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Abstract

Automated composition of Web Services can be achieved by using AI planningtechniques.
Hierarchical Task Network (HTN) planning is especially well-suited for thistask. In this
paper, we describe how HTN planning system SHOP2 can be used with OWL-S Web Ser-
vice descriptions. We provide a sound and complete algorithm to translate OWL-S service
descriptions to a SHOP2 domain. We prove the correctness of the algorithm by showing the
correspondence to the situation calculus semantics of OWL-S. We implemented asystem
that plans over sets of OWL-S descriptions using SHOP2 and then executes the resulting
plans over the Web. The system is also capable of executing information-providing Web
Services during the planning process. We discuss the challenges and difficulties of using
planning in the information-rich and human-oriented context of Web Services.

1 Introduction

As Web Services – that is, programs and devices accessible via standard Web pro-
tocols – proliferate, it becomes more difficult to find the specific service that can
perform the task at hand. It becomes even more difficult when there is no single
service capable of performing that task, but there are combinations of existing ser-
vices that could. Sufficiently rich, machine-readable descriptions of Web Services
would allow the creation of novel, compound Web Services with little or no direct
human intervention. Semantic Web languages, such as the WebOntology Language
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(OWL) [1] or its predecessor DAML+OIL[2], provide the foundations for such suf-
ficiently rich descriptions.

The OWL-services language [3] (OWL-S)1 , is a set of ontologies for describing
the properties and capabilities of Web services. The OWL-S isdesigned to support
effective automation of various Web Services related activities including service
discovery, composition, execution, and monitoring.

For our work, we are motivated by issues related to automatedWeb Service compo-
sition. The OWL-S process ontology provides a vocabulary fordescribing the com-
position of Web Services. This ontology uses an “action” or “process” metaphor for
describing Web Service behavior - that is, primitive and complex actions with pre-
conditions and effects.

Given a representation of services as actions, we can exploit AI planning techniques
for automatic service composition by treating service composition as a planning
problem. Ideally, given a user’s objective and a set of Web Services, a planner
would find a collection of Web Services requests that achieves the objective. We
believe that HTN planning is especially promising for this purpose, because the
concept of task decomposition in HTN planning is very similar to the concept of
composite process decomposition in OWL-S process ontology.In this paper, we
explore how to use the SHOP2 HTN planning system[4,5] to do automatic compo-
sition of OWL-S Web Services.

In Section 2, we describe a sample scenario for our research.In Section 3, we give
the background knowledge about OWL-S process ontology and SHOP2. In Section
5, we present our approach for automatic Web services composition. In Section 4,
we describe why we think HTN planning is suitable for Web Service composition.
In Section 6, we describe the implementation. In Section 7 wediscuss the chal-
lenges and difficulties of using planning for composing Web Services on Semantic
Web. In Section 8, we summarize some related work. And finally, in Section 9, we
conclude our work and present some future research directions. Throughout this
paper, we use the example we described in Section 2 to illustrate our approach.
But our work is designed to be domain-independent and is not restricted to this
example.

2 Motivating Example

The example we describe here is based loosely on a scenario described in the Scien-
tific American article about the Semantic Web [6]. Suppose Bill and Joan’s mother
goes to her physician complaining of pain and tingling in herlegs and the physician

1 The previous version of OWL-S was called DAML-S and was based on DAML+OIL
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proposes the following sequence of activities:

• A prescription for Relafen, an anti-inflammatory drug;
• An MRI scan and an electromyography, both of these are diagnostic tests to try

to determine possible causes for the symptoms;
• A follow-up appointment with the physician to discuss the results of the diag-

nostic tests.

Bill and Joan need to do the following things for their mother:

• Fill the prescription at a pharmacy;
• Make appointments to take their mother to the two treatments;
• Make an appointment for the doctor’s follow-up meeting.

For the three appointment times, there are the following preferences and constraints:

• For the two treatments:
· Bill and Joan would prefer two appointment times that are close together sched-

uled at one or two nearby places, so that only one person needsto drive, and
that person drives only once.

· Otherwise, they would prefer two appointment times on different days, so that
each person needs to drive once.

• The appointment time for doctor’s follow up check must be later that the ap-
pointment times for the two treatments.

• An appointment time must fit the schedule of the person that will drive to the
appointment.

Assume that there are the requisite Web Services for finding appointment times and
making appointments at the relevant clinics, Bill and Joan could use those services
to schedule their mother’s appointments. It would be difficult for Bill and Joan to
finish their task with an optimal plan by consulting the Web Services manually,
because:

• They may have to try every available pair of close appointment times at any two
nearby treatment centers in order to find one that fits their schedules.

• Furthermore, if they first choose an appointment time for onetreatment and then
find they have to use this same time for the other treatment, then they will have
to reschedule the first appointment.

Instead, suppose we use the OWL-S process ontology to encode adescription of
how to use Web Services to accomplish tasks such as the one faced by Bill and
Joan. If we have an automated system which can find an execution path based on
these predefined task decompositions, then we can perform Bill and Joan’s Web
Services composition task automatically.
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3 Background

3.1 OWL-S

In the OWL-S process ontology, operations are modeled as processes. There are
three kinds of processes:atomicprocesses,compositeprocesses andsimplepro-
cesses. In OWL-S, anatomic process is a model of a “single step” (from the
point of view of the client) Web Service that is directly executed to accomplish
some task. Executing anatomicprocess consists of calling the corresponding Web-
accessible program with its input parameters bound to particular values. Acom-
positeprocess represents a compound Web Service, i.e., it can be decomposed
into otheratomic, simpleor compositeprocesses. The decomposition of acom-
positeprocess is specified through its control constructs. The setof control con-
structs includes:Sequence, Unordered, Choice, If-Then-Else, Iterate, Repeat-
Until , Repeat-While, Split andSplit+Join. A simple process is an abstraction of
an atomic or composite process (or of a possibly empty set of these). It is not con-
sidered to be directly executable, but provides an abstractview of an action. Like
atomic processes, simple processes are, themselves, single-step, but unlike atomic
processes, it’s possible to peek at the internal structure of a simple process (if avail-
able) or to replace the simple process with an expansion of it.

In the process ontology, each process has several properties, including,(optional)
inputs, preconditions, (conditional)outputsand (conditional)effects. Preconditions
specify things that must be true of the world in order for an agent to execute
a service.Effectscharacterize the physical side-effects that execution of aWeb-
service has on the world.InputsandOutputscorrespond to knowledge precondi-
tions and effects. That is, necessary states of our knowledge base before execution
and modifications to our knowledge base as a result of the execution. Note that
not all services have significant side-effects, in particular, services that are strictly
information-providing do not. Here is part of the OWL-S (version 0.9) definition
of an atomic process called PharmacyLocator used in our treatment scheduling ex-
ample:

<owl:Class rdf:ID="PharmacyLocator">
<rdfs:subClassOf rdf:resource="&process;#AtomicProcess"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="LocationPreference">
<rdfs:subPropertyOf rdf:resource="&process;#input"/>
<rdfs:domain rdf:resource="#PharmacyLocator"/>
<rdfs:range rdf:resource= "&concepts;#LocationPreference"/>

</owl:ObjectProperty>
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The process model of a compound Web Service includes the designation of the
top-level composite process corresponding to that serviceplus a decomposition of
that composite process into a structured collection of (perhaps further decomposed)
subprocesses.2 Web Services composition is sometimes thought of as the process
of generating a (potentially) complexly structured composite process description
which is subsequently executed. On this model, composite processes are theoutput
of composition. In this paper, we take composite processes as input to a planner, that
is, as descriptions ofhow to compose a sequence of single step actions. Thus, for
us, the goal of automated Web services composition is find a collection of atomic
processes instances which form an execution path for some top-level composite
process.

