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Motivation 
●  Often, planning can be done much more efficiently if we have domain-specific 

information 
●  Example: 

◆  classical planning is EXPSPACE-complete 
◆  block-stacking can be done in time O(n3) 

●  But we don’t want to have to write a new domain-specific planning system for 
each problem! 

●  Domain-configurable planning algorithm  
◆  Domain-independent search engine (usually a forward state-space search) 
◆  Input includes domain-specific information that allows us to avoid a brute-

force search 
»  Prevent the planner from visiting unpromising states 
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Motivation (Continued) 
●  If we’re at some state s in a state 

space, sometimes a domain- 
specific test can tell us that 
◆  s doesn’t lead to a solution, or 
◆  for any solution below s, 

there’s a better solution 
along some other path 

●  In such cases we can 
to prune s immediately 

●  Rather than writing the domain-dependent test as low-level computer code, we’d 
prefer to talk directly about the planning domain 

●  One approach: 
◆  Write logical formulas giving conditions that states must satisfy; prune states 

that don’t satisfy the formulas 
●  Presentation similar to the chapter, but not identical 

◆  Based partly on TLPlan [Bacchus & Kabanza 2000] 
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Quick Review of First Order Logic 
●  First Order Logic (FOL): 

◆  constant symbols, function symbols, predicate symbols 
◆  logical connectives (∨, ∧, ¬, ⇒, ⇔), quantifiers (∀, ∃), punctuation  
◆  Syntax for formulas and sentences  on(A,B) ∧ on(B,C) 

     ∃x on(x,A) 
     ∀x (ontable(x) ⇒ clear(x)) 

●  First Order Theory T: 
◆  “Logical” axioms and inference rules – encode logical reasoning in general 
◆  Additional “nonlogical” axioms –  talk about a particular domain 
◆  Theorems: produced by applying the axioms and rules of inference 

●  Model: set of objects, functions, relations that the symbols refer to 
◆  For our purposes, a model is some state of the world s 
◆  In order for s to be a model, all theorems of T must be true in s 
◆  s  |=  on(A,B)     read “s satisfies on(A,B)” or “s entails on(A,B)” 

»  means that on(A,B) is true in the state s 
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Linear Temporal Logic 
●  Modal logic: FOL plus modal operators 

to express concepts that would be difficult to express within FOL 
●  Linear Temporal Logic (LTL): 

◆  Purpose: to express a limited notion of time 
»  An infinite sequence 〈0, 1, 2, …〉 of time instants  
»  An infinite sequence M= 〈s0, s1, …〉 of states of the world  

◆  Modal operators to refer to the states in which formulas are true: 
 ¡ f  -     next f  -  f holds in the next state, e.g.,  � on(A,B) 
 ♢ f   -    eventually f  -  f either holds now or in some future state 
 ⃞ f   -    always f  -  f holds now and in all future states  
 f1 ∪ f2  -    f1 until f2  -  f2 either holds now or in some future state, 

     and  f1 holds until then 
◆  Propositional constant symbols TRUE and FALSE 
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Linear Temporal Logic (continued) 
●  Quantifiers cause problems with computability 

◆  Suppose f(x) is true for infinitely many values of x 
◆  Problem evaluating truth of  ∀x  f(x)  and  ∃x  f(x) 

●  Bounded quantifiers 
◆  Let g(x) be such that {x : g(x)} is finite and easily computed 

∀[x:g(x)] f(x)      
•  means     ∀x (g(x) ⇒ f(x)) 
•  expands into f(x1) ∧  f(x2) ∧ … ∧ f(xn) 

∃[x:g(x)] f(x)      
•  means     ∃x (g(x) ∧ f(x)) 
•  expands into f(x1) ∨  f(x2) ∨ … ∨ f(xn) 
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Models for LTL 
●  A model is a triple (M, si, v) 

◆  M = 〈s0, s1, …〉  is a sequence of states  
◆  si is the i’th state in M, 
◆  v is a variable assignment function 

»  a substitution that maps all variables into constants 
 

●  To say that v(f ) is true in si , write (M,si,v) |= f 
 

●  Always require that 
(M, si,v)  |=  TRUE 
(M, si,v)  |=  ¬FALSE 

 

