Lecture slides for
Automated Planning: Theory and Practice

Chapter 16
Planning Based on Markov
Decision Processes

Dana S. Nau
University of Maryland

12:48 PM  February 29, 2012

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/



Motivation

® Until now, we’ve assumed
that each action has only one
possible outcome

¢ But often that’s unrealistic

@]

® In many situations, actions may have
more than one possible outcome

¢ Action failures
» e.g., gripper drops its load
¢ Exogenous events
» e.g., road closed
® Would like to be able to plan in such situations
® One approach: Markov Decision Processes
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Stochastic Systems

® Stochastic system: a triple Z = (S, A4, P)
¢ S = finite set of states
¢ A = finite set of actions
¢ P_(s'|s)=probability of going to s" if we execute a in s
4

ES’ESPa(S, |S):1

® Secveral different possible action representations
¢ c.g., Bayes networks, probabilistic operators

® The book does not commit to any particular representation
¢ [t only deals with the underlying semantics

¢ Explicit enumeration of each P, (s" | 5)
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® Robot r1 starts
at location |1

¢ State s1in
the diagram

® Objective is to
get r1 to location 14

¢ State s4 in
the diagram
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Example

mO\’e“\ ° ‘\2\ o
0.2
at(r1,12) move(r1,!2,13
® Robot r1 starts wait (" | B
at location |1 a8 move(r1,13,2) &
¢ State s1in = =
the diagram o ]
® Objective is to wait C@‘ move(r1,14,11) X,
get r1 to loca.t10n 14 at(r1, 1) -
¢ State s4 in Start n?é%e (e WAl at(r1,14) Goal
the diagram 0.5 o

® No classical plan (sequence of actions) can be a solution, because we can’t
guarantee we’ll be in a state where the next action 1s applicable

n =(move(r1,l1,12), move(r1,12,13), move(r1,I13,14))
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Policies

52 ~ at(r1,I5)

at(r1,12) move(r1,!2,13

5
2) ()

m, = {(s1, move(r1,I1,12)),
(s2, move(r1,12,13)),
s3, move(r1,13,14)),

( : move(r1,|4,I1)
(s4, wait), waitc@‘ o i
(85, wait); at(r1,I1)

0.5 ~~at(r1,l4
Start 05 move(r1,!1,14) walt ( ) Goal

3
(@)
<
(0]
=
—
S
N

move(ri,I1,

® Policy: a function that maps states into actions
¢ Write it as a set of state-action pairs
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Initial States

m
0.5 ~ S5
® For every state s, there at(r1,12) move(r1,12,13) ' at(r1,13) N
will be a probability WaitC s2 0.8 ~ g3 '
P(s) that the system A 7
, N 3 move(r1,13,12) ® 3
starts 1in s — 0 -+ o}
= < - < S
- ® - ® &
—_ ~— | — _— Q
3 2 g =T 5
® The book assumes 3 S 3 IS
there’s a unique state = J = move(r1,|4,1) = J E
s, such that the system ~ Wait((} o4 (s4
always starts in s, at(r1,11) '()
Start n?é%e(m 11,14y Wait al(r1.l4) Goal

® In the example, 5, = S1 0-5

¢ P(s1)=1
¢ P(s)=0 forall s # s1
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® History: a sequence
of system states

h=(Sg> S1» S S3, Sgp -+ )

h,=(s1, s3, s1,s3, s1, ...
hy=(s1,s2,s3,s4,s4,...
h,=(s1,s2,s5, s5,s5, ...
hy=(s1,s2,s5,s4,s4,..
h,=(s1,s4,s4,s4,s4, ...
hs =(s1, s1,s4,s4,s4, ...
hg=1(s1,s1,s1,s4,s4, ...
h,=(s1,s1,s1,s1,s1, ...

D R Y R S D g

Histories

512 at(r1,15)
"“Ovem‘ wait
0.2 ~ S5
at(r1,12) : ~
; move(r1,2,13) at(r1,13)
waitC s2 0.8~ g3
N ‘ 3 move(r1,13,12) %) ‘ 3 5
=/ \2 </ g /g &
- QL - o < —
3 = IS
> — > - o~ g
o N ) L &
_ J = move(r1,l4,/1) VA
Wa'tC s1~ ' s4 g
at(r1,11) 2 >
0.5 +~—at(r1,l14
Start move(r1,|1,l4) wait ( ) Goal

0.5

® FEach policy induces a probability distribution over histories

® Ifh={(s s, ...

