
Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 1

Chapter 16
Planning Based on Markov

Decision Processes

Dana S. Nau

University of Maryland

12:48 PM February 29, 2012

Lecture slides for
Automated Planning: Theory and Practice

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 2

Motivation

●  Until now, we’ve assumed
that each action has only one
possible outcome
◆  But often that’s unrealistic

●  In many situations, actions may have
more than one possible outcome
◆  Action failures

»  e.g., gripper drops its load
◆  Exogenous events

»  e.g., road closed
●  Would like to be able to plan in such situations
●  One approach: Markov Decision Processes

a
c
b

grasp(c)

a

c

b

Intended
outcome

a b

Unintended
outcome

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 3

Stochastic Systems
●  Stochastic system: a triple Σ = (S, A, P)

◆  S = finite set of states
◆  A = finite set of actions
◆  Pa (sʹ′ | s) = probability of going to sʹ′ if we execute a in s
◆  ∑sʹ′ ∈ S Pa (sʹ′ | s) = 1

●  Several different possible action representations
◆  e.g., Bayes networks, probabilistic operators

●  The book does not commit to any particular representation
◆  It only deals with the underlying semantics
◆  Explicit enumeration of each Pa (sʹ′ | s)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 4

●  Robot r1 starts
at location l1
◆  State s1 in

the diagram

●  Objective is to
get r1 to location l4
◆  State s4 in

the diagram
Goal Start

m
ove(r1,l2,l1)

wait

wait

2

Example

wait

wait

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 5

●  Robot r1 starts
at location l1
◆  State s1 in

the diagram

●  Objective is to
get r1 to location l4
◆  State s4 in

the diagram

●  No classical plan (sequence of actions) can be a solution, because we can’t
guarantee we’ll be in a state where the next action is applicable

 π = 〈move(r1,l1,l2), move(r1,l2,l3), move(r1,l3,l4)〉

Goal Start
m

ove(r1,l2,l1)

wait

wait

wait

wait

2

Example

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 6

π1 = {(s1, move(r1,l1,l2)),
 (s2, move(r1,l2,l3)),
 (s3, move(r1,l3,l4)),
 (s4, wait),
 (s5, wait)}

●  Policy: a function that maps states into actions
◆  Write it as a set of state-action pairs

Goal Start
m

ove(r1,l2,l1)

wait

wait

wait

wait

2

Policies

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 7

●  For every state s, there
will be a probability
P(s) that the system
starts in s

●  The book assumes
there’s a unique state
s0 such that the system
always starts in s0

●  In the example, s0 = s1
◆  P(s1) = 1
◆  P(s) = 0 for all s ≠ s1

Goal Start
m

ove(r1,l2,l1)

wait

wait

wait

wait

2

Initial States

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 8

●  History: a sequence
of system states

h = 〈s0, s1, s2, s3, s4, … 〉

 h0 = 〈s1, s3, s1, s3, s1, … 〉
 h1 = 〈s1, s2, s3, s4, s4, … 〉
 h2 = 〈s1, s2, s5, s5, s5, … 〉
 h3 = 〈s1, s2, s5, s4, s4, … 〉
 h4 = 〈s1, s4, s4, s4, s4, … 〉
 h5 = 〈s1, s1, s4, s4, s4, … 〉
 h6 = 〈s1, s1, s1, s4, s4, … 〉
 h7 = 〈s1, s1, s1, s1, s1, … 〉

●  Each policy induces a probability distribution over histories

◆  If h = 〈s0, s1, … 〉 then P(h|π) = P(s0) ∏i ≥ 0 Pπ(Si) (si+1 | si)

Goal Start
m

ove(r1,l2,l1)

wait

wait

wait

wait

2

Histories

The book omits this because it assumes a unique starting state

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 9

goal

π1 = {(s1, move(r1,l1,l2)),
 (s2, move(r1,l2,l3)),
 (s3, move(r1,l3,l4)),
 (s4, wait),
 (s5, wait)}

h1 = 〈s1, s2, s3, s4, s4, … 〉 P(h1 | π1) = 1 × 1 × .8 × 1 × … = 0.8
h2 = 〈s1, s2, s5, s5 … 〉 P(h2 | π1) = 1 × 1 × .2 × 1 × … = 0.2

