Lecture slides for Automated Planning: Theory and Practice

Chapter 14 Temporal Planning

Dana S. Nau University of Maryland

2:19 PM April 23, 2012

Dana Nau: Lecture slides for Automated Planning Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Temporal Planning

• Motivation: want to do planning in situations where actions

- have nonzero duration
- may overlap in time
- Need an explicit representation of time
- In Chapter 10 we studied a "temporal" logic
 - Its notion of time is too simple: a sequence of discrete events
 - Many real-world applications require continuous time
 - How to get this?

Temporal Planning

• The book presents two equivalent approaches:

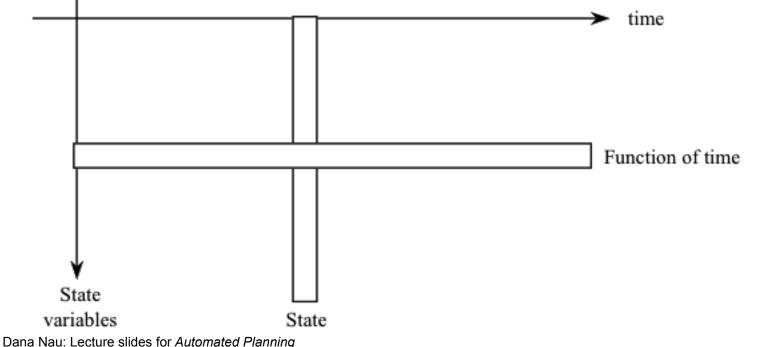
- 1. Use logical atoms, and extend the usual planning operators to include temporal conditions on those atoms
 - » Chapter 14 calls this the "state-oriented view"
- 2. Use state variables, and specify change and persistence constraints on the state variables

» Chapter 14 calls this the "time-oriented view"

• In each case, the chapter gives a planning algorithm that's like a temporal-planning version of PSP

The Time-Oriented View

- We'll concentrate on the "time-oriented view": Sections 14.3.1–14.3.3
 - It produces a simpler representation
 - State variables seem better suited for the task
- States not defined explicitly
 - Instead, can compute a state for any time point, from the values of the state variables at that time

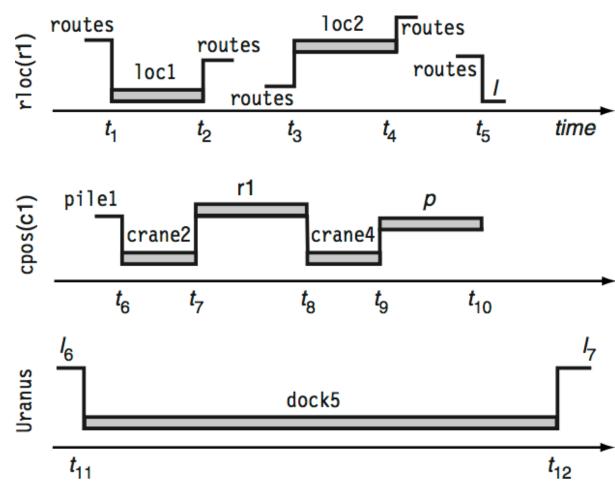


State Variables

- A state variable is a partially specified function telling what is true at some time *t*
 - cpos(c1) : time \rightarrow containers U cranes U robots
 - » Tells what c1 is on at time t
 - rloc(r1) : time \rightarrow locations
 - » Tells where r1 is at time t
- Might not ever specify the entire function
- cpos(c) refers to a collection of state variables
 - But we'll be sloppy and just call it a state variable

DWR Example

- robot r1
 - in loc1 at time t_1
 - leaves loc1 at time t_2
 - enters loc2 at time t_3
 - leaves loc2 at time t_4
 - enters l at time t_5
- container c1
 - in pile1 until time t_6
 - held by crane2 until t_7
 - sits on r1 until t_8
 - held by crane4 until t_9
 - sits on p until t_{10} (or later)
- ship Uranus
 - stays at dock5 from t_{11} to t_{12}



Dana Nau: Lecture slides for Automated Planning

Temporal Assertions

- Temporal assertion:
 - *Event*: an expression of the form $x@t: (v_1, v_2)$
 - » At time *t*, *x* changes from v_1 to $v_2 \neq v_1$
 - *Persistence condition*: $x@[t_1,t_2) : v$
 - » x = v throughout the interval $[t_1, t_2)$

where

- » t, t_1, t_2 are constants or temporal variables
- » v, v_1, v_2 are constants or object variables
- Note that the time intervals are semi-open

• Why?

