
Defective Java Code:
Mistakes That Matter

William Pugh
Univ. of Maryland

Defective Java Code
Learning from mistakes

> Iʼm the lead on FindBugs
• static analysis tool for defect detection

> Visiting scientist at Google for the past 10 months
• learned a lot about coding mistakes, which ones

matter, how to catch them, how to allow a
community to review them

> A little like programming puzzlers
• but no quiz
• and lots of interspersed commentary

2

Static analysis

> Analyzes code without running it
> FindBugs is an open source static analysis tool, developed

at the University of Maryland
• with a number of additional contributors
• Looks for bug patterns, inspired by real problems in real

code
> Held FindBugs fixit at Google May 13-14th

• 300 engineers provided 8,000 reviews of 4,000 issues
• 75+% were marked should fix or must fix

• more than 1,500 of the issues have already been removed

3

Learned wisdom

> Static analysis typically finds mistakes
• but some mistakes donʼt matter
• need to find the intersection of stupid and important

> The bug that matter depend on context
> Static analysis, at best, might catch 5-10% of your

software quality problems
• 80+% for certain specific defects
• but overall, not a magic bullet

> Used effectively, static analysis is cheaper than other
techniques for catching the same bugs

4

Null bug

> From Eclipse, 3.5RC3:
org.eclipse.update.internal.ui.views.FeatureStateAction
 if (adapters == null && adapters.length == 0)
 return;

> Clearly a mistake
• First seen in Eclipse 3.2
• but in practice, adapters is probably never null

> Is there any impact from this?
• we would probably notice a null pointer exception
• we donʼt immediately return if length is 0

5

Cost when a mistake causes a fault/failure

> How quickly/reliability would you notice?
> What is the impact of the misbehavior caused by the

mistake?
> How easily could you diagnose the problem and the

fix?
> What is the cost to deliver a fix?

6

Mistakes in web services

> Some mistakes would manifest themselves by
throwing a runtime exception
• Should be logged and noticed

> If it isnʼt happening now, a change might cause it to
start happening in the future
• But if it does, the exception will likely pinpoint the

mistake
• And pushing a fix into production is cheaper than

pushing a fix to desktop or mobile applications

7

Expensive mistakes (your results may vary)

> Mistakes that might cost millions of dollars on the
first day they manifest

> Mistakes that silently cause the wrong answer to be
computed
• might be going wrong now, millions of times a day
• or might be OK now, but when it does go wrong, it

wonʼt be noticed until somewhere downstream of
mistake

> Mistakes that are expensive or impossible to fix

8

Using reference equality rather than .equals

from Googleʼs code (no one is perfect)
class MutableDouble {

 private double value_;

 public boolean equals(final Object o) {
 return o instanceof MutableDouble &&
 ((MutableDouble)o).doubleValue()
 == doubleValue();
 }

 public Double doubleValue() {
 return value_;
 }

9

Using == to compare objects rather than .equals

> For boxed primitives, == and != are computed using
pointer equality, but <, <=, >, >= are computed by
comparing unboxed primitive values

> Sometimes, equal boxed values are represented
using the same object
• but only sometimes

> This can bite you on other classes (e.g., String)
• but boxed primitives is where people get bit

10

Heisenbugs vs. deterministic bugs

> A Heisenbug is a mistake that only sometimes
manifests itself (e.g., a data race)

> Testing not likely to show error
• if a test fails, rerunning the test may succeed

> Can be very nasty to track down, impossible to
debug

> But how dangerous is a bug that only bites once out
of 4 billion times?

11

Ignoring the return value of putIfAbsent

org.jgroups.protocols.pbcast.NAKACK
ConcurrentMap<Long,XmitTimeStat>
 xmit_time_stat = ...;
.....
XmitTimeStat stat = xmit_time_stats.get(key);
if(stat == null) {
 stat = new XmitTimeStat();
 xmit_time_stats.putIfAbsent(key, stat);
}
stat.xmit_reqs_received.addAndGet(rcvd);
stat.xmit_rsps_sent.addAndGet(sent);

12

misusing putIfAbsent

> ConcurrentMap provides putIfAbsent
• atomically add key → value mapping

• but only if the key isnʼt already in the map

• if non-null value is returned, put failed and value
returned is the value already associated with the key

> Mistake:
• ignore return value of putIfAbsent, and
• reuse value passed as second argument, and
• matters if two callers get two different values

13

Fixed in revision 1.179

org.jgroups.protocols.pbcast.NAKACK
XmitTimeStat stat=xmit_time_stats.get(key);
if(stat == null) {
 stat=new XmitTimeStat();
 XmitTimeStat stat2
 = xmit_time_stats.putIfAbsent(key, stat);
 if (stat2 != null)
 stat = stat2;
}
stat.xmit_reqs_received.addAndGet(rcvd);
stat.xmit_rsps_sent.addAndGet(sent)

14

Some lessons

> Concurrency is tricky
> putIfAbsent is tricky to use correctly

• engineers at Google got it wrong more than 10% of
the time

> Unless you need to ensure a single value, just use
get followed by put if not found

> If you need to ensure a single unique value shared
by all threads, use putIfAbsent and check return
value

15

Mistakes
That
Don’t

Unit Testing

System/Integration Testing

Deployment

Mistakes
That

Matter

Static Analysis

17

Static analysis earlier is better

> Find mistakes detected by static analysis before
that are detected using more expensive techniques

> Get them to developers while the code is still fresh
in developers heads, before anyone else is
depending on it or using it
• Fixing a mistake in code last touched 6 months or 6

years ago isnʼt fun
> Of course, this only applies if your mistakes are

generally caught by other steps in your quality
assurance process at reasonable cost

Cross-site scripting

public void doGet(HttpServletRequest req,
 HttpServletResponse res) {
 ...

