Making Static Analysis Part Of
Your Build Process

William Pugh

Professor, Univ. of Maryland
Visiting Scientist, Google

Learn how to effectively use FindBugs on large
software projects (100,000+ lines of code), and
make effective use of the limited time you can
schedule/afford for static analysis

Agenda

FindBugs and static analysis
Using FindBugs effectively
Running FindBugs

Scaling up FindBugs
Historical Bug results

Static Analysis

Analyzes your program without executing it

Doesn’t depend on having good test cases
or even any test cases

Doesn’t know what your software is supposed to do

Looks for violations of reasonable programming practices
Shouldn’t throw NPE

All statements should be reachable
Shouldn’t allow SQL injection
Not a replacement for testing

Very good at finding problems on untested paths
But many defects can’t be found with static analysis

Common (Incorrect) Wisdom about Bugs
and Static Analysis

Programmers are smart
Smart people don’t make dumb mistakes

We have good techniques (e.g., unit testing, pair
programming, code inspections) for finding bugs early

| tried lint and it sucked: lots of warnings, few real issues

So, bugs remaining in production code must be subtle, and
finding them must require sophisticated static analysis
techniques

Can You Find The Bug?

if (listeners == null)
listeners.remove (listener) ;

JDK1.6.0, b105, sun.awt.x11.XMSelection
lines 243-244

Why Do Bugs Occur?

Nobody is perfect

Common types of errors:
Misunderstood language features, APl methods

Typos (using wrong boolean operator, forgetting parentheses or
brackets, etc.)

Misunderstood class or method invariants

Everyone makes syntax errors, but the compiler catches

them
What about bugs one step removed from a syntax error?

You may not need this talk

If you just want to run FindBugs over a few thousand lines
of code
just do it

We won’t be showing examples of the many problems
FindBugs can find
Talk assumes some familiarity with static analysis tools like
FindBugs
This talk is focused on the problems involved in trying to
apply FindBugs, or any static analysis tool, to a project
with 100,000+ lines of code
useful for smaller code base, but not essential

FindBugs does scale

Both Google and eBay have put substantial effort into
tuning FindBugs for their environment and building it into
their standard software development process

Google has fixed more than 1,000 issues identified by
FindBugs.

| can’t tell you how large their code base is, but it is big
But even at Google, scaling up static analysis is a challenge

Agenda

FindBugs and static analysis
Using FindBugs effectively
Running FindBugs

Scaling up FindBugs
Historical Bug results

No silver bullets

Static analysis isn’t a silver bullet
won’t ensure your code is correct or of high quality

Other techniques are just as valuable, if not more so
careful design
testing
code review

Finding the right combination

Everything you might do to improve software quality
iIs very effective at finding some kinds of problems
IS subject to diminishing returns

You have a finite and fixed time budget
spending time on static analysis means less time on something else

Want to find an effective/profitable way to use static
analysis to improve software quality

This talk

Understanding the FindBugs ecosystem
Customizing FindBugs to your needs
Adapting FindBugs to your time budget

Find your sweet spot

Making FindBugs part of your continuous build and test
framework

Only enough time to tell you what approaches and
strategies help
not enough time to walk you through using them

Running the analysis and finding obviously
stupid code is easy

Need to budget time for more than just running the
analysis and reviewing the bugs

Often, the hard part is stuff like:
Figuring out who is responsible for that code
Understanding what the code is actually supposed to do
Figuring out if stupid code can cause the application to misbehave
Writing a test case that demonstrates the bug
Getting approval to change the code

Agenda

FindBugs and static analysis
Using FindBugs effectively
Running FindBugs

Scaling up FindBugs
Historical Bug results

FindBugs ecosystem

FindBugs analyzes classfiles
sourcefiles used only for display

can analyze jsp from resulting classfiles, but defects mapped to
Java™ source files (no SMAP parsing yet)

Filter files can be used to include or exclude certain issues
Output stored in XML format
Many tools for post-processing XML result

Ways of performing analysis

Supported by FindBugs project:
Swing GUI
Command line
Eclipse IDE
Ant

Others
NetBeans™ IDE - SQE suite
Maven
Cruise Control
Hudson

Java = submitserver2/sro/edu/amd/cs/submitserver/Display sour ce Cod eAsH M ava = Eclipse Platiorm

File Edit Source Refactor Navigate

Search Project Bun Window Help

=t [svOv Qv [B WG | @ & | ¢ @ | B o £ [&ava) 2
% Pack %X %2 Hiera ‘ JuJUnit" = E':“m ImportProject.java ‘m DisplaySourceCodeAsH D = B 2= outline 32 =0|
B & | ¥ int count; . =

> 14 demoplugin [trunk/demoplugin]
P ExpressionParser

b 4 findbugs [trunk/findbugs]

P ‘ﬁ.’v findbugsTestCases [trunk/findbugs
D =7 JSR305-ri [trunkiri]

P> 17“' SAVEExpressionParser

> ﬁ'SubmitServerZ [noir.cs.umd.edu]

P -2 submitServerModelClasses [noir.c
> k’g‘iycpl [trunk/cs340/src/CS340_Assig

v

= HighlightRange (int startLine, int numLines, String style.

