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Abstract 

In this paper, we examine how the complexity of domain-independent planning with STRIPS- 
style operators depends on the nature of the planning operators. 

We show conditions under which planning is decidable and undecidable. Our results on this 
topic solve an open problem posed by Chapman ( 1987), and clear up some difficulties with his 
undecidability theorems. 

For those cases where planning is decidable, we explain how the time complexity varies 
depending on a wide variety of conditions: 

l whether or not function symbols are allowed; 
l whether or not delete lists are allowed; 
l whether or not negative preconditions are allowed; 
l whether or not the predicates are restricted to be propositional (i.e., 0-ary) ; 
l whether the planning operators are given as part of the input to the planning problem, or 

instead are fixed in advance. 
l whether or not the operators can have conditional effects. 
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Much planning research has been motivated, in one way or another, by the difficulty 
of producing complete and correct plans. For example, techniques such as abstraction [ 6, 
24,27,3 1 ] and task reduction [ 6,28,3 l] were developed in an effort to make planning 
more efficient, and concepts such as deleted-condition interactions were developed to 
describe situations which make planning difficult. 

Despite the acknowledged difficulty of planning, it is only recently that researchers 
have begun to examine the computational complexity of planning problems and the 
reasons for that complexity [3,5,16,17,20,22]. This research has yielded some sur- 
prising results. For example, Gupta and Nau [ 16,171 have shown that contrary to prior 
expectations, deleted-condition interactions are easy to handle in blocks-world planning. 

Pednault [ 251 suggests that since planning is intractable in general, researchers should 
try to identify constraints that will lead to efficient planning. The current paper addresses 
this goal, by examining how the complexity of domain-independent planning depends 
on the nature of the planning operators. 

We consider planning problems in which the current state is a set of ground atoms, 
and each planning operator is a STRIPS-style operator consisting of three lists of atoms: 
a precondition list, an add list, and a delete list. Our results can be summarized as 
follows: 

(i) 

(ii) 

(iii) 

If function symbols are allowed, then determining, in general, whether a plan 
exists 3 is undecidable (more specifically, semidecidable). 4 This is true even if 
we have no delete lists and the precondition list of each operator contains at most 
one (non-negated) atom, If no function symbols are allowed and only finitely 
many constant symbols are allowed, then plan existence is decidable, regardless 
of the presence or absence of delete lists and/or negated preconditions. 

Even when function symbols are present, plan existence is decidable if the 
planning domains being considered have no delete lists, no negated atoms occur 
in the precondition list, and the domains satisfy certain acyclicity and bounded- 
ness properties. 
When there are no function symbols and only finitely many constant symbols (so 
that planning is decidable), the computational complexity varies from constant 
time to EXPSPACE-complete, depending on the following conditions: 
l whether or not we allow delete lists and/or negative preconditions, 
l whether or not we restrict the predicates to be propositional (i.e., 0-ary), 
l whether we fix the planning operators in advance, or give them as part of the 

input. 
We have solved an open problem stated by Chapman in [5]: whether or not 
planning is undecidable when the language contains infinitely many constants 
but the initial state is finite. In particular, this problem is decidable in the case 
where the planning operators have no negative preconditions and no delete lists. 

3 The formal definition of this problem appears in Section 2. 
4 We use “decidable” and “undecidable” interchangeably with “recursive” and “recursively enumerable”, 

respectively. 
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If the planning operators are allowed to have negative preconditions and/or 
delete lists, then the problem is undecidable. 

(iv) Chapman’s Second Undecidability Theorem states that “planning is undecidable 
even with a finite initial situation if the action representation is extended to 
represent actions whose effects are a function of their input situation” [ 51, i.e., 
if the language contains function symbols and infinitely many constants. Our 
results show that even with a number of additional restrictions, planning is still 
undecidable. 

We also correct a misimpression about this theorem, which has been thought 
by some researchers [ 11,261 to refer to operators that have conditional effects. It 
does not-and our decidability and complexity results are unaffected by whether 
or not the operators have conditional effects. 

(v) Chapman [5] and Dean and Boddy [8] studied planning with conditional op- 
erators, and showed that the problem of deciding whether a proposition is 
necessarily true after a partially ordered plan (also known as modal truth crite- 
rion) is NP-hard in the presence of conditional operators. The same problem can 
be solved in polynomial-time when conditional operators are not allowed, and 
this led researchers to believe that planning with conditional operators is harder 
than planning with regular STRIPS operators. However, our results show that, 
contrary to the expectations, conditional operators do not affect the complexity 
of plan existence, nor the complexity of plan optimality problems. 

