
Don’t Always Do Your Best

Dianne P. O’Leary

“Always do your best” sounds like a good motto, but it is actually quite
impossible. If I take time to make the perfect breakfast, I might not make it to
class on time. If I focus on keeping my car perfectly centered in my lane, I might
not notice the cyclist starting to cross in front of me. If I am the perfect student,
I might not be able to be the perfect parent / spouse / daughter / son / employee.
“The perfect is the enemy of the good,” and in life we need to make reasonable
compromises to determine what is good enough for a given task.

Similarly, in science and engineering, we put a lot of effort in getting as close
as possible to truth – computing solutions as accurately as possible. But we also put
a lot of effort into computing solutions that we know are wrong but close enough
to the truth to be useful. We do this because it is impossible to obtain perfect
measurements, and too expensive to compute perfectly accurate results. In fact,
approximations can yield very useful results, and we focus in this case study on the
approximation of matrices.

We learn in Pointer 5.8 (SCCS textbook) that among all matrices of a given
rank, the singular value decomposition (SVD) of a matrix gives the best approxi-
mation to a matrix. In this case study, we consider alternatives when the SVD is
too expensive.

Notation: We’ll try to approximate a matrix A of dimension m × n where
m ≥ n. The jth column of A will be denoted by aj .

Algorithm 0.1 CU Decomposition
Choose a set of k representative columns from A, and call these vectors c1, . . . , ck.
Let C = [c1, . . . , ck].
for j = 1 : n

Express aj as a combination of the columns in C: aj ≈ Cuj , where the
coefficients in uj are chosen to make ‖aj −Cuj‖ small.

end
Let U = [u1, . . . ,un].
Then A ≈ CU.

1



2

The CU Decomposition
If there were a small number of columns of A that were representative of all of the
columns, then we could approximate the matrix as in Algorithm 0.1. There are two
main tasks in the algorithm:

• Choose the columns to include in C.

• Determine the columns of U by solving n least squares problems.

Our goal is to find a good approximation, and we’ll measure goodness by
taking the Frobenius norm of the error: E = ‖A−CU‖F .

We’ll consider the second task first.

Computing U using least squares

We can find uj (j = 1 : n) as the solution of the least squares problem

min
z
‖aj −Cz‖22.

Let’s see how good our approximation will be, and how expensive it will be to
compute.

CHALLENGE 0.1.

(a) Explain why the E obtained from least squares is the smallest possible E over
all choices of U.

(b) Solving n least squares problems could be expensive, but each of them involves
the same matrix C. Suppose we have a rank-revealing QR factorization of C. How
many multiplications will it take to solve our problems? Compare this with the cost
of solving n least squares problems of the same size with different matrices for each
problem.

Choosing columns from A

The only remaining question is how to find a good choice of columns to include in
the matrix C. Here are three reasonable choices:

• Choose a set of columns that are “most important” in the matrix A. For
example, our first choice might be the column that has maximum norm. Our
second might be the column whose component orthogonal to the first choice
has maximal norm, since we already have accounted for the component in the
direction of the first choice. Our third might be the column whose component
orthogonal to the first two is maximal. We continue this way. Our matrix tool
for computing this is the pivoted QR decomposition, stopped after k steps.
We call this algorithm CUQR.



3

POINTER 0.1. Alternatives not discussed here.

• We could just as well have chosen rows from A instead of columns, and then
determined a UR decomposition by choosing U appropriately, where R is a
matrix containing the chosen rows.

• We could also have chosen a set of rows and a set of columns, obtaining a
CUR decomposition.

• We might use our method of last resort: a random choice of columns. We
could do this with or without replacement. “With replacement” means that if
we think about choosing column indices out of a hat, we put the one we chose
back into the hat before choosing the next one. This can be implemented using
k samples from rand, renormalized to the interval 0 to n and then rounded
up to the next integer.

“Without replacement” means that we don’t allow any duplicates. If we think
about choosing column indices out of a hat, we don’t put the chosen ones back
into the hat. So if rand gives a duplicate, we ignore it and choose again.

We call these algorithms CUrandWith and CUrandWithout.

• It would be good to include some sort of importance sampling in our random-
ized algorithms, but we won’t do that in this case study.