Temporal Assertions

- Temporal assertion:
 - *Event*: an expression of the form $x@t: (v_1, v_2)$
 - » At time *t*, *x* changes from v_1 to $v_2 \neq v_1$
 - *Persistence condition*: $x@[t_1,t_2) : v$
 - » x = v throughout the interval $[t_1, t_2)$

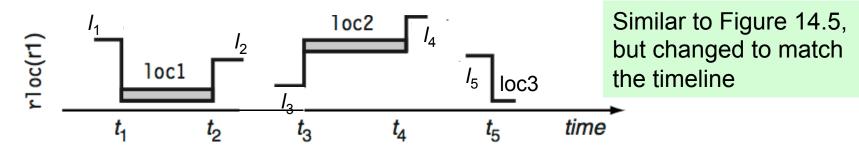
where

- » t, t_1, t_2 are constants or temporal variables
- » v, v_1, v_2 are constants or object variables
- Note that the time intervals are semi-open
 - Why?
 - To prevent potential confusion about *x*'s value at the endpoints

Chronicles

- *Chronicle*: a pair $\Phi = (F, C)$
 - *F* is a finite set of temporal assertions
 - *C* is a finite set of constraints
 - » temporal constraints and object constraints
 - *C* must be consistent
 - » i.e., there must exist variable assignments that satisfy it
- *Timeline*: a chronicle for a single state variable
- The book writes *F* and *C* in a calligraphic font
 - Sometimes I will, more often I'll just use italics

Example



• Timeline for rloc(r1), from Example 14.9 of the book

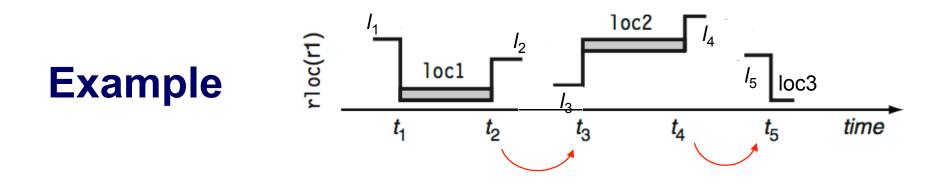
$$\begin{array}{ll} (\{ & \mathsf{rloc}(\mathsf{r1})@t_1:(l_1,\mathsf{loc1}), \\ & \mathsf{rloc}(\mathsf{r1})@[t_1,t_2):\mathsf{loc1}, \\ & \mathsf{rloc}(\mathsf{r1})@t_2:(\mathsf{loc1},l_2), \\ & \mathsf{rloc}(\mathsf{r1})@t_3:(l_3,\mathsf{loc2}), \\ & \mathsf{rloc}(\mathsf{r1})@[t_3,t_4):\mathsf{loc2}, \\ & \mathsf{rloc}(\mathsf{r1})@t_4:(\mathsf{loc2},l_4), \\ & \mathsf{rloc}(\mathsf{r1})@t_5:(l_5,\mathsf{loc3}) \ \ \}, \\ \{ & \mathsf{adjacent}(l_1,\mathsf{loc1}),\mathsf{adjacent}(\mathsf{loc1},l_2), \\ & \mathsf{adjacent}(l_3,\mathsf{loc2}), \mathsf{adjacent}(\mathsf{loc2},l_4), \mathsf{adjacent}(l_5,\mathsf{loc3}), \\ & t_1 < t_2 < t_3 < t_4 < t_5 \ \} \). \end{array}$$

