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Héctor Muñoz-Avila
Department of Computer Science and Engineering

Lehigh University
Bethlehem, PA 18015

USA
(+1) 610-758-3797

munoz@cse.lehigh.edu

David W. Aha
Navy Center for Applied Research in AI
Naval Research Laboratory (Code 5515)

Washington, DC 20375
USA

(+1) 202-404-4940
aha@aic.nrl.navy.mil



Abstract

A great challenge in developing planning systems for practical applications is the difficulty of acquiring the domain

information needed to guide such systems. This paper describes a way to learn some of that knowledge. More

specifically:

• We introduce a theoretical basis for formally defining algorithms that learn preconditions for HTN methods.

• We describe CaMeL, a supervised, eager, and incremental learning process for preconditions of HTN methods.

We state and prove theorems about CaMeL’s soundness, completeness, and convergence properties.

• We present empirical results about CaMeL’s convergence under various conditions. Among other things, CaMeL

converges the fastest on the preconditions of the HTN methods that are needed the most often. Thus CaMeL’s

output can be useful even before it has fully converged.

Keywords: HTN Planning, Learning, Candidate Elimination, Version Spaces.



1 Introduction

AI planning systems are finally becoming capable enough to be used in practical applications ranging from au-

tonomous space vehicles (Muscettola, Nayak, Pell, and Williams 1998) to robot control (Ghallab and Laruelle 1994)

to computer bridge (Smith, Nau, and Throop 1998). One of the biggest obstacles to the development of such systems

has been the difficulty of obtaining domain-specific problem-solving knowledge to help guide the planning system.

Such information is essential in order to provide a satisfactory level of performance,1 but it can be difficult to get

human domain-experts to spare enough time to provide information that is detailed and accurate enough to be useful,

and it can be even harder to encode this information in the language the planner uses to represent its input.

Consequently, it is important to develop ways to learn the necessary domain-specific information automatically. In

this paper, we propose and investigate a way for planning systems to learn some of it.

We focus specifically on Hierarchical Task Network (HTN) planning, which is the AI planning methodology that

has gained the widest use in practical applications (Wilkins 1990; Currie and Tate 1991; Nau, Au, Ilghami, Kuter,

Muñoz-Avila, Murdock, Wu, and Yaman 2004). The main knowledge artifacts for HTN planning are called methods.

They indicate how to decompose high-level tasks into simpler tasks. Methods also indicate the preconditions, that is,

the conditions under which such a decomposition is possible.

Our contributions are as follows:

• We introduce a theoretical basis for formally defining algorithms that learn preconditions for HTN methods,

and what soundness, completeness and convergence mean in this context. This formalism models situations in

which:

– general information is available concerning the possible decompositions of tasks into subtasks, but without

sufficient details to determine the conditions under which each decomposition will succeed;

– plan traces, each of which is known to be successful or unsuccessful, are available for certain problem

instances.

• We present a supervised, eager, and incremental learning process for learning preconditions. The process is

supervised by a domain expert who solves instances of the problems in that domain. Our algorithm, CaMeL

(Candidate Elimination Method Learner), is based on a modified version of Candidate Elimination (Mitchell

1977). CaMeL keeps a version space for each HTN method in the domain it is learning, and it converges to a

single HTN domain description given enough training data when each of these version spaces converges to a

single node. We state and prove theorems about CaMeL’s soundness, completeness, and convergence properties.

• We provide empirical results revealing the speed with which CaMeL converges in different situations. Among

other things, our experiments show that CaMeL fully learns the preconditions of the HTN methods that are

1An analogous difference in performance can be seen by comparing the performance of the “fully automated” and “hand-tailorable” planning
systems in the last three International Planning Competitions (Bacchus 2000; Long and Fox 2002; Edelkamp and Hoffmann 2004).
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needed the most often much faster than the preconditions of less-frequently used HTN methods. Thus, CaMeL’s

output is useful even before it has fully converged. This suggests that CaMeL may potentially be of use in

real-world planning domains even if only a small number of training samples are available.

2 Background

2.1 HTN Planning

In Hierarchical Task Network (HTN) planning, the planning system formulates a plan by decomposing tasks (symbolic

representations of activities to be performed) into smaller and smaller subtasks until primitive tasks are reached that

can be performed directly. The basic idea was developed in the mid-70s (Sacerdoti 1975; Tate 1977). The development

of the formal underpinnings came much later, in the mid-90s (Erol, Hendler, and Nau 1996). HTN-planning research

has been much more application-oriented than most other AI-planning research, and most HTN planning systems have

been used in one or more application domains.

An HTN planning problem consists of the following: the initial state (a symbolic representation of the state of

the world at the time that the plan executor will begin executing its plan), the initial task network (a set of tasks to be

performed, along with some constraints that must be satisfied), and a domain description that contains the following:

• A set of planning operators that describe various kinds of actions that the plan executor can perform. These are

similar to classical planning operators such as the ones in PDDL (McDermott 1998; Fox and Long 2003).

• A set of methods that describe various possible ways of decomposing tasks into subtasks. These are the “standard

operating procedures” that one would normally use to perform tasks in the domain. Each method may have a

set of constraints that must be satisfied in order to be applicable.

• Optionally, various other information such as definitions of auxiliary functions and definitions of axioms for

inferring conditions that are not mentioned explicitly in states of the world.

Planning is done by applying methods to non-primitive tasks to compose them into subtasks, and applying opera-

tors to primitive tasks to produce actions. If this is done in such a way that all of the constraints are satisfied, then the

planner has found a solution plan; otherwise the planner will need to backtrack and try other methods and actions.

In this paper we use a form of HTN planning called Ordered Task Decomposition (Nau, Cao, Lotem, and Muñoz-

Avila 1999) in which, at each point in the planning process, the planner has a totally ordered list of tasks to accomplish

and does a forward-search to accomplish those tasks. The impact of this assumption is that at each point of the planning

process, the state of the world and the next task to be achieved are exactly known. This makes the reasoning of our

algorithm easier because at each point in the planning process it knows exactly what the current state of the world is

and which methods are (or are not) applicable under this state of the world. We describe this more fully in Section 3.2.
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2.2 Candidate Elimination

Candidate elimination is a well-known machine learning algorithm introduced in (Mitchell 1977). Several extensions

of the original algorithm have been proposed (Hirsh 1994; Sebag 1995; Hirsh, Mishra, and Pitt 1997; Hirsh, Mishra,

and Pitt 2004). Candidate elimination is based on the concept of a version space, the set of possible explanations of the

concept that is being learned. This concept is represented by two sets: a set G of maximally general possible predicates

to explain the concept, and a set S of maximally specific possible such predicates. Every concept between these two

borders is a member of the version space, and is a possible explanation of the concept being learned. If enough training

samples are given, the version space converges to a single answer (i.e., sets S and G become equivalent). It is also

possible that the version space can collapse if the training samples are inconsistent.

3 Problem Input and Output Specification

There are at least two approaches that one might consider for learning preconditions of HTN methods. First, a lazy

(e.g., CBR) approach can be used to directly replay plans previously generated by the human expert. It assumes

that plans which were successfully used in situations similar to the current situation are likely to work now. Second,

an eager approach can be used to induce methods that could be used to mimic human expertise. In this approach,

the training samples, which include situations where HTN methods are (or are not) applicable to decompose their

corresponding tasks to their subtasks, are generalized to make the learner capable of predicting if the same methods

are applicable in the situations not seen before. In either approach, adding new training samples, which represent

human expert activities while solving an HTN planning problem, is expected to yield better approximations of the

domain. Due to the complexity of the semantics of HTN planning, one should carefully define the inputs and outputs

of the learning algorithm and what learning means in this context. In this paper, we have chosen an eager approach.