> then  P(hjr) = P(s)) HizOPﬂ(Si) (Si+7 |

7

The book omits this because it assumes a unique starting state
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Example

\2) at(r1,I5
aovel o o
wait
0.2 :
at(r1,12) move(r1,12,13

m = 1(s1, move(r1,I1,12)),  wait
(s2, move(r1,12,13)), - move(r B.2) R
(s3, move(r1,13,14)), = o 3 2
(s4, wait), T & §
s5, wait 2 S 3
(s5, wait)} : &

: move(r1,l4,I1)
waitc@
at(r1,11)

0.5

i t(r1,14

Start 05 move(r1,|1,14) wait ~ at(r1.14) Goal
h,=(s1,s2,s3,s4,s4,...) os Phy|n)=1x1x.8x1x...=0.8
h,=(s1,s2,s5,s5...) o Phylm)=1x1x2x1x...=0.2

P(h | ;) =0 for all other 4

so m, reaches the goal with probability 0.8
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Example

\2)
move\n 5, art,IS)
@ Dwalt
0.2
at(r1,12) move(r1,12,13
»

n, = {(s1, move(r1,!1,12)),
(s2, move(r1,12,13)),
(s3, move(r1,13,14)),
(s4, wait),
(s5, move(r1,15,14))}

move(r1,13,12)

move(r1,|4,11)
waitc@
at(r1,11)

=
QL
move(r1,I1,12) O

(1121 L4)enow

Start o et a  wait alrll4) Goal
h,=(s1,s2,s3,s4,s4, ...) Ph{|m)=1x08x1x1x..=0.8
hy,=(s1, s2, s5, s4, s4, ...) P(hy |1)=1x02x1x1x...=0.2

goal P(h | ;) =0 for all other 4

so 1, reaches the goal with probability 1
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Example

move\“ 15.2) at(r1,15)

1, = {(s1, move(r1,11,14)), a(r1, |2) move(r1,12,13)

(s2, move(r1,12,11)), waitC 0.8
s3, move(r1,13,14)),

( - a move(r1,13,12) )
(s4, wait), = 2
(85, move(r1,15,14)} < S
i 14,1
T, reaches the goal with wait move(r1,|4,11)

probability 1.0

0.5 wait~ at(r1,14) Goal

Start move(r1,|1,l4
goal o0 e
h,=(s1,s4,s4,s4, ...) P(hy|my)=05x 1 x 1 x Ix1x...=0.5
hs=(s1,s1,s4,s4,s4, ...) P(hs|m)=05x05x 1 x I x1x...=0.25
he=(s1,s1,s1,s4,s4, ...) P(hg|m)=05%x05x05x1x1x...=0.125

h,=(s1,s1,s81,s81,s81,s81,...) P(h,|n;)=0.5x05%x05%x05x05x%x...=0
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Utility 5%

0.2 .
)+ wait
® Numeric cost C(s,a) for wait e .1 ‘
cach state s and action a {00
. C =
® Numeric reward R(s) ci=100
for each state s c=1
® No explicit goals any more (=0 /o A
| | st 4 ) = 100
¢ Desirable states have Wa'tO 7 1 -
high rewards Start . 0.5 wait
® Example: |

¢ ((s,wait) =0 at every state except S3
¢ C(s,a) = 1 for each“horizontal” action
& C(s,a) = 100 for each “vertical” action
¢ R as shown
® Utility of a history:
o 16k = (50,51, ... ), then V(| 1) = 3,2 o [R(s5) — Clsyn(s,)]
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r=-100

Example ﬂ;/'@g
. A wait
- RO

n, = {(s1, move(r1,I1,12)),
(s2, move(r1,12,13)),
(s3, move(r1,13,14)),
(s4, wait),
(

. N= 0 - 4
s5, wait)} waitC@ r=100

c =100

h,=(s1,s2,s3,s4,s4,...)
h,=(s1,s2,s5,s5...)

Vihjmy) = [R(s1)-C(s1,m,(s1))] + [R(s2)-C(s2,m,(s2))] + [R(s3)—C(83,m,(S3))]
+[R(s4)—-C(s4,n,(s4))] + [R(s4)—C(s4,m,(s4))] + ...
= [0-100] + [0—1] + [0—100] + [100-0] + [100-0] + ...=00

VhJm,)) = [0—100] + [0—1] + [-100—0] + [-100—0] + [-100—0] + ... = —oo
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Discounted Utility . A

)+ wait
r=0 g 0.8~
ng - . 83 =0
wait \—#" /
c=1
cl=100 c= 700
® We often need to use -
a discount factor, y C=1
y N y=0.9
‘ O < y < 1 = 0 - d y
— /= _ s1 | s4 't~ 100
® Discounted utility Wa"‘(/ 7 -
of a history: Start 05 0.5 wait

Vih|m) = Eiz o Y [R(sp) — C(s;,m(s;)]

¢ Distant rewards/costs have less influence
¢ Convergence 1s guaranteed if 0 <y < 1

® Expected utility of a policy:
¢ E(m) =2, P(hlm) V(hlm)
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Example

r=0

n, = {(s1, move(r1,I1,12)), wait
(s2, move(r1,12,13)),
(s3, move(r1,13,14)),
(s4, wait),
(s5, wait)}

h,=(s1,s2,s3,s84,s4, ...) Start
h,=(s1,s2,s5,s5...)