] L : @ 1% ' W e %
this.startLine = startLine;

Y this.nunlines = numLines; #7ENTITY_AMP : Env[™
‘ this.style = style; 7 DEFAULT_TAB_WIL
this.count = count; =
} | = {&° HighlightRange

4 startline : int
4 numtLines : in

return this.startLine - other.startlLine; a
iy - s
= .« © HighlightRanc
~
> @&° Entity
} o

style : String
count : int

B private static class Entity {
String value;
= Entity(String value) {
this.value = value;
reader : Buffere«

}
o scanner: Token!

private BufferedReader reader; & At - PrintStraan
D) (I

2 Problems “ ! console !}j Bug Details £ Eﬁ Bug Tree Vlew? 27 Bug User Annotations}'

Medium Priority Bad practice E]

In class edu.umd.cs.submitServer.DisplaySourceCodeAsHTML$HighlightRange

In method edu.umd.cs.submitServer.DisplaySourceCodeAsHTML$HighlightRange.compareTo(Object)
Class defines compareTo(...) and uses Object.equals()

This class defines a compareTo(...) method but inherits its equals() method from
java.lang.object. Generally, the value of compareTo should return zero if and only
if equals returns true. If this is violated, weird and unpredictable failures will

occur in classes such as PriorityQueue. In Java 5 the PriorityQueue.remove

J

18

Command line

In the beginning was the command line...
findbugs -textui -project myProj.fbp \
-xml -outputFile myProj-analysis. fba

or
findbugs -textui -project myProj.fbp \

-xml : withMessages -outputFile myProj-analysis. fba
Using -xml:withMessages writes human-readable message

strings in the XML output
Useful if any tool other than FindBugs will use the output

Plugin for Hudson

Reads FindBugs xml output for each build

Presents:
Warning trend graph
Warning deltas for each build
Per-package warning bar graphs
Links into source code

Warnings may optionally affect project “health”
Plugin by Ullrich Hafner
Hudson by Kohsuke Kawaguchi

Plugin for Hudson

Hudson

Hudson » FindBugs ENABLE AUTO REFRESH
‘ Back to Dashboard Project FindBugs
O‘ Status
—% Test Result Trend
= Changes
= ﬁ Workspace
ﬁ Workspace
’ FindBugs Result = P Recent Changes =
z Recent Changes
=
D Subversion Polling Lo S
Build History (trend) g Latest Test Result (no failures)
0 #171 Oct 15, 2007 3:51:42 PM
o #170 Oct 15, 2007 3:01:40 PM Pel’l‘l‘la'il‘lks omn—quwmmnm DA S T o 0363 63T v NPt HALALTO DS
e e R R ot A o o o bt bt bt bt bt rbrbrt bt brd bt bt bt 4
@ #169 Oct 15, 2007 2:16:39 PM)) ANSETICEHIAL ST ML L S e i i e
¢ Last build (#171), 40 minutes ago (just show failures) enlarge
@ #168 Oct 15, 2007 1:16:39 PM ® Last stable build (£171), 40 minutes ago
® Last successful build (£171), 40 minutes ago FindBugs Trend: All Warnings
@ #167 Oct 15, 2007 11:51:20 AM ¢ Last failed build (#138), 8 davs aqo 160
@ #166 Oct 15, 2007 11:43:56 AM 140
@ #165 Oct 15, 2007 11:36:39 AM 120
@ #164 Oct 15, 2007 11:26:39 AM g 190
3 80
0 #163 Oct 13, 2007 8:51:39 PM o -
0 £#162 Oct 13, 2007 7:34:12 PM oy o
for all & for failures 0 =

WD SN OOt ot Mt o O RO SN OO O O (Y mmmm—@l\ﬂm\mmmm\m\mm—c
Q@ﬁ%‘ﬂuﬁEﬁmuﬁumamﬁaﬁaﬁ it
TR T TR T T TR TETETE TR TE T TR TR TE TR TR TE TR TETETITY