Dana Nau: Lecture slides for Automated Planning

C-consistency

- A timeline (*F*,*C*) is *c*-consistent (chronicle-consistent) if
 - \bullet *C* is consistent, and
 - Every pair of assertions in *F* are either disjoint or they refer to the same value and/or time points:
 - » If *F* contains both $x@[t_1,t_2):v_1$ and $x@[t_3,t_4):v_2$, then *C* must entail $\{t_2 \le t_3\}, \{t_4 \le t_1\}, \text{ or } \{v_1 = v_2\}$
 - » If *F* contains both $x@t:(v_1,v_2)$ and $x@[t_1,t_2):v$, then *C* must entail $\{t < t_1\}, \{t_2 < t\}, \{v = v_2, t_1 = t\}, \text{ or } \{t_2 = t, v = v_1\}$
 - » If *F* contains both $x@t:(v_1,v_2)$ and $x@t':(v'_1,v'_2)$, then *C* must entail $\{t \neq t'\}$ or $\{v_1 = v'_1, v_2 = v'_2\}$
- (F,C) is c-consistent iff every timeline in (F,C) is c-consistent
- The book calls this consistency, not c-consistency
 - But it's a stronger requirement than ordinary mathematical consistency
- Mathematical consistency: *C* doesn't contradict the separation constraints
- c-consistency: *C* must actually entail the separation constraints
 - It's sort of like saying that (*F*,*C*) contains no threats

Dana Nau: Lecture slides for Automated Planning



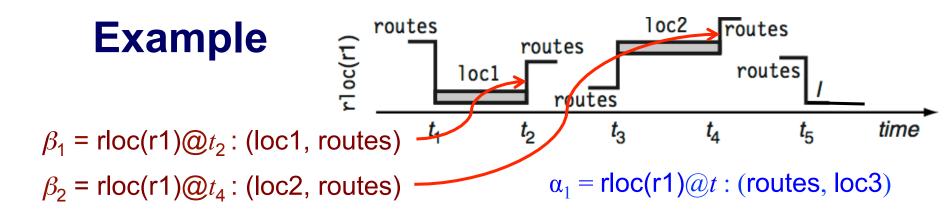
- Let (F,C) be the timeline given earlier for r1
- (F,C) is not c-consistent
 - To ensure that $rloc(r1)@[t_1,t_2)$:loc1 and $rloc(r1)@t_3:(l_3,loc2)$ don't conflict, need $t_2 < t_3$ or $t_3 < t_1$
 - To ensure that $rloc(r1)@[t_1,t_2)$:loc1 and $rloc(r1)@[t_3,t_4)$:loc2 don't conflict, need $t_2 < t_3$ or $t_4 < t_1$
 - Etc.
- If we add some additional time constraints, (*F*,*C*) will be consistent:
 - e.g., $t_2 < t_3$ and $t_4 < t_5$

Support and Enablers

- Let α be either x@t:(v,v') or x@[t,t'):v
 - Note that α requires x = v either at *t* or just before *t*
- Intuitively, a chronicle $\Phi = (F, C)$ supports α if
 - *F* contains an assertion β that we can use to establish x = v at some time s < t,
 - » β is called *the support for* α
 - and if it's consistent with Φ for v to persist over [s,t) and for α be true
- Formally, $\Phi = (F, C)$ supports α if
 - *F* contains an assertion β of the form $\beta = x@s:(w',w)$ or $\beta = x@[s',s):w$, and
 - A separation constraints C' such that the following chronicle is c-consistent:
 » (F ∪ {x@[s,t):v, α}, C ∪ C' ∪ {w=v, s < t})
 - C' can either be absent from Φ or already in Φ
- The chronicle $\delta = (\{x @ [s,t]:v, \alpha\}, C' \cup \{w=v, s < t\})$ is an *enabler* for α

Analogous to a causal link in PSP

• Just as there could be more than one possible causal link in PSP, there can be more than one possible enabler