 P(h | π1) = 0 for all other h

so π1 reaches the goal with probability 0.8

Goal Start
m

ove(r1,l2,l1)

wait

wait

wait

wait

2

Example

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10

goal

π2 = {(s1, move(r1,l1,l2)),
 (s2, move(r1,l2,l3)),
 (s3, move(r1,l3,l4)),
 (s4, wait),
 (s5, move(r1,l5,l4))}

h1 = 〈s1, s2, s3, s4, s4, … 〉 P(h1 | π2) = 1 × 0.8 × 1 × 1 × … = 0.8
h3 = 〈s1, s2, s5, s4, s4, … 〉 P(h3 | π2) = 1 × 0.2 × 1 × 1 × … = 0.2

 P(h | π1) = 0 for all other h

so π2 reaches the goal with probability 1

Goal Start
m

ove(r1,l2,l1)

wait

wait

wait

wait

2

Example

wait

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 11

goal

π3 = {(s1, move(r1,l1,l4)),
 (s2, move(r1,l2,l1)),
 (s3, move(r1,l3,l4)),
 (s4, wait),
 (s5, move(r1,l5,l4)}

π3 reaches the goal with

probability 1.0

h4 = 〈s1, s4, s4, s4, … 〉 P(h4 | π3) = 0.5 × 1 × 1 × 1 × 1 × … = 0.5

h5 = 〈s1, s1, s4, s4, s4, … 〉 P(h5 | π3) = 0.5 × 0.5 × 1 × 1 × 1 × … = 0.25

h6 = 〈s1, s1, s1, s4, s4, … 〉 P(h6 | π3) = 0.5 × 0.5 × 0.5 × 1 × 1 × … = 0.125
 • • •

h7 = 〈s1, s1, s1, s1, s1, s1, … 〉 P(h7 | π3) = 0.5 × 0.5 × 0.5 × 0.5 × 0.5 × … = 0

Goal Start
m

ove(r1,l2,l1)

wait

wait

wait

wait

2

Example

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12

●  Numeric cost C(s,a) for
each state s and action a

●  Numeric reward R(s)
for each state s

●  No explicit goals any more
◆  Desirable states have

high rewards

●  Example:
◆  C(s,wait) = 0 at every state except s3
◆  C(s,a) = 1 for each“horizontal” action
◆  C(s,a) = 100 for each “vertical” action
◆  R as shown

●  Utility of a history:
◆  If h = 〈s0, s1, … 〉, then V(h | π) = ∑i ≥ 0 [R(si) – C(si,π(si))]

r = –100
Utility

Start

wait

wait

wait

wait

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 13

π1 = {(s1, move(r1,l1,l2)),

 (s2, move(r1,l2,l3)),
 (s3, move(r1,l3,l4)),
 (s4, wait),
 (s5, wait)}

 h1 = 〈s1, s2, s3, s4, s4, … 〉

 h2 = 〈s1, s2, s5, s5 … 〉

V(h1|π1) = [R(s1) – C(s1,π1(s1))] + [R(s2) – C(s2,π1(s2))] + [R(s3) – C(s3,π1(s3))]

 + [R(s4) – C(s4,π1(s4))] + [R(s4) – C(s4,π1(s4))] + …
 = [0 – 100] + [0 – 1] + [0 – 100] + [100 – 0] + [100 – 0] + … = ∞

V(h2|π1) = [0 – 100] + [0 – 1] + [–100 – 0] + [–100 – 0] + [–100 – 0] + … = –∞

r = –100

Start

wait

wait

wait

wait

Example

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 14

●  We often need to use
a discount factor, γ
◆  0 ≤ γ ≤ 1

●  Discounted utility
of a history:

V(h | π) = ∑i ≥ 0 γ i [R(si) – C(si,π(si))]

◆  Distant rewards/costs have less influence
◆  Convergence is guaranteed if 0 ≤ γ < 1

●  Expected utility of a policy:
◆  E(π) = ∑h P(h|π) V(h|π)

r = –100

Start

wait

wait

wait

wait

Discounted Utility

γ = 0.9

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 15

π1 = {(s1, move(r1,l1,l2)),
 (s2, move(r1,l2,l3)),
 (s3, move(r1,l3,l4)),
 (s4, wait),
 (s5, wait)}

 h1 = 〈s1, s2, s3, s4, s4, … 〉
 h2 = 〈s1, s2, s5, s5 … 〉

V(h1|π1) = .90[0 – 100] + .91[0 – 1] + .92[0 – 100] + .93[100 – 0] + .94[100 – 0] + …

