Lecture slides for
Automated Planning: Theory and Practice

Chapter 2
Representations for Classical Planning

Dana S. Nau
University of Maryland

4:56 PM January 30, 2012

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

® Classical planning
requires all eight of the

restrictive assumptions:
AOQ:
Al:
A2:
A3:
A4:
AS:
A6:
A'T:

Finite

Fully observable
Deterministic
Static
Attainment goals
Sequential plans
Implicit time

Offline planning

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Quick Review of Classical Plann

" (s

S

location 1 location 2

put

take

4&
move2

move1

|
3B

location 1 location 2

put

take

A
unload

load

=L

location 1 location 2

move2

move1

ng

I

" g

location 1 location 2

A
move2 move1

location 1 location 2

D

o

location 1 location 2

Representations: Motivation

® In most problems, far too many states to try to represent all of
them explicitly as s, s, 55, -..

® Represent each state as a set of features
®cg.,
» a vector of values for a set of variables
» a set of ground atoms 1n some first-order language L

® Decfine a set of operators that can be used to compute state-
transitions

® Don’t give all of the states explicitly
¢ Just give the initial state
¢ Use the operators to generate the other states as needed

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Outline

® Representation schemes
¢ Classical representation
¢ Sct-theoretic representation
¢ State-variable representation
¢ Examples: DWR and the Blocks World

¢ Comparisons

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Classical Representation

® Start with a first-order language
» Language of first-order logic
& Restrict it to be function-free

» Finitely many predicate symbols and constant symbols,
but no function symbols

® Example: the DWR domain
¢ Locations: 11, 12, ...
¢ Containers: c1, c2, ...
¢ Piles: p1, p2, ...
¢ Robot carts: r1,r2, ...
¢ Cranes: k1, k2, ...

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Classical Representation

® Atom: predicate symbol and args

¢ Use these to represent both fixed and dynamic relations
adjacent(/,]") attached(p,/) belong(k,[)

occupied(/) at(r,0)
loaded(7,¢) unloaded(r)
holding(k,c) empty(k)
in(c,p) on(c,c’)
top(c,p) top(pallet,p)
® Ground expression: contains no variable symbols - e.g., in(c1,p3)

® Unground expression: at least one variable symbol - e.g., in(c1,x)

® Substitution: 0 = {X;, <=V, Xy < V,, ..., X, <V, }
¢ Each x; 1s a variable symbol; each v, is a term
® [nstance of e: result of applying a substitution 6 to e
¢ Replace variables of e simultaneously, not sequentially

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

States

® State: a set s of ground atoms
¢ The atoms represent the things that are true in one of £’s states
¢ Only finitely many ground atoms, so only finitely many possible states

&
cranel
c2
c3 - p?
A cl 5 ri
pl — O_LCI)A
locl | loc2

s, = {attached(p1,loc1), in(c1,p1), in(c3,p1), top(c3,p1), on(c3,c1),
on(c1,pallet), attached(p2,loc1), in(c2,p2), top(c2,p2), on(c2,palet),
belong(crane1,loc1), empty(crane1), adjacent(loc1,loc2),
adjacent(loc2,loc1), at(r1,loc2), occupied(loc2, unloaded(r1)}

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Operators

® Operator: atriple o=(name(o0), precond(o), effects(o))
¢ precond(o): preconditions
» literals that must be true in order to use the operator
¢ cffects(o): effects
» literals the operator will make true
¢ name(o0): a syntactic expression of the form n(x,...,x;)
» n 1s an operator symbol - must be unique for each operator
» (Xq,...,X;) 1s a list of every variable symbol (parameter) that appears in o
® Purpose of name(o) is so we can refer unambiguously to instances of o

® Rather than writing each operator as a triple, we’ll usually write like this:

take(k.l,c,d,p)
.; crane k at location [takes ¢ off of d in pile p
precond: belong(k,1), attached(p,[),empty(k),top(c, p),on(c, d)
effects: holding(k, ¢), " empty(k), —in(c, p), 2 top(e, p), ~on(c, d), top(d, p)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