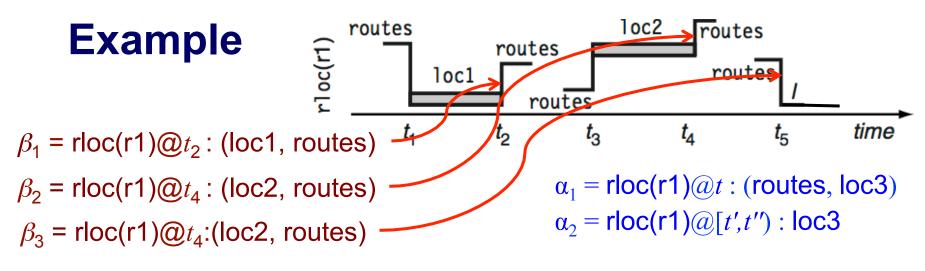
• Φ supports α_1 in two different ways:

- β_1 establishes rloc(r1) = routes at time t_2
 - » this can support α_1 if we constrain $t_2 < t < t_3$
 - » enabler is $\delta_1 = (\{ \mathsf{rloc}(\mathsf{r1}) @ [t_2, t] : \mathsf{routes}, \alpha_1 \}, \{ t_2 \le t \le t_3 \}$
- β_2 establishes rloc(r1) = routes at time t_4
 - » this can support α_1 if we constrain $t_4 < t < t_5$
 - » enabler is $\delta_2 = (\{ \mathsf{rloc}(\mathsf{r1}) @ [t_4, t] : \mathsf{routes}, \alpha_1 \}, \{ t_4 < t < t_5 \}$

Dana Nau: Lecture slides for Automated Planning

Enabling Several Assertions at Once

- $\Phi = (F, C)$ supports a set of assertions $E = \{\alpha_1, ..., \alpha_k\}$ if both of the following are true
 - $F \cup E$ contains a support β_i for α_i other than α_i itself
 - There are enablers δ₁, ..., δ_k for α₁, ..., α_k such that the chronicle Φ ∪ δ₁ ∪ ... ∪ δ_k is c-consistent
- Note that some of the assertions in *E* may support each other!
- $\phi = \{\delta_1, ..., \delta_k\}$ is an *enabler* for *E*



- $δ_1 = (\{ \mathsf{rloc}(\mathsf{r1})@[t_2,t):\mathsf{routes}, α_1 \}, \{t_2 < t < t_3 \}$ $δ_2 = (\{ \mathsf{rloc}(\mathsf{r1})@[t_4,t):\mathsf{routes}, α_1 \}, \{t_4 < t < t_5 \}$
- Φ supports { α_1, α_2 } in four different ways:
 - As before, for α_1 we can use either β_1 and δ_1 or β_2 and δ_2
 - We can support α_2 with β_3
 - » Enabler is $\delta_3 = (\{ \mathsf{rloc}(\mathsf{r1}) @ [t_5, t'] : \mathsf{loc3}, \alpha_2 \}, \{ l = \mathsf{loc3}, t_5 < t' \})$
 - Or we can support α_2 with α_1
 - » If used β_1 and δ_1 for α_1 ,
 - Then α_2 's enabler is $\delta_4 = (\{ \mathsf{rloc}(\mathsf{r1}) @ [t,t') : \mathsf{loc3}, \alpha_2 \}, \{ t \le t' \le t_3 \})$
 - » If we used β_1 and δ_2 for α_1 , then replace t_3 with t_5 in δ_4