 = 547.9

V(h2|π1) = .90[0 – 100] + .91[0 – 1] + .92[–100 – 0] + .93[–100 – 0] + … = –910.1

 E(π1) = 0.8 V(h1|π1) + 0.2 V(h2|π1) = 0.8(547.9) + 0.2(–910.1) = 256.3

r = –100

Start

wait

wait

wait

wait

Example

γ = 0.9

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 16

Planning as Optimization
●  For the rest of this chapter, a special case:

◆  Start at state s0
◆  All rewards are 0
◆  Consider cost rather than utility

»  the negative of what we had before
●  This makes the equations slightly simpler

◆  Can easily generalize everything to the case of nonzero rewards
●  Discounted cost of a history h:

◆  C(h | π) = ∑i ≥ 0 γ i C(si, π(si))
●  Expected cost of a policy π:

◆  E(π) = ∑h P(h | π) C(h | π)
●  A policy π is optimal if for every π', E(π) ≤ E(π')
●  A policy π is everywhere optimal if for every s and every π', Eπ(s) ≤ Eπ' (s)

◆  where Eπ(s) is the expected utility if we start at s rather than s0

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 17

Bellman’s Theorem
●  If π is any policy, then for every s,

◆  Eπ(s) = C(s, π(s)) + γ ∑s ∈ S Pπ(s)(sʹ′ | s) Eπ(sʹ′)
●  Let Qπ(s,a) be the expected cost in a state s if we start by

executing the action a, and use the policy π from then onward
◆  Qπ(s,a) = C(s,a) + γ ∑sʹ′ ∈ S Pa(sʹ′ | s) Eπ(sʹ′)

●  Bellman’s theorem: Suppose π* is everywhere optimal.
Then for every s, Eπ*(s) = mina∈A(s) Qπ*(s,a).

●  Intuition:
◆  If we use π* everywhere else, then the set of optimal actions at s is

arg mina∈A(s) Qπ*(s,a)
◆  If π* is optimal, then at each state it should pick one of those actions
◆  Otherwise we can construct a better policy by using an action in

arg mina∈A(s) Qπ*(s,a), instead of the action that π* uses
●  From Bellman’s theorem it follows that for all s,

◆  Eπ*(s) = mina∈A(s) {C(s,a) + γ ∑s’ ∈ S Pa(sʹ′ | s) Eπ*(sʹ′)}

s

s1

s2

sn

…

π(s)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 18

Policy Iteration
●  Policy iteration is a way to find π*

◆  Suppose there are n states s1, …, sn
◆  Start with an arbitrary initial policy π1
◆  For i = 1, 2, …

»  Compute πi’s expected costs by solving n equations with n unknowns
•  n instances of the first equation on the previous slide

»  For every sj,

»  If πi+1 = πi then exit
●  Converges in a finite number of iterations

Eπ i
(s1) =C(s,π i (s1))+γ Pπ i (s1)k=1

n
∑ (sk | s1) Eπ i

(sk)
 
Eπ i

(sn) =C(s,π i (sn))+γ Pπ i (sn)k=1

n
∑ (sk | sn) Eπ i

(sk)

π i+1(sj) = argmina∈A Qπ i
(sj,a)

= argmina∈A C(sj,a)+γ Pak=1

n
∑ (sk | sj) Eπ i

(sk)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 19

Example

r = –100

Start

wait

wait

wait

wait

c = 1

c=1
c = 0

c=100

γ = 0.9

●  Modification of the previous example
◆  To get rid of the rewards but still make s5 undesirable:

»  C(s5, wait) = 100
◆  To provide incentive to leave non-goal states:

»  C(s1,wait) = C(s2,wait) = 1
◆  All other costs are the same as before
◆  As before, discount factor γ = 0.9

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 20

π1 = {(s1, move(r1,l1,l2)),
 (s2, move(r1,l2,l3)),
 (s3, move(r1,l3,l4)),
 (s4, wait),
 (s5, wait)}

r = –100

Start

wait

wait

wait

wait

c = 1

c=1
c = 0

c=100

γ = 0.9

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 21

Example (Continued)

●  At each state s, let
π2(s) = arg mina∈A(s) Qπ (s,a):

●  π2 = {(s1, move(r1,l1,l4)),
 (s2, move(r1,l2,l1)),
 (s3, move(r1,l3,l4)),
 (s4, wait),
 (s5, move(r1,l5,l4)}