3.1 What Kind of Input to Use

For supervised learning of domains (either in an action-based or an HTN planning environment), two possible forms

of input are:

1. A set of previously generated plans. These plans can be generated in several ways (e.g., by a human expert in

that domain). The learning process consists of extracting domain information from these plans.

2. A collection of plan traces, which contain not only the correct solution for a planning problem, but also infor-

mation about inferences derived and decisions made while this plan was generated (e.g., by a human expert). Note

that in both these cases, a correct solution may be “NO PLAN” in situations where there is no plan to solve a given

planning problem.

The second form of input is preferable because it will result in faster and more accurate learning; plan traces contain

much more information about the domain being learned than plans. For this reason, most previous related work has
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used the second form of input. For example, in PRODIGY, a system that uses learning techniques in an action-based

planning context, derivational traces are used in the learning process (Veloso and Carbonell 1993). These traces

contain information about the planner’s internal right and wrong decisions in addition to the final solution.

In this paper, we also use this second form of input, with appropriate adaptations for use in an HTN-planning

environment rather than an action-based planning environment.

In addition to the plan traces, we will assume that the input to the learning algorithm includes an incomplete

version of the domain (Both terms are defined formally in the next subsection). This assumption means that when

an HTN method precondition learner is learning preconditions, it knows in advance how to decompose tasks, but it

does not known under what preconditions each of the several methods to decompose a task is applicable and should be

chosen. This can happen for instance in a military operation, where the overall strategy of dividing tasks to subtasks

is usually dictated by the military doctrine and therefore known, but the tactical decision of which of the available

methods should be used is made based on the situation on the ground.

The only missing parts in the incomplete version of a domain are the preconditions of the methods in that domain.

Therefore, giving the incomplete version of the domain as input to an HTN method precondition learner means that the

learner can return a set of complete HTN domains rather than a set of possible method preconditions as its output by

adding the learned method preconditions to the given incomplete version of the domain. Note that here we talk about

the learner returning a set of complete HTN domains instead of returning just one such domain. This is because the

learner may not get enough training data to fully converge, in which case there might be more than one HTN domain

description that match the training data.

By definition, the incomplete version includes the (complete and correct) operator definitions, which seems rea-

sonable given that in HTN context operators usually denote concrete and simple actions with obvious effects. For

research on how to learn operator preconditions and effects in more general cases, see Gil (1992, 1993, 1994).

3.2 Definitions

In this paper we use a form of HTN planning called Ordered Task Decomposition (Nau, Smith, and Erol 1998)

in which, at each point in the planning process, the planner has a totally ordered list of tasks to accomplish. Our

definitions are based loosely on the ones in (Nau, Cao, Lotem, and Muñoz-Avila 1999; Ghallab, Nau, and Traverso

2004).

An ordered HTN domain is a triple (T,M,O) where:

• T is a list of tasks. Each task has a name and zero or more arguments, each of which is a variable symbol.2 Each

task can be either primitive or non-primitive. A primitive task represents a concrete action that can be carried

out directly, while a non-primitive task must be decomposed into simpler subtasks. In this paper, primitive tasks

2We denote variable symbols by names that begin with question marks, such as ?x.
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Method m1 

Task: NT1(?x) 

Precondition: a(?x)

NT2(?x)

Method m2 

Task: NT2(?x) 

Precondition: a(?x)

PT2(?x)

Decomposition

PT1(?x) NT3(?x)

Decomposition

Method m3 

Task: NT2(?x) 

Precondition: c(?x)

NT4(?x)

Decomposition

Method m4 

Task: NT3(?x) 

Precondition: b(?x)

PT3(?x)

Decomposition Decomposition

Operator o2 

Task: PT2(?x) 

Delete List: {} 
Add List: {}

Operator o4 

Task: PT4(?x) 

Delete List: {} 
Add List: {}

Operator o3 

Task: PT3(?x) 

Delete List: {} 
Add List: {}

Operator o1 

Task: PT1(?x) 

Delete List: {} 
Add List: {b(?x)}

PT4(?x)

Method m5 

Task: NT4(?x) 

Precondition: a(?x)

Figure 1: A sample domain

are represented by PT or PTi for some integer i, and non-primitive tasks are represented by NT or NTi for

some integer i.

• M is a collection of methods, each of which is a triple m = (NT, DEC,P ), where NT is a non-primitive task,

DEC is a totally-ordered list of tasks called a decomposition of NT , and P (the precondition) is a boolean

formula of first-order predicate calculus. Every free variable in P that does not appear in the argument list of

NT is assumed to be existentially quantified, and every variable in DEC must appear either in the argument

list of NT or somewhere in P .

• O is a collection of operators, each of which is a triple o = (PT,DEL,ADD), where PT is a primitive task,

and DEL and ADD are the sets of logical atoms that will be respectively deleted from and added to the world

state when the operator is executed. All variables in DEL and ADD must appear in the argument list of PT .

We also assume that for each primitive task t ∈ T , there is at most one operator (PT,DEL,ADD) such that t

unifies with PT (i.e., each primitive task can be performed in at most one way).

Unlike classical planning operators, our operators do not have preconditions. However, this does not affect

the expressivity of the formalism, because it is easy to map an HTN planning domain in which the operators

have preconditions into an equivalent HTN planning domain in which no operators have preconditions. The

construction is as follows: if o is an operator that achieves some primitive task PT and has a precondition P ,

replace o with a method m that has o’s precondition and decomposes a new non-primitive task NT into PT ,

plus an operator o′ that has o’s add and delete lists but no precondition. In addition, replace all other occurrences

of PT in the domain description with NT .

Figure 1 shows a sample domain with five methods (represented by bigger rectangles) and four operators (repre-

sented by circles). This domain is used later in this paper as an example several times. The smaller rectangles show

the subtasks into which each method decomposes its corresponding task. The vertical arrows (labeled “Decompo-

sition”) correspond methods with their task decompositions. The horizontal arrow shows an ordering constraint on
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a task decomposition. The precondition of each method and the non-primitive task it decomposes appear inside the

rectangle representing it. The precondition and add and delete list of each operator and the primitive task it performs

appear inside the circle representing it. For example, method m1 decomposes task NT1(?x) into an ordered list of

three subtasks PT1(?x), NT2(?x), and NT3(?x) under the precondition that a(?x) holds in the current state of the

world when m1 is being applied.

An ordered HTN planning problem is a triple (I, S,D), where I (the initial task list) is a totally ordered list of

ground instances of tasks (i.e., members of T ) to be performed, S (the initial state of the world) is a set of ground

logical atoms, and D = (T,M,O) is an ordered HTN domain. In general, HTN tasks are more general than the goals

used in classical planning (Ghallab, Nau, and Traverso (2004), Chapter 11).

A binding θ is a set of pairs (V,C), where V is a variable symbol and C is a constant symbol. In other words, θ is

a substitution that replaces variables with constants. The result of applying a binding θ to an expression e is denoted

by eθ.

Let m = (NT, DEC,P ) be a method. Then m̄ = (NT, DEC), i.e., m without its preconditions, is called

the incomplete version of m. Similarly, if mθ = ((NT )θ, (DEC)θ, Pθ) is an instance of a method m, then the

incomplete version of mθ is m̄θ = ((NT )θ, (DEC)θ).

Assumption 1 We assume that no two different methods m = (NT, DEC,P ) and m′ = (NT, DEC,P ′) can exist

such that P 6= P ′. Therefore, there is a one-to-one correspondence between a set of methods {m1, . . . ,mk} and their

incomplete versions {m̄1, . . . , m̄k}, allowing each incomplete version m̄i to represent mi.

Note that if we allow disjunctions in preconditions, Assumption 1 does not affect expressivity since we can replace

m and m′ with one single method (NT, DEC,P ∨ P ′).

Let D = (T,M,O) be an ordered HTN domain. Then, if M̄ denotes the set of incomplete versions of all methods

in M , D̄ = (T, M̄, O) is defined to be the incomplete version of D.