V(hy|m,) =.9°[0 — 100] +.9'[0 — 1] +.92[0 — 100] +.93[100 — 0] + .94[100 — 0] + ...
— 547.9

V() =.9°[0 — 100] + .91[0 — 1] +.92[~100 — 0] + .93[~100 — 0] + ... =-910.1

E(m,) = 0.8 V(h|n,) + 0.2 V(hyn,) = 0.8(547.9) + 0.2(~910.1) = 256.3
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Planning as Optimization

® For the rest of this chapter, a special case:
¢ Start at state s,
¢ All rewards are 0
¢ Consider cost rather than utility
» the negative of what we had before
® This makes the equations slightly simpler
¢ Can easily generalize everything to the case of nonzero rewards
@® Discounted cost of a history #:
¢ C(h|m)=2i20 7 C(s;, m(sy)
® Expected cost of a policy x:
¢ E(m) =2, P(h|m) C(h|m)
A policy 7 1s optimal if for every n’, E(n) < E(n')

® A policy = 1s everywhere optimal if for every s and every @', E _(s) < E_.(s)

¢ where E_(s) is the expected utility 1f we start at s rather than s,

Dana Nau: Lecture slides for Automated Planning
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Bellman’s Theorem

® If 7 is any policy, then for every s,

® E(s)=C(s, 1(s)) + 7 2ye s Pr(s" | 8) E(s")
® Let O (s,a) be the expected cost in a state s 1f we start by Sn
executing the action a, and use the policy 7 from then onward

* Qn(S’a) = C(S’a) + )/Es’ ESPa(S’ | S) Eﬂ(S’)
® Bellman’s theorem: Suppose 7* is everywhere optimal.
Then for every s, E, «(s) = min ¢ 4, O,«(s,a).

7(s)

® Intuition:

¢ If we use 7* everywhere else, then the set of optimal actions at s 1s
arg min ¢,y 9,+(s,a)
¢ If 7* 1s optimal, then at each state it should pick one of those actions

¢ Otherwise we can construct a better policy by using an action in
arg min,c ) O,+(s,a), instead of the action that 7* uses

® From Bellman’ s theorem it follows that for all s,
¢ E(s) =min,g ) {C(s,0) +y X e Pus' | ) E (s}

Dana Nau: Lecture slides for Automated Planning
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Policy Iteration

® Policy iteration is a way to find 7

¢ Suppose there are n states s, ..., s

n

¢ Start with an arbitrary initial policy «,
¢ Fori=1,2, ...
» Compute 7;’s expected costs by solving n equations with n» unknowns
* n instances of the first equation on the previous slide

E, (s)=C(s,m(s))+7Y, P (s.15) E, (s,)

E, (s,)=C(s,m,(s,))+ yEH P (s 1s,) E, (s)
» For every s,,

7T, (s;)=argmin,, O (s;,a)

=argmin ., C(s;,a)+ y2k=1Pa(sk Is;) E, (s;)
» If &, = &, then exit

® Converges in a finite number of iterations

Dana Nau: Lecture slides for Automated Planning
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Example

® Modification of the previous example
¢ To get rid of the rewards but still make s5 undesirable:
» C(s5, wait) =100
¢ To provide incentive to leave non-goal states:
» C(s1,wait) = C(s2,wait) =1

¢ All other costs are the same as before s5 D
¢ As before, discount factor y=0.9 0.2 1 wait
, . c=100
Csz - 0.8 ~/g3
wait\—#" /
c=1 c=1
cl= 100 c =100
c=1
I 4 » i
s1” s4 | _
c=1 waitQ, K, r=0.9
0.5 - _
wait c =0
Start 05

Dana Nau: Lecture slides for Automated Planning 19
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E; (s1) = C(s1, move(r1, (1, 2)) + y E;, (s2)
E; (s2) = C(s2, move(r1,[2,(3)) + y (0.8 E;,(s3) + 0.2 E;,(s5))
Er, (s3) = C(s4, move(rl, (3, |4)) + y Ex, (s4)