π1 = {(s1, move(r1,l1,l2)),
 (s2, move(r1,l2,l3)),
 (s3, move(r1,l3,l4)),
 (s4, wait),
 (s5, wait)}

r = –100

Start

wait

wait

wait

wait

c = 1

c=1
c = 0

c=100

γ = 0.9

1

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 22

Value Iteration
●  Start with an arbitrary cost E0(s) for each s and a small ε > 0
●  For i = 1, 2, …

◆  for every s in S and a in A,
•  Qi (s,a) := C(s,a) + γ ∑sʹ′ ∈ S Pa (sʹ′ | s) Ei–1(sʹ′)

»  Ei(s) = mina∈A(s) Qi (s,a)
»  πi(s) = arg mina∈A(s) Qi (s,a)

◆  If maxs ∈ S |Ei(s) – Ei–1(s)| < ε for every s then exit

●  πi converges to π* after finitely many iterations, but how to tell it has converged?
◆  In Policy Iteration, we checked whether πi stopped changing
◆  In Value Iteration, that doesn’t work

●  In general, Ei ≠ Eπi
◆  When πi doesn’t change, Ei may still change
◆  The changes in Ei may make πi start changing again

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 23

Value Iteration
●  Start with an arbitrary cost E0(s) for each s and a small ε > 0
●  For i = 1, 2, …

◆  for each s in S do
»  for each a in A do
•  Q(s,a) := C(s,a) + γ ∑sʹ′ ∈ S Pa (sʹ′ | s) Ei–1(sʹ′)

»  Ei(s) = mina∈A(s) Q(s,a)
»  πi(s) = arg mina∈A(s) Q(s,a)

◆  If maxs ∈ S |Ei(s) – Ei–1(s)| < ε for every s then exit

●  If Ei changes by < ε and if ε is small enough, then πi will no longer change

◆  In this case πi has converged to π*

●  How small is small enough?

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 24

Example
●  Let aij be the action that moves from si to sj

◆  e.g., a11= wait and a12 = move(r1,l1,l2))
●  Start with E0(s) = 0 for all s, and ε = 1

 Q(s1, a11) = 1 + .9×0 = 1
 Q(s1, a12) = 100 + .9×0 = 100
 Q(s1, a14) = 1 + .9(.5×0 + .5×0) = 1

 Q(s2, a21) = 100 + .9×0 = 100
 Q(s2, a22) = 1 + .9×0 = 1
 Q(s2, a23) = 1 + .9(.5×0 + .5×0) = 1

 Q(s3, a32) = 1 + .9×0 = 1
 Q(s3, a34) = 100 + .9×0 = 100

 Q(s4, a41) = 1 + .9×0 = 1
 Q(s4, a43) = 100 + .9×0 = 1
 Q(s4, a44) = 0 + .9×0 = 0
 Q(s4, a45) = 100 + .9×0 = 100

 Q(s5, a52) = 1 + .9×0 = 1
 Q(s5, a54) = 100 + .9×0 = 100
 Q(s5, a55) = 100 + .9×0 = 100

r = –100

Start

wait

wait

wait

wait

c = 1

c=1
c = 0

E1(s1) = 1; π1(s1) = a11 = wait
E1(s2) = 1; π1(s2) = a22 = wait
E1(s3) = 1; π(s3) = a32 = move(r1,l3,l2)
E1(s4) = 0; π1(s4) = a44 = wait
E1(s5) = 1; π1(s3) = a52 = move(r1,l5,l2)

●  What other actions could we have chosen?
●  Is ε small enough?

γ = 0.9

c=100

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 25

Discussion
●  Policy iteration computes an entire policy in each iteration,

and computes values based on that policy
◆  More work per iteration, because it needs to solve a set of simultaneous

equations
◆  Usually converges in a smaller number of iterations

●  Value iteration computes new values in each iteration,
and chooses a policy based on those values
◆  In general, the values are not the values that one would get from the chosen

policy or any other policy
◆  Less work per iteration, because it doesn’t need to solve a set of equations
◆  Usually takes more iterations to converge

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 26

Discussion (Continued)
●  For both, the number of iterations is polynomial in the number of states

◆  But the number of states is usually quite large
◆  Need to examine the entire state space in each iteration

●  Thus, these algorithms can take huge amounts of time and space

●  To do a complexity analysis, we need to get explicit about the syntax of the
planning problem
◆  Can define probabilistic versions of set-theoretic, classical, and state-variable

planning problems
◆  I will do this for set-theoretic planning

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 27

Probabilistic Set-Theoretic Planning
●  The statement of a probabilistic set-theoretic planning problem is P = (S0, g, A)