!
. cranel
Actions = >
A ;11 5 . i —7
O (OO
take(k,l,c,d,p) loc1 loc2

.; crane k at location [takes ¢ off of d in pile p
precond: belong(k, 1), attached(p,l),empty(k),top(c, p),on(c,d)
effects: holding(k, ¢), mempty(k), = in(c,p), - top(c, p), ~on(c, d), top(d, p)

® An action 1s a ground instance (via substitution) of an operator
¢ Let 6 = {k<—cranel,[<locl,c <c3,d <cl,p <p1}
¢ Then (take(k,/,c,d,p))0 1s the following action:
take(crane1,loc1,c3,c1,p1)

precond: belong(crane,loc1), attached(p1,loc1),
empty(crane1), top(c3,p1), on(c3,c1)

effects: holding(crane1,c3), —empty(crane1), =in(c3,p1),
-top(c3,p1), —on(c3,c1), top(c1,p1)

¢ i.e., crane crane1 at location loc1 takes c3 off of ¢1 in pile p1

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Notation

® Lect Sbe aset of literals. Then
¢ ST = {atoms that appear positively in S}
¢ S = {atoms that appear negatively in S}

® Let a be an operator or action. Then
¢ precond®(a) = {atoms that appear positively in a’s preconditions}
¢ precond(a) = {atoms that appear negatively in a’s preconditions}
¢ cffects™(a) = {atoms that appear positively in a’s effects}
¢ cffects™(a) = {atoms that appear negatively in a’s effects}

® Example: take(crane1,loc1,c3,c1,p1)

precond: belong(crane,loc1), attached(p1,loc1),
empty(crane1), top(c3,p1), on(c3,c1)

effects: holding(crane1,c3), —empty(crane1), —=in(c3,p1),
-top(c3,p1), —on(c3,c1), top(c1,p1)

¢ cffects™(take(crane1,loc1,c3,c1,p1)) = {holding(crane1,c3), top(c1,p1)}

¢ cffects(take(crane1,loc1,c3,c1,p1))
= {empty(crane1), in(c3,p1), top(c3,p1), on(c3,c1)}

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10

Applicability

® Lects be astate and a be an action

® ais applicable to (or executable 1n)
if s satisfies precond(a)

¢ precond(a) Cs

¢ precond(a) Ns=J

® An action:
take(crane1,loc1,c3,c1,p1)

precond: belong(crane,loc1),
attached(p1,loc1),
empty(crane1), top(c3,p1),
on(c3,c1)

effects: holding(crane1,c3),
-empty(crane1),
-in(c3,p1), ~top(c3,p1),
-on(c3,c1), top(c1,p1)

Dana Nau: Lecture slides for Automated Planning

cranel
E=a
C3
p2
cl % ri
SR Pz}
pl O QO
locl ' loc2

® A state 1t’s applicable to

s, = {attached(p1,loc1), in(c1,p1),

in(c3,p1), top(c3,p1), on(c3,c1),
on(c1,pallet), attached(p2,loc1),
in(c2,p2), top(c2,p2), on(c2,palet),
belong(crane1,loc1),
empty(crane1),
adjacent(loc1,loc2),
adjacent(loc2,loc1), at(r1,loc2),
occupied(loc2, unloaded(r1)}

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Executing an Applicable Action

® Remove a’s negative effects,
and add a’s positive effects

v(s,a) = (s — effects(a)) U effects*(a)

cranel
=
-
p2
c; ri —
P @) Q0
locl loc2
A B
’ cranel
7
1)
S p2
‘, ri ——
P @) L0
locl ' loc2 '

Dana Nau: Lecture slides for Automated Planning

take(crane1,loc1,c3,c1,p1)

precond: belong(crane,loc1),
attached(p1,loc1),
empty(crane1), top(c3,p1),
on(c3,c1)

effects: holding(crane1,c3),
~empty(crane1),
-in(c3,p1), ~top(c3,p1),
-on(c3,c1), top(c1,p1)

, = {attached(p1,loc1), in(c1,p1), irfe3;pH,

top({e3;p1), en{e3;61), on(c1,pallet),
attached(p2,loc1), in(c2,p2), top(c2,p2),
on(c2,palet), belong(crane1,loc1),
empby{eraned), adjacent(loc1,loc2),
adjacent(loc2,loc1), at(r1,loc2),
occupied(loc2, unloaded(r1),
holding(crane1,c3), top(c1,p1)}