A method (NT, DEC,P ) is applicable in a state S if there is a binding θ that binds all variables in NT ’s argument

list such that Pθ is satisfied in S.

A decomposition tree for a task t in an ordered HTN domain D is an ordered tree ε having the following properties:

• ε’s root is t;

• Each non-leaf node of ε is a non-primitive task and each leaf node is a primitive task;

• For each non-leaf node NT of ε, there is a method m = (NT, (C1, . . . , Ck), P ) where (C1, . . . , Ck) is the

ordered list of the children of NT .

In a decomposition tree ε, a node u occurs before a node v if:

• There is a node w such that u is the i’th child of w and v is the j’th child of w, where i < j.
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NT1(?x)

NT2(?x)PT1(?x) NT3(?x)

PT2(?x) PT3(?x)

NT1(?x)

NT2(?x)PT1(?x) NT3(?x)

NT4(?x) PT3(?x)

PT4(?x)

Decomposition tree t1 Decomposition tree t2

m1[a(?x)]

m2[a(?x)] m4[b(?x)]

m1[a(?x)]

m3[c(?x)] m4[b(?x)]

m5[a(?x)]

Figure 2: All possible decomposition trees for task NT1 in Figure 1.

• Or u and v have ancestors u′ and v′, respectively, such that u′ occurs before v′. (Note that we may have u′ = u

or v′ = v.)

Given these definitions, it follows that the leaves of a decomposition tree are totally ordered by the “occurs before”

relation.

Figure 2 shows all possible decomposition trees for the task NT1 in Figure 1. The expressions within the brackets

in this figure show the preconditions of the methods that are being used in each node to decompose its associated task.

The prolog of a node r in a task decomposition tree ε is a set of preconditions of all the proper descendants of r in

ε such that for each such precondition P of such a node n there is no operator in ε that has P in its add list and occurs

before n. For any method m to be successfully applicable to decompose the task associated with r to its subtasks, the

prolog of r in addition to the precondition of m must be satisfiable in the current state of the world. For example, in

Figure 2, in decomposition tree t1, the prolog of NT1 is {a(?x)} while in decomposition tree t2 the prolog of NT1 is

{a(?x), c(?x)}. Note that b(?x) is not in either prolog since it is in the add list of operator o1 which is the only way

to achieve primitive task PT1. This means that both decomposition trees are applicable to accomplish task NT1 even

if b(?x) does not hold in the state of the world before decomposition of NT1, because it will be added by operator

o1 to the state anyway. On the other hand, if c(?x) does not hold in the state of the world before decomposing NT1,

the decomposition tree t2 will not be applicable because there is no operator in it that establishes c(?x) before it is

required to decompose NT2.

A task decomposition tree ε is consistent if for each node n in ε with precondition P and prolog P ′, P ∧ P ′ is

satisfiable, and either there is no operator o that occurs before n in ε that deletes P or P ′, or if there is such an operator,

then there is another operator o′ that occurs after o and before n that reasserts the deleted precondition. For example, in

Figure 2 both decomposition trees are consistent. However, if we change the precondition of method m1 from a(?x) to
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¬a(?x), they will both become inconsistent (because they will both need ¬a(?x) to apply m1, and then a(?x) to apply

m2 or m5). Also, if we add b(?x) to the delete list of operator o2, the decomposition tree t1 will become inconsistent

(since the precondition of m4 will be deleted, which makes it impossible to use it to decompose NT3).

A partial solution tree for a ground instance g of a task t in an ordered HTN domain D = (T,M,O) is a

substitution instance of a decomposition tree for t, i.e., it is an ordered tree τ having the following properties:

• τ ’s root is g;

• Each node of τ is a ground instance of a task;

• For each non-leaf node N of τ , there is a method m = (NT, DEC,P ) and a binding θ such that N = (NT )θ

and (C1, . . . , Ck) = (DEC)θ, where (C1, . . . , Ck) is the list of the children of N . mθ = ((NT )θ, (DEC)θ, Pθ)

is called the method instance for N .

A partial solution forest for an ordered HTN planning problem (I, S,D) is a totally ordered list (τ1, . . . , τk) of

partial solution trees, one for each member of I .

In a partial solution forest F = (τ1, . . . , τk), a node u occurs before a node v in each of the following cases:

• u and v are in different trees τi and τj , respectively, where i < j.

• There is a node w such that u is the i’th child of w and v is the j’th child of w, where i < j.

• u and v have ancestors u′ and v′, respectively, such that u′ occurs before v′. (Note that we may have u′ = u or

v′ = v.)

Given these definitions, it follows that the leaves of a partial solution forest are totally ordered by the “occurs

before” relation.

A solution for an ordered HTN planning problem (I, S,D) is a partial solution forest F for (I, S,D) having the

following properties:

• For every leaf node L of F , there is an operator o = (PT,DEL,ADD) and a binding θ such that L = (PT )θ.

oθ is called the operator instance for L.

• For every non-leaf node N of F , let m = (NT, DEC,P ) be the method instance for N . Let (L1, . . . , Lk)

be the totally ordered list of leaf nodes that occur before N , and let o1, . . . , ok, respectively, be the operator

instances for these nodes. Then P is satisfied in the state produced by starting with S and applying o1, . . . , ok

sequentially.

Two ordered HTN domains D1 and D2 are equivalent if and only if, for any arbitrary task list I and state of the

world S, the ordered HTN planning problems (I, S,D1) and (I, S,D2) have exactly the same set of possible solution

forests. For example, domains D1 and D2 in Figure 3 are equivalent.

For a method m = (NT, DEC,P ), a precondition is redundant if for each possible task decomposition tree of

NT that uses m to decompose its root, that precondition appears in the prolog of NT . For instance, in Figure 3,
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Method m1 

Task: NT1(?x) 

Precondition: a(?x)

NT2(?x)

Decomposition

Method m2 

Task: NT2(?x) 

Precondition: b(?x)

PT(?x)

Decomposition

Operator o 
Task: PT(?x) 
Delete List: {} 

Add List: {}

Method m’1 

Task: NT1(?x) 

Precondition: a(?x) and b(?x)

NT2(?x)

Decomposition

Method m’2 

Task: NT2(?x) 

Precondition: b(?x)

PT(?x)

Decomposition

Operator o’ 
Task: PT(?x) 
Delete List: {} 

Add List: {}

Domain D1 Domain D2

Figure 3: Domains D1 and D2 are equivalent.

precondition b(?x) is redundant for method m′
1 in domain D2. As a more complicated example, precondition a(?x)

in method m1 in Figure 1 is redundant.

A method (NT, DEC,P ) is active if there exists at least one consistent task decomposition tree with root NT

that uses this method to decompose its root. In other words, if a method is dead (i.e., not active), it cannot possibly

be used in a solution to any arbitrary ordered HTN planning problem. For example, in domain D1 in Figure 3, both

methods are active, but if we change the precondition of method m1 from a(?x) to ¬b(?x), then m1 will become dead

(although m2 will still be active).

The canonical form of a domain D is derived by eliminating first all the dead methods and then all redundant

preconditions in D. Obviously, each domain is equivalent to its canonical form.

We are now ready to formally define plan traces and our inputs. A plan trace Π consists of (1) a solution to an

ordered HTN planning problem and (2) for each internal node N in the solution forest, an incomplete version of all

instances of methods that were applicable. This will obviously include the instance of the method that was actually

used to decompose N .

The inputs for an HTN method precondition learning algorithm consist of:

• The incomplete version D̄ = (T, M̄, O) of a domain D = (T,M,O).

• A set of n ordered HTN planning problems {(Ij , Sj , D)}, where 1 ≤ j ≤ n.

• A plan trace Πj for each of these problems.

