname{precond}(a)$, effects $_{1}{ }^{+}(a)$, effects $_{1}{ }^{-}(a), p_{1}(a)$, effects $_{2}{ }^{+}(a)$, $\operatorname{effects}_{2}^{-}(a), p_{2}(a)$,
$\left.\operatorname{effects}_{k}^{+}(a), \operatorname{effects}_{k}^{-}(a), p_{k}(a)\right)$

Probabilistic Set-Theoretic Planning

- Probabilistic set-theoretic planning is EXPTIME-complete
- Much harder than ordinary set-theoretic planning, which was only PSPACEcomplete
- Worst case requires exponential time
- Unknown whether worst case requires exponential space
- PSPACE $\subseteq E X P T I M E \subseteq$ NEXPTIME \subseteq EXPSPACE
- What does this say about the complexity of solving an MDP?
- Value Iteration and Policy Iteration take exponential amounts of time and space because they iterate over all states in every iteration
- In some cases we can do better

Real-Time Value Iteration

- A class of algorithms that work roughly as follows
- loop
- Forward search from the initial state(s), following the current policy π
» Each time you visit a new state s, use a heuristic function to estimate its expected cost $E(s)$
» For every state s along the path followed
- Update π to choose the action a that minimizes $Q(s, a)$
- Update $E(s)$ accordingly
- Best-known example: Real-Time Dynamic Programming

Real-Time Dynamic Programming

- Need explicit goal states
- If s is a goal, then actions at s have no cost and produce no change
- For each state s, maintain a value $V(s)$ that gets updated as the algorithm proceeds
- Initially $V(s)=h(s)$, where h is a heuristic function
- Greedy policy: $\pi(s)=\arg \min _{a \in A(s)} Q(s, a)$
- where $Q(s, a)=C(s, a)+\gamma \sum_{s^{\prime} \in S} P_{a}\left(s^{\prime} \mid s\right) V\left(s^{\prime}\right)$
- procedure $\operatorname{RTDP}(s)$
- loop until termination condition
» RTDP-trial(s)
- procedure RTDP-trial(s)
- while s is not a goal state
» $a:=\arg \min _{a \in A(s)} Q(s, a)$
» $V(s):=Q(s, a)$
» randomly pick s^{\prime} with probability $P_{a}\left(s^{\prime} \mid s\right)$
» $s:=s^{\prime}$

Real-Time Dynamic Programming

- procedure $\operatorname{RTDP}(s)$
(the outer loop on the previous slide)
- loop until termination condition
» RTDP-trial(s)
- procedure RTDP-trial(s) (the forward search on the previous slide)
- while s is not a goal state
» $a:=\arg \min _{a \in A(s)} Q(s, a)$
» $V(s):=Q(s, a)$
» randomly pick s^{\prime} with probability $P_{a}\left(s^{\prime} \mid s\right)$
» $s:=s^{\prime}$

Real-Time Dynamic Programming

- procedure $\operatorname{RTDP}(s)$
- loop until termination condition
» RTDP-trial(s)
- procedure RTDP-trial(s)
- while \boldsymbol{s} is not a goal state
» $a:=\arg \min _{a \in A(s)} Q(s, a)$
» $V(s):=Q(s, a)$
» randomly pick s^{\prime} with probability $P_{a}\left(s^{\prime} \mid s\right)$
» $s:=s^{\prime}$

Real-Time Dynamic Programming

- procedure $\operatorname{RTDP}(s)$
- loop until termination condition
» RTDP-trial(s)

Example:
$\gamma=0.9$
$h(s)=0$ for all s

- procedure RTDP-trial(s)
- while s is not a goal state
» $a:=\arg \min _{a \in A(s)} Q(s, a)$
» $V(s):=Q(s, a)$
» randomly pick s^{\prime} with probability $P_{a}\left(s^{\prime} \mid s\right)$
» $s:=s^{\prime}$

Real-Time Dynamic Programming

- procedure $\operatorname{RTDP}(s)$
- loop until termination condition
» RTDP-trial(s)