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12

move(r, [, m)
;» robot 7 moves from location [to location m
precond: adjacent(l,m),at(r,l), - occupied(m)
effects: at(r,m), occupied(m), ~occupied(l), ~at(r,1)

load(k, [, ¢,)
;» crane k at location [loads container ¢ onto robot r
precond: belong(k,1), holding(k, ¢),at(r, 1), unloaded(r)

effects: empty(k), = holding(k, ¢), loaded(r, ¢), = unloaded(r)

unload(k,l, ¢, r)
- crane k at location [takes container ¢ from robot r
precond: belong(k,l),at(r,1),loaded(r, c),empty(k)
effects: —empty(k), holding(k, ¢), unloaded(r), — loaded

plus operators

¢ Corresponds to a

® Planning domain: language

set of state-transition

put(k,l,c,d,p)

;» crane k at location [puts ¢ onto d in pile p
precond: belong(k,[), attached(p,), holding(k, c¢), top(d, p)

effects: = holding(k, ¢),empty(k),in(c, p), top(c, p),on(c, d), ~top(d, p)

take(k,l,c,d.p)
.. crane k at location [takes ¢ off of d in pile p

precond: belong(k, 1), attached(p,1),empty(k), top(c,p),on(c, d)
effects: holding(k, ¢), ~empty(k), —in(c, p), 2 top(c, p), ~on(e, d), top(d, p)

systems
¢ Example:
operators for the DWR
domain
P
cranel
L /]
= o1,
B 7
Ly ‘—4
p1 sy ° e
locl loc2 /
13

Planning Problems

® Given a planning domain (language L, operators O)

¢ Statement of a planning problem: a triple P=(O,s,,g)
» O 1s the collection of operators
» 8 1S a state (the initial state)
» g 1s a set of literals (the goal formula)

¢ Planning problem: 2 = (2,s,,S,)
» §, = Initial state
» S, = set of goal states

» 2 =(5,4,y) 1s a state-transition system that satisfies all of the
restrictive assumptions in Chapter 1

» § = {all sets of ground atoms in L}
» A = {all ground instances of operators in O}
» y = the state-transition function determined by the operators
® [’ll often say “planning problem” to mean the statement of the problem

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

14

Plans and Solutions

® Let P=(0,s,g) be a planning problem

® Plan: any sequence of actions © = {(a,, a, ..., a,) such that
each a; 1s an instance of an operator in O

® 7 is a solution for P=(0,s,,g) if it 1s executable and achieves g
¢ i.c., if there are states s, s, ..., s, such that
» y(Seap) =5
» y(s1,a) =8,
» ...
b V(S0 =S,

» s, satisfies g

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

15

Example

® LetP,=(0, s, g,), Where
¢ O = {the four DWR operators given earlier}

¢ s, = {attached(p1,loc1), in(c1,p1), /‘

in(c3,p1), top(c3,p1), cranel

on(c3,c1), on(c1,pallet), 2

attached(p2,loc1), €3 P2

- cl ~ ri —
in(c2,p2), top(c2,p2), p1 O O
on(c2,palet), locl loc2

belong(crane1,loc1), empty(crane1),
adjacent(loc1,loc2), adjacent(loc2,loc1),
at(r1,loc2), occupied(loc2), unloaded(r1)}

¢ g,={loaded(r1,c3), at(r1,loc2)}

ri c3

@

Dana Nau: Lecture slides for Automated Planning loc2

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

16

® 'Two redundant solutions

(can remove actions and /‘
still have a solution): %1 craned
(move(r1,loc2,loc1), 3 c2
take(crane1,loc1,c3,c1,p1), 1 . e)
— 7
))) p1 O QD
Ioad(craﬁe1 ,|E)C1 ,ci,3,r1), locl ' loc2
move(r1,loc1,loc2)) y ‘ ‘
(take(crane1,loc1,c3,c1,p1), ' cranel
move(r1,loc2,loc1), pC22
))))) cl 5 ri c3
load(crane1,loc1,c3,r1), pl O
move(r1,loc1,loc2)) .
locl loc2

® A solution that is both irredundant and shortest:

(move(r1,loc2,loc1), take(crane1,loc1,c3,c1,p1),
load(crane1,loc1,c3,r1), move(r1,loc1,loc2))

® Are there any other shortest solutions? Are irredundant
solutions always shortest?