One of the challenges in any learning algorithm is how to define a criterion to evaluate its output. Often, there is

not enough information in the input or there are not enough training samples to derive an optimal output. Therefore,

learning algorithms may return a set of candidate answers instead of a single answer. This phenomenon can affect the

definition of soundness and completeness, which play a crucial role in evaluating outputs in a planning context.
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Method m1 

Task: NT(?x) 
Precondition: a(?x)

PT(?x)

Decomposition

Operator o 
Task: PT(?x) 
Delete List: {} 

Add List: {}

Domain D1

Method m2 

Task: NT(?x) 
Precondition: a(?y)

PT(?x)

Decomposition

Operator o 
Task: PT(?x) 
Delete List: {} 

Add List: {}

Domain D2

Method m3 

Task: NT(?x) 
Precondition: a(c) Or a(d)

PT(?x)

Decomposition

Operator o 
Task: PT(?x) 
Delete List: {} 

Add List: {}

Domain D3
I1 = {NT(c)}, I2 = {NT(d)},S1 = {a(c)}, S2 = {a(d)}

Figure 4: All these domains are consistent with respect to set {(I1, S1), (I2, S2)}. Domains D2 and D3 are consistent
with respect to set {(I1, S1), (I1, S2)}.

Before we can formally present soundness and completeness definitions in the context of HTN method precondi-

tion learning, we need to define consistent answers:

A domain D1 is consistent with another domain D2 with respect to a set of pairs (Ij , Sj) of a task list Ij and a state

of the world Sj if and only if, for every j, the plan traces for the ordered HTN planning problems (Ij , Sj , D1) and

(Ij , Sj , D2) are exactly the same. This definition says that although there may be differences in the methods and/or

operators in D1 and D2 when solving problems relative to the task list Ij and state Sj for each j, the resulting traces

are identical. For example, in Figure 4, domains D1, D2, and D3 are consistent with respect to set {(I1, S1), (I2, S2)},

although they are different domains: In domain D1, the precondition of the method m1 indicates that there should be

an atom a(?x) in the current state of the world, where ?x is the argument of the task, in domain D2, the precondition

of the method m2 indicates that there should be an atom a(?y) in the current state of the world where ?y can be any

constant symbol (Free variables are assumed to be existentially quantified), and finally in domain D3, the precondition

of the method m3 indicates that there should be either atom a(c) or atom a(d) in the current state of the world. On the

other hand, with respect to set {(I1, S1), (I1, S2)}, only domains D2 and D3 are consistent.

Note that the notion of two domains being equivalent is a specific form of two domains being consistent with each

other: Two domains are equivalent if and only if they are consistent with each other with respect to any set of possible

pairs of task lists and initial states of the world.

Using the above definition, we can now formally define soundness and completeness for HTN method precondition

learning algorithms:

Consider an HTN method precondition learning algorithm whose inputs are
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• D̄ = (T, M̄, O), the incomplete version of a domain D = (T,M,O);

• a set of ordered HTN planning problems {(Ij , Sj , D)}, where 1 ≤ j ≤ n;

• a plan trace Πj for each of these ordered HTN planning problems.

An HTN precondition learning algorithm is sound if and only if whenever it returns a set of ordered HTN domains,

each of them is consistent with D with respect to the set of all (Ij , Sj) pairs.

An HTN method precondition learning algorithm is complete if and only if for every domain D′ that is consistent

with D with respect to the set of all (Ij , Sj) pairs, the algorithm’s answer includes a domain that is equivalent to D′.

4 CaMeL: An HTN Precondition Learner Based on Candidate Elimination

4.1 Motivation

The main goal of learning HTN methods is to be able to generate plans for new planning problems (or queries). This

ability will be obtained by learning how to plan using a set of previously generated plans or plan traces. In the machine

learning literature, two entirely different kinds of learning, namely lazy learning and eager learning are discussed. In

the purest form of lazy learning, training samples are simply stored. At query time, the algorithm compares the query

instance with its recorded training samples. Thus, learning time is minimized while query time can be high, especially

if no attempt is made to prune the number of stored training samples. On the other hand, eager learners during the

training process generalize the training data into an abstract concept that matches the training data well in the hope

that this abstract concept will work well on the cases not included in the training data too. At query time, this concept,

rather than the training samples themselves, are used to answer the query. Thus, learning time is higher than for purely

lazy algorithms, while query time is usually lower.

In the context of learning method preconditions, lazy learning has been done using CBR, which involves locating

those training samples that are most similar to the planning problem given as the query (Veloso, Muñoz-Avila, and

Bergmann 1996; Hanney and Keane 1996; Lenz, Bartsch-Sporl, Burkhard, and Wess 1998). This problem is then

solved by adapting the solutions stored in the retrieved training samples. Our focus in this paper is on eager learning.

Some of the advantages of using eager learning in our context are:

• Less query time: Lazy learning is useful when the number of training samples and frequency of query arrival is

small. However, when these numbers are large, finding the most similar training samples can be time consuming

(i.e., assuming that no smart indexing method is used). In such situations, eager learners are preferable.

• Reduced knowledge base size: Once the methods are learned, the system can discard the training samples and use

the induced methods to solve new planning problems. In other words, the learned methods will act as a compact

summary of the training cases. In contrast, purely lazy approaches require that, for every new planning problem,

all previously seen examples must be revisited and therefore must be stored in the algorithm’s knowledge base.

Also, although several algorithms exist for significantly reducing storage requirements for case-based classifiers,
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they do not yet exist for case-based HTN planners.

• Easier plan generation: If we learn methods completely, then the process of generating a plan for a new plan-

ning problem will be much easier. This requires inducing methods for a hierarchical planner so that it can

automatically generate plans for new planning problems. In contrast, a case-based planner must dynamically

decide, for each new problem, which stored case or combination of cases to apply.

As mentioned earlier, HTN method precondition learning algorithms may not be given enough information in the

training set to derive a single exact domain as output. Therefore, the algorithm may return a set of domains. In these

situations, a policy is needed to decide which possible domains should be output by the algorithm. Two extreme

policies are:

• The minimal policy: Any possible domain is added to the output set if and only if there is enough evidence in

the input to prove that this domain must be in the output.

• The maximal policy: Any possible domain is added to the output set if and only if there is not enough evidence

in the input to prove that this domain must not be in the output.

The minimal policy yields a sound algorithm while the maximal policy yields a complete algorithm. However,

both of these extreme approaches perform poorly and neither is both sound and complete. This is because there may

be possible domains whose existence in the output set cannot be proved or disproved using the current input, simply

because there is not enough information in the input to do so and more training samples are required. These possible

domains are discarded in the minimal view and added to the output set in the maximal view.

One way to obtain better performance is to track the possible domains that cannot be proved or disproved so that

they can be assessed in the future, after more training samples are acquired. Thus, we need an algorithm for tracking

possible domains, while preferably maintaining its soundness and completeness.

Given all this, using candidate elimination seems like a natural choice. It has two main advantages: First, the

resulting algorithm is sound and complete if our output is the set of all possible domains, where each method’s set of

preconditions can be any member of its corresponding version space. Second, candidate elimination is an incremental

algorithm: whenever the algorithm acquires a new training sample, it just updates its version spaces and discards that

training sample afterwards. There is no need to keep the training samples.

Candidate elimination is indeed a very general algorithm. However, to apply this algorithm for a specific ap-

plication, a generalization topology (a lattice) on the set of possible concepts must be defined (i.e., the generaliza-

tion/specialization relation, along with the top and bottom of the lattice). In our algorithm CaMel, every method has a

corresponding version space, and each member of a method’s version space is a possible precondition for that method.