3.2 SHOP2

SHOP2 is a domain-independent HTN planning system, which won one of the top
four awards out of the 14 planners that competed in the 2002 International Planning
Competition. HTN planning is an AI planning methodology thatcreates plans by
task decomposition. HTN planners differ from classical AI planners in what they
plan for, and how they plan for it. The objective of an HTN planner is to produce
a sequence of actions that perform some activity or task. Thedescription of a plan-
ning domain includes a set of operators similar to those of classical planning, and
also a set of methods, each of which is a prescription for how to decompose a task
into subtasks. Planning proceeds by using methods to decompose tasks recursively
into smaller and smaller subtasks, until the planner reaches primitive tasks that can
be performed directly using the planning operators.

One difference between SHOP2 and most other HTN planning systems is that
SHOP2 plans for tasks in the same order that they will later beexecuted. Planning
for tasks in the order that those task will be performed makesit possible to know
the current state of the world at each step in the planning process, which makes
it possible for SHOP2’s precondition-evaluation mechanism to incorporate signifi-
cant inferencing and reasoning power and the ability to callexternal programs. This
makes SHOP2 ideal as a basis for integrating planning with external information
sources, including Web based ones.

In order to do planning in a given planning domain, SHOP2 needs to be given the
knowledge about that domain. A SHOP2 knowledge base consists of operators and
methods (plus, various non-action related facts and axioms). Each operator is a
description of what needs to be done to accomplish some primitive task, and each
method tells how to decompose some compound task into a set ofpartially ordered
subtasks.

2 Here, we assume that a compound Web Service always has a complete decomposition
bottoming out in atomic processes. Such a composite process isexecutable.
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Definition 1 (Operator) A SHOP2 operator is an expression of the form (h(−→v )
Pre Del Add) where

• h(−→v ) is a primitive task with a list of input parameters−→v
• Pre represents the operator’s preconditions
• Del represents the operator’s delete list which includes thelist of things that will

become false after operator’s execution.
• Add represents the operator’s add list which includes the list of things that will

become true after operator’s execution.

The expressivity of SHOP2 preconditions and effects are similar to those found in
Planning Domain Definition Language (PDDL) [7]. Precondition contains logical
atoms with variables that are either defined inh or existentially quantified. Logical
atoms can be combined using the logical connectives such as conjunction, disjunc-
tion, negation, implication and universal quantification.AddandDel lists are gen-
erally defined to be a conjunction of logical atoms but conditional expressions and
quantified expressions can also be used.

Definition 2 (Method) A SHOP2 method is an expression of the form (h(−→v ) Pre1

T1 Pre2 T2 . . .) where

• h(−→v ) is a compound task with a list of input parameters−→v
• EachPrei is a precondition expression
• EachTi is a partially ordered set of subtasks.

The meaning of this is analogous to a conditional expression: it tells SHOP2 that
if Pre1 is satisfied thenT1 should be used, otherwise ifPre2 is satisfied thenT2

should be used, and so forth. A task list is simply a list of tasks that tells how this
compound task will be decomposed into subtasks. Tasks in thelist can be primitive
or compound and a task list can be defined asorderedor unordered.

In addition to the usual logical atoms, preconditions of SHOP2 methods and op-
erators may also contain calls to external programs and assignments to variables.
These are useful for integrating planning with queries to information sources on the
Web. For example, the following expression

(assignv (call f t1 t2 . . .tn))

will bind the variable symbolv with the result of calling external proceduref with
argumentst1 t2 . . .tn.

Definition 3 (Planning Problem) A planning problem for SHOP2 is a triple (S,
T , D), whereS is initial state,T is a task list, andD is a domain description. By
taking (S, T , D) as input, SHOP2 will return a planP = (p1p2...pn), that is, a
sequence of instantiated operators that will achieveT fromS in D.
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4 Why HTN Planning is Suitable for Web Service Composition

There is a clear point where the composition as planning and composition as build-
ing up, i.e., “composing”, CompositeProcesses intersect: when the plan itself is
a CompositeProcess. This is always trivially the case as a standard SHOP2 plan
is a sequence of operators. Furthermore, it is straightforward to extend SHOP2
to generate conditional plans which begin to look like moreinterestingCompos-
iteProcesses. However, the generation of CompositeProcesses by planning is better
viewed as thespecializationof prewritten CompositeProcesses than the authoring
of complex, entirely novel programs.

There are several ways in which the HTN approach is promisingfor service com-
position:

• HTN encourages modularity. Methods can be written without consideration of
how its subtasks will decompose or what compound tasks it decomposes. The
method author is encouraged to focus on the particular levelof decomposition at
hand.

• This modularity fits in well with Web Services. Methods correspond torecur-
sively composable workflows. These workflows can come from diverse indepen-
dent sources and then integrated by the planner to produce situation specific,
instantiated workflows.

• Since the planner considers the entire execution path, it has opportunities to mini-
mize various sorts of failures or costs. Most obviously, if the planner finds a plan,
one knows that the top level task is achievable with the resources at hand. If the
granularity of the services is large enough then it can be considerably easier for
a human being to inspect and understand the plan.

• HTN planning scales well to large numbers of methods and operators.
• Some HTN planners (e.g., SHOP2) support complex precondition reasoning, and

even the evaluation of arbitrary code at plan time. These features make it straight-
forward to, integrate existing knowledge bases on the Semantic Web as well as
the information supplying Web Services.

• HTN planning provides natural places for human intervention at plan time. The
two obvious examples are first, that in preconditions, a codeor service call can
query a person for special input, and second, if the planner hits a point where it
cannot continue decomposition, it can request a decomposition of that step from
another person, or even a software agent.3

3 For example, the HiCAP [8] system employed SHOP as a component of a mixed initia-
tive system.
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5 From OWL-S to SHOP2

The execution of an atomic process is a call to the corresponding Web accessible
program with its input parameters instantiated.4 The execution of a composite pro-
cess ultimately consists in the execution of a collection ofspecific atomic processes.
Instead of directly executing the composite process as a program on an OWL-S in-
terpreter, we can treat the composite process as specification for how to compose
a sequence of atomic process executions. In this section, wewill show how to en-
code a composite process composition problem as a SHOP2 planning problem, so
SHOP2 can be used with OWL-S Web Services descriptions to automatically gen-
erate a composition of Web services calls.

5.1 Encoding OWL-S Process Models as SHOP2 Domains

In this section, we introduce an algorithm for translating acollection of OWL-
S process modelsK into a SHOP2 domainD. In our translation, we make the
following assumption:

Assumption 1 Given a collection of OWL-S process modelsK = {K1, K2, . . . , Kn},
we assume:

• All atomic processes defined inK can either have effects or outputs, but not
both. According to the situation calculus based semantics of OWL-S[9], outputs
characterize knowledge effects of executing Web Services and effectscharac-
terize physical effects for executing Web services. An atomic process with only
outputs models a strictly information-providing Web Service. And an atomic pro-
cess with only effects models a world-altering Web Service.In general, we don’t
want to actually affect the world during planning. However,we do want to gather
certain information from information-providing Web Services, which entails ex-
ecuting them at plan time. To enable information gathering from Web Services
at planning time, we require that the atomic processes to be either exclusively
information-providing or exclusively world-altering.