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Set-Theoretic Representation

® Like classical representation, but restricted to propositional logic

¢ Equivalent to a classical representation in which all of the atoms are ground

&
cranel
c2
- P2
. ri —
pl O O
locl ' loc2

® States:

¢ Instead of ground atoms, use propositions (boolean variables):

{on(c1,pallet), on(c1,r1), on(c1,c2), ..., at(r1,l1), at(r1,12), ...}

U

{on-c1-pallet, on-c1-r1, on-c1-c2, ..., at-r1-11, at-r1-12, ...}

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 18

Set-Theoretic Representation, continued

No operators, just actions:

Instead of ground atoms, use
propositions

Instead of negative effects, use a
delete list

If there are any negative
preconditions, create new atoms
to represent them

E.g., instead of using -foo as a
precondition, use not-foo

¢ Delete foo iff you add not-foo
¢ Delete not-foo iff you add foo

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

effects:

delete:

take(crane1,loc1,c3,c1,p1)
precond: belong(crane,loc1),

attached(p1,loc1), empty(crane1),
top(c3,p1), on(c3,c1)
holding(crane1,c3),
-empty(crane1),

-in(c3,p1), ~top(c3,p1), —on(c3,c1),
top(c1,p1)

U

take-crane1-loc1-c3-c1-p1
precond:

belong-crane1-loc1,
attached-p1-loc1, empty-crane1,
top-c3-p1, on-c3-c1
empty-crane1,

in-c3-p1, top-c3-p1, on-c3-p1

. holding-crane1-c3, top-c1-p1

19

Exponential Blowup

® Suppose the language contains ¢ constant symbols

® Lect o be a classical operator with k& parameters

® Then there are ¢ ground instances of o
¢ Hence ¢ set-theoretic actions

® Example:
take(crane1,loc1,c3,c1,p1)
® k=5 c3
¢ | crane, 2 locations, ;11

3 containers, 2 piles

cranel

c2

p2

» 8 constant symbols
¢ 8> =32768 ground instances

locl

® Can reduce this by assigning data types to the parameters

» e.g., first arg must be a crane, second must be a location, etc.
» Number of ground instances isnow 1 * 2 * 3 * 3 * 2 =36

¢ Worst case is still exponential

Dana Nau: Lecture slides for Automated Planning

ri

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

loc2

20

State-Variable Representation

® Use ground atoms for properties that do not change, e.g., adjacent(loc1,loc2)
® For properties that can change, assign values to state variables

¢ Like fields in a record structure
® Classical and state-variable representations take similar amounts of space

¢ Each can be translated into the other in low-order polynomial time

move(r, I, m)
;; robot r at location [moves to an adjacent location m
precond: rloc(r) = I, adjacent(l, m)
effects: rloc(r) <« m

‘ 5, = {top(p1)=c3,
cranet cpos(c3)=c1,
c3 Cg cpos(c1)=pallet,

P . e
cl . = holding(crane1)=nil,
pl O QO rloc(r1)=loc2,

loc1 ' loc2 loaded(r1)=nil, ...}

Dana Nau: Lecture slides for Automated Planning 21
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Example: The Blocks World

Infinitely wide table, finite number of children’s blocks
Ignore where a block is located on the table
A block can sit on the table or on another block

There’s a robot gripper that can hold at most one block

Want to move blocks from one configuration to another

¢ cg., |
a

initial state C goal
a ‘ b ‘ ‘ : | ¢

® Like a special case of DWR with one location, one crane, some containers,
and many more piles than you need

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Classical Representation: Symbols

® Constant symbols:

¢ The blocks: a, b, c, d, e |_|_I
® Predicates: d
¢ ontable(x) - block x is on the table C
¢ on(x,y) - block x is on block y all|b ‘ : |
¢ clear(x) - block x has nothing on it

¢ holding(x) - the robot hand is holding block x
¢ handempty - the robot hand isn’t holding anything