Er, (s4) = C(s4, wait) + y Ex, (s4) 1, = {(s1, move(r1,I1,12)),
E;, (s5) = C(s5, wait) + y E, (s5) (s2, move(r1,12,13)),
(s3, move(r1,|3,l14)),
Er,(s1) =100+ (0.9) Ey, (s2) (s4, wait),
(s5, wait)}

Er (s2) =1+ (0.9)(0.8 Ey,(s3) + 0.2 E,(s5))
Er,(s3) =100 + (0.9) E;, (s4) —
Ey,(s4) =0+ (0.9) Er,(s4) -

Ex,(s5) =100 + (0.9) Ex,(s5) e
waitC@‘/ o

E; (s1)= 181.9

c=1
Er (s2) = 91 106
E; (s3)= 100 )
Er,(s4)= 0 -
Er,(s5) = 1000 C@‘
c=1 wait( W™’
Start 0.5 wait ¢ =0

0.5
Dana Nau: Lecture slides for Automated Planning
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Example (Continued)

E (s1)= 181.9 , = {(s1, move(r1,1,12)),

E, (s2) = 91 (s2, move(r1,|2,13)),
‘ (s3, move(r1,13,14)),

Er (s3)= 100 (s4, wait),

Er (s4) = 0 (s5, wait)}

Er,(s5) = 1000

® At each state s, let / 0.2 :a v\;aDit
m,(s) = arg min ¢ 4, O (s,a): c=100

wait /
® 1, = {(s1, move(r1,1,l4)), c=1 c=1

(s2, move(r1,|2,11)), c =100

(s3, move(r1,3,14)), |

(s4, wait), c=1

(s5, move(r1,15,14)} v

c=1 wait 6 r=09
0.5

0.5
Dana Nau: Lecture slides for Automated Planning
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Value lteration

@ Start with an arbitrary cost £(s) for each s and a small € > 0
® Fori=1,2,...
¢ foreverysinSandain 4,
* 0,(5,0) =C(s,a) Ty 2yesPy(s"|5) Ei(s)
» E(s) =min,e ) Q;(s,a)
» w(s) = arg min,c ., O, (s,a)

¢ Ifmax, c|E(s)—E, [(s)| <e for every s then exit

® 7, converges to " after finitely many iterations, but how to tell it has converged?
¢ In Policy Iteration, we checked whether &; stopped changing
¢ In Value Iteration, that doesn’t work
® In general, E; # Ex,
¢ When 7; doesn’t change, E; may still change
¢ The changes 1n E; may make x; start changing again

Dana Nau: Lecture slides for Automated Planning
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Value lteration

@ Start with an arbitrary cost £(s) for each s and a small € > 0
® Fori=1,2,...
¢ foreachsin Sdo
» for each a in 4 do
¢ 0(5.a) = C(s5,a) + 1 Sy s Pu(5' | ) Epy(s)
» Ef(s)=min, 4 O(s,a)

» ws) = arg min ) 0(s,q)
¢ Ifmax, c¢|E(s)—E, (s)| <e forevery s then exit

® If £, changes by < ¢ and 1if € 1s small enough, then z; will no longer change

¢ In this case 7, has converged to 7*

® How small 1s small enough?

Dana Nau: Lecture slides for Automated Planning
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Example

® Let g, be the action that moves from s; to s, E(s)=1; mn(s1)=a, =wait
¢ c.g., a,,=waitand a;, = move(r1,|1,I12)) E(s2)=1; mn(S2)=a,,=wait
® Start with Ey(s) =0 forall s, and e =1 E(s3)=1; mn(s3)=a;, =move(r1,l3,I12)

0(s1,a,)=1+9x0=1
Q(s1, a;) =100 + .9x0 = 100
0(s1,a,y) =1+ .9(.5x0 +.5x0) =1

0(s2, a,;) =100 + .9x0 =100 ® Is € small enough?

0(s2,a,,)=1+.9x0=1
0(82, a,;) =1+ .9(.5x0 + .5x0) =1

0(s3, az)) =1+ .9x0=1 ” :
O(s3, ay,) = 100 +.9x0 = 100 wait 7

O(s4, a,) =1+ .9x0=1 c=1 c=1
O(s4, a,;) =100 + .9x0 =1 cl= 100

0(s4,a,,) =0+ .9x0=0

O(s4, a,5) = 100 + .9x0 = 100 , C=1
0(s5, as)) =1+ .9x0=1 =1 wait S(1 -

O(s5, as,) = 100 +.9x0 = 100 05
O(85, as5) = 100 + .9%x0 = 100 Start .