The rest of this paper is organized as follows. Section 2 contains the basic definitions. 
Section 3 discusses the decidability and undecidability results. Section 4 discusses the 
complexity results. Section 5 discusses the related work. Section 6 contains conclud- 
ing remarks, and discusses future research directions. For a more extensive treatment, 
including all of the mathematical details, see [ lo]. 

2. Preliminaries 

Researchers in planning have long been interested in planning with STRIPS-style 
operators, and this interest still continues [ 3,5,16,20,22]. In the original STRIPS plan- 
ner [ 131, the planning operators’ precondition lists, add lists, and delete lists were 
allowed to contain arbitrary well-formed formulas in first-order logic. However, there 
were a number of problems with this formulation, such as the difficulty of providing a 
well-defined semantics for it [ 191. Thus, in subsequent work, researchers have placed 
some restrictions on the nature of the planning operators [ 241. Typically, the precon- 
dition lists, add lists and delete lists contain only atoms, and the goal is a conjunct of 
ground or existentially quantified atoms. Our definitions below are in accordance with 
such commonly accepted formulations. 

2. I. Basic dejinitions 

If C is a first-order language, then a state is a set of ground atoms in L. Intuitively, 
a state tells us which ground atoms are currently true: if a ground atom A is in state S, 
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then A is true in state S, and if B $! S, then B is false in state S. Thus, a state is simply 
an Herbrand interpretation (cf. Shoenfield [29]) for the language L, and hence each 
formula of first-order logic is either satisfied or not satisfied in S according to the usual 
first-order logic definition of satisfaction. 

We use STRIPS-style planning operators similar to those used by Nilsson [24]. A 
planning operator CY is a four-tuple (Nume( (u) , Pre( a), Add( a), DeZ( a) ), where 

(i) Nume( a) is a syntactic expression of the form a( Xt , . . . , X,) where each Xi 
is a variable symbol of C; 

(ii) Pre( a) is a finite set of literals (i.e., atoms and negated atoms), called the 
precondition list of (Y, whose variables are all from the set {Xl,. . . ,X,}; 

(iii) Add(a) and Del(a) are both finite sets of atoms (possibly non-ground) whose 
variables are taken from the set {Xt , . . . , X,,}. Add(a) is called the add list of 
a, and Del(a) is called the delete list of (Y. 

Observe that negated atoms are allowed in the precondition list, but not in the add and 
delete lists. 

A planning domain is a pair P = (SO, O), where Se is a state called the initial state, 
and 0 is a finite set of planning operators. The language of P is the first-order language 
L generated by the constant, function, predicate, and variable symbols appearing in P, 
along with an infinite number of additional variable symbols. 

A goal is a conjunction of atoms which is existentially closed (i.e., the variables, if 
any, are existentially quantified). A planning problem instance is a triple P = (So, 0, G), 
where (SO, 0) is a planning domain and G is a goal. 

Let P = (SO, 0) be a planning domain, (Y be an operator in 0 whose name is 

&(X1,..., X,), and 8 be a substitution that assigns ground terms to each Xi, 1 < i < n. 
Suppose that the following conditions hold for states S and S’: 

{AB: A is a positive literal in Pre(a)} C S; 
{Be: TB is a negative literal in Pre(a)} n s = 8; 
S’ = (S - (DeZ(a)B)) U (Add(a)B). 

Then we say that cy is O-executable in state S, resulting in state S’. This is denoted 
symbolically as 

Suppose P = (SO, 0) is a planning domain and G is a goal. A plan that achieves G 
is a sequence SO, . . . , S,, of states, a sequence q, . . . , a,, of planning operators, and a 

sequence 81, . . . , 8, of substitutions such that 

(1) 

and G is satisfied by S,, i.e. there exists a ground instance of G that is true in S,. The 

length of the above plan is II. 
We now define two decision problems: 
l PLAN EXISTENCE is the problem, “Given a planning problem instance P = 

(SO, 0, G) , is there a plan in P that achieves G?” 
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l PLAN LENGTH is the problem, “Given a planning problem instance P = (So, 0, G) 
and an integer k encoded in binary, is there a plan in P of length k or less that 
achieves G?” 

