
Making Static Analysis Part Of
Your Build Process

William Pugh

Professor, Univ. of Maryland
Visiting Scientist, Google

2

Learn how to effectively use FindBugs on large
software projects (100,000+ lines of code), and
make effective use of the limited time you can
schedule/afford for static analysis

3

Agenda

FindBugs and static analysis

Using FindBugs effectively

Running FindBugs

Scaling up FindBugs

Historical Bug results

4

Static Analysis

Analyzes your program without executing it

Doesn’t depend on having good test cases
• or even any test cases

Doesn’t know what your software is supposed to do
• Looks for violations of reasonable programming practices
• Shouldn’t throw NPE

• All statements should be reachable

• Shouldn’t allow SQL injection

Not a replacement for testing
• Very good at finding problems on untested paths

• But many defects can’t be found with static analysis

5

Common (Incorrect) Wisdom about Bugs
and Static Analysis

Programmers are smart

Smart people don’t make dumb mistakes

We have good techniques (e.g., unit testing, pair
programming, code inspections) for finding bugs early

I tried lint and it sucked: lots of warnings, few real issues

So, bugs remaining in production code must be subtle, and
finding them must require sophisticated static analysis
techniques

6

Can You Find The Bug?

 if (listeners == null)
 listeners.remove(listener);

JDK1.6.0, b105, sun.awt.x11.XMSelection
• lines 243-244

7

Why Do Bugs Occur?

Nobody is perfect

Common types of errors:
• Misunderstood language features, API methods

• Typos (using wrong boolean operator, forgetting parentheses or
brackets, etc.)

• Misunderstood class or method invariants

Everyone makes syntax errors, but the compiler catches
them
• What about bugs one step removed from a syntax error?

8

You may not need this talk

If you just want to run FindBugs over a few thousand lines
of code
• just do it

We won’t be showing examples of the many problems
FindBugs can find
• Talk assumes some familiarity with static analysis tools like

FindBugs

This talk is focused on the problems involved in trying to
apply FindBugs, or any static analysis tool, to a project
with 100,000+ lines of code
• useful for smaller code base, but not essential

9

FindBugs does scale

Both Google and eBay have put substantial effort into
tuning FindBugs for their environment and building it into
their standard software development process

Google has fixed more than 1,000 issues identified by
FindBugs.
• I can’t tell you how large their code base is, but it is big

But even at Google, scaling up static analysis is a challenge

10

Agenda

FindBugs and static analysis

Using FindBugs effectively

Running FindBugs

Scaling up FindBugs

Historical Bug results

11

No silver bullets

Static analysis isn’t a silver bullet
• won’t ensure your code is correct or of high quality

Other techniques are just as valuable, if not more so
• careful design

• testing

• code review

12

Finding the right combination

Everything you might do to improve software quality
• is very effective at finding some kinds of problems

• is subject to diminishing returns

You have a finite and fixed time budget
• spending time on static analysis means less time on something else

Want to find an effective/profitable way to use static
analysis to improve software quality

13

This talk

Understanding the FindBugs ecosystem

Customizing FindBugs to your needs

Adapting FindBugs to your time budget
• Find your sweet spot

Making FindBugs part of your continuous build and test
framework

Only enough time to tell you what approaches and
strategies help
• not enough time to walk you through using them

14

Running the analysis and finding obviously
stupid code is easy

Need to budget time for more than just running the
analysis and reviewing the bugs

Often, the hard part is stuff like:
• Figuring out who is responsible for that code

• Understanding what the code is actually supposed to do

• Figuring out if stupid code can cause the application to misbehave

• Writing a test case that demonstrates the bug

• Getting approval to change the code

15

Agenda

FindBugs and static analysis

Using FindBugs effectively

Running FindBugs

Scaling up FindBugs

Historical Bug results

16

FindBugs ecosystem

FindBugs analyzes classfiles
• sourcefiles used only for display

• can analyze jsp from resulting classfiles, but defects mapped to
Java™ source files (no SMAP parsing yet)