 String target = req.getParameter("url");

 InputStream in = this.getClass()
 .getResourceAsStream("META-INF/resources/"
 + target;

 if (in == null) {
 res.getWriter().println(
 "<p>Unable to locate resource: "
 + target);
 return;
 }

18

Cross-site scripting

> Putting untrusted/unchecked data directly into
generated html
• can contain Javascript, which gets executed in your

context
• untrusted input can be injected into your database,

or through a URL query parameter
• via a link sent from attacker to victim

19

Cross site scripting

20

Attacker

Victim

<a href=”http://host/index.html?
variable=<script>...</script>”>Check this out

Trusted
WebSite

html response contains script injected by
attacker, but treated by victim’s web

browser as though it came from trusted
web site

http://host/a.php?variable=
http://host/a.php?variable=
http://host/a.php?variable=
http://host/a.php?variable=

Security vulnerabilities

21

> Not exposed by normal/expected use cases
> Need some combination of:

• architectural risk analysis
• careful design
• static analysis
• dynamic testing and analysis

> FindBugs only does simple, shallow analysis for
network security vulnerabilities

Returning references to internal mutable state
jdk1.7.0-b59
sun.security.x509.InvalidityDateExtension:

private Date date;
public Object get(String name) {
 if (name.equalsIgnoreCase(DATE)) {
 return date;
 } else {...}
}

22

Vulnerability to malicious code

> In some cases, your code should preserve certain
safety guarantees even if untrusted code is running
in the same JVM
• An issue for the JDK, not an issue for most web

services
> Many cases are easy to check for
> Iʼve complained about vulnerabilities in Sunʼs JDK

at JavaOne every year for several years
• why stop now?

23

JDK 7 status report

> Overall, good progress over JDK 6
• 188 warnings about mutable static fields in JDK 6
• 133 warnings in JDK 7

• 14 new ones, 119 retained from JDK 6

> Some of the new issues ones are trivial to fix
• com.sun.xml.internal.stream.util.BufferAllocator
.LARGE_SIZE_LIMIT is public, static and non-final

> I can suggest tools to help you with this...

24

Incomparable equality

org.eclipse.jdt.internal.debug.eval.ast.engine.AstInstructionCompiler

SimpleType simpleType = (SimpleType) type;
if ("java.lang.String".equals(simpleType.getName()))
 return Instruction.T_String;

> SimpleType.getName() returns a
org.eclipse.jdt.core.dom.Name

> In Eclipse since 2.0 (June 2002)

25

Many variations, assisted by weak typing in APIs

> Using .equals to compare incompatible types
> Using .equals to compare arrays

• only checks if the same array
> Checking to see if a Set<Long> contains an
Integer

• never found, even if the same integral value is
contained in the map

> Calling get(String) on a
Map<Integer,String>

26

Silent, nasty bugs

> Very hard to find these bugs by inspection
• types not always visible/explicit

> In some cases, could be introduced by refactoring
• Change the key type of a Map from Integer to Long
• Fix all the places where you get type errors
• Leave behind bugs

> Google had an issue with a refactoring that changed
a method to return byte[] rather than String
• introduced silent errors

27

Bug introduced between Eclipse 3.5RC1 and RC2

org.eclipse.pde.internal.build.BrandingIron
String target = root + '/' + ...;

File rootFolder
 = getCanonicalFile(new File(initialRoot));
if (!rootFolder.equals(target)) {
 rootFolder.delete();
 ...
 }

28

Lost logger

void initLogger() {
 Logger logger = Logger.getLogger("edu.umd.cs");
 logger.addHandler(new FileHandler());
 logger.setUseParentHandlers(false);
 }

> Loggers are retained by weak references
• always allowed by spec, recent change to OpenJDK

implementation
> If GC happens immediately after the call to
initLogger, changes to logger will be lost

29

Lost Loggers at Google

> This bug pattern was contributed by Ulf
Ochsenfahrt and Eric Fellheimer at Google
• had manually tracked down a dozen or so

instances, came to static analysis team
• in 30 minutes, I wrote something that found 200+

instances of this problem in Googleʼs code base
• Decision was made to fix all of them

30

Is this change compatible?

