
MIT Lincoln Laboratory

The Importance of Benchmarks
for Tools that Find or Prevent

Buffer Overflows
Richard Lippmann, Michael Zhivich Kendra Kratkiewicz,

Tim Leek, Graham Baker, Robert Cunningham

MIT Lincoln Laboratory
lippmann@ll.mit.edu

To be presented at the Workshop on the Evaluation of Software Defect
Detection Tools, Co-located with the PLDI 2005 Conference, Chicago

12 June 2005

*This work was sponsored by the Advanced Research and Development Activity under Force Contract F19628-00-C-0002. Opinions,
interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

mailto:lippmann@ll.mit.edu

MIT Lincoln Laboratory2
Richard Lippmann, 12 May 2005

Our Experience with Buffer Overflow
Detection Tools – Benchmarks are Essential

• An initial literature
review led us to believe
that tools could reliably
find buffer overflows

BOON

Ensuring Flawless Software Reliability

Splint

• We created a hierarchy of buffer overflow benchmarks
1. Large full programs

− Historic versions of BIND, Sendmail, WU-FTP servers with known buffer-
overflow vulnerabilities (14)

− Recent versions of gzip, tar, OpenSSL, Apache
2. 14 Model Programs extracted from servers with known buffer-

overflow vulnerabilities (169-1531 lines of code each)
 Available from http://www.ll.mit.edu/IST/corpora.html

3. 291 Small Diagnostic C Test Cases
– Created using a buffer overflow taxonomy with 22

attributes, each case varies one attribute
 Available from Kendra Kratkiewicz, kendra@ll.mit.edu

http://www.ll.mit.edu/IST/corpora.html
mailto:kendra@ll.mit.edu

MIT Lincoln Laboratory3
Richard Lippmann, 12 May 2005

Model Program Excerpt for Sendmail
GECOS Overflow CVE-1999-0131

ADDRESS *recipient(...) {
...
else {
/* buffer created */

char nbuf[MAXNAME + 1];
buildfname(pw->pw_gecos,

pw->pw_name, nbuf);
...

}
}

void buildfname(gecos, login, buf)
register char *gecos;
char *login;
char *buf; {
...
register char *bp = buf;
/* fill in buffer */
for (p = gecos; *p != '\0' &&

*p != ',' &&
*p != ';' &&
*p != '%'; p++) {

if (*p == '&') {
/* BAD */
(void) strcpy(bp, login);
*bp = toupper(*bp);
while (*bp != '\0')
bp++;

}
else

/* BAD */
*bp++ = *p;

}
/* BAD */
*bp = '\0';

}

MIT Lincoln Laboratory4
Richard Lippmann, 12 May 2005

Diagnostic C Test Case Taxonomy

Taxonomy Attributes
Attribute
Number Attribute Name

1 Write/Read
2 Upper/Lower Bound
3 Data Type
4 Memory Location
5 Scope
6 Container
7 Pointer
8 Index Complexity
9 Address Complexity
10 Length/Limit Complexity
11 Alias of Buffer Address
12 Alias of Buffer Index
13 Local Control Flow
14 Secondary Control Flow
15 Loop Structure
16 Loop Complexity
17 Asynchrony
18 Taint
19 Runtime Environment Dependence
20 Magnitude
21 Continuous/Discrete
22 Signed/Unsigned Mismatch

Scope

Magnitude

Value Description Example

0 none buf[9] = ‘A’;

1 1 byte buf[10] = ‘A’;

2 8 bytes buf[17] = ‘A’;

3 4096 bytes buf[4105] = ‘A’;

