
Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 1

Chapter 10
Control Rules in Planning

Dana S. Nau

University of Maryland

5:01 PM April 4, 2012

Lecture slides for
Automated Planning: Theory and Practice

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 2

Motivation
●  Often, planning can be done much more efficiently if we have domain-specific

information
●  Example:

◆  classical planning is EXPSPACE-complete
◆  block-stacking can be done in time O(n3)

●  But we don’t want to have to write a new domain-specific planning system for
each problem!

●  Domain-configurable planning algorithm
◆  Domain-independent search engine (usually a forward state-space search)
◆  Input includes domain-specific information that allows us to avoid a brute-

force search
»  Prevent the planner from visiting unpromising states

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 3

Motivation (Continued)
●  If we’re at some state s in a state

space, sometimes a domain-
specific test can tell us that
◆  s doesn’t lead to a solution, or
◆  for any solution below s,

there’s a better solution
along some other path

●  In such cases we can
to prune s immediately

●  Rather than writing the domain-dependent test as low-level computer code, we’d
prefer to talk directly about the planning domain

●  One approach:
◆  Write logical formulas giving conditions that states must satisfy; prune states

that don’t satisfy the formulas
●  Presentation similar to the chapter, but not identical

◆  Based partly on TLPlan [Bacchus & Kabanza 2000]

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 4

Quick Review of First Order Logic
●  First Order Logic (FOL):

◆  constant symbols, function symbols, predicate symbols
◆  logical connectives (∨, ∧, ¬, ⇒, ⇔), quantifiers (∀, ∃), punctuation
◆  Syntax for formulas and sentences on(A,B) ∧ on(B,C)

 ∃x on(x,A)
 ∀x (ontable(x) ⇒ clear(x))

●  First Order Theory T:
◆  “Logical” axioms and inference rules – encode logical reasoning in general
◆  Additional “nonlogical” axioms – talk about a particular domain
◆  Theorems: produced by applying the axioms and rules of inference

●  Model: set of objects, functions, relations that the symbols refer to
◆  For our purposes, a model is some state of the world s
◆  In order for s to be a model, all theorems of T must be true in s
◆  s |= on(A,B) read “s satisfies on(A,B)” or “s entails on(A,B)”

»  means that on(A,B) is true in the state s

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 5

Linear Temporal Logic
●  Modal logic: FOL plus modal operators

to express concepts that would be difficult to express within FOL
●  Linear Temporal Logic (LTL):

◆  Purpose: to express a limited notion of time
»  An infinite sequence 〈0, 1, 2, …〉 of time instants
»  An infinite sequence M= 〈s0, s1, …〉 of states of the world

◆  Modal operators to refer to the states in which formulas are true:
 ¡ f - next f - f holds in the next state, e.g., � on(A,B)
 ♢ f - eventually f - f either holds now or in some future state
 ⃞ f - always f - f holds now and in all future states
 f1 ∪ f2 - f1 until f2 - f2 either holds now or in some future state,

 and f1 holds until then
◆  Propositional constant symbols TRUE and FALSE

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 6

Linear Temporal Logic (continued)
●  Quantifiers cause problems with computability

◆  Suppose f(x) is true for infinitely many values of x
◆  Problem evaluating truth of ∀x f(x) and ∃x f(x)

●  Bounded quantifiers
◆  Let g(x) be such that {x : g(x)} is finite and easily computed

∀[x:g(x)] f(x)
•  means ∀x (g(x) ⇒ f(x))
•  expands into f(x1) ∧ f(x2) ∧ … ∧ f(xn)

∃[x:g(x)] f(x)
•  means ∃x (g(x) ∧ f(x))
•  expands into f(x1) ∨ f(x2) ∨ … ∨ f(xn)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 7

Models for LTL
●  A model is a triple (M, si, v)

◆  M = 〈s0, s1, …〉 is a sequence of states
◆  si is the i’th state in M,
◆  v is a variable assignment function