• There is no composite process inK with OWL-S’s Split andSplit+Join con-
trol constructs. SHOP2 currently does not handle concurrency. Therefore in our
translation, we only consider OWL-S process models that haveno composite
process usingSplit and Split+Join control construct. We also assume only a
non-concurrent interpretation ofUnordered (as permitted by OWL-S). We in-
tend to address how to extend SHOP2 to handle concurrency in the future work.

4 Here, we assume that before the execution of an atomic process the preconditions for
executing the atomic process have been satisfied.
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We encode a collection of OWL-S process definitionsK into a SHOP2 domainD
as follows:

• For each atomic process with effects inK, we encode it as a SHOP2 operator
that simulates the effects of the world-altering Web Service.

• For each atomic process with output inK, we encode it as a SHOP2 operator
whose precondition include a call to the information-providing Web Service.

• For each simple or composite process inK, we encode it as one or more SHOP2
methods. These methods will tell how to decompose an HTN taskthat represents
the simple or composite process.

The following algorithm shows how to translate an OWL-S definition of an atomic
process with only effects into a SHOP2 operator.5

TRANSLATE -ATOMIC -PROCESS-EFFECT(Q)
Input: a OWL-S definitionQ of an atomic processA with only effects.
Output: a SHOP2 operatorO.
Procedure:

(1) −→v = the list of input parameters defined forA in Q

(2) Pre= conjunct of all preconditions ofA, as defined inQ
(3) Add= collection of all positive effects ofA, as defined inQ
(4) Del = collection of all negative effects ofA, as defined inQ
(5) ReturnO = (A(−→v ) Pre Del Add)

The above algorithm translates each atomic OWL-S definition into a SHOP2 oper-
ator that will simulate the effects of a world-altering Web Service by changing its
local state via an operator. Such Web Services will never be executed at planning
time, for obvious reasons.

The following algorithm shows how to translate a OWL-S definition of an atomic
process with only outputs into a SHOP2 operator.

TRANSLATE -ATOMIC -PROCESS-OUTPUT(Q)
Input: a OWL-S definitionQ of an atomic processA with only outputs.
Output: a SHOP2 operatorO.
Procedure:

(1) −→v = the list of input parameters defined forA as inQ

(2) Pre= a conjunct of all the preconditions ofA, as defined inQ, plus one more
precondition of the form (assigny (call Monitor A −→v )), where Monitor is a
procedure which will handle SHOP2’s call to Web services

(3) Add= y

5 Conditional effects can be easily encoded into SHOP2 operators. Here,for simplicity,
we assume that effects (and outputs) are not conditional.
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(4) Del = ∅
(5) ReturnO = (A(−→v ) Pre Del Add)

The above algorithm translates each atomic OWL-S definition into a SHOP2 op-
erator that will call the information-providing Web service in its precondition. In
this way, the information-providing Web Service is executed during the planning
process. The operator for these atomic processes are entirely “book-keeping”, thus
none of these operators will appear in the final plan.

The following algorithm shows how to translate a OWL-S definition of a simple
process into SHOP2 method(s).

TRANSLATE -SIMPLE -PROCESS(Q)
Input: a OWL-S definitionQ of a simple processS.
Output: a collection of SHOP2 methodsM .
Procedure:

(1) −→v = the list of input parameters defined forS as inQ

(2) Pre= conjunct of all preconditions of S as defined inQ

(3) (b1, . . . , bm) = the list of atomic and composite processes that realizes or col-
lapse intoS as defined inQ.

(4) for i = 1, . . . , m
• Mi = (S(−→v ) Pre bi)

(5) returnM ={M1, . . . ,Mm}

The following algorithm shows how to translate a OWL-S definition of a composite
process withSequencecontrol construct into a SHOP2 method.

TRANSLATE -Sequence-PROCESS(Q)
Input: a OWL-S definitionQ of a composite processC with Sequencecontrol
construct.

Output: a SHOP2 methodM .
Procedure:

(1) −→v = the list of input parameters defined forC as inQ

(2) Pre= conjunct of all preconditions of C as defined inQ

(3) B = Sequencecontrol construct of C as defined inQ
(4) (b1, . . . , bm) = the sequence of component processes ofB as defined inQ
(5) T = ordered task list of(b1, . . . bm)
(6) ReturnM = (C(−→v ) PreT )

The following algorithm shows how to translate a OWL-S definition of a composite
process withIf-Then-Else control construct into a SHOP2 method.

TRANSLATE -I f-Then-Else-PROCESS(Q)
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Input: a OWL-S definitionQ of a composite processC with If-Then-Else control
construct.

Output: a SHOP2 methodM .
Procedure:

(1) −→v = the list of input parameters defined forC as inQ

(2) πif = conditions forIf as defined inQ
(3) Pre1 = conjunct of all preconditions of C as defined inQ andπif

(4) Pre2 is conjunct of all preconditions of C as defined inQ

(5) b1 = process forThen as defined inQ
(6) b2 = process forElseas defined inQ
(7) ReturnM = (C(−→v ) Pre1 b1 Pre2 b2)

The following algorithm translates a OWL-S definition of a composite process with
Repeat-Whilecontrol construct into SHOP2 methods.

TRANSLATE -Repeat-While-PROCESS(Q)
Input: a OWL-S definitionQ of a composite processC with Repeat-Whilecon-
trol construct.

Output: a collection of SHOP2 methodsM .
Procedure:

(1) −→v = the list of input parameters defined forC as inQ

(2) πwhile = conditions forWhile as defined inQ
(3) Pre= conjunct of all preconditions of C as defined inQ

(4) b1 = process forRepeatas defined inQ
(5) M1 = (C(−→v ) PreC1(−→v ))
(6) M2 = (C1(−→v ) πWhile (b1C1(−→v )) ∅ ∅)
(7) ReturnM = {M1, M2}

Note thatM2 method definition has two condition-task list pairs. The first condition
and task list pair ensures that the process inside the loop isiterated as long as the
condition is true. When this condition becomes false, SHOP2 will check the second
condition which is empty (denoted by∅) thus always true. The task list for this
condition is also empty so nothing will be added to the resulting plan. This second
pair is just needed to make sure that plan will not fail when the loop condition
becomes false.

The following algorithm translates a OWL-S definition of a composite process with
Repeat-Until control construct into SHOP2 methods.

TRANSLATE -Repeat-Util-PROCESS(Q)
Input: a OWL-S definitionQ of a composite processC with Repeat-Until control
construct.

Output: a collection of SHOP2 methodsM .
Procedure:
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(1) −→v = the list of input parameters defined forC as inQ

(2) πUntil = conditions forUntil as defined inQ
(3) Pre= conjunct of all preconditions of C as defined inQ

(4) b1 = process forRepeatas defined inQ
(5) M1 = (C(−→v ) PreC1(−→v ))
(6) M2 = (C1(−→v ) (not(πUntil)) (b1C1(−→v )) ∅ ∅)
(7) ReturnM = {M1, M2}

The following algorithm translates a OWL-S definition of a composite process with
Choicecontrol construct into a collection of SHOP2 methods.

TRANSLATE -Choice-PROCESS(Q)
Input: a OWL-S definitionQ of a composite processC with Choicecontrol con-
struct.

Output: a collection of SHOP2 methodsM .
Procedure:

(1) −→v = the list of input parameters defined forC as inQ

(2) Pre= conjunct of all preconditions of C as defined inQ

(3) B = Choicecontrol construct of C as defined inQ
(4) (b1, . . . , bm) = the bag of component processes ofB as defined inQ
(5) for i = 1, . . . , m

• Mi = (C(−→v ) Pre bi)
(6) returnM ={M1, . . . ,Mm}

The following algorithm translates a OWL-S definition of a composite process with
Unordered control construct into a SHOP2 method.

