
The Java Memory Model

Jeremy Manson, William Pugh
Univ. of Maryland, College Park

2

Java Memory Model and
Thread Specification

• Defines the semantics of multithreaded
programs
– When is a program correctly

synchronized?
• A correctly synchronized program has only SC

semantics
– What are the semantics of an incorrectly

synchronized program?
• A program with data races in an SC execution

3

Proposed Changes
• Make it unambiguous
• Allow standard compiler optimizations
• Remove corner cases of synchronization

– enable additional compiler optimizations
• Strengthen volatile

– make easier to use
• Strengthen final

– Enable compiler optimizations
– Fix security concerns

4

VM Safety

• Type safety
• Not-out-of-thin-air safety

– (except for longs and doubles)
• No new VM exceptions
• Only thing lack of synchronization can

do is produce surprising values for
getfields/getstatics/array loads
– e.g., arraylength is always correct

5

Read/Write atomicity

• All reads and writes are atomic
– except for non-volatile longs and doubles

• No word tearing

6

Synchronization

• Programming model is similar to lazy
release consistency
– A lock acts like an acquire of data from

memory
– An unlock acts like a release of data to

memory

7

When are actions visible and
ordered with other Threads?

x = 1

unlock M

Thread 1

lock M

i = x

Thread 2

lock M

y = 1

unlock M

j = y

Everything before
the unlock

Is visible to everything
after the matching lock

8

New Optimizations Allowed
• Turning synchronizations into no-ops

– Some actions have no memory semantics:
• locks on objects that aren’t ever locked by any other

threads
• reentrant locks

• Lock coarsening
– merging two calls to synchronized methods on

same object
• need to be careful about starvation issues – more on this

later

9

Old Semantics of Volatile
• No compiler optimizations

– Can’t hoist read out of loop
– reads/writes go directly to memory

• Reads/writes of volatile are sequentially
consistent and can not be reordered
– but access to volatile and non-volatile variables

can be reordered – makes volatiles much less
useful

• Reads/writes of volatile long/doubles are
atomic

10

Proposed New, Additional
Semantics for Volatile

• Write to a volatile acts as a release
• Read of a volatile acts as an acquire

• If a thread reads a volatile
– all writes done by any other thread,
– before earlier writes to the same volatile,
– are guaranteed to be visible

11

When Are Actions Visible to
Other Threads?

answer = 42

ready = true

Thread 1

if (ready)

println(answer)

Thread 2

anything done by thread 1, before
before writing ready

must be visible to any
operations in thread 2 that
occur after readying ready

12

Semantics of correctly
synchronized programs

13

Correct Sync => SC behavior

Thread 1
r1 = x
if r1 > 0 then
 y = 1

Thread 2
r2 = y
if r2 > 0 then
 x = 1

Initially, x = y = 0

Can this result in r1 = r2 = 1?

14

No

• Program is correctly synchronized
• Behavior is not SC

15

Definition of Correct Sync

• If, in all SC executions
– all conflicting memory accesses
– are ordered by union of program order
– and synchronization edges

• program is correctly synchronized

16

Other issues

• One data race shouldn’t kill semantics
in the rest of the program

• Sarita went over this issue, so we won’t
repeat it

17

Semantics of incorrectly
synchronized programs

18

Incorrect synchronization
• Incorrectly synchronized program must

have well defined semantics
– Much other older work in the field has

avoided defining any semantics for
incorrectly synchronized programs

• Synchronization errors might be
deliberate
– to crack security of a system
– just like buffer overflows

19

Consider

Thread 1
r1 = x
y = r1

Thread 2
r2 = y
x = r2

Initially, x = y = 0

Can this result in r1 = r2 = 42?

20

A reference is a
permissions token

• Code should not be able to forge
reference to a private object
– Even in the presence of a data race

• Case less clear for integers, doubles,
etc.
– but still seems compelling

• Values should not come out of thin air

21

Reasonable transformations
and optimizations can lead to

very strange behavior

22

Consider

Thread 1
r1 = x
if r1 >= 0 then
 y = 1

Thread 2
r2 = y
if r2 >= 0 then
 x = 1

Initially, x = y = 0

Can this result in r1 = r2 = 1?