Filter files can be used to include or exclude certain issues

Output stored in XML format

Many tools for post-processing XML result

17

Ways of performing analysis

Supported by FindBugs project:
• Swing GUI

• Command line

• Eclipse IDE

• Ant

Others
• NetBeans™ IDE - SQE suite

• Maven

• Cruise Control

• Hudson

18

Eclipse plugin screenshot

19

Command line

In the beginning was the command line...
findbugs -textui -project myProj.fbp \

-xml -outputFile myProj-analysis.fba

or
findbugs -textui -project myProj.fbp \

-xml:withMessages -outputFile myProj-analysis.fba

Using -xml:withMessages writes human-readable message
strings in the XML output
• Useful if any tool other than FindBugs will use the output

20

Plugin for Hudson

Reads FindBugs xml output for each build

Presents:
• Warning trend graph

• Warning deltas for each build

• Per-package warning bar graphs

• Links into source code

Warnings may optionally affect project “health”

Plugin by Ullrich Hafner

Hudson by Kohsuke Kawaguchi

21

Plugin for Hudson

22

Plugin for Hudson

23

Plugin for Hudson

Link into
source

Maven

• We’ve let this slip
• documentation isn’t good

• Want to use version 2.0 of Maven FindBugs plugin
• requires Maven 2.0.8+

• Use mvn findbugs:check or mvn findbugs:findbugs
<plugins>
<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>findbugs-maven-plugin</artifactId>
 <version>2.0</version>
 <configuration>
 <xmlOutput>true</xmlOutput>
 <xmlOutputDirectory>out</xmlOutputDirectory>
 <findbugsXmlOutput>true</findbugsXmlOutput>
 <findbugsXmlOutputDirectory>out</findbugsXmlOutputDirectory>
 </configuration>
 </plugin>
</plugins>

24

24

Agenda

FindBugs and static analysis

Using FindBugs effectively

Running FindBugs

Scaling up FindBugs
• Workload

• What issues are you interested in?

• filter files

Historical Bug results

25

OK, now what...

You’ve gotten FindBugs installed

You’ve run it over your code, found a few issues you
wanted to fix immediately
• some other issues look scary, but don’t cry out for immediate

action

• other issues are harmless (even if dumb)

26

Make it manageable

FindBugs reported 36,062 issues on Eclipse 3.4M2
• Can’t cope...

Filter out low priority issues... 25,952 issues

Filter out vulnerability to malicious code... 5,172 issues

Filter out issues also present in Eclipse 3.3... 62 issues
• uses approximate matching, ignoring line numbers

27

Remembering evaluations

If you evaluate an issue but don’t immediately fix the
code, want to remember your evaluation
• issues that must be addressed/fixed/reviewed before the next

release

• issues that are harmless and you don’t want to review again

• probably some cases in between those two extremes

28

Highlight new issues

If you are running FindBugs as part of a daily or continuous
build or integration environment
• You want to flag any new issues

Just keeping track of trend lines of total number of issues
isn’t good enough

If a change introduces an issue, you want to call out the
issue

The Hudson build server does this fairly well
• like to make it even better

29

Integrate it

You want to integrate it into your bug reporting and
tracking system
• scrape the XML and import data into your database

• link FindBugs warning and bug database entry
• be able to go from one to the other

• check if issues flagged as MUST_FIX in database have been fixed in the
code

30

Agenda

FindBugs and static analysis

Using FindBugs effectively

Running FindBugs

Scaling up FindBugs
• Workload

• What issues are you interested in?

• Filter files

Historical Bug results

31

Typical FindBugs warning density

About 0.3 - 0.6 medium or high priority correctness
warnings per 1,000 lines of NCSS (Non commenting source
statements)

About 1-4 other potentially relevant warnings per 1,000
lines of code

Don’t use these numbers to judge whether your project is
good or bad
• Lots of reasons results might be biased

• Rather, use them to do back of the envelope calculation of how
many issues you’d need to process

32

At Google

Over two years, perhaps one person year of effort on
auditing issues

Over that span, reviewed 1,663 issues
• 804 fixed by developers
• more since that effort

Back of the envelope
• 5-15 issues reviewed and processed per day per auditor

33

Agenda

FindBugs and static analysis

Using FindBugs effectively

Running FindBugs

Scaling up FindBugs
• Workload

• What issues are you interested in?