In the definition of PLAN LENGTH, what really interests us is not whether there is 
a plan of length k or less, but finding the shortest plan. This problem is at least as 
difficult as PLAN LENGTH, and in some cases harder. For example, in the Towers of 
Hanoi problem [ 1 ] and certain generalizations of it [ 151, the length of the shortest plan 
can be found in low-order polynomial time-but actually producing this plan requires 
exponential time and space, since the plan has exponential length. The definition of 
PLAN LENGTH follows the standard procedure for converting optimization problems 
into yes/no decision problems (cf. [ 14, pp. 1151171). 

2.2. Special-case dejinitions 

2.2,1. Acyclicity and boundedness 
In this section, we introduce various restrictions on the structure of planning domains 

and/or goals which guarantee that the planning problem is decidable, even if function 
symbols are allowed in the language. 

A level mapping for a language L is a mapping e : AT(L) + W where AT(L) is the 
set of ground atoms in language L and N is the set of natural numbers. 

Intuitively, a level mapping partitions the set of all ground atoms into a collection of 
“levels”. In the same vein, a predicate level mapping, defined below, partitions the set 
of predicate symbols into a collection of levels. 

A predicate level mapping for L is a mapping # : Pred( L) --f N where Pred( L) is 
the set of predicate symbols in language L. 

Suppose P = (SO, 0) is a planning domain in which no operator has negative pre- 
conditions or delete lists. Intuitively, P is acyclic if achieving the atoms (respectively 
predicates) in the add list of any operator in P only depends on having to achieve atoms 
(respectively predicates) at a strictly lower level. Formally, P is said to be atomically 
acyclic iff there exists a level mapping C such that for any ground instance (Y of oper- 
ators in P, it is the case that !(A) > l(B) for all A E Add(a) and B E Pre(a). P 
is said to be predicate acyclic iff there exists a predicate level mapping fi such that for 
all operators CY in P, it is the case that j(p) > 11(q) for all predicates p occurring in 
Add( cu) and all predicates q occurring in Pre ( a). 

Sometimes, an atom in the add list of a ground instance of an operator may not be 
achievable. If the only way that this can happen is because there is an unachievable 
atom at a lower level in the precondition of the same ground instance of that operator, 
then the planning domain is said to be weakly recurrent. 

Formally, a planning domain P = (SO, 0) is weakly recufrent iff there exists a level 
mapping JJ such that for every ground instance (Y of an operator in 0, if A E Add(a) is 
such that there is no plan to achieve A from P, then there is a Bi E Pre(cu) such that 
there is no plan to achieve Bi from P and e(A) > fJ( Bi). 

For some goals, there will exist an upper bound on the levels of all ground instances 
of the goal. When this happens, we say that the goal is bounded, as defined formally 
below. When a goal is bounded in a weakly recurrent planning domain, this allows us 
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to infer a bound on the length of a plan to achieve the goal, thus causing planning for 
such goals in such domains to be decidable. 

Suppose G = (~)(AI&s . . &A,) is a goal. Let grd( G) denote the set of all ground 
instances of the quantifier-free conjunction (Al 8~. . .&A,). G is bounded with respect 
to a level mapping e iff there is an integer b such that for every ground instance 
(Al &. . .&A,)0 in gni(G), it is the case that !!(Ai) < b. 

2.2.2. Conditional planning operators 
Several researchers [ 5,8,25,26] have been interested in actions whose effects depend 

on the input situation. The following formulation of conditional planning operators is 
due to Dean and Boddy [ 81. A conditional operator LY is a finite set {tl , t2.. . . , t,,}, 
where each ti is a triple of the form (Prei, Deli,Addi). Prei, Deli, and Addi correspond 
to the precondition list, delete list and add list associated with the ith triple, respectively. 

Suppose a is a conditional operator, 6 is a ground substitution for the variables 
appearing in CY, S is a state, I = {i: S satisfies PreiO}, and 

S = (s- !Delit’) UgAddiO. 

Then we say that a is 8-executable in state S, resulting in state S’. This is denoted as 

S g S’. Note that all triples with satisfied preconditions contribute to the output state. 
Our results are independent of whether we use conditional operators such as the ones 

defined above, or the ordinary STRIPS-style planning operators in Section 2.1. 