TRANSLATE -Unordered-PROCESS(Q)
Input: a OWL-S definitionQ of a composite processC with Unordered control
construct.

Output: a SHOP2 methodM .
Procedure:

(1) −→v = the list of input parameters defined forC as inQ

(2) Pre= conjunct of all preconditions of C as defined inQ

(3) B = Unordered control construct of C as defined inQ
(4) (b1, . . . , bm) = the bag of component processes ofB as defined inQ
(5) T = unordered task list of(b1, . . . bm)
(6) ReturnM = (C(−→v ) PreT )

The following algorithm translates a collection of OWL-S process models into a
SHOP2 domain.

TRANSLATE -PROCESS-MODEL (K)
Input: a collection of OWL-S process modelsK.

12



Output: a SHOP2 domainD.
Procedure:

(1) D = ∅
(2) For each atomic process definitionQ in K

• If this atomic process has only outputs
· O = TRANSLATE-ATOMIC-PROCESS-OUTPUT(Q)

• If this atomic process has only effects
· O = TRANSLATE-ATOMIC-PROCESS-EFFECT(Q)

• addO to D

(3) For each simple process definitionQ in K

• M = TRANSLATE-SIMPLE-PROCESS(Q)
• add M toD

(4) For each composite process definitionQ in K

• If the process has aSequencecontrol construct
· M = TRANSLATE-Sequence-PROCESS(Q)

• If the process has aIf-Then-Else control construct
· M = TRANSLATE-If-Then-Else-PROCESS(Q)

• If the process has aChoicecontrol construct
· M = TRANSLATE-Choice-PROCESS(Q)

• If the process has aRepeat-Whilecontrol construct
· M = TRANSLATE-Repeat-While-PROCESS(Q)

• If the process has aRepeat-Until control construct
· M = TRANSLATE-Repeat-Until-PROCESS(Q)

• If the process has aUnordered control construct
· M = TRANSLATE-Unordered-PROCESS(Q)

• add M toD

(5) ReturnD

To keep the above pseudocode simple, we did not specify the recursive translations
within a composite process. E.g., What happens if we have aSequenceof If-Then-
Elseor further nestings? Our way for handling this problem is to treat each control
construct within a composite process as a composite process. For above example,
in our translation, we will have a SHOP2 method for the composite process with
Sequencecontrol construct and a method for each nestedIf-Then-Else control
construct.

Also we did not explicitly describe how our algorithm handles processes with
dataflow specification. In OWL-S, a composite process can specify that an output
of a composite process is equal to an output of one of its subprocesses whenever the
composite process is instantiated. Also, for a composite process with aSequence
control construct, one can specify that the output of one subprocess is an input to
another subprocesses. SHOP2 does not have the concept of an output and we sim-
ply treat outputs as knowledge effects. The output results of a service are recorded
in the current state using a special predicate and by assigning a unique number to
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each instance of a SHOP2 domain’s methods and operators. Thepredicate (Output

Instance V alue) indicates a method or operator instanceInstance has the value
V alue for the particular outputOutput.

The other aspect of the translation we omitted in the algorithm is the translation of
preconditions and effects. The current OWL-S specification (version 1.0) does not
have a concrete syntax for precondition specification. OWL-S1.1 will support the
description of the preconditions and effects of services using OWL statements with
variables similar to atoms in Semantic Web Rule Language (SWRL). These atoms
will be combined with logical connectives that are already supported in SHOP2.
The translation of such expressions would be straight-forward but it is also impor-
tant to preserve the semantics of OWL (see Section 7.1).

5.2 Encoding OWL-S Web Services Composition Problem as SHOP2Planning
Problem

Narayanan and McIlraith [9] give a formal semantics for OWL-Sin terms of the
situation calculus [10] and Golog [11]. The situation calculus in a first-order lan-
guage for reasoning about action and change. In the situation calculus, the state of
the world is described by functions and relations (fluents) relativized to a situation
s, e.g.,f(x, s). The functiondo(a, s) maps a situations and an actiona into a new
situation. A situation is simply a history of the primitive actions performed from an
initial, distinguished situationS0.

Golog is a high-level logic programming language based on the situation calculus,
that enables the represenation of complex actions. It builds on top of the situation
calculus by providing a set of extralogical constructs (Figure 1) for assembling
primitive actions, defined in the situation calculus, into complex actions that col-
lectively comprise a program,δ. Given a domain theory,D and a Golog program
δ, program execution must find a sequence~a, such thatD |= Do(δ, S0, do(~a, S0)).
Do(δ, S0, do(~a, S0)) denotes that Golog programδ starting atS0 will legally termi-
nate in situationdo(~a, S0)) wheredo(~a, S0)) abbreviatesdo(an, do(an−1, . . . , do(a1, S0)).
Thus,a1, . . . , an are the actions that realize Golog programDelta, starting in the
initial situation,S0.

The semantics given in [9] and [12] maps an OWL-S process to a Golog program
where atomic processes in OWL-S are mapped to primitive actions in Golog and
composite processes in OWL-S are mapped to corresponding complex Golog ac-
tions. Using these semantics, we can define the OWL-S service composition prob-
lem as follows:

Definition 4 (OWL-S Service Composition) Let K = {K1, K2, . . ., Km} be a
collection of OWL-S process models satisfying Assumption 1(from section 5.1),C
be a possibly composite process defined inK, S0 be the initial state, andP =
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a - primitive action
δ1; δ2 - sequence
cond? - test
δ1| δ2 - nondeterministic choice of actions
δ∗ - nondeterministic iteration
if cond then δ1 elseδ2 endIf - conditional
while cond do δ endWhile - while loop

Fig. 1. A subset of Golog constructs to create complex actions that are relevant to OWL-S
constructs.

(p1, p2, . . . , pn) be a sequence of atomic processes defined inK. ThenP is a com-
position forC with respect toK in S0 iff in action theory, we can prove:

Σ |= Do(δC , S0, do(~a, S0)))

where

• Σ is the axiomatization ofK andS0 as defined in action theory.
• δC is the complex action defined forC as defined in action theory
• ai is the primitive action defined forpi as defined in action theory

Note that, this definition is for offline planning, i.e. thereis no execution of information-
providing Web Services during planning. This definition assumes that the initial
state contains the complete information for the domain. In reality, this is not the
case and we interleave the execution of information-providing services with the
simulation of world-altering ones to complete the information in the initial state.
Information gathering is done with respect to the the initial state so the planning
process would yield the same results if all the information-providing Web Services
were executed first and then planning was done. There are someconditions (simi-
lar to IRP assumption [12]) that needs to hold in order to extend this theorem for
interleaved execution. We will discuss these conditions atthe end of this section.