Plugin for Hudson

Hudson = FindBugs » £39 » FindBugs Result ENABLE AUTO REFRESH

4 Back to Project FindBugs Result

O‘ Status
pren] Summary
= Changes
u Console Output All Warnings New Warnings Fixed Warnings
Lonsole Output
47 0 1 (Details)
L Toathis build
[j Test Result Package Statistics
FindBugs Result Package Total Distribution
6 Previous Build edu.umd.cs.findbugs.classfile.impl 4
* Next Build edu.umd.cs.findbugs.classfile.analysis 1
edu.umd.cs.findbugs.asm 1
edu.umd.cs.findbugs.classfile.engine 3

edu.umd.cs.findbugs.classfile.engine.bcel | 2

edu.umd.cs.findbugs.classfile 2
edu.umd.cs.findbugs.visitclass 1
edu.umd.cs.findbugs 3
edu.umd.cs.findbugs.ba.generic 2
edu.umd.cs.findbugs.ba.npe2 3
edu.umd.cs.findbugs.detect 7
edu.umd.cs.findbugs.ba 7 [
edu.umd.cs.findbugs.jaif 2
edu.umd.cs.findbugs.ba.ch 2
edu.umd.cs.findbugs.qui2 4
edu.umd.cs.findbugs.util 3

Hudson ver. 1.146

Plugin for Hudson

Hudson

Hudson » FindBugs = £171 » FindBugs Result » edu.umd.cs.findbugs.classfile

ENABLE AUTO REFRESH

-ﬂ& Back to Project

O, Status
_;? Changes
B Console Output

L _J Tag this build

’ FindBugs Result

Previous Build

FindBugs Warnings of Package
edu.umd.cs.findbugs.classfile

Class: FieldDescriptor, Type: CO_SELF_NO_OBJECT, Priority: 2, Category: BAD_PRACTICE

edu.umd.cs.findbugs.classfile.FieldDescriptor defines compareTo(FieldDescriptor) method but not
compareTo(Object)

This class defines a covariant version of compareTe (). To correctly override the compareTo () method in the
Comparable interface, the parameter of compareTo () must have type java.lang.Cbject.

Class: MethodDescriptor, Type: CO_SELF_NO_OBJECT, Priority: 2, Category: BAD_PRACTICE

edu.umd.cs.findbugs.claskfile.MethodDescriptor defines compareTo(MethodDescriptor) method but not
compareTo(Object)

This class defines a covariant Yersion of compareTe (). To correctly override the compareTo () method in the
Ceomparzble interface, the parameter of compareTe () must have type java.lang.Cbject.

Link into
source

23

Maven

« We’ve let this slip
documentation i1sn’t good

- Want to use version 2.0 of Maven FindBugs plugin
requires Maven 2.0.8+

- Use mvn findbugs:check or mvn findbugs:findbugs

<plugins>
<plugin>
<groupld>org.codehaus.mojo</groupld>
<artifactld>findbugs-maven-plugin</artifactid>
<version>2.0</version>
<configuration>
<xmlOQutput>true</xmIOutput>
<xmlOutputDirectory>out</xmlOutputDirectory>
<findbugsXmlOutput>true</findbugsXmlOutput>
<findbugsXmlOutputDirectory>out</findbugsXmlOutputDirectory>
</configuration>
</plugin>
</plugins>

Agenda

FindBugs and static analysis
Using FindBugs effectively
Running FindBugs
Scaling up FindBugs

* Workload

* What issues are you interested in?
* filter files

Historical Bug results

OK, now what...

You’ve gotten FindBugs installed

You’ve run it over your code, found a few issues you
wanted to fix immediately

some other issues look scary, but don’t cry out for immediate
action

other issues are harmless (even if dumb)

Make it manageable

FindBugs reported 36,062 issues on Eclipse 3.4M2
Can’t cope...