●  For planning, need to augment LTL to refer to goal states 
◆  Include a GOAL operator such that GOAL(f) means f is true in every goal 

state 
◆  ((M,si,V),g)  |=  GOAL(f)    iff     (M,si,V)  |=  f  for every si ∈ g 
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●  Suppose M= 〈s0, s1, …〉 

(M,s0,v)  |=  ¡¡ on(A,B)  means A is on B in s2 
●  Abbreviations: 

  (M,s0)  |=  ¡¡ on(A,B)  no free variables, so v is irrelevant:   
         M  |=  ¡¡ on(A,B)  if we omit the state, it defaults to s0 

●  Equivalently, 
(M,s2,v)  |=  on(A,B)   same meaning with no modal operators 
          s2  |=  on(A,B)   same thing in ordinary FOL 

 

●  M  |=  ¨¬holding(C) 
◆  in every state in M, we aren’t holding C 

●  M  |=  ¨(on(B, C) ⇒ (on(B, C) ∪ on (A, B)))  
◆  whenever we enter a state in which B is on C, B remains on C until A is on B. 

Examples 
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TLPlan 
●  Basic idea: forward search, 

using LTL for pruning tests 
●  Let s0 be the initial state, and f0 be 

the initial LTL control formula 
●  Current recursive call includes 

current state s, and current control 
formula f 

●  Let P be the path that TLPlan 
followed to get to s 
◆  The proposed model M is P plus some (not yet determined) states after s 

●  If f evaluates to FALSE in s, no M that starts with P can satisfy f0 =>  backtrack 
●  Otherwise, consider the applicable actions, to see if one of them can produce an 

acceptable “next state” for M 
◆  Compute a formula f + that must be true in the next state 

»  f + is called the progression of f through s 
◆  If  f + = FALSE, then there are no acceptable successors of s  =>  backtrack 
◆  Otherwise, produce s + by applying an action to s, and call TLPlan recursively 

Procedure TLPlan (s, f, g, π) 
 if f  = FALSE then return failure 
 if s satisfies g then return π 
 f + ← Progress (f, s) 
 if f + = FALSE then return failure 
 A ← {actions applicable to s} 
 if A is empty then return failure 
 nondeterministically choose a ∈ A 
 s + ← γ (s,a) 
 return TLPlan (s +, f +, g, π.a) 
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unstack(x,y) 
   Precond:  on(x,y), clear(x), handempty"
   Effects:   ¬on(x,y), ¬clear(x), ¬handempty, 

                    holding(x), clear(y) 

stack(x,y) 
   Precond:   holding(x), clear(y) 
   Effects:    ¬holding(x), ¬clear(y), 

                     on(x,y), clear(x), handempty 

pickup(x) 
   Precond:  ontable(x), clear(x), handempty 
   Effects:   ¬ontable(x), ¬clear(x), 

                    ¬handempty, holding(x) 

putdown(x) 
   Precond:   holding(x) 
   Effects:    ¬holding(x), ontable(x), 

                     clear(x), handempty 

Classical Operators c"
a" b"

c"
a" b"

c"
a"

b"

c"
a" b"

unstack(c,a)" stack(c,a)"

putdown(b)" pickup(b)"

d"
e"

d"
e"

d"
e"

d"
e"
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Supporting Axioms 
●  Want to define conditions under which a stack of blocks will never need to be 

moved 
●  If x is the top of a stack of blocks, then we want goodtower(x) to hold if 

◆  x doesn’t need to be anywhere else 
◆  None of the blocks below x need to be anywhere else 

●  Axioms to support this: 
◆  goodtower(x)  ⇔  clear(x) ∧ ¬ GOAL(holding(x)) ∧  goodtowerbelow(x) 
◆  goodtowerbelow(x)  ⇔ 

           [ontable(x) ∧ ¬∃[y:GOAL(on(x,y)]]  
          ∨ ∃[y:on(x,y)] {¬GOAL(ontable(x))  ∧  ¬GOAL(holding(y))  
         ∧  ¬GOAL(clear(y))  ∧  ∀[z:GOAL(on(x,z))] (z = y)  
         ∧  ∀[z:GOAL(on(z,y))] (z = x)  ∧  goodtowerbelow(y)} 