We will now prove that the plans SHOP2 finds for the OWL-S service composition
problem are equivalent to the action sequences found in situation calculus. We will
use the simplified version of SHOP2 algorithm (Figure 2) during the proof. Since
Golog does not provide anUnorderedconstruct we will not consider this construct
in our proof and in the SHOP2 algorithm we have omitted the details related to
unordered tasks. It is possible to defineUnorderedconstruct in ConGolog (Concur-
rent Golog) [13] which is an extension to Golog that allows concurrent execution.
But since SHOP2 does not allow concurrent processes we cannotuse this exten-
sion. Also note that in the original Golog formalism complexactions are defined as
macro definitions [11] so complex actions do not have preconditions. In our proof,
we will show the correspondence to the original Golog approach and assume that
in the given OWL-S process model only atomic processes have preconditions.
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1 procedure SHOP2(s, T , D)
2 if T is empty then return empty plan
3 Let t be the first task in T
4 if t is a primitive task then
5 Find an operatoro = (h Pre Add Del) in D such that

h unifies witht ands satisfiesPre

6 if no sucho exists then return failure
7 Lets′ bes after deletingDel and addingAdd

8 LetT ′ beT after removingt
9 return [o, SHOP2(s′, T ′, D)]
10 else ift is a composite task
11 Find a methodm = (h Pre1 T1 Pre2 T2 . . .) in D such that

h unifies witht

12 Find the task listTi such that
s satisfiesPrei and does not satisfyPrek, k < i

13 if no suchTi exists then return failure
14 LetT ′ beT after removingt

and adding all the elements inTi at the beginning
15 return SHOP2(s′, T ′, D)
16 end if
17 end SHOP2

Fig. 2. A simplified version of the SHOP2 planning procedure.

Theorem 5 LetK = {K1, K2, . . . , Km} be a collection of OWL-S process models
satisfying Assumption 1 (from section 5.1),C be a possibly composite process de-
fined inK, S0 be the initial state, andP = (p1, p2, . . . , pn) be a sequence of atomic
processes defined inK. LetD = TRANSLATE-PROCESS-MODEL(K). ThenP is a
composition forC with respect toK in S0 iff P is a plan for planning problem (S0,
MC , D) whereMC is the SHOP translation for process C.

PROOF. Before giving the proof we should note that there is a representational
difference between how SHOP2 and situation calculus describes the state of the
world. SHOP2 represents state by a set of ground atoms whereas in the situation
calculus, the state of the world is described by relations (fluents) relativized to a
situation. For example,f(~x) is true at some point in the planning process when that
atom occurs in SHOP2’s “state” (e.g., the set of ground atoms). In the situation cal-
culus, truth value for that relation is relative to a specificsituation argument, e.g.,
f(~x, s). The changes to the state in SHOP2 is done by adding or deleting atoms
from the state whereas situation calculus defines successorstate axioms to define
the truth values for the fluents in different situations. Apart from this representa-
tional difference, there is an equivalence between SHOP2 state and situations, e.g.
f(~x) is true in the initial state of SHOP2 ifff(~x, S0) is true in situation calculus.
Applying the effects of an operator will also preserve this equivalence. It is easy
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to verify that the truth value for the predicatef(~x) after applying the effects of an
operator will be equal to the truth value off(~x, do(a, s)) whena is the correspond-
ing situation calculus action and the starting states are equivalent. In general, when
the same sequence of actions/operators are applied to a situation/state, the state of
the world in the final situation/state will be the same. Throughout the proof, we will
use this equivalence and use the same name to denote world states in both notations
when the meaning is clear. The proof of the theorem is by induction:

HypothesisFor a given OWL-S processC, P is a plan for the planning problem
(S0, MC , D) iff Σ |= Do(δC , S0, do(~a, S0))) where~a = [a1, a2, . . .] is the sequence
of primitive actions in situation calculus that corresponds to the sequence of SHOP2
operators inP .

Base CaseSupposeA is an atomic OWL-S process anda is the corresponding
primitive action in situation calculus andoA is the corresponding SHOP2 operator.
Then in Golog it is defined that

Do(a, s, s′) = Poss(a, s) ∧ s′ = do(a, s)

It means when the preconditions for the process is satisfied with respect to situation
s then the primitive action sequence we will get for this simple program will have
only one element, namely~a = [a]. As seen in line 9 of SHOP2 algorithm, the plan
for a primitive task will return the plan that includes the operator instance when the
preconditions of that operator are satisfied (the recursivecall will return empty list
as there are no more tasks in the list). Thus, the plan returned by SHOP2 is [oA]
which is equivalent to the situation calculus result.

Inductive StepWe will do a case by case analysis for each of the control constructs
in the process model to show that our translation and resulting plans SHOP2 finds
are correct.

Choice SupposeC is a composite OWL-S process defined as aChoiceof two 6

other processesC1 andC2. The SHOP2 translation forC will yield two methods
M1 = (C ∅ MC1

) andM2 = (C ∅ MC2
). Note that the SHOP2 methods have no pre-

conditions (∅ is used for preconditions) because we have assumed that composite
processes cannot have preconditions. Corresponding Golog program forC is δC =
δC1

| δC2
and the semantics is defined as

Do(δC1
|δC2

, s, s′) = Do(δC1
, s, s′) ∨ Do(δC2

, s, s′)

The disjunction means any~a that is a valid action sequence for eitherδC1
or δC2

will also be a valid sequence forδC . From our hypothesis we know for each action
sequence~a that satisfiesδC1

(or δC2
) we have a valid SHOP2 planPC1

(or PC2
).

6 Golog choice operator| is defined for two operands. A choice of more operands could
be done by nested| operators which would not effect our proof here
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The nondeterministic choice in SHOP2 algorithm (line 11) shows that when a plan
is being sought forC, the solution for any matching method instance, in this case
M1 andM2, will be returned as a result. This ensures that when SHOP2 isasked to
find all the plans forC, bothPC1

andPC2
will be returned proving the equivalence

to the answer in situation calculus.

SequenceSupposeC is a composite OWL-S process defined as aSequenceof two
other processesC1 andC2. The SHOP2 translation forC will yield one method
MC = (C ∅ (MC1

MC2
)). Corresponding Golog program forC is δC = δC1

; δC2
and

the semantics is defined as

Do(δC1
; δC2

, s, s′) = (∃s∗)(Do(δC1
, s, s∗) ∧ Do(δC2

, s∗, s′))

Suppose that situations∗ represents a history of the action sequence~a1. If the action
sequence recorded between situationss∗ ands′ is~a2 then the final situations′ repre-
sents the concatenated sequence~a =[~a1,~a2]. Calling SHOP2(s, MC1

, D) will return
PC1

and from our hypothesis we know that it is equivalent to the action sequence
~a1. We also know that calling SHOP2(s∗, MC2

, D) will return a planPC2
that is

equivalent to the action sequence~a1. SHOP2 algorithm shows that (line 14) when
a task (in this caseMC) is removed from the input task networkT , it is replaced
with its sub-elements (in this caseMC1

andMC2
). The tasks to solve are selected

from T in the order they were added (line 3) so the resulting plan forSHOP2(s,
MC , D) will actually be the concatenation ofPC1

andPC2
which is equivalent to

the sequence~a.

If-Then-Else SupposeC is a composite OWL-S process defined with aIf-Then-
Elsecontrol construct andcond is the condition for the if statement,C1 is the pro-
cess in the then part andC2 is the process in the else part. The SHOP2 translation
for C will yield one methodMC = (C cond MC1

∅MC2
). Corresponding Golog pro-

gram forC is δC = (if cond then δC1
elseδC2

endIf) and the semantics is defined
as

Do(if cond then δC1
elseδC2

endIf, s, s’)
= Do((cond?; δC1

), s, s’)∨ Do((¬cond?; δC2
), s, s’)

= (cond[s] ∧ Do(δC1
, s, s’))∨ (¬cond[s] ∧ Do(δC2

, s, s’))

The expressioncond[s] evaluates to true whenever the fluentcond is true in situa-
tion s. Suppose~a1 is the action sequence for the situationδC1

and~a2 is the action
sequence for the situationδC2

. If s satisfiescond then the result forδC will be ~a1

otherwise result will be~a2. From our hypothesis we know for any possible~a1 (or
~a2) we have a valid SHOP2 planPC1

(or PC2
). When we call SHOP2(s, MC , D),

the algorithm will check the conditions in the method definition (line 12),cond and
∅ in this translation. Ifcond is satisfied algorithm returnsPC1

and otherwise returns
PC2

which is equivalent to the the result in situation calculus.