Dana Nau: Lecture slides for Automated Planning
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E(s4)=0; m(s4)=a, =wait
E(s5)=1; mn(s3)=as,=move(r1,15,12)

® What other actions could we have chosen?

-~ S5
0.2 :
A wait
0.8~ <3 c=100
4
c =100
w4
| '
.84 y=0.9
wait ¢ =0

24



Discussion

® Policy iteration computes an entire policy in each iteration,
and computes values based on that policy

¢ More work per iteration, because it needs to solve a set of simultaneous
equations

¢ Usually converges in a smaller number of iterations

® Value iteration computes new values in each iteration,
and chooses a policy based on those values

¢ In general, the values are not the values that one would get from the chosen
policy or any other policy
¢ Less work per iteration, because it doesn’t need to solve a set of equations

¢ Usually takes more iterations to converge

Dana Nau: Lecture slides for Automated Planning
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Discussion (Continued)

® For both, the number of iterations is polynomial in the number of states
¢ But the number of states is usually quite large
¢ Need to examine the entire state space in each iteration

® Thus, these algorithms can take huge amounts of time and space

® To do a complexity analysis, we need to get explicit about the syntax of the
planning problem

¢ Can define probabilistic versions of set-theoretic, classical, and state-variable
planning problems

¢ [ will do this for set-theoretic planning

Dana Nau: Lecture slides for Automated Planning
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Probabilistic Set-Theoretic Planning

® The statement of a probabilistic set-theoretic planning problem 1s P = (S, g, A)
¢ So=1{(s, P1)s (52, P25 -, (Sj»pj)}
» Every state that has nonzero probability of being the starting state
¢ g is the usual set-theoretic goal formula - a set of propositions
¢ A 1s a set of probabilistic set-theoretic actions

» Like ordinary set-theoretic actions, but multiple possible outcomes,
with a probability for each outcome

» a = (name(a), precond(a),
effects,"(a), effects,(a), p,(a),
effects,"(a), effects, (a), p,(a),

effects,"(a), effects,(a), p,(a))

Dana Nau: Lecture slides for Automated Planning
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Probabilistic Set-Theoretic Planning

® Probabilistic set-theoretic planning is EXPTIME-complete

¢ Much harder than ordinary set-theoretic planning, which was only PSPACE-
complete

® Worst case requires exponential time
® Unknown whether worst case requires exponential space
¢ PSPACE C EXPTIME € NEXPTIME € EXPSPACE

® What does this say about the complexity of solving an MDP?

® Value Iteration and Policy Iteration take exponential amounts of time and space
because they iterate over all states in every iteration

¢ In some cases we can do better

Dana Nau: Lecture slides for Automated Planning
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Real-Time Value Iteration

® A class of algorithms that work roughly as follows

® loop
¢ Forward search from the initial state(s), following the current policy n

» Each time you visit a new state s, use a heuristic function to estimate its
expected cost E(s)

» For every state s along the path followed
e Update 7 to choose the action @ that minimizes Q(s,a)
e Update E(s) accordingly

® Best-known example: Real-Time Dynamic Programming

Dana Nau: Lecture slides for Automated Planning
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Real-Time Dynamic Programming

® Need explicit goal states
¢ If s is a goal, then actions at s have no cost and produce no change
® For each state s, maintain a value V(s) that gets updated as the algorithm proceeds
¢ Initially V(s) = h(s), where £ 1s a heuristic function
® Greedy policy: n(s) = arg min, ¢, O(s,a)
o where O(s,a) = C(s,a) + v Sy e.5 P, (s')s) V(s")
® procedure RTDP(s)
¢ loop until termination condition
» RTDP-trial(s)
® procedure RTDP-trial(s)
¢ while s 1s not a goal state
» @ = arg min,c . 0(s,a)
» V(s) = 0(s,a)
» randomly pick s’ with probability P, (s'|s)

» s =g

Dana Nau: Lecture slides for Automated Planning
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Real-Time Dynamic Programming

® procedure RTDP(s) (the outer loop on the previous slide)

¢ loop until termination condition
» RTDP-trial(s)

® procedure RTDP-trial(s) (the forward search on the previous slide)
¢ while s 1s not a goal state
» a = arg min,c ) 0(s,a)
» V(s) = Q(s,a)
» randomly pick s’ with 8D 53
probability P, (s'|s) O™ ;

» s =g

4 £
!

sS4
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Real-Time Dynamic Programming

® procedure RTDP(s)
¢ loop until termination condition Example:
» RTDP-trial(s) y=0.9

. h(s) =0 for all s
® procedure RTDP-trial(s)