Candidate elimination requires both negative and positive examples. The concept of a “negative” example in a

planning context may not be clear. However, for our context, negative examples can be generated easily. In our
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definitions, the input to a precondition learner includes plan traces, each of which lists all applicable method instances

that can be used to decompose a task instance in a specific world state. Therefore, if there are methods in the domain

to decompose the same task that are not listed, we can infer that they were not applicable in those specific world states,

and can hence serve as negative examples.

In order to make candidate elimination useful in an HTN planning context, we need to make significant extensions

to it. These are described in the next section.

4.2 Algorithm

Before detailing CaMeL, we need to introduce the notion of normalization. Suppose that an HTN precondition learner

is trying to learn the preconditions of a method m that is used to decompose the task move(?t, ?s, ?d). Assume

that two instances of m are given: One instance is used to decompose the task m1 = move(truck1, city1, city2)

in the state S1 = {truck(truck1), at(truck1, city1)} while the other instance is used to decompose the task m2 =

move(truck2, city3, city4) in the state S2 = {truck(truck2), at(truck2, city3)}. Apparently, these two training

samples contain the same piece of information. Intuitively, it is: “You can move an object ?t from any starting location

?s to any destination ?d if ?t is a truck and it is initially at ?s.” But how is a learning algorithm supposed to derive such

a general statement from such a specific example? This statement contains three variables, while the facts are about

specific constants such as truck1, city1, and city2. A generalization process is required that changes these constants

to variables. This is roughly what happens during a normalization process.

Assumption 2 No two variables in the parameter list of any method m in the domain are mapped to the same constant

when m is instantiated in a plan trace.

Assumption 2 is not true in all HTN planning domains, but it is true in many of them, including the ones in our

experiments.3 In domains where this assumption is satisfied θ replaces each variable Vi with a different constant Ci;

hence θ has an inverse θ−1 which replaces every constant Ci with its corresponding variable Vi.

Consider a ground instance mθ of a method m that decomposes task t for world state S. Then, Sθ−1 is called

a normalization of S with respect to mθ, and θ−1 is called a normalizer for S. For the above example, both the

normalization of S1 with respect to m1 and the normalization of S2 with respect to m2 yield {truck(?t), at(?t, ?s)}.

The normalization process replaces constants in different training examples that play the same role (e.g., truck1

and truck2) with a variable (e.g., ?t) in order to generalize the facts that are given as input. Fact generalization is

indeed a basic strategy in most eager learning algorithms.

Two kinds of constants may appear in an HTN plan trace Π or its corresponding ordered HTN planning problem

(I, S,D). First, explicit constants appear explicitly in the domain definition D (i.e., in the effects of operators, or
3Formally, CaMeL can still be used even in domains that do not satisfy Assumption 2, because there exists a mapping that transforms any

domain that does not satisfy Assumption 2 into an equivalent domain that satisfies Assumption 2. However, the mapping is not entirely satisfactory,
because the new domain can be combinatorially larger than the old one.
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preconditions of methods). Second, implicit constants are those that do not appear in the D explicitly. These constants

appear in a plan trace because some of the variables in D were instantiated to them while the plan trace was created.

For example, consider an HTN method m for decomposing the task go(?x, ?y) that decomposes this task to a

primitive task walk(?x, ?y). The precondition of this method is weather(good) ∧ at(?x). Now, if there are two

atoms at(home) and weather(good) in the current world state and an instance of the method m is used to decompose

the task go(?x, ?y) to the subtask walk(home, station) in the corresponding plan trace, then the constants home and

station are implicit constants that appear in problem definition (i.e., in I or S) rather than in domain definition, while

good is an explicit constant, because it appears in D.

As another example, in the blocks world domain, table is an explicit constant while names of blocks are implicit

constants.

When normalization is used to generalize the training samples, the following crucial assumption is made:

Assumption 3 In an ordered HTN planning problem (I, S,D) an explicit constant cannot appear anywhere in I . Also,

an explicit constant can appear in an atom a in S only if it plays the same role in a and in the predicate in D in which it

appears. That is, it should appear only in the same predicate and in the same position in that predicate. For instance,

the constant good in the above example cannot appear anywhere in I or S other than in atom weather(good).

Assumption 3 is needed to avoid the situation in which a variable in a precondition is instantiated to a constant

which coincidentally is the same as another constant somewhere else in the precondition. It makes sure that the

normalization process will never result in over-generalized predicates.

For an example showing why normalization is useful and why Assumption 3 should hold in order to use normal-

ization, see Figure 4. Assume that an HTN method precondition learner is trying to find the most specific precondition

for the method in that Figure and it is given {(I1, S1), (I2, S2)} as the training set. If the learner does not make As-

sumption 3, it will not have any way to choose between methods m1 and m3. This is because it will have no way

to tell if the appearance of c or d in both the task list to be achieved and the current state of the world ({(I1, S1)}

and {(I2, S2)} respectively) is just a mere coincidence, or it happens because there is a variable in the precondition

that instantiates to c or d as a parameter of the task NT . However, given Assumption 3 and using normalization, the

learner can deduce that c and d are not explicit variables (because they appear in I1 and I2 respectively), which means

a variable in the argument list of NT must have been instantiated to them, which means in turn that m1, and not m3,

is the method the learner is looking for.

Theorem 1 Assumption 3 does not limit the expressivity of the HTN domains CaMeL can handle.

Proof: There is a simple algorithm to transform a domain D where Assumption 3 does not hold to an equivalent

domain where it does: For each explicit constant c in a planning problem (I, S,D) that occurs in I or in a wrong
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Given:

D̄ = (T, M̄, O), the incomplete version of D = (T,M,O)

I = {I1, . . . , In}, a set of task lists

S = {S1, . . . , Sn}, a set of world states

Π = {Π1, . . . ,Πn}, a set of plan traces, one per ordered HTN planning problem (Ii,Si,D)

CaMeL(D̄,I,S,Π)

C = GetConstants(I)

FOR each method m̄j ∈ M̄

Initialize a version space V Sj

FOR each plan trace Πi ∈ Π

FOR each method m̄j ∈ M̄

inst = LocateInstances(Πi,m̄j)

FOR each (loc,θ,np)∈ inst

S′i = ComputeState(D̄,Si,Πi,loc)

V Sj = CE(ExtractRelevant(Normalize(S′i,θ),C),V Sj ,np)

RemoveDeadMethods(D, V S1,. . . ,V Sm)

RemoveRedundantPreconditions(D, V S1,. . . ,V Sm)

IF Converged(V S1,. . . ,V Sm)

RETURN all V Sj ’s

RETURN all V Sj ’s

Figure 5: The CaMeL Method-Learning Algorithm

place in S (that is, in a predicate other than the predicate in D in which c appears, or in a different place in the same

predicate) , create a new predicate symbol predc, and add the atom predc(c) to S. In the domain, do the following in

every method and operator where c occurs: replace all occurrences of c with a variable symbol ?xc, and insert a new

precondition predc(?xc) as the first precondition of the method or operator. Thus c no longer appears in the domain -

but during problem-solving, ?xc will get bound to c so that c gets used in the same places where it was used before. 2

The pseudo-code of our algorithm, CaMeL, is given in Figure 5. The algorithm subroutines are as follows:

• GetConstants(I), where I is a task list, returns all the constants that appear somewhere in I . These are the

constants that CaMeL knows for sure cannot be explicit constants.
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• LocateInstances(Π,m̄), where Π is a plan trace and m̄ = (NT, DEC) is an incomplete method, is a function

that returns a set of triples (loc, θ, np). Each of these triples corresponds to one of the places where an instance

(NT )θ of a non-primitive task NT was decomposed in Π. loc denotes the number of operators that occur before

this instance of a task in the plan trace Π, and np is a boolean variable indicating whether method instance mθ

was applicable to decompose (NT )θ.

• ComputeState(D̄,S,Π,loc) is a function that computes the world state after applying the first loc operators of

the plan trace Π in incomplete ordered HTN domain D̄, where the initial world state is S.