»  a substitution that maps all variables into constants

●  To say that v(f) is true in si , write (M,si,v) |= f

●  Always require that
(M, si,v) |= TRUE
(M, si,v) |= ¬FALSE

●  For planning, need to augment LTL to refer to goal states
◆  Include a GOAL operator such that GOAL(f) means f is true in every goal

state
◆  ((M,si,V),g) |= GOAL(f) iff (M,si,V) |= f for every si ∈ g

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 8

●  Suppose M= 〈s0, s1, …〉

(M,s0,v) |= ¡¡ on(A,B) means A is on B in s2
●  Abbreviations:

 (M,s0) |= ¡¡ on(A,B) no free variables, so v is irrelevant:
 M |= ¡¡ on(A,B) if we omit the state, it defaults to s0

●  Equivalently,
(M,s2,v) |= on(A,B) same meaning with no modal operators
 s2 |= on(A,B) same thing in ordinary FOL

●  M |= ¨¬holding(C)
◆  in every state in M, we aren’t holding C

●  M |= ¨(on(B, C) ⇒ (on(B, C) ∪ on (A, B)))
◆  whenever we enter a state in which B is on C, B remains on C until A is on B.

Examples

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 9

TLPlan
●  Basic idea: forward search,

using LTL for pruning tests
●  Let s0 be the initial state, and f0 be

the initial LTL control formula
●  Current recursive call includes

current state s, and current control
formula f

●  Let P be the path that TLPlan
followed to get to s
◆  The proposed model M is P plus some (not yet determined) states after s

●  If f evaluates to FALSE in s, no M that starts with P can satisfy f0 => backtrack
●  Otherwise, consider the applicable actions, to see if one of them can produce an

acceptable “next state” for M
◆  Compute a formula f + that must be true in the next state

»  f + is called the progression of f through s
◆  If f + = FALSE, then there are no acceptable successors of s => backtrack
◆  Otherwise, produce s + by applying an action to s, and call TLPlan recursively

Procedure TLPlan (s, f, g, π)
 if f = FALSE then return failure
 if s satisfies g then return π
 f + ← Progress (f, s)
 if f + = FALSE then return failure
 A ← {actions applicable to s}
 if A is empty then return failure
 nondeterministically choose a ∈ A
 s + ← γ (s,a)
 return TLPlan (s +, f +, g, π.a)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10

unstack(x,y)
 Precond: on(x,y), clear(x), handempty"
 Effects: ¬on(x,y), ¬clear(x), ¬handempty,

 holding(x), clear(y)

stack(x,y)
 Precond: holding(x), clear(y)
 Effects: ¬holding(x), ¬clear(y),

 on(x,y), clear(x), handempty

pickup(x)
 Precond: ontable(x), clear(x), handempty
 Effects: ¬ontable(x), ¬clear(x),

 ¬handempty, holding(x)

putdown(x)
 Precond: holding(x)
 Effects: ¬holding(x), ontable(x),

 clear(x), handempty

Classical Operators c"
a" b"

c"
a" b"

c"
a"

b"

c"
a" b"

unstack(c,a)" stack(c,a)"

putdown(b)" pickup(b)"

d"
e"

d"
e"

d"
e"

d"
e"

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 11

Supporting Axioms
●  Want to define conditions under which a stack of blocks will never need to be

moved
●  If x is the top of a stack of blocks, then we want goodtower(x) to hold if

◆  x doesn’t need to be anywhere else
◆  None of the blocks below x need to be anywhere else

●  Axioms to support this:
◆  goodtower(x) ⇔ clear(x) ∧ ¬ GOAL(holding(x)) ∧ goodtowerbelow(x)
◆  goodtowerbelow(x) ⇔

 [ontable(x) ∧ ¬∃[y:GOAL(on(x,y)]]
 ∨ ∃[y:on(x,y)] {¬GOAL(ontable(x)) ∧ ¬GOAL(holding(y))
 ∧ ¬GOAL(clear(y)) ∧ ∀[z:GOAL(on(x,z))] (z = y)
 ∧ ∀[z:GOAL(on(z,y))] (z = x) ∧ goodtowerbelow(y)}