¢ while s is not a goal state
» a = arg min,c ) 0(s,a)
» V(s) = Q(s,a)
» randomly pick s’ with
probability P, (s'|s) o=

» s =g

W
no
w
()

-

_O ’,
- !
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Real-Time Dynamic Programming
® procedure RTDP(s)

¢ loop until termination condition Example:
» RTDP-trial(s) y=0.9

. h(s) =0 for all s
® procedure RTDP-trial(s)

¢ while s 1s not a goal state

» a:=arg min,e . Q(s,a)

w
O

» V(s) = 0(s,a) =0 .
» randomly pick s’ with . &3
probability P, (s'|s) y
— !
»S§.=8 Q=100+.9%0
=100
0N @=1+9(540+%+0) (Y 1o
O N )
Q =100+.9%0
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Real-Time Dynamic Programming

® procedure RTDP(s)

¢ loop until termination condition

» RTDP-trial(s)

® procedure RTDP-trial(s)

¢ while s 1s not a goal state

» a:=arg min,, O(s,a)

» V(s) = 0(s,a)

» randomly pick s'w
probability P, (s'|s)

» s =g
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Real-Time Dynamic Programming

® procedure RTDP(s)

¢ loop until termination condition

» RTDP-trial(s)

® procedure RTDP-trial(s)

¢ while s 1s not a goal state

» a = arg min,c ) 0(s,a)

» WV(s) := 0(s,a)

» randomly pick s'w
probability P, (s'|s)

» s =g

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-Nc

ith

Q =100+.9*0
=100

Example:
y=10.9
h(s) =0 for all s

=0
: S3
Q =100+.970
=100

a U

cense: http://creativecommons.org/licenses/by-nc-sa/2.0/

4 Q = 1+.9(1%*0+14*0) '
= 1
Of e

w

O

-

35



Real-Time Dynamic Programming

® procedure RTDP(s)
¢ loop until termination condition
» RTDP-trial(s)

® procedure RTDP-trial(s)
¢ while s 1s not a goal state

» a = arg min,c ) 0(s,a)

Example:
y=10.9
h(s) =0 for all s

» V(s) = Q(s,a) =0
» randomly pick s’ with . o3
probability P, (s'|s) ;
» §:=s' Q = 100+.9*0
=100
17N, Q=1+.9(4*0+1%%0) /N
=1
O 7 )
Q =100+.9*0
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Licensed under the Creative Commons Attribution-Nc - 1 OO cense: http://creativecommons.org/licenses/by-nc-sa/2.0/

w

O

-

36



Real-Time Dynamic Programming
® procedure RTDP(s)

¢ loop until termination condition Example:
» RTDP-trial(s) y=0.9

. h(s) =0 for all s
® procedure RTDP-trial(s)

¢ while s is not a goal state

» a:=arg min,e . Q(s,a)

w
O

» V(s) = Q(s,a) =0 |
» randomly pick s’ with e2
D\
probability P, (s'|s) ;
» s:=s'
= = 1+.9(%*1+14*0) 2z
=0
1 .45 /'L)
a
Q =100+.9%0
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Real-Time Dynamic Programming

® procedure RTDP(s)

¢ loop until termination condition

» RTDP-trial(s)

® procedure RTDP-trial(s)

¢ while s 1s not a goal state

» a:=arg min,, O(s,a)

» V(s) = 0(s,a)

» randomly pick s'w
probability P, (s'|s)

» s =g
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Real-Time Dynamic Programming

® procedure RTDP(s)

¢ loop until termination condition

» RTDP-trial(s)

® procedure RTDP-trial(s)

¢ while s 1s not a goal state

» a = arg min,c ) 0(s,a)

» WV(s) := 0(s,a)

» randomly pick s'w
probability P, (s'|s)

» s =g
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Real-Time Dynamic Programming
® procedure RTDP(s)

¢ loop until termination condition Example:
» RTDP-trial(s) y=0.9

h(s) =0 for all s
® procedure RTDP-trial(s)

¢ while s 1s not a goal state

» a = arg min,c ) 0(s,a)

)]
N

» V(s) = 0(s,a) =0 .
» randomly pick s" with - s3
probability P, (s'|s) y
» s:=s' Q = 100+.9*0
=100
V=1 '45 Q = 1+.9(14*1+14%0) ' Vo
¢ =1.45
J/
Q = 100+.9*0

Dana Nau: Lecture slides for Automated Planning _
Licensed under the Creative Commons Attribution-Nc - 1 OO cense: http://creativecommons.org/licenses/by-nc-sa/2.0/ 40



Real-Time Dynamic Programming
® procedure RTDP(s)