Filter out low priority issues... 25,952 issues
Filter out vulnerability to malicious code... 5,172 issues

Filter out 1ssues also present in Eclipse 3.3... 62 issues
uses approximate matching, ignoring line humbers

Remembering evaluations

If you evaluate an issue but don’t immediately fix the
code, want to remember your evaluation

Issues that must be addressed/fixed/reviewed before the next
release

Issues that are harmless and you don’t want to review again
probably some cases in between those two extremes

Highlight new issues

If you are running FindBugs as part of a daily or continuous
build or integration environment
You want to flag any new issues

Just keeping track of trend lines of total number of issues
Isn’t good enough

If a change introduces an issue, you want to call out the
Issue

The Hudson build server does this fairly well
like to make it even better

Integrate it

You want to integrate it into your bug reporting and
tracking system

scrape the XML and import data into your database

link FindBugs warning and bug database entry

be able to go from one to the other

check if issues flagged as MUST_FIX in database have been fixed in the
code

Agenda

FindBugs and static analysis
Using FindBugs effectively
Running FindBugs

Scaling up FindBugs

What issues are you interested in?
Filter files

Historical Bug results

Typical FindBugs warning density

About 0.3 - 0.6 medium or high priority correctness

warnings per 1,000 lines of NCSS (Non commenting source
statements)

About 1-4 other potentially relevant warnings per 1,000
lines of code

Don’t use these numbers to judge whether your project is
good or bad

Lots of reasons results might be biased

Rather, use them to do back of the envelope calculation of how
many issues you’d need to process

At Google

Over two years, perhaps one person year of effort on
auditing issues
Over that span, reviewed 1,663 issues
804 fixed by developers
more since that effort
Back of the envelope
5-15 issues reviewed and processed per day per auditor

Agenda

FindBugs and static analysis
Using FindBugs effectively
Running FindBugs

Scaling up FindBugs

* Workload

e What issues are you interested in?
* Filter files

Historical Bug results

33

Priority

Each issue Is ranked as High, Medium, Low

We generally don’t recommend looking at Low priority
Issues on large code bases
lots of noise

High/Medium are useful for ranking issues within a
pattern, but not as useful across patterns/categories
Medium FOO issues might be more important than High BAR issues

Bug Categories

Correctness - the code seems to be clearly doing something
the developer did not intend

Security - e.g., SQL injection, cross site scripting
Bad practice - the code violates good practice

Dodgy code - the code is doing something unusual that
may be incorrect

Multithreaded correctness
Potential performance problems
Malicious code vulnerability
Internationalization

Categories

Malicious code is really important if you run in the same
Java Virtual Machine (JVM™) as untrusted code
JVM implementations should care

Performance issues are generally only important in the
10% of your code than consumes 90% of your cycles

Thread safety issues are only important if your code might
be touched by multiple threads

Run first, then filter

Generally, full suite of bug detectors is run, including
detectors that produce issues you don’t care about

Then suppress or exclude issues you don’t care about

No real performance win to selectively enabling detectors
unless you are just testing a new detector

Simple filtering

Some tools allow you to specify simple filters
For command line, specify minimum priority
For Eclipse, specify priority and categories

The filter command and filter ant task have lots of options

Agenda

FindBugs and static analysis
Using FindBugs effectively
Running FindBugs

Scaling up FindBugs
Workload
What issues are you interested in?

Historical Bug results

Filter files allow more complicated filtering
and logic

<FindBugsFilter>
<Match><Priority value="3"/></Match>

<Match>
<Class name="edu.umd.cs.findbugs.jaif.JAIFToken" />

<Bug pattern="URE_UNREAD_FIELD"/>

</Match>
<Match>
<BugCode name="Se"/>
<Class name="~edu.umd.cs.findbugs.gui.*"/>

</Match>
</FindBugsFilter>

Can include or exclude filters

Only bugs that match the include filter and don’t match
the exclude filter are reported

rarely use both

Used when running the analysis, filtering bugs, and in
Eclipse plugin

Filter use cases

% Can use filters to describe which kinds of issues are
Interesting or uninteresting

% Can also filter out specific instances that have been

reviewed and found to be uninteresting

we should offer better ways to do this, and we are working on it,
but this works

you’ll see some of the other ways shortly

Building filters in GUI

% The FindBugs GUI supports suppression filters
stored in the XML results

suppression filters aren’t widely supported in the FindBugs
ecosystem yet

% Click on a bug, select “Filter bugs like this...”

select attributes that you want to be part of the filter
added to filter

Exporting/Importing filters

% The GUI allows you to export/import filters
export the current suppression filter as a filter file
import a filter file and merge it into the current suppression filter

% The easiest way to create filter files
no need to edit xml files with a text editor

Agenda

FindBugs and static analysis
Using FindBugs effectively

X

X

% Running FindBugs
% Scaling up FindBugs
X

Historical Bug results
* Excluding baseline bugs

* Saving audit results
* |nstance hashes

45

Merging analysis results

% If you run FindBugs as part of each build

X you can merge analysis results

computeBugHistory -output bugHistory.xml
bugHistory.xml newAnalysis.xml

combine bugHistory.xml and newAnalysis.xml
save the result in bugHistory.xml

Merging analysis results

% FindBugs matches up corresponding bugs in successive
versions
fuzzy match; line numbers aren’t considered