Dana Nau: Lecture slides for Automated Planning

One Chronicle Supporting Another

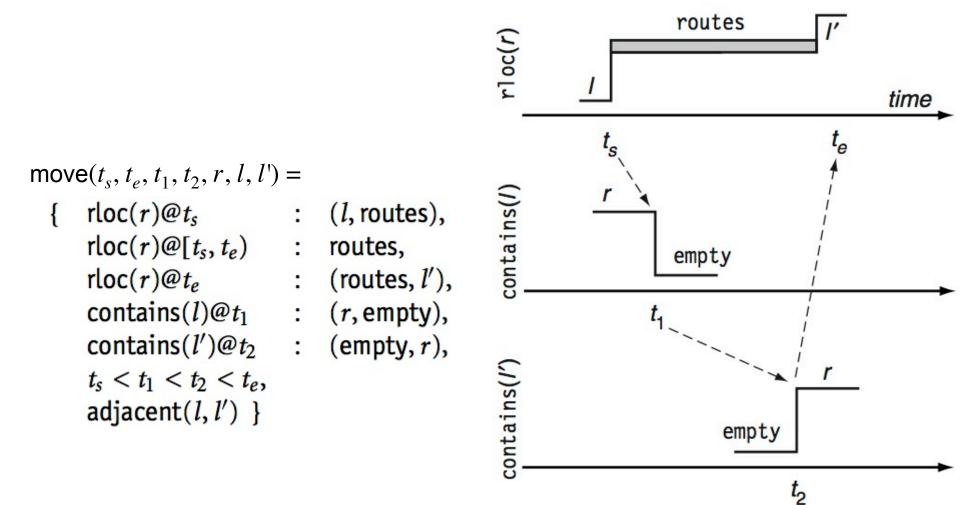
- Let $\Phi' = (F', C')$ be a chronicle
- Suppose $\Phi = (F, C)$ supports F'.
- Let $\delta_1, \ldots, \delta_k$ be all the possible enablers of Φ'
 - For each δ_i , let $\delta'_i = \delta_1 \cup C'$
- If there is a δ'_i such that $\Phi \cup \delta'_i$ is c-consistent,
 - Then Φ supports Φ' , and δ'_i is an enabler for Φ'
 - If $\delta'_i \subseteq \Phi$, then Φ entails Φ'

• The set of all enablers for Φ' is $\theta(\Phi/\Phi') = \{\delta'_i : \Phi \cup \delta'_i \text{ is c-consistent}\}$

Chronicles as Planning Operators

- Chronicle planning operator: a pair o = (name(o), (F(o), C(o))), where
 - name(*o*) is an expression of the form $o(t_s, t_e, ..., v_1, v_2, ...)$
 - » *o* is an operator symbol
 - » $t_s, t_e, ..., v_1, v_2, ...$ are all the temporal and object variables in o
 - (F(o), C(o)) is a chronicle
- Action: a (partially) instantiated operator, *a*
- If a chronicle Φ supports (*F*(*a*),*C*(*a*)), then *a* is *applicable* to Φ
 - *a* may be applicable in several ways, so the result is a set of chronicles
 - » $\gamma(\Phi,a) = \{ \Phi \cup \phi \mid \phi \in \theta(a/\Phi) \}$

Example: Operator for Moving a Robot



Applying a Set of Actions

- Just like several temporal assertions can support each other, several actions can also support each other
 - Let $\pi = \{a_1, ..., a_k\}$ be a set of actions
 - Let $\Phi_{\pi} = \bigcup_i (F(a_i), C(a_i))$
 - If Φ supports Φ_{π} then π is applicable to Φ

 a_1

 a_2

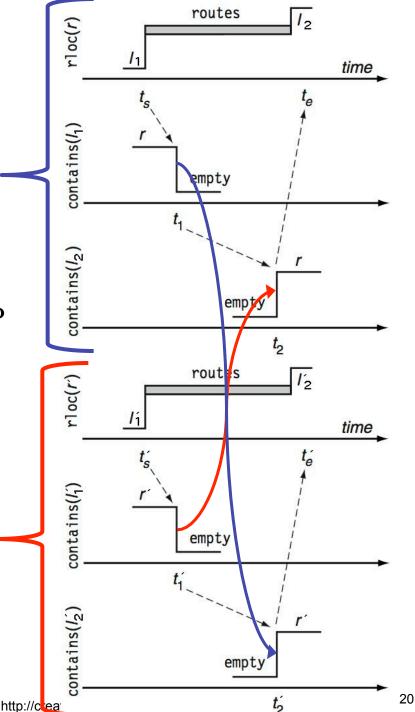
• Result is a *set* of chronicles $\gamma(\Phi,\pi) = \{ \Phi \cup \phi \mid \phi \in \theta(\Phi_{\pi}/\Phi) \}$

• Example:

- Suppose Φ asserts that at time t₀, robots r1 and r2 are at adjacent locations loc1 and loc2
- Let a_1 and a_2 be as shown