¢ loop until termination condition Example:
» RTDP-trial(s) y=0.9

h(s) =0 for all s
® procedure RTDP-trial(s)

¢ while s is net a goal state

» a = arg min,c ) 0(s,a)

w
O

» V(s) = 0(s,a) =0 .
» randomly pick s’ with ’ o3
probability P, (s'|s) ;
» s:=s' Q = 100+.9*0
=100
V=1 '45 Q = 1+.9(14*1+14%0) ' Vo
‘ =1.45
’ a
Q = 100+.9*0
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Real-Time Dynamic Programming

® procedure RTDP(s)
¢ loop until termination condition Example:
» RTDP-trial(s) y=0.9

h(s) =0 for all s
® procedure RTDP-trial(s)

¢ while s 1s not a goal state

» a = arg min,c ) 0(s,a)

» V(s) = Q(s,a) =0
» randomly pick s’ with - &3
probability P, (s'|s) y
» s :=s' Q = 100+.9*0
=100
V=1.45 @ Q = 1+.9(14*1+14%0) ' 0
=1.45
7 Y O
Q =100+.9*0
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Real-Time Dynamic Programming

® In practice, it can solve much larger problems than policy iteration and value
iteration

® Won’t always find an optimal solution, won’t always terminate

¢ If 4 doesn’t overestimate, and if a goal is reachable (with positive probability)
at every state

» Then 1t will terminate

¢ If in addition to the above, there 1s a positive-probability path between every
pair of states

» Then 1t will find an optimal solution

Dana Nau: Lecture slides for Automated Planning
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POMDPs

® Partially observable Markov Decision Process (POMDP):
¢ a stochastic system 2 = (S, 4, P) as defined earlier
¢ A finite set O of observations
» P (o|s) = probability of observation o after executing action a in state s
¢ Require that for eacha and s, ) o, P (o|s) =1

® O models partial observability
¢ The controller can’t observe s directly; it can only do a then observe o

¢ The same observation o can occur in more than one state

® Why do the observations depend on the action a?
» Why do we have P (o|s) rather than P(o|s)?

Dana Nau: Lecture slides for Automated Planning
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POMDPs

® Partially observable Markov Decision Process (POMDP):
¢ a stochastic system 2 = (S, 4, P) as defined earlier
» P (s'|s) = probability of being in state s’ after executing action «a 1n state s
¢ A finite set O of observations
» P (o|s) = probability of observation o after executing action a in state s
¢ Require that for eacha and s, ) o, P (o|s) =1

® O models partial observability
¢ The controller can’t observe s directly; it can only do a then observe o
¢ The same observation o can occur in more than one state

® Why do the observations depend on the action a?
» Why do we have P (o|s) rather than P(o|s)?
¢ This 1s a way to model sensing actions

» €.g., a 1s the action of obtaining observation o from a sensor

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 45



More about Sensing Actions

® Suppose a 1s an action that never changes the state
¢ P (sls)=1foralls

® Suppose there are a state s and an observation o such that a gives us
observation o iff we’re in state s

¢ P (ols)=0forall s'"#s

¢ P (o]s)=1
® Then to tell if you’re in state s, just perform action a and see whether you
observe o

® Two states s and s’ are indistinguishable if for every o and a,
P(ols) =P (o|s)

Dana Nau: Lecture slides for Automated Planning
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Belief States

® At cach point we will have a probability distribution b(s) over the states in S
¢ b 1s called a belief state
¢ Our current belief about what state we’re in
® Basic properties:
¢ 0<b(s)<1foreverysinS
® Deshbls)=1
® Definitions:
¢ b = the belief state after doing action a in belief state b
» b,(s) = P(we’re in s after doing a in b) =) ..o ¢ P (s|s") b(s")
¢ b (o) = P(observe o after doing a in b) =) .. c (P (0]s") b(s")

¢ b °(s) = P(we’re in s | we observe o after doing a in b)

Dana Nau: Lecture slides for Automated Planning
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Belief States (Continued)

® According to the book,
& bro(s)=P,ols) b,(s)/ b,0) (16.14)

® [’'m not completely sure whether that formula is correct

® But using it (possibly with corrections) to distinguish states that would otherwise
be indistinguishable

¢ Example on next page

Dana Nau: Lecture slides for Automated Planning
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belief state b
Examp|e at(r1,11) at(r1,12)

b(s2)=0. 5@‘\_,/@ b(s3)=
® Modified version of DWR

® Robotr1 can move

between |1 and 12 b(81)=0-5®/’—'—\.b(s4
U

» move(r1,l1,12) at(r1 1) at(r1.12)
» move(r1,12,11) in(c1,12) |n(c1 |2)
¢ With probability 0.5, there’s a move(r1,|1,12)
container ¢1 in location 12 '
» In(c1,12) belief state b' = by over.11.12)
¢ O = {full, empty} at(r1,I1) at(r1,12)