◆  S0 = {(s1, p1), (s2, p2), …, (sj, pj)}
»  Every state that has nonzero probability of being the starting state

◆  g is the usual set-theoretic goal formula - a set of propositions
◆  A is a set of probabilistic set-theoretic actions

»  Like ordinary set-theoretic actions, but multiple possible outcomes,
with a probability for each outcome

»  a = (name(a), precond(a),
 effects1

+(a), effects1
–(a), p1(a),

 effects2
+(a), effects2

–(a), p2(a),
 …,
 effectsk

+(a), effectsk
–(a), pk(a))

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 28

Probabilistic Set-Theoretic Planning
●  Probabilistic set-theoretic planning is EXPTIME-complete

◆  Much harder than ordinary set-theoretic planning, which was only PSPACE-
complete

●  Worst case requires exponential time
●  Unknown whether worst case requires exponential space

◆  PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE

●  What does this say about the complexity of solving an MDP?

●  Value Iteration and Policy Iteration take exponential amounts of time and space
because they iterate over all states in every iteration
◆  In some cases we can do better

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 29

Real-Time Value Iteration
●  A class of algorithms that work roughly as follows

●  loop
◆  Forward search from the initial state(s), following the current policy π

»  Each time you visit a new state s, use a heuristic function to estimate its
expected cost E(s)

»  For every state s along the path followed
•  Update π to choose the action a that minimizes Q(s,a)
•  Update E(s) accordingly

●  Best-known example: Real-Time Dynamic Programming

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 30

Real-Time Dynamic Programming
●  Need explicit goal states

◆  If s is a goal, then actions at s have no cost and produce no change
●  For each state s, maintain a value V(s) that gets updated as the algorithm proceeds

◆  Initially V(s) = h(s), where h is a heuristic function
●  Greedy policy: π(s) = arg mina∈A(s) Q(s,a)

◆  where Q(s,a) = C(s,a) + γ ∑sʹ′ ∈ S Pa (sʹ′|s) V(sʹ′)

●  procedure RTDP(s)
◆  loop until termination condition

»  RTDP-trial(s)

●  procedure RTDP-trial(s)
◆  while s is not a goal state

»  a := arg mina∈A(s) Q(s,a)
»  V(s) := Q(s,a)
»  randomly pick s' with probability Pa (sʹ′|s)
»  s := s'

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 31

Real-Time Dynamic Programming

r = –100

wait

wait

wait

wait

c = 1

c=1
c = 0

c =
100

●  procedure RTDP(s) (the outer loop on the previous slide)
◆  loop until termination condition

»  RTDP-trial(s)

●  procedure RTDP-trial(s) (the forward search on the previous slide)
◆  while s is not a goal state

»  a := arg mina∈A(s) Q(s,a)
»  V(s) := Q(s,a)
»  randomly pick s' with

probability Pa (sʹ′|s)
»  s := s'

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 32

●  procedure RTDP(s)
◆  loop until termination condition

»  RTDP-trial(s)

●  procedure RTDP-trial(s)
◆  while s is not a goal state

»  a := arg mina∈A(s) Q(s,a)
»  V(s) := Q(s,a)
»  randomly pick s' with

probability Pa (sʹ′|s)
»  s := s'

r = –100

wait

wait

wait

wait

c = 1

c=1
c = 0

c =
100

Example:
γ = 0.9
h(s) = 0 for all s

Real-Time Dynamic Programming

s1
V=0

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 33

r = –100

Q = 100+.9*0
 = 100

●  procedure RTDP(s)
◆  loop until termination condition

»  RTDP-trial(s)

●  procedure RTDP-trial(s)
◆  while s is not a goal state

»  a := arg mina∈A(s) Q(s,a)
»  V(s) := Q(s,a)
»  randomly pick s' with

probability Pa (sʹ′|s)
»  s := s'

wait

wait

wait

wait

c = 1

c=1
c = 0

c =
100

Real-Time Dynamic Programming

s2

s1
γ = 0.9

V=0 s4

Q = 100+.9*0
 = 100

Example:
γ = 0.9
h(s) = 0 for all s

V=0

V=0

Q = 1+.9(½*0+½*0)
 = 1

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 34

●  procedure RTDP(s)
◆  loop until termination condition

»  RTDP-trial(s)