• Then
$$\Phi$$
 supports $\{a_1, a_2\}$ with
 $l_1 = \text{loc1}, l_2 = \text{loc2}, l'_1 = \text{loc2}, l'_2 = \text{loc1},$
 $t_0 < t_s < t_1 < t'_2, t_0 < t'_s < t'_1 < t_2$

Dana Nau: Lecture slides for Automated Planning Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creative.com/



Domains and Problems

- Temporal planning *domain*:
 - A pair $\boldsymbol{D} = (\Lambda_{\Phi}, O)$
 - » $O = \{$ all chronicle planning operators in the domain $\}$
 - » $\Lambda_{\Phi} = \{ all chronicles allowed in the domain \}$
- Temporal planning *problem* on **D**:
 - A triple $\boldsymbol{P} = (\boldsymbol{D}, \Phi_0, \Phi_g)$
 - » **D** is the domain
 - » Φ_0 and Φ_g are initial chronicle and goal chronicle
 - » O is the set of chronicle planning operators
- Statement of the problem *P*:
 - A triple $P = (O, \Phi_{0}, \Phi_{g})$
 - » O is the set of chronicle planning operators
 - » Φ_0 and Φ_g are initial chronicle and goal chronicle
- Solution plan:
 - A set of actions $\pi = \{a_1, ..., a_n\}$ such that at least one chronicle in $\gamma(\Phi_0, \pi)$ entails Φ_g

Dana Nau: Lecture slides for Automated Planning

As in plan-space planning, there are two set of open goals (*tqes*) kinds of flaws: / _ set of sets of enablers • Open goal: a *tqe* that isn't yet enabled $CP(\Phi, G, \mathcal{K}, \pi)$ Threat: an enabler that hasn't yet been incorporated into Φ if $G = \mathcal{K} = \emptyset$ then return (π) perform the two following steps in any order if $G \neq \emptyset$ then do select any $\alpha \in G$ if $\theta(\alpha/\Phi) \neq \emptyset$ then return(CP($\Phi, G - \{\alpha\}, \mathcal{K} \cup \{\theta(\alpha/\Phi)\}, \pi$)) else do *relevant* \leftarrow {*a* | *a* contains a support for α } if *relevant* = \emptyset then return(failure) nondeterministically choose $a \in relevant$ return(CP($\Phi \cup (\mathcal{F}(a), \mathcal{C}(a)), G \cup \mathcal{F}(a), \mathcal{K} \cup \{\theta(a/\Phi)\}, \pi \cup \{a\}$)) if $\mathcal{K} \neq \emptyset$ then do select any $C \in \mathcal{K}$ threat-resolvers $\leftarrow \{ \phi \in C \mid \phi \text{ consistent with } \Phi \}$ if *threat-resolvers* = \emptyset then return(failure) nondeterministically choose $\phi \in threat$ -resolvers return(CP($\Phi \cup \phi, G, \mathcal{K} - C, \pi$))

