
Evaluating a Lightweight
Defect Localization Tool

Valentin Dallmeier Christian Lindig Andreas Zeller
Saarland University – Germany

JUnit Tests in Eclipse

Failing Run
(1)

Passing Run
(1+)

Ample Plugin

Suspect Classes

Bug fixed here

2,929 classes

AspectJ Bug
#30168

Faults correlate with
differences in traces between
a correct and a faulty run.

Tracing Objects

myObj anInStream aLoggeranOutStream

InStream.read

InStream.read

Logger.getName

Logger.getName

OutStream.write

Logger.log

OutStream.flush

OutStream.write Logger.log OutStream.flush

Call-Sequence Sets

abcbcbabbcbaccaacbbabc

ab bc
cb

ba bb
cc

Call-Sequence Set – sequences of length k
Benefits: simple, compact, set semantics

Aggregating Traces

object Trace

object Sequence Set

Sequence Setclass

Comparing Program Runs

passing run failing run

MyClass MyClass

class-by-class

new sequence
(weight 1)

average sequence weight
for ranking classes

common sequence
(weight 0)

missing sequence
(weight 1)

 Search Length

search length: classes
in front of faulty
class in ranking

smaller is better

evaluated for
programs with one
known bug

search length: 9

Evaluation Subjects
NanoXML - Java XML Parser (Do et al.)

4 Versions, 16–23 classes, 4.3-7.6 kLOC

33 known bugs, 214 test cases

386 rankings, each for:
1 bug, 1 failing run, 1+ passing runs

AspectJ - Java Compiler (v1.1.1)

979 classes, 112 kLOC

5 rankings for real bugs from bug db

Results

2.31 2.17 2.04 2.12 2.14

31.8 10.2 8.6 23.8 24.0

NanoXML

AspectJ

1 2 4 5 8 10

window sizeRand
Guess

2.53

32.4

4.78

209

Subject

search length

Ample beats random guessing (no surprise)Sequences perform better than coverage

Search Length

0%

25%

50%

75%

100%

0 1 2 3 4 5 6 7 8 9

k=7
k=2

Inspecting the 3 top-ranked classes, a programmer finds
over 50% of all bugs in NanoXML.

Subject:
NanoXML

failures

Conclusions

Ample works (NanoXML) and scales (AspectJ)

Sequence sets facilitate aggregation and
comparison of runs

Ample is first approach to leverage objects

Search length is measure for performance

Sequences outperform coverage analysis

Dallmeier, Lindig, Zeller: Lightweight Defect Localization for
Java, ECOOP 2005.

1 Failing, 3 Passing Runs
passing runs

failing run
1

1/3

1/3

2/31

0

2/3
1/3

Runtime Overhead

Measured for SPEC JVM 98 Benchmarks

Memory: factor 1.1 – 22.7 (typical: ≤ 2)

Time: factor 1.2 – ≥ 100 (varies widely)

comparable to coverage analysis (JCoverage)

found low overhead for AspectJ