●  procedure RTDP-trial(s)
◆  while s is not a goal state

»  a := arg mina∈A(s) Q(s,a)
»  V(s) := Q(s,a)
»  randomly pick s' with

probability Pa (sʹ′|s)
»  s := s'

r = –100

Q = 100+.9*0
 = 100

wait

wait

wait

wait

c = 1

c=1
c = 0

c =
100

Real-Time Dynamic Programming

s2

s1
γ = 0.9

V=0 s4

Q = 100+.9*0
 = 100

Example:
γ = 0.9
h(s) = 0 for all s

V=0

V=0

a

Q = 1+.9(½*0+½*0)
 = 1

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 35

r = –100

Q = 100+.9*0
 = 100

Real-Time Dynamic Programming
●  procedure RTDP(s)

◆  loop until termination condition
»  RTDP-trial(s)

●  procedure RTDP-trial(s)
◆  while s is not a goal state

»  a := arg mina∈A(s) Q(s,a)
»  V(s) := Q(s,a)
»  randomly pick s' with

probability Pa (sʹ′|s)
»  s := s'

Example:
γ = 0.9
h(s) = 0 for all s

a

wait

wait

wait

wait

c = 1

c=1
c = 0

c =
100 s2

s1
γ = 0.9

V=0 s4
V=1

V=0

Q = 100+.9*0
 = 100

Q = 1+.9(½*0+½*0)
 = 1

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 36

●  procedure RTDP(s)
◆  loop until termination condition

»  RTDP-trial(s)

●  procedure RTDP-trial(s)
◆  while s is not a goal state

»  a := arg mina∈A(s) Q(s,a)
»  V(s) := Q(s,a)
»  randomly pick s' with

probability Pa (sʹ′|s)
»  s := s'

r = –100

wait

wait

wait

wait

c = 1

c=1
c = 0

c =
100

Q = 100+.9*0
 = 100

V=1

Real-Time Dynamic Programming

s2

s1
γ = 0.9

V=0

V=0 s4

Example:
γ = 0.9
h(s) = 0 for all s

a

Q = 100+.9*0
 = 100

Q = 1+.9(½*0+½*0)
 = 1

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 37

r = –100

Q = 100+.9*0
 = 100

Real-Time Dynamic Programming
●  procedure RTDP(s)

◆  loop until termination condition
»  RTDP-trial(s)

●  procedure RTDP-trial(s)
◆  while s is not a goal state

»  a := arg mina∈A(s) Q(s,a)
»  V(s) := Q(s,a)
»  randomly pick s' with

probability Pa (sʹ′|s)
»  s := s'

Example:
γ = 0.9
h(s) = 0 for all s

a

wait

wait

wait

wait

c = 1

c=1
c = 0

c =
100 s2

s1
γ = 0.9

V=0 s4
V=1

V=0

Q = 100+.9*0
 = 100

Q = 1+.9(½*1+½*0)
 = 1.45

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 38

●  procedure RTDP(s)
◆  loop until termination condition

»  RTDP-trial(s)

●  procedure RTDP-trial(s)
◆  while s is not a goal state

»  a := arg mina∈A(s) Q(s,a)
»  V(s) := Q(s,a)
»  randomly pick s' with

probability Pa (sʹ′|s)
»  s := s'

r = –100

Q = 100+.9*0
 = 100

wait

wait

wait

wait

c = 1

c=1
c = 0

c =
100

Real-Time Dynamic Programming

s2

s1
γ = 0.9

V=0 s4

Q = 100+.9*0
 = 100

Example:
γ = 0.9
h(s) = 0 for all s

V=1

V=0

a

Q = 1+.9(½*1+½*0)
 = 1.45

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 39

●  procedure RTDP(s)
◆  loop until termination condition

»  RTDP-trial(s)

●  procedure RTDP-trial(s)
◆  while s is not a goal state

»  a := arg mina∈A(s) Q(s,a)
»  V(s) := Q(s,a)
»  randomly pick s' with

probability Pa (sʹ′|s)
»  s := s'

r = –100

Q = 100+.9*0
 = 100

wait

wait

wait

wait

c = 1

c=1
c = 0

c =
100

Real-Time Dynamic Programming

s2

s1
γ = 0.9

V=0 s4

Q = 100+.9*0
 = 100

Example:
γ = 0.9
h(s) = 0 for all s

V=1.45

V=0

a

Q = 1+.9(½*1+½*0)
 = 1.45

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 40

●  procedure RTDP(s)
◆  loop until termination condition

»  RTDP-trial(s)