Repeat-WhileSupposeC is a composite OWL-S process defined with aRepeat-
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While control construct andcond is the condition for the while statement andC1

is the process in the loop body. As we have assumed that composite processes
do not have preconditions, without losing generality, we can simplify the SHOP2
translation to beMC = (C cond (C1 C) ∅ ∅). Corresponding Golog program forC

is δC = (while cond do δC1
endWhile) and the semantics is defined as

Do(while cond do δC1
endWhile, s, s’) =Do([[(cond?; δC1

)]∗; ¬cond?], s, s’)

This definition includes the nondeterministic iteration operation * which has a
second-order semantics [11]. We will use the restricted version of Golog as de-
fined in [12] where the the iterations has a limitk. This restriction eliminates the
problems caused by unlimited looping and enables us to definea first order seman-
tics.

Assume the iteration runsk times. Whenk = 0, the above formula simplifies to
Do(¬cond?, s, s’) which returns an empty action sequence in situation calculus.
This new formula also implies conditioncond is false in the initial situations.
When SHOP2 is trying to solveMC , sincecond is false the algorithm will choose
(line 12) the second condition-task list pair (note that thesecond condition inMC

is ∅ which is always true). The second task list is∅ so SHOP2 will return an empty
plan as well. Suppose~a is a valid action sequence forδC1

. From our hypothesis we
know for each action sequence~a that satisfiesδC1

we have a valid SHOP2 planPC1
.

In the general case, whenk > 0, the Golog formula becomesDo([cond?; (δC1
)1;

. . .; cond?; (δC1
)k; ¬cond?], s, s’) hence the action sequence will be [~a1, . . ., ~ak].

Note that action sequence for each step of iteration may be different, for example
whenδC1

contains nondeterministic choices. We also know thatcond will be true
in situationss, s1, . . . , sk−1 and false in situationsk. When SHOP2 is searching
a plan forMC , the first condition (cond) will evaluate to true and SHOP2 will
chose the first task list (C1 C). Solving the first taskC1 will add P1 to the plan
and solving second taskC will recursively continue untilcond fails. Since, initial
states are equal and plan prefixes are same,cond will not hold afterkth iteration.
At this point, algorithm will chose the second condition-task list pair (empty task
list) which will conclude the recursion and the plan returned will be [P1, . . ., Pk].
At each step of the iteration we will have the equivalent world states so the action
sequenceai and planPi will be equivalent due to our hypothesis. Therefore, the
final plan and the final action sequence will be equivalent.

Repeat-Until The proof for this case will be very similar to the above prooffor
Repeat-Whileconstruct.

Our proof did not include the effects of executing information-providing services
during planning. Information gathering during planning issame as the Middle
Ground execution (MG) for sensing actions in Golog approach[12]. In both cases,
planning starts with an incomplete initial state and executing sensing actions add
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new knowledge to the state. As long as the information retrieved from the services
is same, we would still have the equivalence of world states in both representations
and we could extend the proof to this case.

The correctness of MG depends on Invocation and Reasonable Persistence (IRP)
assumption. Intuitively, IRP assumption says that 1) Information-providing ser-
vices should be executable in the initial state, and 2) Information gathered from
these services cannot be changed by external or subsequent actions. The first con-
dition follows from the fact that information gathering is done with respect to the
initial state. Second condition assumes no external sourcewill change the gathered
information during the planning process but also prohibitsthe planner do any ac-
tion that will do so. This is to prevent problems such as this one: In our example
domain (see Section 2) a Web Service is executed to get the available appointment
times from a hospital. Then planner simulates scheduling anappointment at one
of the available time slots. If the information-providing service is executed again
and available appointment times (which has not yet been changed) are added to the
knowledge base then there would be a problem because plannerwould be able to
schedule another appointment in the same time slot. IRP prohibits the second step
(changing the information retrieved) to overcome this problem. This is certainly
very restrictive in our case and our solution is to prohibit the last step where the
same information-providing service is executed more than once.

To establish the soundness and completeness of our approachwe have the following
assumptions about the information-providing Web Services:

• executable (in the initial state with all parameters grounded)
• terminable (with finite computation)
• repeatable (with same result for the same call during the planning process)

We also assume that the information that is returned from different Web Services
are disjoint, i.e. no two services return the same information. These assumptions
guarantee that information gathered can only be changed by the actions planner
simulates and there is no way that this simulated change willbe undone by another
information gathering step as long as we execute each information-providing Web
Service at most once.

One other thing to note is that, different from the Golog approach, we don’t allow
the information-providing services appear in the final plansince our translation
methodology maps them to “book-keeping” operators. However, this is just a style
difference as in the Golog approach a post-processing step is suggested to find the
world-altering services for the execution of the resultingplan. In some situations,
it could still be valuable to include the information-providing services in the plan
so a prudent action could verify if the information-providing services still return
same information. This could be easily achieved in our system by changing the
TRANSLATE-ATOMIC-PROCESS-OUTPUT procedure to generate a standard oper-
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ator rather than a “book-keeping” operator (translation rules for precondition and
effect).

6 Implementation

To realize our ideas, we started with an implementation of a OWL-S to SHOP2
translator. This translator is a Java program that reads in acollection of OWL-
S process definitions and outputs a SHOP2 domain. As shown in the translation
algorithm in Section 5.1, when planning for any problem in this domain, SHOP2
will actually call the information-providing Web servicesto collect information
while maintaining the ability of backtrack by merely simulating the effect of world-
altering Web services. The output of SHOP2 is a sequence of world-altering Web
services calls that can be subsequently executed.

We built a monitor which handles SHOP2’s calls to external information-providing
Web Services during planning. We wrote a OWL-S Web Services executor which
communicates with SOAP based Web Services described by OWL-Sgroundings
to WSDL descriptions of those Web Services. Upon SHOP2’s request, the moni-
tor will call this OWL-S Web Services executor to execute the corresponding Web
Service. Since the information-providing services are always defined as atomic pro-
cesses, the service is executed by invoking the WSDL service in the grounding.
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The monitor also caches the responses of the information-providing Web services
to avoid invoking a Web Service with same parameters more than once during
planning. This will save the network communication times and improve planning
efficiency, and establishes the repeatability condition required for proving SHOP2’s
soundness and completeness. Also information can only be added into the current
state if it has not been changed by the planner. We assume thatthe cached infor-
mation will not be changed by other agents during planning and we will generalize
this in our future work.

We also built a SHOP2 to OWL-S plan converter, which will convert the plan pro-
duced by SHOP2 to OWL-S format which can be directly executed by the OWL-S
executor.

We ran our scenario from Section 2 on this system. In doing so:

• Our system communicated with real Web Services. Unfortunately, the current
Web Services available on the Web have only WSDL descriptionswithout any
semantic mark-up. Therefore, we created OWL-S mark-up for the WSDL de-
scriptions of these online services. For some services it was necessary to create
even the WSDL description, e.g. for CVS Online Pharmacy Store.It was not
possible to use real services for some of the services eitherbecause none was
available as Web Services, e.g. a doctor’s agent providing the patient’s prescrip-
tion, or it was infeasible to use a real Web Service for the demo, e.g. making an
appointment with a doctor each time the program is executed.For these services,
we implemented Web Services to simulate these functionalities.