◆  badtower(x) ⇔ clear(x) ∧ ¬goodtower(x)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12

Three different control formulas:

(1) Every goodtower must always remain a goodtower:

(2) Like (1), but also says never to put anything onto a badtower:

(3) Like (2), but also says never to pick up a block from the table unless you can
put it onto a goodtower:

Blocks World Example (continued)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 13

Outline of How TLPlan Works
●  Recall that TLPLan’s input includes a current state s, and a control formula f

written in LTL
◆  How can TLPLan determine whether there exists a sequence of states M

beginning with s, such that M satisfies f ?

●  We can compute a formula f
+ such that for every sequence M = 〈s, s+, s++,…〉,

◆  M satisfies f iff M+ = 〈s+, s++,…〉 satisfies f
+

●  f
+ is called the progression of f through s

●  If f
+ = FALSE then there is no M+ that satisfies f

+
◆  Thus there’s no M that begins with s and satisfies f, so TLPLan can backtrack

●  Otherwise, need to determine whether there is an M+ that satisfies f
+

◆  For every action a applicable to s,
»  Let s

+ = γ (s,a), and call TLPLan recursively on f + and s
+

●  Next: how to compute f
+

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 14

Procedure Progress(f,s)
●  Case:

1. f contains no temporal ops : f + := TRUE if s |= f, FALSE otherwise
2. f = f1 ∧ f2 : f + := Progress(f1, s) ∧ Progress(f2, s)
3. f = f1 ∨ f2 : f + := Progress(f1, s) ∨ Progress(f2, s)
4. f =¬ f1 : f + := ¬Progress(f1, s)
5. f = ¡ f1 : f + := f1
6. f = ♢ f1 : f + := Progress(f1, s) ∨ f
7. f = ¨ f1 : f + := Progress(f1, s) ∧ f
8. f = f1 ∪ f2 : f + := Progress(f2, s) ∨ (Progress(f1, s) ∧ f)
9. f = ∀[x:g(x)] h(x) : f + := Progress(h1, s) ∧ … ∧ Progress(hn, s)

 10. f = ∃ [x:g(x)] h(x) : f + := Progress(h1, s) ∨ … ∨ Progress(hn, s)

where hi is h with x replaced by the i’th element of {x : s |= g(x)}
●  Next, simplify f + and return it

◆  Boolean simplification rules:

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 15

Two Examples
of ¡

●  Suppose f = ¡on(a,b)
◆  f + = on(a,b)

◆  s+ is acceptable iff on(a,b) is true in s+

●  Suppose f = ¡¡on(a,b)
◆  f + = ¡on(a,b)

◆  s+ is acceptable iff ¡on(a,b) is true in
s+

»  iff on(a,b) is true in s++

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 16

Example of ∧

●  Suppose f = on(a,b) ∧ ¡on(b,c)
◆  f + = Progress(on(a,b), s) ∧ Progress(¡on(b,c), s)

◆  Progress(on(a,b), s)
= TRUE if on(a,b) is true in s, else FALSE

◆  Progress(¡on(b,c), s) = on(b,c)

●  If on(a,b) is true in s, then f + = on(b,c)
◆  i.e., on(b,c) must be true in s+

●  Otherwise, f + = FALSE
◆  i.e., there is no acceptable s+

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 17

Example of ¨

●  Suppose f = ¨ on(a,b)
◆  f + = Progress(on(a,b), s) ∧ ¨ on(a,b)

●  If on(a,b) is true in s, then
◆  f + = TRUE ∧ ¨ on(a,b) = ¨ on(a,b) = f
◆  i.e., on(a,b) must be true in s+, s++, s+++, …

●  If on(a,b) is false in s, then
◆  f + = FALSE ∧ ¨ on(a,b) = FALSE
◆  There is no acceptable s+