% For a bug that persists across multiple versions, the XML
records the first and last version that contained the bug

also records whether a bug was introduced into an existing class, or
if a bug and the class that contains it were introduced at the same
time

Querying historical bug databases

% You can filter bugs based on the first or last version that
contained an issue, or how it was introduced or removed
either by parameters to filter command, or in filter files

Agenda

FindBugs and static analysis
Using FindBugs effectively

X

X

% Running FindBugs
% Scaling up FindBugs
X

Historical Bug results

Excluding baseline bugs
Saving audit results

Instance hashes

% When you generate an XML file with messages, each bug
has an associated instance hash

a 32 character hexidecimal string formed by a MD5 hash of all the
things believed to be unchanging about the issue

e.g., doesn’t consider line number

% Useful for connecting analysis results to bug databases,
other forms of external processing

Instance hash collisions

% Instance hashes are not guaranteed to be unique

two null pointer warnings about the variable x in the method foo in
the class Bar will both generate the same hash

% Can have two issues in the same analysis with the same
hash

% Can have a hash that occurs in two different analysis
results that doesn’t really reflect the same issue

Unique identifiers

X Each issue has a occurrenceNum and a occurrenceMax as
well as a hash

% concatenating all 3 gives something unique to the file
and unlikely to collide across successive versions

% <Buglnstance type="BIT_AND" priority="2" abbrev="BIT"
category="CORRECTNESS"
instanceHash="11826ab8704305b22e35e9029e848831"
instanceOccurrenceNum="0" instanceOccurrenceMax="0">

Agenda

FindBugs and static analysis
Using FindBugs effectively

X

X

% Running FindBugs
% Scaling up FindBugs
X

Historical Bug results
* |nstance hashes

e Excluding baseline bugs
* Saving audit results

53

Establishing a bug baseline

% Say you want to just look at issues that have been
introduced into the code since release 3.0
too many issues to look at all of them

perhaps issues that made it through the 3.0 release process are less
likely to cause the software to misbehave

hoping testing would have found most of the misbehaviors

Excluding a baseline

% You can exclude bugs in a baseline by computing historical
bug databases
compute a historical database
exclude those present in the first version

% But this can be awkward, can’t use it in Eclipse, ...

Simple bug baselines

% The filter command and the eclipse plugin allow you to
specify a bug baseline
an XML file of analysis results for your baseline
% Any issue that also occurs in the baseline is excluded
based on instance hash

Agenda

FindBugs and static analysis
Using FindBugs effectively

X

X

% Running FindBugs
% Scaling up FindBugs
X

Historical Bug results
* |nstance hashes

* Excluding baseline bugs
¢ Saving audit results

57

Annotating issues

% The Swing GUI and Eclipse plugin allows you to mark an
Issue as one of the following:
unclassified
needs further study
bad analysis
not a bug
mostly harmless
should fix
must fix

Free text annotations

% The GUI and Eclipse plugin also supports free text
annotation
“loe should fix this”

“Ask Susan about whether or not the foobar parameter is allowed
to be null”

Historical matching and annotations

% When you combine bug results

% The matcher combines/transfers user designations and
annotations from the old results to the new issues

< Now, when you view it, you see the new line number, but
It remembers the previous designation and annotation

% GUI automatically combines old result with new result

Eclipse and user annotations

% Eclipse has alpha-level support for user annotations
use “Bug User Annotation Window”
% Keeps history

% But doesn’t provide any way to share it among multiple

users or Workspaces

version control based merging of XML bug databases isn’t
recommended or supported

New plans, to be accomplished soon

Information about “Harmless” or “Must fix” stored in
central store (such as a SQL database), as well as
iInformation about which issues are new and which are old
This information can be accessed from all the ways FindBugs can be
run (Maven, Ant, GUI, Eclipse)
- |Integration with bug tracking systems: file bugs from
FindBugs, link to existing entries in bug tracker

Integration with web-based source viewing tools, such as
FishEye

Summary

X Don’t worry about looking at all the issues reported by
FindBugs
you probably have better things to do with your time

X Figure out which kinds of issues are most relevant/important
don’t look at ones that aren’t

X Recently introduced issues are more likely to be worth
looking at
easier to find developer who understands the code and issue

If an issue has been in your codebase for two years and no-one has
found a reason to fix it, the odds that it can actually cause problems
are lower (but not zero).