3. Decidability and undecidability results 

In [ IO], we have proved theorems that show: 
(i) how to transform a planning domain with delete lists into one without delete 

lists when L contains no function symbols; 
(ii) how to transform, in polynomial time, a planning domain without delete lists 

and without negative preconditions into a logic program such that for all goals 
G, the goal G is achievable from the planning domain iff the logical query that 
G represents is provable from the corresponding logic program; 

(iii) how to transform, in polynomial time, a logic program into an equivalent plan- 
ning domain in which each operator has no negative preconditions and no delete 
lists. 

The above results establish that logic programming is essentially the same as plan- 
ning without delete lists. This equivalence allows us to transport many results from 
logic programming to planning, leading to a number of decidability and undecidabil- 
ity results. Our decidability and undecidability results are summarized in Table 1 (for 
their details, see [ lo] ). If we use the conventional definitions of a first-order language 
(i.e., the language contains only finitely many constant symbols), then whether or not 
PLAN EXISTENCE is decidable depends largely on whether or not function symbols are 
allowed: 
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Table 1 
Decidability of domain-independent planning 

Allow Allow infinitely Infinite Allow delete lists 
function many constant initial and/or negated 
symbols? symbols?a states?a preconditions? 

yes yes/no yes/no yes/no/nob 

no no no’ 

yes yes/no 

no yes no yes 

no 

81 

PLAN EXISTENCE 

(telling if a plan 
exists) 

semidecidable 

decidable 

semidecidable 

semidecidable 

decidable 

no nod yes/no decidable 

All results are independent of whether the operators are given as part of the input or fixed in advance, and 
whether or not the operators are allowed to have conditional effects. 
a First-order languages are usually assumed to contain only finitely many constant symbols, and states are 
usually assumed to contain only finitely many atoms. However, for comparison with Chapman’s [S] results, 
we also consider the cases where they are infinite. 
b No operator has more than one precondition. 
c With acyclicity and boundedness restrictions as described in Section 2.2.1. 
d In this case, the other restrictions ensure that the initial state will always be finite. 

(i) If the language is allowed to contain function symbols (and hence infinitely 
many ground terms), then, in general, PLAN EXISTENCE is undecidable, regard- 
less of whether or not the operators have delete lists, negative preconditions, or 
more than one precondition. 

(ii) When certain syntactic (predicate and atomic acyclicity) and semantic properties 
(weak recurrence) are satisfied by planning domains (even those containing 
function symbols) in which there are no delete lists or negative preconditions, 
then plan existence for bounded goals is decidable. 

(iii) If the language does not contain function symbols (and hence has only finitely 
many ground terms), then PLAN EXISTENCE is decidable, regardless of whether 
or not the planning operators have negative preconditions, delete lists, or more 
than one precondition. 

Whether the planning operators are fixed in advance or given as part of the input, and 
whether or not they are conditional, does not affect these results. 

For comparison with Chapman’s [5] results, Table 1 also includes decidability and 
undecidability results for the cases where we allow infinitely many constant symbols, 
infinite initial states, and operators with conditional effects. These results relate to 
Chapman’s work as follows: 

l Our results solve an open problem stated by Chapman in [5] : whether or not 
planning is undecidable when the language contains infinitely many constants but 
the initial state is finite. In particular, our results show that this problem is decidable 
in the case where the planning operators have no negative preconditions and no 
delete lists. If the planning operators are allowed to have negative preconditions 
and/or delete lists, then the problem is undecidable. 
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Table 2 
Complexity of domain-independent planning 

Language How the Allow Allow ne- PLAN EXISTENCE 

restrictions operators delete gated pre- (telling if a plan 
are given lists? conditions? exists) 

PLAN LENGTH 

(if there is a plan 
of length < k) 

datalog (no given yes yes/no EXPSPACE-COtIlp. NFXPTIME-COIIIP. 

function in the yes NEXPTIME-COIIIP. NEXPTIME-COmP. 

symbols, input no no EXPTIME-COmp. NEXPTIME-COttIP. 

and onlv noa PsPAcE-complete PSPACE-Corm. 

finitely 

many 

constant 

symbols) 

propo- 

sitional 

fixed in 

advance 

given 

in the 

yes 

no 

yes 

yes/no 

yes 

no 

noa 

yes/no 

yes 

PSPACti 

NPC 

P 

NLOCSPACE 

PSPACE-COIIIpktCd 

NP-COmpktCd 

PSPACEC 

NP’ 

NPC 

NP 

PSPACE-COmP. 