• ExtractRelevant(S, C) where S is a normalized state and C is a set of constants that are known not to be

explicit. This function returns only predicates in the given normalized state that can potentially be relevant

to the particular instance of a method currently being considered. A predicate is relevant if at least one of its

arguments is either an explicit constant or a variable symbol (the latter case happens when the constant symbol

this variable replaced during the normalization appeared somewhere in the method instance currently being

considered), or one of its arguments appears in another potentially relevant predicate’s argument list. Therefore,

to calculate the potentially relevant predicates, this function starts by initializing its output to the set of facts in

S that have at least one variable or one potential explicit constant (i.e., not in C) in their argument list. Then in

each following iteration, it adds those remaining predicates in S that share at least one constant in their argument

list with some other fact already in its output. These iterations continue until no new predicates are added to

the output. The facts that are left out after this can not be relevant to the method instance being processed and

therefore are not used to update the corresponding version space.

• CE(S,V S,np) is an implementation of the candidate elimination algorithm on version space V S with training

sample S. np is a boolean variable that indicates whether S is a negative or positive example.

• RemoveDeadMethods(D, V S1,. . . ,V Sm) removes methods that are dead (i.e., methods that can never be

used to solve any arbitrary planning problem because some of the preconditions of the nodes in the decompo-

sition tree produced by their application can not be satisfied). Note that since each method’s version space can

potentially represent more than one candidate for what that method’s precondition can be, this function should

try all the possible combinations of related methods before labeling a method as dead.

• RemoveRedundantPreconditions(D, V S1,. . . ,V Sm) removes all the redundant preconditions of methods.

Again since each method’s version space can potentially represent more than one candidate for what that

method’s precondition can be, this function should try all the possible combinations of related methods before

labeling a precondition as redundant.

• Converged(V S1,. . . ,V Sm) checks if all of the version spaces V S1,. . . ,V Sm have converged.
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The algorithm starts by initializing one version space for each method in the domain being learned. Then, for

each plan trace, and for each method, all the instances of that method in that plan trace are found. These include both

positive (i.e., method was applicable to decompose its associated task) and negative (i.e., method was not applicable

to decompose its associated task) instances. Then, the state of the world at the point each method instance appears

is calculated by applying the operators in the plan trace that occur before that instance to the initial state of the

world. The resulting state is then normalized according to the binding used in the method instance, and the potentially

relevant facts are extracted from each normalized state. Then, each resulting state (which is a set of predicates) is used

to update the corresponding version space. After updating all the version spaces, the dead methods and redundant

preconditions are removed in that order (The order is important since the removal of dead methods can produce

redundant preconditions). This is repeated till either all the training samples are used, or each of the version spaces

converges to a single node.

5 Algorithm Soundness, Completeness, and Convergence

In this section, we will discuss more assumptions and restrictions a domain must satisfy in order for CaMeL to work

correctly. We will also propose a few theorems about CaMeL in the framework we have defined.

Another assumption should be made because we use the candidate elimination algorithm. In order for candidate

elimination to work properly, the terms the most specific, the most general, the most specific generalization and the

most general specification must be defined for the set of possible members of the version space. CaMeL uses version

spaces to show the possible preconditions of methods, which in general can be any first order predicate calculus

formula. Unfortunately, the aforementioned terms cannot be defined for the set of all possible boolean formulas in

first order predicate calculus.

Assumption 4 Preconditions of the methods have a known form, and this form is such that the set of all possible

preconditions is partially ordered by the “more general” relation, and the most general and the most specific precon-

ditions exist in this set. Furthermore, for any given precondition P other than the most general preconditions, there

exist a non-empty, finite set G of preconditions that are all more general than P , but there is no other precondition that

is more general than P but more specific than any of the members of G. Also, for any given precondition P other than

the most specific preconditions, there exist a non-empty, finite set S of preconditions that are all more specific than P ,

but there is no other precondition that is more specific than P but more general than any of the members of S.

Assumptions 3 and 4 together define the learning algorithm’s representational bias. A representational bias de-

fines the states in the search space of a learning algorithm (Gordon and Desjardins 1995). It guarantees that we can

generalize given facts about the training samples (Mitchell 1980).

CaMeL accepts conjunctions, existential quantifiers, negations, and limited disjunctions (meaning that the number
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of disjuncts in a disjunction is limited to a predefined constant) in method preconditions. The reason we have limited

the number of disjuncts is that we wanted to enable CaMeL to learn existential quantifiers: For example, if in a domain

any truck can be used to accomplish a method that moves a package from some location to another location, CaMeL

might get several plan traces where several different trucks t1, t2, . . . , tn are used to move the package. If we did not

put a restriction on the number of disjuncts in a precondition, CaMeL would have no way to distinguish between (i) a

precondition consisting of n disjuncts, each of which uses one of the specific tis to move the package, and (ii) another

precondition that simply uses any available truck to do so. In our implementation, we limited the number of disjuncts

to 3, so in this example as soon as a fourth truck is used to move a package, CaMeL will automatically induce that

the method precondition has an existential quantifier over the trucks and any truck would do here. Note that there is

a trade-off here between how expressive one wants one’s domains to be, and how fast one wants CaMeL to converge,

so this limit on the number of disjuncts should be chosen carefully.

Given the assumptions we have made so far, the following theorems can be proved:

Theorem 2 CaMeL is a sound HTN precondition learner.

Sketch of Proof: The proof for this theorem is straightforward: It is based on the correctness of the Candidate

Elimination algorithm. Assume that CaMeL is not sound. It means that while learning an ordered HTN domain D, at

least one of the domains returned by it, D′, is not consistent with D with respect to the training set. That means D′

in at least one decision point in one of the plan traces associated with the training set has a different view of which

methods are or are not applicable in a given state of the world. Either D′ thinks a method is applicable that D thinks

is not, or D thinks a method is applicable that D′ thinks is not. In the former case, there is a node in the version

space of that method that is not consistent with the training data, and in the latter case there is a node consistent with

the training data that is not in the version space. Both of these cases contradict the correctness of the version space

algorithm. Therefore, CaMeL is a sound HTN precondition learner. 2

Theorem 3 CaMeL is a complete HTN precondition learner.

Sketch of Proof: The proof for this theorem is based on the correctness of the Candidate Elimination algorithm

too. Assume that CaMeL is not complete. It means that while learning an ordered HTN domain D, there was at least

one domain, D′, that was consistent with D with respect to the training set, but was not returned by CaMeL. This

means preconditions of at least one of the methods of D′ was not in its corresponding version space, which contradicts

the correctness of Candidate Elimination algorithm, since this precondition is consistent with this version space given

this training set, and therefore it should be in the version space. Therefore, CaMeL is a complete HTN precondition

learner. 2
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Theorem 4 For any given ordered HTN domain D that satisfies our restrictions and assumptions, there exist a finite

set of plan traces that cause CaMeL to converge to the canonical form of D.

Sketch of Proof: To prove this theorem, two lemmas are needed first:

Lemma 1 For each active method, there exist plan traces that use that method.

Lemma 2 For each non-redundant precondition P , there exist plan traces that depend on P , that is, if P is deleted,

there will be either inapplicable methods that become applicable (in cases where deletion of P makes the overall

precondition less restrict, such as cases where P is a conjunct in a conjunction), or applicable methods that become

inapplicable (in cases where deletion of P makes the overall precondition more restrictive, such as cases where P is

a disjunct in a disjunction).