Value Description

0 same

1 inter-procedural

2 global

3 inter-file/inter-
procedural

4 inter-file/global

MIT Lincoln Laboratory5
Richard Lippmann, 12 May 2005

OK and BAD (Vulnerable)
Diagnostic C Test Case Example

/* Taxonomy Classification: 0001000000000000000000
* WRITE/READ 0 write
* WHICH BOUND 0 upper
* DATA TYPE 0 char
* MEMORY LOCATION 1 heap
* SCOPE 0 same
* CONTAINER 0 no
* POINTER 0 no
* INDEX COMPLEXITY 0 constant
* ADDRESS COMPLEXITY 0 constant
* LENGTH COMPLEXITY 0 N/A
* ADDRESS ALIAS 0 none
* INDEX ALIAS 0 none
* LOCAL CONTROL FLOW 0 none
* SECONDARY CONTROL FLOW 0 none
* LOOP STRUCTURE 0 no
* LOOP COMPLEXITY 0 N/A
* ASYNCHRONY 0 no
* TAINT 0 no
* RUNTIME ENV. DEPENDENCE 0 no
* MAGNITUDE 0 no overflow
* CONTINUOUS/DISCRETE 0 discrete
* SIGNEDNESS 0 no
*/
#include <stdlib.h>
#include <assert.h>
int main(int argc, char *argv[])
{
char * buf;
buf=(char *)malloc(10*sizeof(char));
assert (buf != NULL);

/* OK */
buf[9] = 'A';

return 0;}

OK Test Case BAD (Vulnerable) Test Case
/* Taxonomy Classification: 0001000000000000000100
* WRITE/READ 0 write
* WHICH BOUND 0 upper
* DATA TYPE 0 char
* MEMORY LOCATION 1 heap
* SCOPE 0 same
* CONTAINER 0 no
* POINTER 0 no
* INDEX COMPLEXITY 0 constant
* ADDRESS COMPLEXITY 0 constant
* LENGTH COMPLEXITY 0 N/A
* ADDRESS ALIAS 0 none
* INDEX ALIAS 0 none
* LOCAL CONTROL FLOW 0 none
* SECONDARY CONTROL FLOW 0 none
* LOOP STRUCTURE 0 no
* LOOP COMPLEXITY 0 N/A
* ASYNCHRONY 0 no
* TAINT 0 no
* RUNTIME ENV. DEPENDENCE 0 no
* MAGNITUDE 1 1 byte
* CONTINUOUS/DISCRETE 0 discrete
* SIGNEDNESS 0 no
*/

#include <stdlib.h>
#include <assert.h>
int main(int argc, char *argv[])
{
char * buf;
buf=(char *)malloc(10*sizeof(char));
assert (buf != NULL);

/* BAD */
buf[10] = 'A';

return 0;}

MIT Lincoln Laboratory6
Richard Lippmann, 12 May 2005

Evaluating Static Analysis
Tools with Model Programs and Test Cases

• Most tools can’t handle real server
code!

• They also exhibit poor
performance on extracted model
programs

– Low detection and high false
alarm rates

– Only Polyspace is better than
guessing

14 MODEL PROGRAMS 291 Diagnostic Test Cases

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

False Alarm Probability

D
et

ec
ti
on

 P
ro

b
ab

ili
ty

POLYSPACE

SPLINT

BOON
ARCHER, UNO

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

False Alarm Probability

D
e
te

ct
io

n
 P

ro
b
a
b
ili

ty

Polyspace

Archer

Splint
Uno

Boon

• Good performance for Archer and
Polyspace on simple test cases but

– Run time for Polyspace is more than two
days

– Archer doesn’t perform inter-procedural
analysis or handle string functions

MIT Lincoln Laboratory7
Richard Lippmann, 12 May 2005

Evaluating Dynamic Test
Instrumentation Tools with Benchmarks

• Some tools accurately detect most
overflows in model programs

– CCured, TinyCC, CRED
– Misses are caused by errors in

implementation or limited analyses

Increase in Run Time Compared to GCC

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

False Alarm Probability

D
et

ec
ti
o
n
 P

ro
b
ab

ili
ty

Ccured, TinyCC
CRED

Insure

GCC

ProPolice
Valgrind

Chaperon

14 MODEL PROGRAMS

X1

X10

X100

X1000

ProPolice CRED Valgrind Chaperon Insure

Dynamic Testing Tool

Ru
n

Ti
m

e
In

cr
ea

se
 R

el
at

iv
e

to
 G

CC

Gzip
Tar
OpenSSL
Apache

• Some tools can’t compile large
programs (e.g. CCured, TinyCC,)

• Some tools exhibit excessive (x100)
increases in run time (e.g. Chaperon,
Insure)

• Only CRED combines good detection
with reasonable run times.