NP-complete 

(all 

predicates 

input no no 

noa/nob 

Pd 

NLOGSPACE-COmp. 

NP-complete 

NP-complete 

are 0-ary) fixed in 

advance 

yes/no yes/no constant time constant time 

All results are independent of whether or not the operators are allowed to have conditional effects. 
B No operator has more than one precondition. 
b Every operator with more than one precondition is the composition of other operators. 
’ With PSPACE- or NP-COIIIpktCnCSS for some sets of operators. 
d Results due to Bylander [3]. 

b Chapman’s Second Undecidability Theorem states that “planning is undecidable 
even with a finite initial situation if the action representation is extended to represent 
actions whose effects are a function of their input situation” [ 51, i.e., if the language 
contains function symbols and infinitely many constants. 5 Our results subsume this 
theorem, by showing 
is still undecidable. 

that even with a number of additional restrictions, planning 

4. Complexity results 

Based on various syntactic criteria on what planning operators are allowed to look 
like, we have developed a comprehensive theory of the complexity of planning. The 

5 The phrase “actions whose effects are a function of their input situation” has been thought by some 
researchers [ 11,261 to refer to conditional operators. However, a careful examination of Chapman’s proof 
makes it clear that he is referring to the case where the planning operators are allowed to contain function 
symbols. 
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results are summarized in Table 2; for details see [ 101. When there are no function 
symbols and only finitely many constant symbols (so that planning is decidable), the 
computational complexity varies from constant time to IXPSPACE-Complete, depending 

on a wide variety of conditions: 

l whether or not delete lists are allowed; 
l whether or not negative preconditions are allowed; 

l whether or not the predicates are restricted to be propositional (i.e., 0-ary); 
l whether the planning operators are given as part of the input to the planning 

problem, or instead are fixed in advance. 

Below, we summarize how and why our parameters affect the complexity of planning: 
(i) If no restrictions are put on the planning domain P, any operator instance might 

need to appear many times in the same plan, forcing us to search through all 

the states, which are double exponential in number. Since the size of any state 

is at most exponential, PLAN EXISTENCE can be solved in EXPSPACE. 
(ii) If the planning operators are restricted to have no delete lists, then any predicate 

instance asserted remains true throughout the plan, hence no operator instance 

needs to appear in the same plan twice. Since the number of operator instances 
is exponential, this reduces the complexity of PLAN EXISTENCE to NEXPTIME. 

(iii) If the planning operators are further restricted to have no negative preconditions, 

then no operator can ever clobber another. Thus the order of the operators in 

the plan does not matter, and the complexity of PLAN EXISTENCE reduces to 

ExPTIhJE. 
(iv) In spite of the restrictions above, PLAN LENGTH remains NEXPTIME. Since we 

try to find a plan of length at most k, which operator instances we choose, and 

how we order them makes a difference. 
(v) If each planning operator is restricted to have at most one precondition, then we 

can do backward search, and since each operator has at most one precondition, 

the number of the subgoals does not increase. Thus both PLAN EXISTENCE 

and PLAN LENGTH with these restrictions can be solved in PSPACE. 
(vi) The previous arguments also hold for propositional planning, with the exception 

of the anomaly in the unrestricted case for PLAN LENGTH, which we discuss 

later on. As a result of restricting predicates to be 0-ary, the number of operator 

instances and the size of each state reduce to polynomial from exponential. 
Hence in general, the complexity results for propositional planning are one 

level lower than the complexity results with datalog operators. We can get the 
same amount of reduction in complexity by placing a constant bound on the 

arity of predicates and the number of variables in each operator. Propositional 
planning corresponds to the case where the bound is zero. 