◆  badtower(x)  ⇔  clear(x) ∧ ¬goodtower(x) 
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Three different control formulas: 

(1)  Every goodtower must always remain a goodtower: 

(2)  Like (1), but also says never to put anything onto a badtower: 

(3)  Like (2), but also says never to pick up a block from the table unless you can 
put it onto a goodtower:  

Blocks World Example (continued) 
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Outline of How TLPlan Works 
●  Recall that TLPLan’s input includes a current state s, and a control formula f 

written in LTL 
◆  How can TLPLan determine whether there exists a sequence of states M 

beginning with s, such that M satisfies f ? 
 

●  We can compute a formula f 
+ such that for every sequence M = 〈s, s+, s++,…〉,  

◆  M satisfies f  iff M+ = 〈s+, s++,…〉 satisfies f 
+ 

●  f 
+ is called the progression of f through s 

●  If f 
+ = FALSE then there is no M+ that satisfies f 

+ 
◆  Thus there’s no M that begins with s and satisfies f, so TLPLan can backtrack 

●  Otherwise, need to determine whether there is an M+ that satisfies f 
+ 

◆  For every action a applicable to s, 
»  Let s 

+ = γ (s,a), and call TLPLan recursively on f + and s 
+ 

 

●  Next: how to compute f 
+ 
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Procedure Progress(f,s) 
●  Case: 

1.   f contains no temporal ops :  f + := TRUE if s |= f,  FALSE otherwise 
2.   f = f1 ∧ f2  :  f + := Progress(f1, s) ∧ Progress(f2, s) 
3.   f = f1 ∨ f2  :  f + := Progress(f1, s) ∨ Progress(f2, s) 
4.   f =¬ f1  :  f + := ¬Progress(f1, s) 
5.   f = ¡ f1  :  f + := f1 
6.   f = ♢ f1  :  f + := Progress(f1, s) ∨ f 
7.   f = ¨ f1  :  f + := Progress(f1, s) ∧ f 
8.   f = f1 ∪ f2  :  f + := Progress(f2, s) ∨ (Progress(f1, s) ∧ f) 
9.   f = ∀[x:g(x)] h(x)  :  f + := Progress(h1, s) ∧ … ∧ Progress(hn, s) 

     10.   f = ∃ [x:g(x)] h(x)  :  f + := Progress(h1, s) ∨ … ∨ Progress(hn, s) 

where hi  is  h with x replaced by the i’th element of {x : s |= g(x)} 
●  Next, simplify f + and return it 

◆  Boolean simplification rules: 
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Two Examples 
of ¡ 

●  Suppose f = ¡on(a,b) 
◆  f + = on(a,b) 

◆  s+ is acceptable iff on(a,b) is true in s+ 

●  Suppose f = ¡¡on(a,b) 
◆  f + = ¡on(a,b) 

◆  s+ is acceptable iff ¡on(a,b) is true in 
s+ 

»  iff on(a,b) is true in s++ 
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Example of ∧ 

●  Suppose f = on(a,b) ∧ ¡on(b,c)  
◆  f + = Progress(on(a,b), s) ∧ Progress(¡on(b,c), s) 

◆  Progress(on(a,b), s) 
=  TRUE if on(a,b) is true in s, else FALSE 

◆  Progress(¡on(b,c), s)  =  on(b,c) 
 

●  If on(a,b) is true in s, then  f + = on(b,c) 
◆  i.e., on(b,c) must be true in s+ 

●  Otherwise,  f + = FALSE 
◆  i.e., there is no acceptable s+ 
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Example of ¨ 

●  Suppose f = ¨ on(a,b)  
◆  f + = Progress(on(a,b), s) ∧ ¨ on(a,b) 

●  If on(a,b) is true in s, then 
◆  f +  =  TRUE ∧ ¨ on(a,b)  =  ¨ on(a,b)  =  f 
◆  i.e., on(a,b) must be true in s+, s++, s+++, … 

●  If on(a,b) is false in s, then 
◆   f +  =  FALSE ∧ ¨ on(a,b)  =  FALSE 
◆  There is no acceptable s+ 
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Example 
of ∪ 