• We built Web Services that allow the access to user’s personal information sources.
For example, it is necessary to learn the user’s schedule to be able to generate
a plan for the example task in our demo. It is possible to get this information
from the sources available on the user’s machine such as a Personal Information
Manager like Microsoft’s Outlook. We have implemented “local” SOAP based
services that will retrieve this kind of information. WSDL and OWL-S descrip-
tions are also generated for these local services so that they can be composed and
executed in the same way as other remotely available services.

Finally, some information gathering services were implemented as direct Java
calls from SHOP2 over a Java/SHOP2 bridge. For example, we have a service
which asks the user for acceptable distances to the treatment center by popping
up a window on the user’s client to accept input. Changing the data entered at
this point will possibly yield a different plan to be generated allowing the planner
produce custom plans depending on personal preferences.

• We also encoded a description of how to compose Web Services for tasks such
as the one faced by Bill and Joan in section 2 in OWL-S. The description is given
as a OWL-S composite process that is composed of several othercomposite pro-
cesses that are defined as sequence, choice or unordered processes. This OWL-S
description constitutes the top level composite process described in Section 5.1
and is translated into a SHOP2 domain for planning. We encodemost of the con-
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straints mentioned in section 2 as Web Service preconditions. Right now, there
is no standard process modeling language for specifying WebService precondi-
tions. Therefore, we directly encode the Web Services preconditions in SHOP2
format.

Figure 4 shows the various components of the system7 and the results achieved
from a sample run of the example domain. The user starts with asimple user in-
terface where an OWL-S service description for any desired task can be loaded.
When the service description for the example domain is selected, a form to enter
the required parameters for the task is presented to the user. This form is generated
based on the ontologies used to describe the input parameters of the service. The
UI will also automatically fill out some of the fields such as the home address from
a user specified knowledge base.

Once all the input parameters are provided SHOP2 starts the planning process us-
ing the domain description obtained from the translation ofthe OWL-S files. Note
that the service selected in the UI is specified by an “abstract” task list, that is, a set
of tasks which can be achieved in a variety of ways. In order to“execute” (it would
be better to say, “perform”, or “achieve”) this service we must decompose these
abstract tasks into actions (services) that we can actuallyinvoked. SHOP2 decom-
poses the top level task into smaller subtasks, and of coursethere may be multiple
different decompositions for any given task. For example, one decomposition for
the top level task yields a task to schedule two appointmentson the same day for
the same person whereas another decomposition will yield a task to schedule two
appointments on two different days for two different drivers (see Section 2 for more
information on domain characteristics). Another example abstract task is to find the
availability of the prescribed medicine in an online pharmacy store. A decomposi-
tion for this task will include all the different Web Services for different online
stores. These decompositions are statically given in the OWL-S service descrip-
tions but one can imagine a more dynamic setting where a Web Service repository
is queried for possible decompositions.

The SHOP2 planner will execute the information-providing Web Services to gather
the necessary information for plan generation. e.g. get theavailable appointment
times from hospitals. Based on the collected information theplanner will, if possi-
ble, produce a plan that is a valid decomposition of the top level task. This plan is
simply a sequence of atomic, directly executable Web Services such as “order the
medicine from the online pharmacy store”, “make the appointment in the hospital
for the treatment”, and “update my personal calendar with the appointment info”.
User has the option to view the details of the plan, reject theplan if desired, and
re-plan with a new set of constraints.

To test the effectiveness of our approach, we have run SHOP2 on several instances

7 This system was demonstrated in the Developer’s Day of the 12th WWW conference in
Budapest, Hungary
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of the example problem. These problem instances varied fromcases where it was
easy to schedule satisfactory appointments to a case in which no nearby treatment
centers had treatment time slots that were close together, so that Bill and Joan
would both have to drive Mom for treatments on separate days.In all of these
cases, SHOP2 was easily able to find the best possible solution. Figure 4 shows a
snapshot of the running system and the interaction between different components
of the system.

7 Discussion

7.1 Using Semantic Web Knowledge Bases

SHOP2 represents the state of the world as a set of ground logical atoms. SHOP2
uses axioms which are generalized versions of Horn clauses to infer conditions that
are not explicitly asserted in the current state. SHOP2’s theorem prover makes a
closed-world assumption. In contrast, Semantic Web, and particularly OWL, has
an open-world assumption. The inferences in OWL are done withrespect to the
OWL Semantics[14]. OWL DL species of the language can be directly mapped to
SHION(D) Description Logic (DL)[15] which itself is a decidable subset of first
order logic.

Unfortunately, it is not possible to directly express the semantics of OWL DL using
SHOP2 axioms. Therefore using SHOP2’s theorem prover directly causes us to
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lose the inferencing capability normally an OWL reasoner possesses. Furthermore,
the size of the data involved in the planning process over Semantic Web will be
much bigger than the ones encountered in classical planningproblems. The state
of the world consists of all the information coming from ontologies either stored
locally or found remotely on the Web. Therefore, the theoremprover should be able
to work in Web scale, with thousands or maybe hundreds of thousands of facts and
axioms. SHOP2’s inferencing capabilities are not satisfactory for the expressivity
and the scalability needed to deal with knowledge bases found on Semantic Web.

It is possible to completely replace the theorem prover SHOP2 uses with a new one.
As long as the theorem proving is decidable and the theorem prover is sound and
complete then the soundness and completeness of the planneris ensured. So, we can
use an OWL reasoner to reason about the state of the world. On this model, the state
will be simply represented as an OWL knowledge base. The precondition checking
is equivalent to querying the knowledge base and applying effects is equivalent
to adding and deleting facts from the knowledge base. If we restrict ourselves to
the OWL DL language then we can use sound and complete DL reasoners for this
purpose. Also there exists DL reasoners specialized to handle very large knowledge
bases [16]. Therefore, we can solve both the expressivity and scalability problems.

Using a DL reasoner inside SHOP2 planner brings out some issues that classical
planning theory has not addressed thoroughly. In general, classical planners do not
let axiomatic inference at all or only allow a restricted form of inference. For ex-
ample, secondary relations, relations whose values can be deduced from other rela-
tions, are allowed to appear only in preconditions but not ineffects to avoid certain
complications [17, P. 42]. Any property in OWL that is defined to have an inverse
property can be seen as a secondary relation because the value for that property can
be deduced from its inverse property. Either the planner should not accept operator
descriptions that use these properties in effects or it should define the semantics as-
sociated with it. The semantics may require that if a relation is in the delete list and
the property used in the relation has an inverse property then the inverse relation
will also be deleted.

As an initial attempt to investigate the applicability of the idea, we have incorpo-
rated the OWL DL reasoner Pellet [18] into SHOP2. To avoid the problems men-
tioned above we have considered only a restricted set of process definitions where
preconditions and effects consist of ABox expressions and effects do not mention
secondary relations. It was possible to represent the process descriptions used in
the example defined in Section 2 with these restrictions. Ourinitial observations
showed that using a DL reasoner increased the amount of time required for plan-
ning but overall planning time was still dominated by the time spent for remote
Web Service execution. Of course, the reasoning time is related to the structures of
the ontologies used and having very complex definitions could effect the reasoner
performance significantly. As a future work we are continuing to investigate this in
detail along with the effects of allowing more expressive DLconstructs in operator
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definitions.