(vii) When the operator set is fixed in advance, the arity of predicates and the number 

of variables in each operator are bound by a constant, thus the complexity of 
planning with a fixed set of operators is the same as complexity of propositional 
planning. Our results on planning with a fixed set of operators reveal that for 

any given planning domain that can be described with STRIPS operators, the 
complexity of planning is at most in PSPACE, and that there exists such domains 
for which planning is PSPACE-complete. 
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Examination of Table 2 reveals several interesting properties: 
(i) If the planning operators are extended to allow conditional effects, this does 

not affect our results. This contradicts a widespread belief that planning with 
conditional operators is harder than planning with regular STRIPS operators. 
However, it should not be particularly surprising, because conditional operators 
are useful only when we have incomplete information about the initial state of 
the world, or the affects of the operators, so that we can try to come up with 
a plan that would work in any situation that is consistent with the information 
available. Otherwise, we can replace the conditional operators with a number 
of ordinary STRIPS-style operators, to obtain an equivalent planning domain 

[ 101. 
(ii) Comparing the complexity of PLAN EXISTENCE in the propositional case 

(in which all predicates are restricted to be 0-ary) with the datalog case 
(in which the predicates may have constants or variables as arguments) re- 
veals a regular pattern. In most cases, the complexity in the datalog case is 
exactly one level harder than the complexity in the corresponding proposi- 
tional case. We have ExpsPAcE-complete versus PsPAcE-complete, NEXPTUIE- 
complete versus NP-complete, and finally EXPTIh4E-complete versus polyno- 
mial. 

(iii) If delete lists are allowed, then PLAN EXISTENCE is EXPSPACE-complete but 
PLAN LENGTH is Only m-complete. Normally, one would not expect 
PLAN LENGTH to be easier than PLAN EXISTENCE. In this case, it happens 
because the length of a plan can sometimes be doubly exponential in the length 
of the input. In PLAN LENGTH we are given a bound k, encoded in binary, 
which confines us to plans of length at most exponential in terms of the input. 
Hence finding the answer is easier in the worst case of PLAN LENGTH than in 
the worst case of PLAN EXISTENCE. 

We do not observe the same anomaly in the propositional case, because the 
lengths of the plans are at most exponential in the length of the input. As a 
result, giving an exponential bound on the length of the plan does not reduce 
the complexity of PLAN LENGTH. 

(iv) PLAN LENGTH has the same complexity regardless of whether or not negated 
preconditions are allowed. This is because what makes the problem hard is 
how to handle enabling-condition interactions. Enabling-condition interactions 
are discussed in more detail in [ 171, but the basic idea is that a sequence of 
actions that achieves one subgoal might also achieve other subgoals or make 
it easier to achieve them. Although such interactions will not affect PLAN 
EXISTENCE, they will affect PLAN LENGTH, because they make it possible 
to produce a shorter plan. It is not possible to detect and reason about these 
interactions if we plan for the subgoals independently; instead, we have to 
consider all possible operator choices and orderings, making PLAN LENGTH 
NP-hard. 

(v) Delete lists are more powerful than negated preconditions. Thus, if the oper- 
ators are allowed to have delete lists, then whether or not they have negated 
preconditions has no effect on the complexity. 
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5. Related work 

5.1. Planning 

Bylander [ 3,4] has done several studies on the complexity of propositional planning. 
We have stated some of his results in Table 2. More recently, he has studied the 
complexity of propositional planning extended to allow a limited amount of inference in 
the domain theory [ 41. His complexity results for this case range from polynomial-time 
to PSPACE-complete. 

Chapman was the first to study issues relating to the undecidability of planning; we 
have discussed his work in detail in Section 3. 

Backstrom and Klein [ 21 found a class of planning problems called SAS-PUBS, for 
which planning can be done in polynomial time. Their planning formalism is somewhat 
different from ours: they make use of state variables that take values from a finite set, 
and consider a planning state to be an assignment of values to these state variables. Since 
they restrict each state variable to have a domain of exactly two values, we can consider 
each state variable to be a proposition; thus, in effect they are doing propositional 
planning. In order to get polynomial-time results, they further restrict each operator to 
change at most one state variable, and do not allow more than one operator to change 
a state variable to a given value. When these restrictions are released, their planning 
algorithm performs in exponential time. It is not very easy to compare our results with 
theirs, because we use a different formalism, but we can safely state that we analyze a 
much broader range of problems. 

Korf [ 181 has pointed out that given certain assumptions, one can reduce exponen- 
tially the time required to solve a conjoined-goal planning problem, provided that the 
individual goals are independent. Yang, Nau, and Hendler [35] have generalized this, 
showing that one can still exponentially reduce the time required for planning even 
if the goals are not independent, provided that only certain kinds of goal interactions 
are allowed. Under this same set of goal interactions, they have also developed some 
efficient algorithms for merging plans to achieve multiple goals [ 34,351. 