Example:
$\gamma=0.9$
$h(s)=0$ for all s

- procedure RTDP-trial(s)
- while s is not a goal state
$\gg \boldsymbol{a}:=\arg \min _{a \in A(s)} Q(s, a)$
» $V(s):=Q(s, a)$
» randomly pick s^{\prime} with probability $P_{a}\left(s^{\prime} \mid s\right)$
» $s:=s^{\prime}$

$$
Q=100+.9^{*} 0
$$

$$
=100
$$

Real-Time Dynamic Programming

- procedure $\operatorname{RTDP}(s)$
- loop until termination condition
» RTDP-trial(s)

Example:
$\gamma=0.9$
$h(s)=0$ for all s

- procedure RTDP-trial(s)
- while s is not a goal state
» $a:=\arg \min _{a \in A(s)} Q(s, a)$
» $\boldsymbol{V}(\mathrm{s}):=\boldsymbol{Q}(\mathrm{s}, \boldsymbol{a})$
» randomly pick s^{\prime} with probability $P_{a}\left(s^{\prime} \mid s\right)$
» $s:=s^{\prime}$

$$
Q=100+.9^{*} 0
$$

Real-Time Dynamic Programming

- procedure $\operatorname{RTDP}(s)$
- loop until termination condition
» RTDP-trial(s)

Example:
$\gamma=0.9$
$h(s)=0$ for all s

- procedure RTDP-trial(s)
- while s is not a goal state
» $a:=\arg \min _{a \in A(s)} Q(s, a)$
$» V(s):=Q(s, a)$
» randomly pick $\boldsymbol{s}^{\boldsymbol{\prime}}$ with probability $P_{a}\left(s^{\prime} \mid s\right)$
$\gg s:=s^{\prime}$

$$
Q=100+.9 * 0
$$

Real-Time Dynamic Programming

- procedure $\operatorname{RTDP}(s)$
- loop until termination condition
» RTDP-trial(s)

Example:
$\gamma=0.9$
$h(s)=0$ for all s

- procedure RTDP-trial(s)
- while \boldsymbol{s} is not a goal state
» $a:=\arg \min _{a \in A(s)} Q(s, a)$
» $V(s):=Q(s, a)$
» randomly pick s^{\prime} with probability $P_{a}\left(s^{\prime} \mid s\right)$
» $s:=s^{\prime}$

Real-Time Dynamic Programming

- procedure $\operatorname{RTDP}(s)$
- loop until termination condition
» RTDP-trial(s)

Example:
$\gamma=0.9$
$h(s)=0$ for all s

- procedure RTDP-trial(s)
- while s is not a goal state
$\gg \boldsymbol{a}:=\arg \min _{a \in A(s)} Q(s, a)$
» $V(s):=Q(s, a)$
» randomly pick s^{\prime} with probability $P_{a}\left(s^{\prime} \mid s\right)$
» $s:=s^{\prime}$

$$
Q=100+.9^{*} 0
$$

$$
=100
$$

Real-Time Dynamic Programming

- procedure $\operatorname{RTDP}(s)$
- loop until termination condition
» RTDP-trial(s)

Example:
$\gamma=0.9$
$h(s)=0$ for all s

- procedure RTDP-trial(s)
- while s is not a goal state
» $a:=\arg \min _{a \in A(s)} Q(s, a)$
» $\boldsymbol{V}(\mathrm{s}):=\boldsymbol{Q}(\mathrm{s}, \boldsymbol{a})$
» randomly pick s^{\prime} with probability $P_{a}\left(s^{\prime} \mid s\right)$
» $s:=s^{\prime}$

$$
Q=100+.9^{*} 0
$$

$$
=100
$$

cense: http://creativecommons.org/licenses/by-nc-sa/2.0/

Real-Time Dynamic Programming

- procedure $\operatorname{RTDP}(s)$
- loop until termination condition
» RTDP-trial(s)