●  Suppose f = on(a,b) ∪ on(c,d)  
◆  f + = Progress(on(c,d), s) ∨ (Progress(on(a,b), s) ∧ f) 

 

●  If on(c,d) is true in s, then Progress(on(c,d), s)  = TRUE 
◆  f + = TRUE, so any s+ is acceptable 

 

●  If on(c,d) is false in s, then Progress(on(c,d), s)  = FALSE 
◆  f + = Progress(on(a,b), s) ∧ f 
◆  If on(a,b) is false in s then  f + = FALSE: no s+ is acceptable 
◆  If on(a,b) is true in s then  f + = f 
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●  Suppose f  =  ¨(on(a,b) ⇒¡clear(a)) 
◆   f +  =  Progress[on(a,b) ⇒¡clear(a), s] ∧ f 
       =  (¬Progress[on(a,b)] ∨ clear(a))  ∧  f 
 

◆  If on(a,b) is false in s, then f +  =  (TRUE ∨ clear(a))  ∧  f  =  f 
»  So s+ must satisfy f 

◆  If on(a,b) is true in s, then f +  =  clear(a) ∧ f 
»  So s+ must satisfy both clear(a) and f 

Another Example 
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Pseudocode for TLPlan 
●  Nondeterministic forward search 

◆  Input includes a control formula f for the current state s 
◆  If f + = FALSE then s has no acceptable successors => backtrack 
◆  Otherwise the progressed formula is the control formula for s’s children 

Procedure TLPlan (s, f, g, π) 
 if f  = FALSE then return failure 
 if s satisfies g then return π 
 f + ← Progress (f, s) 
 if f + = FALSE then return failure 
 A ← {actions applicable to s} 
 if A is empty then return failure 
 nondeterministically choose a ∈ A 
 s + ← γ (s,a) 
 return TLPlan (s +, f +, g, π.a) 
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●  s = {ontable(a), ontable(b), clear(a), clear(c), on(c,b)}	

●  g = {on(b, a)} 	

●  f = ¨∀[x:clear(x)] {(ontable(x) ∧ ¬∃[y:GOAL(on(x,y))]) ⇒ ¡¬holding(x)}	


◆  never pick up a block x if x is not required to be on another block y	

	


●  f + = Progress(f1,s) ∧ f,  where	

◆  f1 = ∀[x:clear(x)]{(ontable(x) ∧ ¬∃[y:GOAL(on(x,y))]) ⇒ ¡¬holding(x)}	


●  {x: clear(x)} = {a, c}, so  
Progress(f1,s) = Progress((ontable(a) ∧ ¬∃[y:GOAL(on(a,y))]) ⇒ ¡¬holding(a)},s)	


          ∧ Progress((ontable(c) ∧ ¬∃[y:GOAL(on(c,y))]) ⇒ ¡¬holding(b)},s) 
	
 	
      = (TRUE ⇒ ¬holding(a)) ∧ TRUE  =  ¬holding(a)	


●  f + =¬holding(a) ∧ f 
    = ¬holding(a) ∧ 
         ¨∀[x:clear(x)] {(ontable(x) ∧ ¬∃[y:GOAL(on(x,y))]) ⇒ ¡¬holding(x)} 

●  Two applicable actions: pickup(a) and pickup(c) 
◆  Try s+ = γ (s, pickup(a)):  f + simplifies to FALSE ⇒ backtrack	

◆  Try s+ = γ (s, pickup(c)):  f + doesn’t simplify to FALSE ⇒ keep going 

Example Planning Problem 

a b 
b 
a 

c 
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Blocks-
World 

Results 
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Blocks-
World 

Results 
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Logistics-
Domain 
Results 
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Discussion 
●  2000 International Planning Competition 

◆  TALplanner: similar algorithm, different temporal logic 
»  received the top award for a “hand-tailored” (i.e., domain-configurable) 

planner 
●  TLPlan won the same award in the 2002 International Planning Competition 
●  Both of them: 

◆  Ran several orders of magnitude faster than the “fully automated” (i.e., 
domain-independent) planners 
»  especially on large problems 

◆  Solved problems on which the domain-independent planners ran out of time 
or memory 