CHALLENGE 0.2. (a) Implement CUQR, CUrandWith, and CUrandWithout in
Matlab. The three Matlab functions should be well documented. They should
take A and k as input and produce C and U as output.

(b) How many multiplications are needed for each algorithm assuming that that
nz entries in A are nonzero? Include your answer in the documentation for your
functions.

Nonnegative matrix factorization
In many applications, the matrix A has entries that are all nonnegative. When we
solve our least squares problems for U, we may compute some negative entries in
U, and this may cause some entries of CU to be negative. This is not a desirable
feature.



4

An alternative to the CU decomposition is a nonnegative matrix decom-
position. In this case, we approximate A by the product WH, where all entries
in the m × k matrix W and the k × n matrix H are nonnegative. Given initial
choices for W and H, the algorithm uses an alternating iteration (a very slowly
converging iteration), updating the choices by the Matlab formulas

H = H .* (W’ * A) ./ (W’ * W * H + 1.e-9);
W = W .* (A * H’) ./ (W * H * H’ + 1.e-9);

Convergence is not guaranteed, but the iteration often converges to a local
minimizer of the function f(W,H) = ‖A−WH‖F .

CHALLENGE 0.3.

(a) Write a Matlab function NonNegApprox that takes A and k as input, along
with an initial guess H and W, and uses the alternating iteration to compute a
nonnegative approximation to A. Stop the iteration when H and W stop changing
too much; this is vague, so document exactly how you implemented the stopping
condition.

(b) How many multiplications are needed to perform one iteration, assuming that
every entry in H and W is nonzero (i.e., these matrices are dense) and that nz
entries in A are nonzero? Include your answer in the documentation for your
function.



5

Testing our ideas
Let’s see how these methods work on some different matrices A. For each test, we
will measure the relative error in the approximation, ‖A−approximation‖F /‖A‖F ,
as a function of k.

CHALLENGE 0.4.

(a) Test your matrix approximation methods CUQR, CUrandWith, and CUrandWithout,
NonNegApprox, and the SVD on the term-document matrix cisimatrix.mat, a ma-
trix bwidata.mat of hourly temperature records at BWI airport from September
2009 through August 2010, and the matrix gene.mat of gene expression data.

Choose values of k between 1 and n/4. Use the first k columns and rows of A
to initialize the nonnegative matrix decomposition algorithm. For the randomized
algorithms, run the algorithms 50 times for each matrix and each value of k and
average your results.

Create one figure for each testmatrix. The figure should plot relative error vs. k,
one curve for each algorithm, with the curves labeled by legend.

Then create another figure for each testmatrix, plotting the number of columns
with less than 10% relative error, as a function of k.

(b) Discuss your results, comparing the accuracy, the time, and the storage expense
of the algorithms.



6

POINTER 0.2. Less is more: from Google to Crime to Netflix
The problem that we consider in this case study has many applications. Here are a
few examples.

• Search engines like Google have billions of documents that must be indexed
by topic for automatic retrieval. We could make a list of all the terms in the
documents and number them 1 through m. Then we can represent a document
by a column vector whose ith entry measures the importance of that term in
that document. (We expect the vector to have mostly zeros, since most terms
are not present in a single document.) If we stack all of these columns into
a matrix A, we have a term-document matrix, and it would be good to
approximate it so that we do not need to store such a large matrix.

• To compress video files, it would be useful to have a set of important frames
in the movie that we could use to compute a representation of every other
frame.

• We might collect data on interactions among a group of people, and represent
it as a graph. There is one node in the graph for every person, and an edge
between each pair of people who interact. The weight on the edge is a measure
of the importance of the interaction; for example, it might be the number of
email messages between them. Now we can represent this graph as a square
matrix with one row and column for each person. The weights (0 if an edge
is missing) are the entries in the matrix. If the group is small enough, we
have no trouble storing such a matrix, but if the group is large, we need to
approximate it.

Analysis of such graphs is important in sociology (with a famous study of the
members of a karate club), in documenting power and information exchange in
corporations (e.g., the Enron study), in detecting anomolies in computer net-
work connections that might indicate intrusions, and in many other criminal
investigations.

• The famous Netflix data is also a sparse matrix, one row per customer and
one column per movie. Each entry in the matrix is a rating of a movie by a
customer. The matrix is incomplete, and it is useful to use a matrix approxi-
mation to compress the data and fill in guesses for missing entries.