• Filter files

Historical Bug results

34

Priority

Each issue is ranked as High, Medium, Low

We generally don’t recommend looking at Low priority
issues on large code bases
• lots of noise

High/Medium are useful for ranking issues within a
pattern, but not as useful across patterns/categories
• Medium FOO issues might be more important than High BAR issues

35

Bug Categories

Correctness - the code seems to be clearly doing something
the developer did not intend

Security - e.g., SQL injection, cross site scripting

Bad practice - the code violates good practice

Dodgy code - the code is doing something unusual that
may be incorrect

Multithreaded correctness

Potential performance problems

Malicious code vulnerability

Internationalization

36

Categories

Malicious code is really important if you run in the same
Java Virtual Machine (JVM™) as untrusted code
• JVM implementations should care

Performance issues are generally only important in the
10% of your code than consumes 90% of your cycles

Thread safety issues are only important if your code might
be touched by multiple threads

37

Run first, then filter

Generally, full suite of bug detectors is run, including
detectors that produce issues you don’t care about

Then suppress or exclude issues you don’t care about

No real performance win to selectively enabling detectors
• unless you are just testing a new detector

38

Simple filtering

Some tools allow you to specify simple filters
• For command line, specify minimum priority

• For Eclipse, specify priority and categories

The filter command and filter ant task have lots of options

39

Agenda

FindBugs and static analysis

Using FindBugs effectively

Running FindBugs

Scaling up FindBugs
• Workload

• What issues are you interested in?

• Filter files

Historical Bug results

40

Filter files allow more complicated filtering
and logic
<FindBugsFilter>
<Match><Priority value="3"/></Match>
 <Match>
 <Class name="edu.umd.cs.findbugs.jaif.JAIFToken"/>
 <Bug pattern="URF_UNREAD_FIELD"/>
 </Match>
<Match>
 <BugCode name="Se"/>
 <Class name="~edu.umd.cs.findbugs.gui.*"/>
 </Match>
</FindBugsFilter>

41

Can include or exclude filters

Only bugs that match the include filter and don’t match
the exclude filter are reported
• rarely use both

Used when running the analysis, filtering bugs, and in
Eclipse plugin

42

Filter use cases

Can use filters to describe which kinds of issues are
interesting or uninteresting

Can also filter out specific instances that have been
reviewed and found to be uninteresting
• we should offer better ways to do this, and we are working on it,

but this works
• you’ll see some of the other ways shortly

43

Building filters in GUI

The FindBugs GUI supports suppression filters
• stored in the XML results

• suppression filters aren’t widely supported in the FindBugs
ecosystem yet

Click on a bug, select “Filter bugs like this...”
• select attributes that you want to be part of the filter

• added to filter

44

Exporting/Importing filters

The GUI allows you to export/import filters
• export the current suppression filter as a filter file

• import a filter file and merge it into the current suppression filter

The easiest way to create filter files
• no need to edit xml files with a text editor

45

Agenda

FindBugs and static analysis

Using FindBugs effectively

Running FindBugs

Scaling up FindBugs

Historical Bug results
• Excluding baseline bugs

• Saving audit results

• Instance hashes

46

Merging analysis results

If you run FindBugs as part of each build

you can merge analysis results
• computeBugHistory -output bugHistory.xml
 bugHistory.xml newAnalysis.xml

• combine bugHistory.xml and newAnalysis.xml

• save the result in bugHistory.xml

47

Merging analysis results

FindBugs matches up corresponding bugs in successive
versions
• fuzzy match; line numbers aren’t considered

For a bug that persists across multiple versions, the XML
records the first and last version that contained the bug
• also records whether a bug was introduced into an existing class, or

if a bug and the class that contains it were introduced at the same
time

48

Querying historical bug databases

You can filter bugs based on the first or last version that
contained an issue, or how it was introduced or removed
• either by parameters to filter command, or in filter files