Complexity results have been developed for blocks-world planning by Gupta and Nau 
[ 16,171 and also by Chenoweth [7]. Gupta and Nau [ 16,171 have shown that the 
complexity of blocks-world planning arises not from deleted-condition interactions as 
was previously thought, but instead from enabling-condition interactions. Their specula- 
tions that enabling-condition interactions are important for planning in genera1 seem to 
be corroborated by some of our results, as discussed above. 

5.2. Temporal projection 

Another problem that is closely related to planning is the problem of temporal pro- 
jection, or what Chapman calls the “modal truth” of an atom [5]. Given an atom a, 
an initial state So, and a partially ordered set of actions P, the question is whether a 
is necessarily/possibly true after execution of P. This question is especially important 
in partial-order planners such as NOAH [28], NONLIN [ 321, and SIPE [ 331. For 
example, McDermott [ 211 says “unfortunately, partial orders have a big problem, that 
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there is no way of deciding what is true for sure before a step without considering all 

possible step sequences consistent with the current partial order”, and Pednault [25] 
also expresses similar sentiments. 

One problem is what it means for a to be necessarily true if not all total orderings 

of P are executable. Chapman [5] assumes that a is necessarily true after executing P 
only if every total ordering of P is both executable and achieves a; and in return, he 
comes up with a polynomial-time algorithm for determining the necessary truth of a. 

However, his algorithm does not work correctly for establishing the possible truth of a 

(Nau [ 231 proves that problem is NP-hard) . 

Chapman also proves that with conditional planning operators, establishing the nec- 

essary truth of a is co-W-hard; and Dean and Boddy [ 81 prove a similar result with a 

more general notion of conditional planning operators (the same definition we gave in 
Section 2.2). 6 Dean and Boddy [ 81 also try to come up with approximate solutions for 
the problem. They present algorithms for computing a subset of the propositions that 

are necessarily true, and for computing a superset of the propositions that are possibly 
true. Furthermore, the complexity of these algorithms is polynomial if the number of 

triples for each operator is bounded with a constant. However, we do not know of any 

results concerning how close the approximations are. 

6. Conclusions and future work 

Although our equivalence between planning and logic programming only holds in 

certain limited cases, this equivalence has allowed us to transport many decidability and 

undecidability results from logic programming to planning. Among other things, our 
results solve an open problem posed by Chapman [5], and clear up some difficulties 
with his undecidability theorems. It is not a trivial task to extend this equivalence, 

because negation has different semantics for logic programming and planning. One 
recent result in this direction is the following: Subrahmanian and Zaniolo [ 301 have 

shown that STRIPS-style planning (with delete lists and negative preconditions) can be 

transformed, in polynomial time, to a class of logic programs with negation. Based on 
this transformation, they show how logic programming update techniques can be used 
to handle “surprises” that may occur during plan execution. 

For those cases where planning is decidable, we have shown how the time complexity 

varies depending on a wide variety of conditions. Our results suggest that for finding 

optimum plans, enabling-condition interactions (first described by Gupta and Nau [ 171) 
can be just as important as the better-known deleted-condition interactions. In addition, 
we have also shown that delete lists are more powerful than negated preconditions, 
and that conditional operators do not affect the complexity of planning. Thus, negated 
preconditions and conditional operators can be incorporated into planning systems, im- 
proving flexibility and usability without much cost. 

Although the past few years have seen much analysis of the properties of total- and 
partial-order planning systems using STRIPS-style planning operators [ 5,20,22], a more 

h In both cases, they state that the problem is W-hard, but their proofs establish co-iv-hardness. 
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popular approach for practical work on AI planning systems is hierarchical task-network 
(HTN) decomposition [ 28,32,33]. However, there has been very little analytical work 
on the properties of HTN planners. One of the primary obstacles impeding such work has 

been the lack of a clear theoretical framework explaining what a HTN planning system 
is. To address this problem, some of us (together with Jim Hendler) are developing a 

formalization of HTN planning [9,12]. We intend to use this formalism to correctly 
define, explicate, and analyze various properties of HTN planning systems, such as 

soundness, completeness, complexity, and expressivity. 
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