●  procedure RTDP-trial(s)
◆  while s is not a goal state

»  a := arg mina∈A(s) Q(s,a)
»  V(s) := Q(s,a)
»  randomly pick s' with

probability Pa (sʹ′|s)
»  s := s'

r = –100

Q = 100+.9*0
 = 100

wait

wait

wait

wait

c = 1

c=1
c = 0

c =
100

Real-Time Dynamic Programming

s2

s1
γ = 0.9

V=0 s4

Q = 100+.9*0
 = 100

Example:
γ = 0.9
h(s) = 0 for all s

V=1.45

V=0

a

Q = 1+.9(½*1+½*0)
 = 1.45

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 41

●  procedure RTDP(s)
◆  loop until termination condition

»  RTDP-trial(s)

●  procedure RTDP-trial(s)
◆  while s is not a goal state

»  a := arg mina∈A(s) Q(s,a)
»  V(s) := Q(s,a)
»  randomly pick s' with

probability Pa (sʹ′|s)
»  s := s'

r = –100

Q = 100+.9*0
 = 100

wait

wait

wait

wait

c = 1

c=1
c = 0

c =
100

Real-Time Dynamic Programming

s2

s1
γ = 0.9

V=0 s4

Q = 100+.9*0
 = 100

Example:
γ = 0.9
h(s) = 0 for all s

V=1.45

V=0

a

Q = 1+.9(½*1+½*0)
 = 1.45

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 42

●  procedure RTDP(s)
◆  loop until termination condition

»  RTDP-trial(s)

●  procedure RTDP-trial(s)
◆  while s is not a goal state

»  a := arg mina∈A(s) Q(s,a)
»  V(s) := Q(s,a)
»  randomly pick s' with

probability Pa (sʹ′|s)
»  s := s'

r = –100

Q = 100+.9*0
 = 100

wait

wait

wait

wait

c = 1

c=1
c = 0

c =
100

Real-Time Dynamic Programming

s2

s1
γ = 0.9

V=0 s4

Q = 100+.9*0
 = 100

Example:
γ = 0.9
h(s) = 0 for all s

V=1.45

V=0

a

Q = 1+.9(½*1+½*0)
 = 1.45

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 43

Real-Time Dynamic Programming

●  In practice, it can solve much larger problems than policy iteration and value
iteration

●  Won’t always find an optimal solution, won’t always terminate
◆  If h doesn’t overestimate, and if a goal is reachable (with positive probability)

at every state
»  Then it will terminate

◆  If in addition to the above, there is a positive-probability path between every
pair of states

»  Then it will find an optimal solution

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 44

POMDPs
●  Partially observable Markov Decision Process (POMDP):

◆  a stochastic system Σ = (S, A, P) as defined earlier
◆  A finite set O of observations

»  Pa(o|s) = probability of observation o after executing action a in state s
◆  Require that for each a and s, ∑o∈O Pa(o|s) = 1

●  O models partial observability
◆  The controller can’t observe s directly; it can only do a then observe o
◆  The same observation o can occur in more than one state

●  Why do the observations depend on the action a?
»  Why do we have Pa(o|s) rather than P(o|s)?

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 45

POMDPs
●  Partially observable Markov Decision Process (POMDP):

◆  a stochastic system Σ = (S, A, P) as defined earlier
»  Pa(s'|s) = probability of being in state s' after executing action a in state s

◆  A finite set O of observations
»  Pa(o|s) = probability of observation o after executing action a in state s

◆  Require that for each a and s, ∑o∈O Pa(o|s) = 1

●  O models partial observability
◆  The controller can’t observe s directly; it can only do a then observe o
◆  The same observation o can occur in more than one state

●  Why do the observations depend on the action a?
»  Why do we have Pa(o|s) rather than P(o|s)?