> You can argue that this change in the
implementation is a bad idea
• but it is allowed by the spec

> Perhaps if a change is made to a logger, the
LogManager should store a strong reference to the
logger
• a quality of service improvement, even if spec not

changed

31

Listen to your bug stories

> In Joshua Blochʼs talk, he said that his #1 takeaway
message was donʼt lock on ConcurrentMaps
• My reaction was “Really?”
• Clearly wrong and a bug, but surely that so

obviously wrong it would be exceptionally rare
• But I wrote a detector for FindBugs

32

JBoss 5.1.0-GA

> 22 synchonizations on ConcurrentHashMap
> 9 synchronizations on CopyOnWriteArrayList

• In Java 5, COWAL implementation using
synchronized(this)

• in Java 6+ COWAL implementation synchronizes on
internal Lock object

> 3 synchronizations on AtomicBoolean

33

Improving software quality

> Many different things can catch mistakes and/or
improve software quality
• Each technique more efficient at finding some

mistakes than others
• Each subject to diminishing returns
• No magic bullet
• Find the right combination for you and for the

mistakes that matter to you

34

Test, test, test...

> Many times FindBugs will identify bugs
• that leave you thinking “Did anyone test this code?”

• And you find other mistakes in the same vicinity

• FindBugs might be more useful as an untested code
detector than as a bug detector

> Overall, testing is far more valuable than static analysis
• Iʼm agnostic on unit tests vs. system tests
• But no one writes code so good you donʼt need to

check that it does the right thing
• Iʼve learned this from personal painful experience

35

Dead code

> Many projects contain lots of dead code
• abandoned packages and classes
• classes that implement 12 methods; only 3 are used

> Code coverage is a very useful tool
• but pushing to very high code coverage may not be

worthwhile
• youʼd have to cover lots of code that never gets

executed in production

36

Code coverage from production

> If you can sample code coverage from production,
great
• look for code executed in production but not

covered in unit or system test
> Note: enforce coding standard that body of if

statement must be on separate line than if
statement guard
• Most statement level code coverage tools need this

to tell you whether body of if statement executed

37

Cool idea

> If you canʼt get code coverage from production
> Just get list of loaded classes

• just your code, ignoring classes loaded from core
classes or libraries

• Very light weight instrumentation
> Log the data

• could then ask queries such as “Which web services
loaded the FooBar class this month?”

38

Leveraging class initialization logging

> Youʼve got class initialization logging
> But want to know if a particular method or statement

is reached
> Define a nested class with a static method with an

empty body
static class Foo {
 static void loadClass() {};
 }

39

Using FindBugs to find mistakes

> FindBugs is accurate at finding coding mistakes
• 75+% evaluated as a mistake that should be fixed

> But many mistakes have low costs
• memory/type safety lowers cost of mistakes
• If applied to existing production code, many

expensive mistakes have already been removed
• perhaps painfully

> Need to lower cost of using FindBugs to sell to
some projects/teams

40

FindBugs 1.x

> First research paper
published in 2004

> FindBugs 1.0
released in 2006

> 850,000+ downloads
from 160+ countries

> Released 1.3.8 in
March

41

FindBugs 2.0

42

FindBugs 2.0

> FindBugs analysis engine continues to improve, but
only incrementally

> Focus on efficiently incorporating static analysis into
the large scale software development
• Review of issues done by a community
• Once issue is marked as “not a bug”, never forget
• Integration into bug tracking and source code

version control systems

43

Bug ranking

> FindBugs reported a priority for an issue, but it was
only meaningful when comparing instances of the
same bug pattern
• a medium priority X bug might be more important

than a high priority Y bug
> Now each issue receives a bug rank (a score, 1-20)

• Can be customized according to your priorities
• Grouped into Scariest, Scary, Troubling, and Of

Concern

44

FindBugs community review

> Whenever / where ever you run FindBugs, after
completing or loading an analysis
• it talks to the cloud
• sees how weʼve been seeing this issue
• sees if anyone has marked the issue as “should fix”

or “not a bug”
> As soon you classify an issue or enter text about

the issue, that is sent to the cloud

45

More cloud integration

> Integration with bug tracking systems
• One click to bring up pre-populated web page in bug

tracker describing issue
• If bug already filed against issue, click shows you

existing issue in bug tracker
> Integration with web based source viewers, such as

FishEye
• Allow viewing of file history, change lists, etc.

46

General availability Fall 2009

> Already in use at Google
• need to also provide hooks into other bug tracking

and web source viewers
> Cloud storage needs to be made more robust and

scalable
> Needs to be integrated into Eclipse plugin
> Need to replace bubble gum and duct tape with

something more stable

47

FindBugs community review

> Go to http://findbugs.sourceforge.net/review
> Launch FindBugs GUI via webstart
> Review issues in

• jdk1.7.0
• Glassfish-v3
• Eclipse 3.5

> Everyone welcome
• very much a beta
• no integration with bug tracking systems yet

48

http://findbugs.sourceforge.net/review
http://findbugs.sourceforge.net/review

Demo

49

William Pugh
pugh@cs.umd.edu

http://findbugs.sourceforge.net/

http://findbugs.sourceforge.net
http://findbugs.sourceforge.net