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 23

Classical Operators

unstack(x,y)
Precond: on(x,y), clear(x), handempty
Effects: -on(x,y), —clear(x), ~handempty,
holding(x), clear(y)

stack(x,y)
Precond: holding(x), clear(y)
Effects: —holding(x), —clear(y),
on(x,y), clear(x), handempty

pickup(x)
Precond: ontable(x), clear(x), handempty
Effects: -ontable(x), —clear(x),
-handempty, holding(x)

putdown(x)
Precond: holding(x)
Effects: —holding(x), ontable(x),
clear(x), handempty

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

e
dila]||b
e||C |_b_|
difla

Set-Theoretic Representation: Symbols

® For five blocks, there are 36 propositions

® Here are 5 of them: |‘L|
ontable-a - block a is on the table c d
on-c-a - block ¢ is on block a a ‘ 5 ‘ ‘ . |
clear-c - block ¢ has nothing on it
holding-d - the robot hand is holding block d
handempty - the robot hand isn’t holding anything

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 25

Set-Theoretic Actions

® 60 actions

® 50i1fwe
exclude
nonsensical
ones, €.g.,
unstack-e-e

® Here are
four of
them:

unstack-c-a
Pre: on-c-a, clear-c, handempty
Del: on-c-a, clear-c, handempty
Add: holding-c, clear-a

stack-c-a
Pre: holding-c, clear-a
Del: holding-c, clear-a
Add: on-c-a, clear-c, handempty

pickup-b
Pre: ontable-b, clear-b, handempty
Del: ontable-b, clear-b, handempty
Add: holding-b

putdown-b
Pre: holding-b
Del: holding-b
Add: ontable-b, clear-b, handempty

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

e
dila]||b
e||C |_b_|
difla
putdo{n-b pi(iF_b
c |
difa||b

State-Variable Representation: Symbols

® Constant symbols:
a,b,c,d e of type block
0, 1, table, nil of type other

C
® State variables: ‘ 5 ‘ ‘ |
a
pos(x) =y if block x is on block y

pos(x) = table if block x is on the table

pos(x) = nil if block x is being held

clear(x) =1 if block x has nothing on it

clear(x) =0 if block x is being held or has another block on it
holding = x if the robot hand is holding block x

holding = nil if the robot hand is holding nothing

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

27

State-Variable Operators olc]

With data types:
unstack(x : block, y : block) uns’uﬁ(c,a) sta@,a)
Precond: pos(x)=y, clear(y)=0, clear(x)=1, holding=nil | |
Effects: pos(x)<—nil, clear(x)<—0, holding<—x, clear(y)<1)
C
dila||b
stack(x : block, y : block)
Precond: holding=x, clear(x)=0, clear(y)=1
Effects: holding<—nil, clear(y)<-0, pos(x)<y, clear(x)<1
pickup(x : block) °ilc |_b—|
Precond: pos(x)=table, clear(x)=1, holding=nil di||a
Effects: pos(x)<—nil, clear(x)<—0, holding<—x e
utdown i
putdown(x : block) P B(b) plckuF(b)
Precond: holding=x ’
Effects: holding<—nil, pos(x)<—table, clear(x)<1 €1LC |
dila||b

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

28

Expressive Power

® Any problem that can be represented in one representation can also be
represented in the other two

® Can convert in linear time and space in all cases except one:
¢ Exponential blowup when converting to set-theoretic

Trivial:
Each proposition is
a 0-ary predicate

(X1’ n)
becomes

fo(Xq,...,X,)=1

Set-theoretic Classical State-variable
representation representation representation

Write all of
the ground
instances

f(Xq,..-,X,)=Y
becomes

P:X4,..-,X,,Y)

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 29

Comparison

® C(lassical representation
¢ The most popular for classical planning, partly for historical reasons

® Sect-theoretic representation
¢ Can take much more space than classical representation
¢ Useful in algorithms that manipulate ground atoms directly
» e.g., planning graphs (Chapter 6), satisfiability (Chapters 7)
¢ Useful for certain kinds of theoretical studies

@® State-variable representation
¢ Equivalent to classical representation in expressive power

¢ Less natural for logicians, more natural for engineers and most computer
scientists

¢ Useful in non-classical planning problems as a way to handle numbers,
functions, time

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 30