Example:
$\gamma=0.9$
$h(s)=0$ for all s

- procedure RTDP-trial(s)
- while s is not a goal state
» $a:=\arg \min _{a \in A(s)} Q(s, a)$
$» V(s):=Q(s, a)$
» randomly pick $\boldsymbol{s}^{\boldsymbol{\prime}}$ with probability $P_{a}\left(s^{\prime} \mid s\right)$
$\gg s:=s^{\prime}$

$$
Q=100+.9 * 0
$$

Real-Time Dynamic Programming

- procedure $\operatorname{RTDP}(s)$
- loop until termination condition
» RTDP-trial(s)

Example:
$\gamma=0.9$
$h(s)=0$ for all s

- procedure RTDP-trial(s)
- while \boldsymbol{s} is not a goal state
» $a:=\arg \min _{a \in A(s)} Q(s, a)$
» $V(s):=Q(s, a)$
» randomly pick s^{\prime} with probability $P_{a}\left(s^{\prime} \mid s\right)$
» $s:=s^{\prime}$

Real-Time Dynamic Programming

- procedure $\operatorname{RTDP}(s)$
- loop until termination condition
» RTDP-trial(s)

Example:
$\gamma=0.9$
$h(s)=0$ for all s

- procedure RTDP-trial(s)
- while s is not a goal state
» $a:=\arg \min _{a \in A(s)} Q(s, a)$
» $V(s):=Q(s, a)$
» randomly pick s^{\prime} with probability $P_{a}\left(s^{\prime} \mid s\right)$
» $s:=s^{\prime}$

Real-Time Dynamic Programming

- In practice, it can solve much larger problems than policy iteration and value iteration
- Won't always find an optimal solution, won't always terminate
- If h doesn't overestimate, and if a goal is reachable (with positive probability) at every state
» Then it will terminate
- If in addition to the above, there is a positive-probability path between every pair of states
» Then it will find an optimal solution

POMDPs

- Partially observable Markov Decision Process (POMDP):
- a stochastic system $\Sigma=(S, A, P)$ as defined earlier
- A finite set O of observations
» $P_{a}(o \mid s)=$ probability of observation o after executing action a in state s
- Require that for each a and $s, \sum_{o \in O} P_{a}(o \mid s)=1$
- O models partial observability
- The controller can't observe s directly; it can only do a then observe o
- The same observation o can occur in more than one state
- Why do the observations depend on the action a ?
» Why do we have $P_{a}(o \mid s)$ rather than $P(o \mid s)$?

POMDPs

- Partially observable Markov Decision Process (POMDP):
- a stochastic system $\Sigma=(S, A, P)$ as defined earlier
» $P_{a}\left(s^{\prime} \mid s\right)=$ probability of being in state s^{\prime} after executing action a in state s
- A finite set O of observations
${ }^{»} P_{a}(o \mid s)=$ probability of observation o after executing action a in state s
- Require that for each a and $s, \sum_{0 \in O} P_{a}(o \mid s)=1$
- O models partial observability
- The controller can't observe s directly; it can only do a then observe o
- The same observation o can occur in more than one state
- Why do the observations depend on the action a ?
» Why do we have $P_{a}(o \mid s)$ rather than $P(o \mid s)$?
- This is a way to model sensing actions
» e.g., a is the action of obtaining observation o from a sensor

More about Sensing Actions

- Suppose a is an action that never changes the state
- $P_{a}(s \mid s)=1$ for all s
- Suppose there are a state s and an observation o such that a gives us observation o iff we're in state s
- $P_{a}(o \mid s)=0$ for all $s^{\prime} \neq s$
- $P_{a}(o \mid s)=1$
- Then to tell if you're in state s, just perform action a and see whether you observe o
- Two states s and s^{\prime} are indistinguishable if for every o and a, $P_{a}(o \mid s)=P_{a}\left(o \mid s^{\prime}\right)$

Belief States

- At each point we will have a probability distribution $b(s)$ over the states in S
- b is called a belief state
- Our current belief about what state we're in
- Basic properties:
- $0 \leq b(s) \leq 1$ for every s in S
- $\sum_{s \in S} b(s)=1$
- Definitions:
- $b_{a}=$ the belief state after doing action a in belief state b
» $b_{a}(s)=P($ we're in s after doing a in $b)=\sum_{s^{\prime} \in S} P_{a}\left(s \mid s^{\prime}\right) b\left(s^{\prime}\right)$
- $b_{a}(o)=P($ observe o after doing a in $b)=\sum_{s^{\prime} \in S} P_{a}\left(o \mid s^{\prime}\right) b\left(s^{\prime}\right)$
- $b_{a}{ }^{o}(s)=P($ we're in $s \mid$ we observe o after doing a in $b)$