49

Agenda

FindBugs and static analysis

Using FindBugs effectively

Running FindBugs

Scaling up FindBugs

Historical Bug results
• Instance hashes

• Excluding baseline bugs

• Saving audit results

50

Instance hashes

When you generate an XML file with messages, each bug
has an associated instance hash
• a 32 character hexidecimal string formed by a MD5 hash of all the

things believed to be unchanging about the issue
• e.g., doesn’t consider line number

Useful for connecting analysis results to bug databases,
other forms of external processing

51

Instance hash collisions

Instance hashes are not guaranteed to be unique
• two null pointer warnings about the variable x in the method foo in

the class Bar will both generate the same hash

Can have two issues in the same analysis with the same
hash

Can have a hash that occurs in two different analysis
results that doesn’t really reflect the same issue

52

Unique identifiers

Each issue has a occurrenceNum and a occurrenceMax as
well as a hash

concatenating all 3 gives something unique to the file
• and unlikely to collide across successive versions

<BugInstance type="BIT_AND" priority="2" abbrev="BIT"
category="CORRECTNESS"
instanceHash="f1826ab8704305b22e35e9029e848831"
instanceOccurrenceNum="0" instanceOccurrenceMax="0">

53

Agenda

FindBugs and static analysis

Using FindBugs effectively

Running FindBugs

Scaling up FindBugs

Historical Bug results
• Instance hashes

• Excluding baseline bugs

• Saving audit results

54

Establishing a bug baseline

Say you want to just look at issues that have been
introduced into the code since release 3.0
• too many issues to look at all of them

• perhaps issues that made it through the 3.0 release process are less
likely to cause the software to misbehave
• hoping testing would have found most of the misbehaviors

55

Excluding a baseline

You can exclude bugs in a baseline by computing historical
bug databases
• compute a historical database

• exclude those present in the first version

But this can be awkward, can’t use it in Eclipse, ...

56

Simple bug baselines

The filter command and the eclipse plugin allow you to
specify a bug baseline
• an XML file of analysis results for your baseline

Any issue that also occurs in the baseline is excluded
• based on instance hash

57

Agenda

FindBugs and static analysis

Using FindBugs effectively

Running FindBugs

Scaling up FindBugs

Historical Bug results
• Instance hashes

• Excluding baseline bugs

• Saving audit results

58

Annotating issues

The Swing GUI and Eclipse plugin allows you to mark an
issue as one of the following:
• unclassified

• needs further study

• bad analysis

• not a bug

• mostly harmless

• should fix

• must fix

59

Free text annotations

The GUI and Eclipse plugin also supports free text
annotation
• “Joe should fix this”

• “Ask Susan about whether or not the foobar parameter is allowed
to be null”

60

Historical matching and annotations

When you combine bug results

The matcher combines/transfers user designations and
annotations from the old results to the new issues

Now, when you view it, you see the new line number, but
it remembers the previous designation and annotation

GUI automatically combines old result with new result

61

Eclipse and user annotations

Eclipse has alpha-level support for user annotations
• use “Bug User Annotation Window”

Keeps history

But doesn’t provide any way to share it among multiple
users or workspaces
• version control based merging of XML bug databases isn’t

recommended or supported

New plans, to be accomplished soon

• Information about “Harmless” or “Must fix” stored in
central store (such as a SQL database), as well as
information about which issues are new and which are old
• This information can be accessed from all the ways FindBugs can be

run (Maven, Ant, GUI, Eclipse)

• Integration with bug tracking systems: file bugs from
FindBugs, link to existing entries in bug tracker

• Integration with web-based source viewing tools, such as
FishEye

•

63

62

Summary

Don’t worry about looking at all the issues reported by
FindBugs
• you probably have better things to do with your time

Figure out which kinds of issues are most relevant/important
• don’t look at ones that aren’t

Recently introduced issues are more likely to be worth
looking at
• easier to find developer who understands the code and issue

• If an issue has been in your codebase for two years and no-one has
found a reason to fix it, the odds that it can actually cause problems
are lower (but not zero).