» full: c1 is present b'(sQ):O@\\—//@b’(sa)zo.s

» empty: c1 is absent

» abbreviate full as f,and  ;//5q)_ @/————\ b (s4)=
empty as e

| | at(r1,I1) at(r1,12)
Dana Nau: Lecture slides for Automated Planning
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belief state b

Example (Continued) a1 at(r1.12)
b(52)=0. 5@‘\_,/@ b(s3)=
® move doesn’t return a useful
observation
® For every state s and for b(s1)=0.5 W‘ b(s4
move action a, At I;)\__——/’/
’ at(r1,12)
¢ P(fls) =P, els) = in(c1,12) |n(c1 |2)
P (fls)=P (els)=0.5
® Thus if there are no other actions, move(r1,11,12)
then
1 and S2 are belief X
¢ Sl an : r_
elief state b'= b
indistinguishable move(rt.I1.12)
¢ s3 and s4 are at(r1,11) at(r1,12)

indistinguishable b'(52)=0@\\‘-ﬂ/@b’(s3)=0.5
(s1)= @/—'—\ b (s4)=0.5

at(r1,I1) at(r1,12)
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belief state b
Example (Continued) a1 at(r1.12)

b(s2)=0. 5@‘\_//@ b(s3)=
® Suppose there’s a sensing action

see that works perfectly in

location |2 h(s1)=0.5 W‘ b(s4
Psee(f|S4) = Psee(elss) = 1 U

at(r1,I1
Pgee(flS3) = Pyee(elS4) = 0 in((c1 ,|2)) ﬁnt(; I|22)
® Then s3 and s4 are
distinguishable
move(r1,11,12)
® Suppose see doesn’t work v
clsewhere belief state b’ = b

P .(fls1)=P..(e|s1)=0.5 move(r1,11,12)
o see . at(r1,11) at(r1,12)

Psee(flsz) - Psee(e|s2) =0.5 br(sg):o@\\’"/@b’(sfi):o.S
(81)= @/’d—\.b (s4)=

N . . at(r1,I1) at(r1,12)
ana Nau: Lecture slides for Automated Planning
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belief state b

Example (Continued) a1 at(r1.12)
b(52)=0. 5@\~//@ b(s3)=
® In b, see doesn’t help us any
beec®(s1) |
= P oo(€[S1) bgoe(s1) / bgoo(€) b(s1 )=o.5@/"—\. b(s4
=0.50.5/05=0.5 e —
at(r1.1) at(r1,12)
in(c1,12) |n(c1 I2)
® In b’ see tells us what state we’re in
b'see®(83)
see
_Psee(e|33) b’see(33)/b’see(e) move(r1,I1,12)
=1+05/05=1 \J

belief state b’ = b

at(r1,11) at(r1,12)

P02 _ (s3)(31=05
O C) i

. | at(r1,11) at(r1,12)
Dana Nau: Lecture slides for Automated Planning
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Policies on Belief States

® In a fully observable MDP, a policy is a partial function from S into 4

® In a partially observable MDP, a policy is a partial function from B into 4
¢ where B 1s the set of all belief states

® S was finite, but B is infinite and continuous

¢ A policy may be either finite or infinite

Dana Nau: Lecture slides for Automated Planning
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Example

® Suppose we know the
initial belief state 1s b

® Policy to tell if there’s a
container 1n 12:

¢ 1= {(b, move(r1,i1,12)),

(b', see)}

Dana Nau: Lecture slides for Automated Planning
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at(r1,11) at(r1,12)

at(r1,11) at(r1,12)
in(c1,12) in(c1,12)

move(r1,11,12)

\
belief state b’ = brnove(r1,11,12)

at(rt, |1) at(r1,12)

(s2) @ \/@ (s3)=
G —

|n(c1 I2) |n(c1 I2)



Planning Algorithms

® POMDPs are very hard to solve
® The book says very little about 1t

® ['ll say even less!
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Reachability and Extended Goals

® The usual definition of MDPs does not contain explicit goals
¢ Can get the same effect by using absorbing states

® Can also handle problems where there the objective 1s more general, such as
maintaining some state rather than just reaching it

® DWR example: whenever a ship delivers cargo to |1, move it to 12

¢ Encode ship’s deliveries as nondeterministic outcomes of the robot’s actions

wait
full Q 1 deliver to I2
1 wait
1
(Des |

move to I1

1
empty

move to 12
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