7.2 Information Gathering During Planning

There is a fundamental difference between exclusively information-providing and
possibly world-altering atomic processes. We typically want to execute information-
providing atomic processes at various points in the planning process, while we
never want to execute world-altering ones. Contrariwise, atcomposition execution
time, the primary interest is in the execution of world-altering processes. Indeed,
in our system we do not include any information-providing processes in compo-
sitions. Furthermore, currently we do not permit world-altering processes to be
information-providing, at least in the sense that they musthave no outputs. This
simplification made the system fairly easy to implement without substantial modi-
fication of SHOP2.

However, mapping information-gathering processes to so-called “book-keeping”
operators is somewhat unaesthetic. In the translation algorithm we described, for
each atomic process that does not have any effects a book-keeping operator is cre-
ated with a precondition that contains the external call to execute the service and an
effect to assert the output results as knowledge effects. The book-keeping operator
appears as a subtask in the method definition that uses the result of that service.
But, these operators are treated specially by SHOP2 and they never appear in the
resulting plans.

It is also possible to directly encode the information-providing operators in the
preconditions of the calling methods. The external call to service execution would
be put into the method’s precondition instead of the intermediate book-keeping
operator. The output of the information-providing servicewould be stored in a local
variable using SHOP2’sassignfeature. We don’t need to store results globally since
by definition only the enclosing process should be able to access the results of
a subprocess. Using local variables proves to be a more efficient way to handle
outputs since the overall number of facts stored in the current state are not effected
by the information gathering services.

This different encoding technique has some consequences. For example, normally
it is possible to define preconditions for information-providing services. While the
book-keeping operators can be used to represent these conditions, the new encoding
method does not keep this information. As far as the correctness of the plan is con-
cerned, this is not really a problem. We can directly executeinformation-providing
services and if the precondition of that service is not satisfied the service will sim-
ply fail to execute. Checking preconditions is more efficientthan trying to execute
the service. For typical public information-providing services, there are no adverse
consequences to trying to execute the services. In a situation where attempting a in-

26



formation Web Service call was expensive or harmful, we would have to fall back
on our prior encoding.

Another issue related to the performance arises when information gathering and
world altering services are used together inside sequences. For example, an infor-
mation gathering service may be defined in between two world altering actions.
When this information providing service is encoded in the precondition of the
method it will be evaluated before both of the world alteringservices. This will
not effect the resulting plan in any way but may have some impact on the perfor-
mance. If during planning process it turns out that the first world altering action is
not applicable in the current state then the time spent to execute the information
gathering service is wasted.

So far we have only considered the cases where we explicitly know which services
will provide the information needed for the given task. But actually information
gathering itself can be seen as another planning problem [19]. As discussed in the
previous section, precondition checking is reduced to query answering on Seman-
tic Web. If the information required to answer the query is not present then we
can search for the services who can supply the necessary data. This process can be
done as a goal oriented planning process [19] and SHOP2 couldcall another plan-
ner for this purpose. It is also possible that information providing services have a
hierarchical structure similar to the world altering ones.Then we can use SHOP2
recursively to first generate a plan for information gathering step, execute this plan
to get the information and then use this information to solvethe initial planning
problem.

8 Related Work

McIlarith and Son [9,12] proposed an approach to building agent technology based
on the notion of generic procedures and customizing user constraints. They adapt
and extend the Golog language to enable programs that are generic, customizable
and usable in the context of the Web. They augment a ConGolog interpreter that
combines online execution of information-providing services with offline simula-
tion of world altering services. Our approach is very similar to this. A general
logic-based system has the ability to do arbitrary reasoning about the theory but in
general we suspect that a logic based approach will not be as efficient as an HTN
planner.

Matskin and Mao [20] applies software synthesis and composition methods to Web
Services composition. Their work is based on similarities between Web Service
composition and component-based system development in software engineering.
They use OWL-S for service descriptions and adopt StructuralSynthesis Program
(SSP) method for automated service composition. Service composition is based
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on the input-output information of services components andrequires little domain
knowledge. This approach treats each service as an atomic entity without inspecting
the internal process model and therefore lacks the ability to reason about different
decompositions in a composite process.

RETSINA [21] is an open multi-agent system that provides infrastructure for differ-
ent types of deliberative, goal directed agents. RETSINA system includes a planner
based on the HTN planning paradigm. The RETSINA planner also extends HTN
planning by adding interleaving of planning and execution which basically allows
the actions execute before a plan is completely formed, similar to our approach.
Paolucci et al. [22] describes using RETSINA planner in the context of creating au-
tonomous Web Services that can automatically interact witheach other. However,
authors do not give details about how HTN planning is employed in the system.
It is not clear whether OWL-S Process Model was used or planning domain was
given a priori to the planner agent. For this reason, we cannot make a comparison
with our approach.

9 Conclusion

In this paper, we have defined a translation from OWL-S processmodels to the
SHOP2 domains, and from OWL-S composition tasks to SHOP2 planning prob-
lems. We have described our implemented system which performs this translation,
uses an extended SHOP2 implementation to plan with and over the translated do-
main, and then executes the resulting plans. In the process of defining the translation
and building the system, we observed that:

• In our current approach, the planner always executes outputproducing actions as
it plans. While this is fine for many situations, it may not always be appropriate.
For example, the execution of some Web Services may take a very long time.
It would be better if the planner could continue to plan whilewaiting for this
information.

• In our paper, we assume that all effects are physical. In complex situations, there
may be other changes, such as in the mental states of the agents involved, that
are not modeled. We will explore this problem in our future work.

• Information providing (whether exclusively so, or not) is likely to be a signifi-
cant fraction of the available and salient Web Services. Many Web contexts seem
to beinformation richbut action poor. In such environments, we would want to
reconsider the strict partition of services into exclusively information providing
and output free. For example, world-altering services withoutputs might supply
information needed to decide subsequent courses of action.Clearly, such a ser-
vice shouldn’t be executed at planning time, which suggeststhat we will need to
investigate generating conditional plans by SHOP2 style HTN planning.

Conditional plans will also help mitigate the constraint on information change
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during planning. Currently, both for theoretical and practical reasons, we only
execute an information providing process once during planning for any given
input, and subsequently retrieve a cached result. Given SHOP’s speed, this is
not that unreasonable a restriction for many cases, but conditional plans would
permit planning for various contingencies.

These considerations raise a host of issues regarding plan time vs. composition
execution time execution of information providing processes, including those
of deciding which such processes to execute only during planning, only during
plan execution, and during both. Furthermore, in complex, long running planning
sessions, it might make sense to refresh the monitors cache for certain services
at intervals. Presumably, OWL-S descriptions will be enriched to help support
the requisite analysis. We intend to explore these issues infuture work.

• Compared the complexities raised above, composite processes raise no addi-
tional or special problems — encoding them as SHOP2 methods seems correct
and straightforward, modulo the need to extend SHOP2 to handle concurrency.

• Simple processes are the odd duck of the lot. Though various members of the
OWL-S coalition have suggested, in conversation, that simple processes were
intended to support HTN planning, we found them neither necessary, nor conve-
nient, nor useful. In part, their lack of a clear semantics, particularly with regard
to the relationship of their inputs, outputs, preconditions, and effects to those of
their corresponding atomic or composite processes. Furthermore, while the lan-
guage of the technical overview[3] suggests that a given simple process can be a
view of one atomic process or one composite process, but not both, neither the
language nor the ontology actually require this restriction. We speculated that
this would make simple processes useful for specifying a range of alternative
composition paths, but it wasn’t clear that this was really more convenient (for
our purposes) than using theChoicecontrol construct.
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