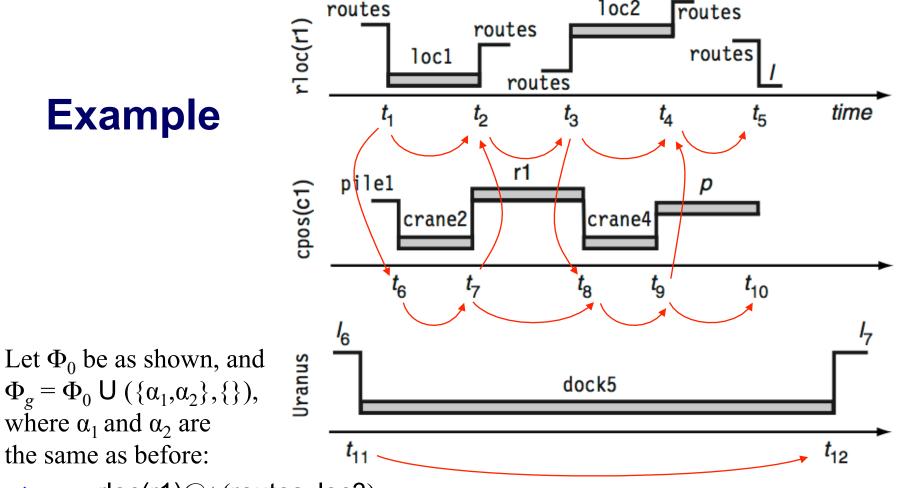
Resolving Open Goals

- Let $\alpha \in G$ be an open goal
- Case 1: Φ supports α
 - Resolver: any enabler for α that's consistent with Φ
 - Refinement:
 - » $G \leftarrow G \{\alpha\}$
 - » $K \leftarrow K \cup \theta(\alpha/\Phi)$
- Case 2: Φ doesn't support α
 - Resolver: an action a = (F(a), C(a)) that supports α
 - » We don't yet require a to be supported by Φ
 - Refinement:
 - » $\pi \leftarrow \pi \cup \{a\}$
 - » $\Phi \leftarrow \Phi \cup (F(a), C(a))$
 - » $G \leftarrow G \cup F(a)$ Don't remove α yet: we haven't chosen an enabler for it
 - We'll choose one in a later call to CP, in Case 1 above
 - » $K \leftarrow K \cup \theta(a/\Phi)$ put *a*'s set of enablers into *K*

Dana Nau: Lecture slides for Automated Planning

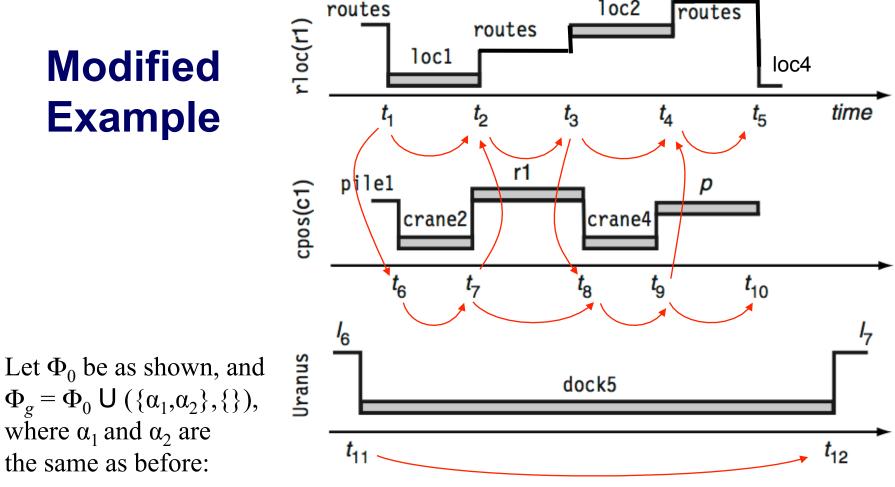
Resolving Threats

- *Threat*: each enabler in *K* that isn't yet entailed by Φ is threatened
 - For each C in K, we need only one of the enablers in C
 - » They're alternative ways to achieve the same thing
 - "Threat" means something different here than in PSP, because we won't try to entail *all* of the enablers
 - » Just the one we select
 - Resolver: any enabler ϕ in *C* that is consistent with Φ
 - Refinement:
 - » $K \leftarrow K C$
 - » $\Phi \leftarrow \Phi \cup \phi$



- $\alpha_1 = rloc(r1)@t:(routes, loc3)$
- $\alpha_2 = \operatorname{rloc}(r1)@[t',t''):loc3$
- As we saw earlier, we can support $\{\alpha_1, \alpha_2\}$ from Φ_0
 - Thus CP won't add any actions
 - It will return a modified version of Φ_0 that includes the enablers for $\{\alpha_1, \alpha_2\}$

Dana Nau: Lecture slides for Automated Planning



- $\alpha_1 = rloc(r1)@t:(routes, loc3)$
- $\alpha_2 = \operatorname{rloc}(r1)@[t',t''):loc3$
- This time, CP will need to insert an action $move(t_s, t_e, t_1, t_2, r1, loc4, loc3)$
 - » with $t_5 < t_s < t_1 < t_2 < t_e$

Dana Nau: Lecture slides for Automated Planning