To create a finite set of plan traces that cause CaMeL to converge to the canonical form of a domain D that it is

learning, consider all the active methods in D. For each such method m = (NT, DEC,P ), we can create planning

problems of the form (NT, Si, D). Plan traces associated with these planning problems fall into two categories,

according to each Si: Either m is applicable to decompose NT (such plan traces exist according to Lemma 1), or it is

not. These two categories of plan traces can be used as positive and negative examples to learn what P is in the version

space associated with this method. According to the position of P in the finite lattice of all possible preconditions

(This lattice exists because of Assumption 4), we can set the values of Sis such that as a result of these positive and

negative examples, the version space associated with m converges to P . This is possible because according to Lemma

2, all the different non-redundant elements in P can be verified by some plan traces. 2

6 Empirical Evaluation

Theorem 4 says that there always exists a set of training samples that causes CaMeL to converge if the domain

definition satisfies our restrictions and assumptions. However, this theorem does not give us any information about the

number of training samples in such a set. What we need in practice is an answer to the question “How many samples

will be needed to converge on average?”. In this section, we will discuss our experiments to answer this question.

6.1 Test Domains

The first domain we used in our experiments was the well-known blocks world domain. We used an HTN domain

description based on the block-stacking algorithm discussed in (Gupta and Nau 1992). Our HTN implementation has

6 operators and 11 methods.

The second domain we used was a simplified and abstracted version of Noncombatant Evacuation Operation

(NEO) planning (Muñoz-Avila, McFarlane, Aha, Ballas, Breslow, and Nau 1999). Our HTN implementation has 4

operators and 17 methods.

19



6.2 Simulating a Human Expert

One goal in our work is to learn methods for HTN planners in NEO planning domains. These domains are usually

complicated, requiring many samples to learn each method. It is difficult to obtain these training samples for these

kinds of domains. Even if we had access to the real world NEO training samples, those samples would need to be

classified by human experts and the concepts learned by CaMeL would need to be tested by human experts to assess

their correctness. This would be very expensive and time-consuming.

In order to overcome this problem, we decided to simulate a human expert. We used a correct hierarchical planner

to generate planning traces for random planning problems on an ordered HTN domain. Then we fed these plan traces

to CaMeL and observed its behavior until it converged to the set of methods used to generate these plan traces.

The hierarchical planner we used is a slightly modified version of SHOP (Nau, Cao, Lotem, and Muñoz-Avila

1999). In SHOP, if more than one method is applicable in some situation, the method that appears first in the SHOP

knowledge base is always chosen. Since in our framework there is no ordering on the set of methods, we changed this

behavior so that SHOP chooses one of the applicable methods randomly at each point. We also changed the output of

SHOP from a simple plan to a plan trace.

6.3 Generating the Training Set

For blocks world, we generated four sets of random problems with 100, 200, 300, and 400 blocks. We generated

planning problems block by block, putting each new block randomly and uniformly onto an existing clear block or the

table.

In order to generate plan traces in the NEO domain, we had to generate a random NEO planning problem and

feed it to the modified version of SHOP. To generate a random NEO planning problem, every possible state atom was

assigned a random variable, indicating whether or not it should be present in the initial state of the world (e.g., whether

there should be an airport in a specific city), or what value its corresponding state atom should have (whether the

evacuation operation is to take place in a hostile, neutral, or permissive environment). In our preliminary experiments,

we noticed that the values taken by most variables did not affect the results in a significant way (i.e., these different

values did not result in a noticeable change in either the number of plan traces needed to converge or the learning

time). The one exception was the variable indicating if there is an airport in a city. Therefore, we decided to assign a

uniform distribution to all random variables other than this variable, and to perform experiments with several different

values of this variable, to which we will refer as P in this Section. We conducted eleven sets of experiments, with

P = 1
12 , 2

12 ,. . . , 1112 .
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Figure 6: Blocks World: Number of plan traces needed to converge (left), CPU time used by CaMeL to converge
(right)

6.4 Results

Each of the results in this section is calculated by averaging the results in 10 different sets of randomly-generated

training sets. There was little variation in the results of each individual run: The difference between each such result

and the average of the results (reported here) was never more than 10%.

Figure 6 shows the number of plan traces needed to converge in the blocks world and the CPU time used by

CaMeL to do so.4 As expected, the number of plan traces needed by CaMeL to converge decreases as larger problems

are given. The reason is that more information is provided in each plan trace. However, the learning time seems to be

roughly the same for different problem sizes: The extra time needed to handle larger problem sizes offsets the facts

that CaMeL needs fewer plan traces.

For the NEO domain, after generating the eleven sets of training samples for P = 1
12 , 2

12 ,. . . , 1112 , we fed each

training set to CaMeL until it converged. Figure 7 shows the number of plan traces needed in each case in order

for CaMeL to converge, and the time in seconds CaMeL needed to converge in each of those cases. As can be

seen, the number of required plan traces and time is minimized when the probability P of a city having an airport is

approximately 50% (i.e., the 6th training set). For other values of P , methods are harder to learn. When P is close to 0

(i.e., 1st training set), the hard-to-learn methods are those whose preconditions require cities to have airports, because

the cases where these methods are applicable somewhere in given plan traces are so rare that the learner cannot easily

induce their preconditions. When P is close to 1, the preconditions that are hard to learn are those methods that do not

require cities to have airports. the probability that there is an airport whenever these methods are applicable is high.

As a result, the learner cannot induce that an airport’s presence is not required.

In our experiments, CaMeL learned some methods much more quickly than others. The first graph in Figure 8
4These experiments were conducted on a Sun Ultra 10 machine with a 440 MHz SUNW UltraSPARC-IIi CPU and 128 megabytes of RAM.
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Figure 7: NEO Domain: Number of plan traces needed to converge (left), CPU time used by CaMeL to converge
(right)
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Figure 8: Speed of convergence for different training sets in NEO domain, and percentage of problems SHOP could
solve using the methods that had already converged. The total number of methods in the domain is 17.

shows how many of the methods are learned completely as a function of the number of plan traces, for the cases where

P = 3
12 , 5

12 , 7
12 , 9

12 . From examining the raw data that went into this figure, we observe that:

1. When P is close to 50%, all methods are learned very quickly.

2. When P is close to 0, methods whose preconditions do not require cities to have airports are learned very

quickly.

3. When P is close to 1, methods whose preconditions require cities to have airports are learned very quickly.

We believe that these observations are quite important: When P is close to zero, methods that do not use airports

are more likely to be used to decompose the tasks in the training set, which makes them easier to learn. If we believe

that the planning problems in the test set follow the same distribution as the planning problems in the training set, it can

be argued that these quickly-learned methods are the ones that will be the most useful and therefore the most important
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to solve the planning problems in the test set. The same argument can be made when P is close to 1 with the methods

that require cities to have airports. In other words, CaMeL learns the most useful methods quickly, suggesting that

CaMeL may potentially be of use in real world domains even if only a small number of training samples are available.

To test the our hypothesis that CaMeL learns most of the methods quickly, we conducted another experiment. In

this experiment, CaMeL tries to solve problems in the NEO domain even before complete convergence is achieved.

In order to solve the planning problems, CaMeL used only methods whose preconditions were learned completely,

omitting all other methods from the domain description. The results of this experiment for the cases where P =

3
12 , 5

12 , 7
12 , 9

12 are shown in the second graph in Figure 8. As can be seen, in the cases where learning was slower,

i.e., the cases where P = 3
12 or 9

12 , almost four-fifth and two-third of problems can be solved respectively using less

than 120 plan traces although with 120 plan traces there are respectively 4 and 8 methods out of a total of 17 yet to be

completely learned, and learning the entire domain requires more than 200 plan traces in each case (see first graph in

Figure 8). This suggests that more useful methods have already been learned and the extra plan traces are needed only

to learn methods that are not as common. It also suggests that CaMeL can be useful in solving a lot of problems long

before all methods are learned.

7 Related Work

Much of the work done on the integration of learning and planning is focused on conventional action-based planners,

rather than HTN planning as in CaMeL. Usually, this work, as formulated in (Minton 1990), is aimed at speeding up

the plan generation process or to increase the quality of the generated plans by learning search control rules. These

rules give the planner knowledge to help it decide at choice points and include selection (i.e., rules that recommend

to use an operator in a specific situation), rejection (i.e., rules that recommend not to use an operator in a specific

situation or avoid a world state), and preference (i.e., rules that indicate some operators are preferable in specific

situations) rules.