Belief States (Continued)

- According to the book,
- $b_{a}{ }^{o}(s)=P_{a}(o \mid s) b_{a}(s) / b_{a}(o)$
- I'm not completely sure whether that formula is correct
- But using it (possibly with corrections) to distinguish states that would otherwise be indistinguishable
- Example on next page

belief state b

Example

- Modified version of DWR
- Robotr1 can move between I1 and I2
» move(r1,I1,l2)
» move(r1,l2,I1)
- With probability 0.5 , there's a
 container c1 in location I2
» in(c1,l2)
- $O=$ \{full, empty\}
» full: c1 is present
» empty: c1 is absent
» abbreviate full as f , and empty as e

belief state b

Example (Continued)

- move doesn't return a useful observation
- For every state s and for move action a,
- $P_{a}(\mathrm{f} \mid s)=P_{a}(\mathrm{e} \mid s)=$

$$
P_{a}(\mathrm{f} \mid s)=P_{a}(\mathrm{e} \mid s)=0.5
$$

- Thus if there are no other actions,
move(r1,l1,l2) then
- s1 and s2 are indistinguishable
- s3 and s4 are indistinguishable

belief state b

Example (Continued)

- Then s3 and s4 are distinguishable
- Suppose see doesn't work elsewhere
$P_{\text {see }}(\mathrm{f} \mid \mathrm{s} 1)=P_{\text {see }}(\mathrm{e} \mid \mathrm{s} 1)=0.5$
$P_{\text {see }}(\mathrm{f} \mid \mathrm{s} 2)=P_{\text {see }}(\mathrm{e} \mid \mathrm{s} 2)=0.5$

belief state b

Example (Continued)

- In b, see doesn't help us any $b_{\text {see }}{ }^{\mathrm{e}}(\mathrm{s} 1)$
$=P_{\text {see }}(\mathrm{e} \mid \mathrm{s} 1) b_{\text {see }}(\mathrm{s} 1) / b_{\text {see }}(\mathrm{e})$
$=0.5 \cdot 0.5 / 0.5=0.5$

- In b^{\prime}, see tells us what state we're in $b_{\text {see }}^{\prime}{ }^{\mathrm{e}}{ }^{(\mathrm{s}} 3$)
$=P_{\text {see }}(\mathrm{e} \mid \mathrm{s} 3) b_{\text {see }}^{\prime}(\mathrm{s} 3) / b_{\text {see }}^{\prime}(\mathrm{e})$
$=1 \cdot 0.5 / 0.5=1$
move(r1,l1,l2)
belief state $b^{\prime}=b_{\text {move(r1,11,12) }}$

Policies on Belief States

- In a fully observable MDP, a policy is a partial function from S into A
- In a partially observable MDP, a policy is a partial function from B into A
- where B is the set of all belief states
- S was finite, but B is infinite and continuous
- A policy may be either finite or infinite

belief state b

Example

- Suppose we know the initial belief state is b
- Policy to tell if there's a container in 12:
- $\pi=\{(b$, move $(\mathrm{r} 1, \mathrm{I} 1, \mathrm{I} 2))$, (b^{\prime}, see) $\}$

move(r1,l1,l2)
belief state $b^{\prime}=b_{\text {move(r1,11,12) }}$

Planning Algorithms

- POMDPs are very hard to solve
- The book says very little about it
- I'll say even less!

Reachability and Extended Goals

- The usual definition of MDPs does not contain explicit goals
- Can get the same effect by using absorbing states
- Can also handle problems where there the objective is more general, such as maintaining some state rather than just reaching it
- DWR example: whenever a ship delivers cargo to I1, move it to I2
- Encode ship's deliveries as nondeterministic outcomes of the robot's actions