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 18

Example
of ∪

●  Suppose f = on(a,b) ∪ on(c,d)
◆  f + = Progress(on(c,d), s) ∨ (Progress(on(a,b), s) ∧ f)

●  If on(c,d) is true in s, then Progress(on(c,d), s) = TRUE
◆  f + = TRUE, so any s+ is acceptable

●  If on(c,d) is false in s, then Progress(on(c,d), s) = FALSE
◆  f + = Progress(on(a,b), s) ∧ f
◆  If on(a,b) is false in s then f + = FALSE: no s+ is acceptable
◆  If on(a,b) is true in s then f + = f

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 19

●  Suppose f = ¨(on(a,b) ⇒¡clear(a))
◆  f + = Progress[on(a,b) ⇒¡clear(a), s] ∧ f
 = (¬Progress[on(a,b)] ∨ clear(a)) ∧ f

◆  If on(a,b) is false in s, then f + = (TRUE ∨ clear(a)) ∧ f = f
»  So s+ must satisfy f

◆  If on(a,b) is true in s, then f + = clear(a) ∧ f
»  So s+ must satisfy both clear(a) and f

Another Example

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 20

Pseudocode for TLPlan
●  Nondeterministic forward search

◆  Input includes a control formula f for the current state s
◆  If f + = FALSE then s has no acceptable successors => backtrack
◆  Otherwise the progressed formula is the control formula for s’s children

Procedure TLPlan (s, f, g, π)
 if f = FALSE then return failure
 if s satisfies g then return π
 f + ← Progress (f, s)
 if f + = FALSE then return failure
 A ← {actions applicable to s}
 if A is empty then return failure
 nondeterministically choose a ∈ A
 s + ← γ (s,a)
 return TLPlan (s +, f +, g, π.a)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 21

●  s = {ontable(a), ontable(b), clear(a), clear(c), on(c,b)}	

●  g = {on(b, a)} 	

●  f = ¨∀[x:clear(x)] {(ontable(x) ∧ ¬∃[y:GOAL(on(x,y))]) ⇒ ¡¬holding(x)}	

◆  never pick up a block x if x is not required to be on another block y	

	

●  f + = Progress(f1,s) ∧ f, where	

◆  f1 = ∀[x:clear(x)]{(ontable(x) ∧ ¬∃[y:GOAL(on(x,y))]) ⇒ ¡¬holding(x)}	

●  {x: clear(x)} = {a, c}, so
Progress(f1,s) = Progress((ontable(a) ∧ ¬∃[y:GOAL(on(a,y))]) ⇒ ¡¬holding(a)},s)	

 ∧ Progress((ontable(c) ∧ ¬∃[y:GOAL(on(c,y))]) ⇒ ¡¬holding(b)},s)
	
 	
 = (TRUE ⇒ ¬holding(a)) ∧ TRUE = ¬holding(a)	

●  f + =¬holding(a) ∧ f
 = ¬holding(a) ∧
 ¨∀[x:clear(x)] {(ontable(x) ∧ ¬∃[y:GOAL(on(x,y))]) ⇒ ¡¬holding(x)}

●  Two applicable actions: pickup(a) and pickup(c)
◆  Try s+ = γ (s, pickup(a)): f + simplifies to FALSE ⇒ backtrack	

◆  Try s+ = γ (s, pickup(c)): f + doesn’t simplify to FALSE ⇒ keep going

Example Planning Problem

a b
b
a

c

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 22

Blocks-
World

Results

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 23

Blocks-
World

Results

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 24

Logistics-
Domain
Results

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 25

Discussion
●  2000 International Planning Competition

◆  TALplanner: similar algorithm, different temporal logic
»  received the top award for a “hand-tailored” (i.e., domain-configurable)

planner
●  TLPlan won the same award in the 2002 International Planning Competition
●  Both of them:

◆  Ran several orders of magnitude faster than the “fully automated” (i.e.,
domain-independent) planners
»  especially on large problems

◆  Solved problems on which the domain-independent planners ran out of time
or memory