The input for learning how to solve a planning problem as mentioned in (Langley 1996) consists of partial given

knowledge of a problem-solving domain and traces of search performed by the system in the search space of problems

in that domain. The idea that this set of experiences can contain solution paths (or in our terminology, plan traces) was

suggested in (Sleeman, Langley, and Mitchell 1982). Mitchell, Mahadevan, and Steinberg (1985) suggest learning

apprentices, which acquire their knowledge by observing a domain expert solving a problem, be used as control rule

learning algorithms for the first time.

Explanation-Based Learning (EBL) has been used to induce control rules (Minton 1988). STATIC (Etzioni 1993)

uses a graph representation of problem spaces to derive EBL-style control knowledge. Shavlik (1989) introduces

BAGGER, a system that uses analytical methods and EBL to learn recursive structures. Kautukam and Kambhampati

(1994) discuss the deduction of explanation-based control rules in partial ordered planning. Leckie and Zukerman
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(1998) uses inductive methods to learn search control rules. Borrajo and Veloso (1997) introduce a lazy learning

method that combines deductive and inductive strategies to incrementally learn control knowledge. The knowledge

acquired by this method is used to refine and/or override the default behavior of the planner in cases where doing

so will improve planner’s efficiency or solution quality. Another widely used approach to acquire domain control

knowledge in action-based planners is that of learning Macro-Operators (i.e., a sequence of operators that frequently

appear together in plans and therefore can be treated as one super-operator that can achieve the collective effects of

those operators). For example, see (Iba 1989; Mooney 1989; Tadepalli 1991; Tadepalli and Natarajan 1996). In (Zelle

and Mooney 1993), EBL is used in the context of inductive logic programming to induce clause selection rules that

can significantly speed up logic programs by helping them choose the next branch in the search space to follow.

There has been some recent work on applying various learning algorithms to induce task hierarchies. Garland,

Ryall, and Rich (2001) use a technique called programming by demonstration to build a system in which a domain

expert performs a task by executing actions and then reviews and annotates a log of the actions. This information is

then used to learn hierarchical task models. KnoMic (van Lent and Laird 1999) is a learning-by-observation system

that extracts knowledge from observations of an expert performing a task and generalizes this knowledge to a hierarchy

of rules. These rules are then used by an agent to perform the same task. Langley and Rogers (2004) describe how

ICARUS, a cognitive architecture that stores its knowledge of the world in two hierarchical categories of Concept

memory and skill memory, can learn these hierarchies by experiencing problem solving in sample domains. Stone and

Veloso (2000) discuss a system that learns a hierarchical controller to play robot soccer. Other systems that deal with

hierarchy induction using sample data include MARVIN (Sammut and Banerji 1986), X-Learn (Reddy and Tadepalli

1997), Sequitur-IAM (Pfleger 2002), and STL (Utgoff and Stracuzzi 2002).

Another aspect concerning the integration of planning and learning is automatic domain knowledge acquisition. In

this framework, the planner does not have the full definition of the planning domain and tries to learn this definition by

experimentation. Gil (1992, 1994) discusses a dynamic environment in which the preconditions or effects of operators

change over time, and methods to derive these preconditions and effects dynamically. In (Gil 1993), instead of revising

existing operators, new operators are acquired by direct analogy with existing operators, decomposition of monolithic

operators into meaningful sub-operators and experimentation with partially-specified operators. These are all done in

conventional action-based planning environment rather than HTN as in CaMeL. CaMeL assumes that the complete

definition of the planning operators and their add and delete lists are known in advance. It instead focuses on learning

HTN methods.

Winner and Veloso (2002, 2003a) use plan examples to learn plan templates. These plan templates are pieces

of code that compactly represent the domain-specific information learned during the planning process. These plan

templates are then merged and generalized to synthesize domain-specific planners that can then be used to solve
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new problems in that domain. Winner and Veloso (2003b) introduce algorithm DISTILL: DISTILL converts each of

its input plans to a domain-specific planner and then merges it with previously-learned domain-specific planners. It

can also derive one-step loops from example plans that enables it to apply its experience with smaller problems to

arbitrarily large ones. This algorithm is used in action-based planning rather than HTN planning as in CaMeL.

PRODIGY (Minton, Knoblock, Kuokka, Gil, Joseph, and Carbonell 1989) is an architecture that integrates plan-

ning and learning in its several modules (Veloso, Carbonell, Pérez, Borrajo, Fink, and Blythe 1995). SCOPE (Estlin

1998) is a system that learns domain-specific control rules for a partial-ordered planner that improve both planning

efficiency and plan quality (Estlin and Mooney 1997) and uses both EBL and Inductive Logic Programming (ILP)

techniques. SOAR (Laird, Rosenbloom, and Newell 1986) is a general cognitive architecture for developing systems

that exhibit intelligent behavior. These systems are mostly focused on learning control knowledge. In contrast, CaMeL

learns domain knowledge.

PASSAT (Myers, Tyson, Wolverton, Jarvis, Lee, and desJardins 2002) is a mixed-initiative, human-centric, HTN-

based planning framework that allows users to use its rich library of templates (which are modeled as task networks)

to author plans. Final plans are supposed to include plan sketches (Myers and Lee 1997), which are prescriptions of

goals and actions to be included in the solution. Myers, Jarvis, Tyson, and Wolverton (2003) discuss mixed-initiative

approaches to handle cases where given plan sketches are not consistent: The system guides a human planner through

the process of modifying a plan sketch to eliminate detected problems by identifying sketch problems and possible

repairs, while the human acts as the final decision maker. In other words, the main focus here is assisting a human

being to author a plan, while CaMeL’s focus is on automated planning.

8 Conclusion and Future Work

In this paper, we have formulated a framework to define and evaluate what an HTN precondition learner is and what

it should do. We have extended the definitions of soundness, completeness and convergence in an intuitive way to fit

in this framework. We have introduced CaMeL, an algorithm that uses machine learning techniques to complete an

incomplete HTN domain description so that it can be used to solve planning problems later. CaMeL is supposed to

observe domain experts while they are solving instances of ordered HTN planning problems, and gather and generalize

information on how these experts solved these problems, so that it can assist other users in future planning problems.

Experiments suggest that CaMeL can quickly (i.e., with a small number of plan traces) learn the methods that are most

useful in a planning domain. This suggests that CaMeL may potentially be useful in real-world applications, since our

experiments in the NEO domain show that it can generate plans for many problems even before it has fully learned all

of the methods in a domain, using only the methods it has fully learned to generate plans and ignoring the methods it

has not fully learned.

CaMeL is an incremental algorithm. Therefore, even if it has not been given enough training samples in order to
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learn all the methods in a domain completely, it should be able to approximate the methods that have not yet been

fully learned, and use those approximations in generating plans rather than just ignoring them. Our future work will

include developing techniques to do these approximations.

There is more information in a plan trace than CaMeL currently uses: At each decision point, in addition to the

list of all applicable methods, CaMeL knows which method was actually chosen to be applied. This latter piece of

information can be used to learn rules that prescribe certain applicable methods over other such methods by observing

such decisions made by domain experts and recorded in input plan traces. We intend to implement another learning

module that derives such rules from plan traces. These rules will be similar to the preference rules in classical planning

discussed in the previous Section.
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Nau, D. S., T.-C. Au, O. Ilghami, U. Kuter, H. Muñoz-Avila, J. W. Murdock, D. Wu, and F. Yaman (2004).

Applications of shop and shop2. Technical Report CS-TR-4604, Department of Computer Science, University

of Maryland.
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