MIT Lincoln Laboratory8
Richard Lippmann, 12 May 2005

Why Do Remotely Exploitable Buffer
Overflows Still Exist?

0

2

4

6

8

10

12

14

16

18

20

1/3/1996 1/2/1998 1/2/2000 1/1/2002 1/1/2004

Exploit Date in ICAT Database

C
um

ul
at

iv
e

Ex
pl

oi
ts BIND

Apache

IIS

• As many new buffer overflow vulnerabilities are being
found each year today in important internet software as
were being found six years ago

MIT Lincoln Laboratory9
Richard Lippmann, 12 May 2005

Speech Recognition Benchmarks Led to
Dramatic Performance Improvements

19951990 2000 2005

Year

W
or

d
Er

ro
r R

at
e

• 1969 – Mad inventors and untrustworthy engineers, no progress, work
has been an experience with no knowledge gained (Pierce, 1969)

• 1981 – First publicly available speech data base (Doddington, 1981)
• Today – Dramatic progress and many deployed speech recognizers,

major focus on corpora and benchmarks (Pallet, 2004)

MIT Lincoln Laboratory10
Richard Lippmann, 12 May 2005

Comments

• Don’t shoot the messenger
– It is essential to benchmark tool performance
– How else can you know how well an approach works and set

expectations for tool users?
– How else can you obtain diagnostic information that can be used

to guide further improvements?

• Benchmarks should be fair, comprehensive and appropriate
– Provide ground truth, measure detection and false alarm rates,

run times, memory requirements, …
– Include tasks appropriate for the tool being evaluated

• Using tools that “find hundreds of bugs on …” may be
detrimental because they provide a false sense of security

– What are their detection and miss rates?
– Are these the type of bugs that we really care about?

• Developers have to think more about how tools fit into the
code development/use lifecycle

MIT Lincoln Laboratory11
Richard Lippmann, 12 May 2005

References

• Doddington, G. R. and T. B. Schalk (1981). Speech Recognition: Turning
Theory into Practice,. IEEE Spectrum,: 26-32.

• Kratkiewicz, K. J. and R. Lippmann (2005). Using a Diagnostic Corpus of C
Programs to Evaluate Buffer Overflow Detection by Static Analysis Tools.
Workshop on the Evaluation of Software Defect Detection Tools.

• Kratkiewicz, K. J. (2005). Evaluating Static Analysis Tools for Detecting
Buffer Overflows in C Code. ALM in IT Thesis in the Harvard University
Extension Program.

• Pallett, D. S. (2003). A Look at NIST's Benchmark ASR Tests: Past, Present,
and Future,
http://www.nist.gov/speech/history/pdf/NIST_benchmark_ASRtests_2003.pdf

• Pierce, J. (1970). “Whither speech recognition?” Journal of the Acoustical
Society of America 47(6): 1616-1617.

• Zhivich, M., T. Leek, et al. (2005). Dynamic Buffer Overflow Detection.
Workshop on the Evaluation of Software Defect Detection Tools.

• Zitser, M., R. P. Lippmann, et al. (2004). Testing Static Analysis Tools Using
Exploitable Buffer Overflows From Open Source Code. Proceedings ACM
Sigsoft 2004/FSE Foundations of Software Engineering Conference,
http://www.ll.mit.edu/IST/pubs/04_TestingStatic_Zitser.pdf.

	The Importance of Benchmarks for Tools that Find or Prevent Buffer Overflows
	Our Experience with Buffer Overflow Detection Tools – Benchmarks are Essential
	Model Program Excerpt for Sendmail GECOS Overflow CVE-1999-0131
	Diagnostic C Test Case Taxonomy
	OK and BAD (Vulnerable)Diagnostic C Test Case Example
	Evaluating Static Analysis Tools with Model Programs and Test Cases
	Evaluating Dynamic Test Instrumentation Tools with Benchmarks
	Why Do Remotely Exploitable Buffer Overflows Still Exist?
	Comments
	References