◆  This is a way to model sensing actions
»  e.g., a is the action of obtaining observation o from a sensor

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 46

More about Sensing Actions
●  Suppose a is an action that never changes the state

◆  Pa(s|s) = 1 for all s
●  Suppose there are a state s and an observation o such that a gives us

observation o iff we’re in state s
◆  Pa(o|s) = 0 for all s' ≠ s
◆  Pa(o|s) = 1

●  Then to tell if you’re in state s, just perform action a and see whether you
observe o

●  Two states s and s' are indistinguishable if for every o and a,
Pa(o|s) = Pa(o|s')

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 47

Belief States
●  At each point we will have a probability distribution b(s) over the states in S

◆  b is called a belief state
◆  Our current belief about what state we’re in

●  Basic properties:
◆  0 ≤ b(s) ≤ 1 for every s in S
◆  ∑s ∈ S b(s) = 1

●  Definitions:
◆  ba = the belief state after doing action a in belief state b

»  ba(s) = P(we’re in s after doing a in b) = ∑s' ∈ S Pa(s|s') b(s')
◆  ba(o) = P(observe o after doing a in b) = ∑s' ∈ S Pa(o|s') b(s')
◆  ba

o(s) = P(we’re in s | we observe o after doing a in b)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 48

Belief States (Continued)
●  According to the book,

◆  ba
o(s) = Pa(o|s) ba(s) / ba(o) (16.14)

●  I’m not completely sure whether that formula is correct
●  But using it (possibly with corrections) to distinguish states that would otherwise

be indistinguishable
◆  Example on next page

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 49

Example

move(r1,l1,l2)

ba

ba

ba

ba

b

b

b

b

●  Modified version of DWR
●  Robot r1 can move

between l1 and l2
» move(r1,l1,l2)
» move(r1,l2,l1)

◆  With probability 0.5, there’s a
container c1 in location l2

»  in(c1,l2)

◆  O = {full, empty}
»  full: c1 is present
»  empty: c1 is absent
»  abbreviate full as f, and

empty as e

belief state b' = bmove(r1,l1,l2)

belief state b

ba

ba

ba

ba

b'

b'

b'

b'

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 50

●  move doesn’t return a useful
observation

●  For every state s and for
 move action a,
◆  Pa(f|s) = Pa(e|s) =

Pa(f|s) = Pa(e|s) = 0.5

●  Thus if there are no other actions,
then
◆  s1 and s2 are

indistinguishable
◆  s3 and s4 are

indistinguishable

move(r1,l1,l2)

b

b

b

b

Example (Continued)

belief state b' = bmove(r1,l1,l2)

belief state b

b'

b'

b'

b'

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 51

●  Suppose there’s a sensing action
see that works perfectly in
location l2
Psee(f|s4) = Psee(e|s3) = 1
Psee(f|s3) = Psee(e|s4) = 0
●  Then s3 and s4 are

distinguishable

●  Suppose see doesn’t work
elsewhere

Psee(f|s1) = Psee(e|s1) = 0.5
Psee(f|s2) = Psee(e|s2) = 0.5

Example (Continued)

move(r1,l1,l2)

b

b

b

b

belief state b' = bmove(r1,l1,l2)

belief state b

b'

b'

b'

b'

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 52

●  In b, see doesn’t help us any
bsee

e(s1)
= Psee(e|s1) bsee(s1) / bsee(e)
= 0.5 • 0.5 / 0.5 = 0.5

●  In b', see tells us what state we’re in
b'see

e(s3)
= Psee(e|s3) b'see(s3) / b'see(e)
= 1 • 0.5 / 0.5 = 1

Example (Continued)

move(r1,l1,l2)

belief state b' = bmove(r1,l1,l2)

b

b

b

b

belief state b

b'

b'

b'

b'

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 53

Policies on Belief States
●  In a fully observable MDP, a policy is a partial function from S into A
●  In a partially observable MDP, a policy is a partial function from B into A

◆  where B is the set of all belief states
●  S was finite, but B is infinite and continuous

◆  A policy may be either finite or infinite

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 54

●  Suppose we know the
initial belief state is b

●  Policy to tell if there’s a
container in l2:
◆  π = {(b, move(r1,l1,l2)),

 (b', see)}

Example

move(r1,l1,l2)

b

b

b

b

belief state b' = bmove(r1,l1,l2)

belief state b

b'

b'

b'

b'

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 55

Planning Algorithms
●  POMDPs are very hard to solve
●  The book says very little about it
●  I’ll say even less!

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 56

Reachability and Extended Goals

●  The usual definition of MDPs does not contain explicit goals
◆  Can get the same effect by using absorbing states

●  Can also handle problems where there the objective is more general, such as
maintaining some state rather than just reaching it

●  DWR example: whenever a ship delivers cargo to l1, move it to l2
◆  Encode ship’s deliveries as nondeterministic outcomes of the robot’s actions