23

Yes

• All stores to x and y are of constants 0
or 1

• therefore r1 and r2 are non-negative
• therefore if guards are true
• therefore writes can be moved early

24

Real example

• While not too many systems will do an
analysis to determine non-negative
integers

• Compilers might want to determine
references that are definitely non-null

25

Null Pointer example

Thread 1
r1 = Foo.p.x;
Foo.q = Foo.r;

Thread 2
r2 = Foo.q.x;
Foo.p = Foo.r;

Initially
Foo.p = new Point(1,2);
Foo.q = new Point(3,4);
Foo.r = new Point(5,6);

Can this result in r1 = r2 = 5?

26

UPC example (old model)
Thread 1
iteration 1

x = 1
a[1] = x

iteration 2
x = 2
a[2] = x

iteration 3
x = 3
a[3] = x

Thread 2
x = 4
x = 5

Not allowed in UPC
a[1] = 5
a[2] = 4
a[3] = 5

UPC requires <1 to be a total
order over in thread 1 and all
writes by other threads

27

CRF example
Thread 1
iteration 1

x = 1
a[1] = x

iteration 2
x = 2
a[2] = x

x = 3

Thread 2
x = 4

Not allowed in CRF
a[1] = 5
a[2] = 4
b[1] = 4
b[2] = 5

Thread 3
x = 5

Thread 4
iteration 1

x = 1
b[1] = x

iteration 2
x = 2
c[2] = x

x = 3
CRF requires threads 1 and 4 to agree
on the order in which x = 4 and x = 5 occur

28

Do we care?

• Loop reversal could have produced the
behavior seen in UPC/CRF examples
– in UPC example, reverse all but last

iteration
• last iteration might be peeled to preserve final

value of x
– In CRF, reverse loop in thread 1 but not in

thread 4

29

Formalizing It…

30

Actions
• Only actions we concern ourselves with are

interthread actions
– actions you would see if standing at the interface

between processor and memory
• Actions are labeled with

– kind of action (read, write, volatile read, volatile
write, lock, unlock)

– thread that performed the action
– variable accessed
– value written/read

31

Execution consists of

• Set of actions
• For each thread, a total order over all

actions by that thread (thread sequence
order or program order)

• Synchronization order, a total order
over all synchronization actions

32

Consistency checks
• Intrathread semantics

– For each thread, the program would
generate the actions of that thread in given
program order

• taking the value seen by each read as a given
• For each thread t, program order of

synchronization actions by t is
consistent with overall synchronization
order

33

Synchronization Edges

• Synchronization edge from each release
to each matching acquire that occurs
later in synchronization order
– volatile write matches all later volatile

reads of same volatile variable
– unlock matches all later locks of same

monitor

34

Initial actions

• There are also a set of initial writes that
initialize all variables to their default
value

• Also synchronization edges from all
initial writes to first action in each
thread

35

Happens-Before Order

• A partial order over actions
• Happens before order is transitive

closure of synchronization edges and
program order

36

Happens-Before Consistency

• First pass at a memory model
• A read r is not allowed to see a write w

to the same variable v if
– r hb w or
– exists another write w’ to v such that

w hb w’ hb r
• otherwise, r may see w

37

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

Can this result in i = 0 and j = 0?

start threads

Simple Example

38

Yes

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

Each Read is allowed to see the initial write
(as well as the writes of 1)

start threads

39

Not bad as a memory model

• Interesting to compare with UPC model
• Make appropriate adjustments

– synchronization edges from each
synchronization action to all later
synchronization actions

• I think this is strictly weaker than UPC
model

40

Problem
• Allows us to violate CS => SC
• r1 == r2 == 42 is a possible result of the

following program

x = y = 0

r1 = x

if r1 > 0
 then y = r1

Thread 1
r2 = y

if r2 > 0
 then x = r2

Thread 2start threads

41

Problem

• Simply a set of actions
– an arbitrary fixed point

• Self-consistent
• But no idea of what could have caused

them or how they could have been
generated
– not a least fixed point

42

What is missing?

43

Causality
• We must be able to understand why

each action was allowed to occur
– was justified

• Need to avoid circularities
– don’t want to justify x via y, and justify y

via x
• All actions occur in a justification order

– A total order, not bound by program order
– But consistent with synchronization order

44

Alternative names

• We liked the term causal order
– but that name was already taken

• Execution order isn’t bad
– but suggests an execution model we don’t

require

45

Justification order
• The actions before x in the justification

order
– must ensure that x takes place
– if x is a read, need not ensure what value is

seen by x
• However, a read x can only see writes

that come before it in the justification
order
– write seen must also be hb-consistent

46

Simple case

• What if the justification order is
consistent with program order?

• No additional justification needed
• Weaker than SC

– because a read doesn’t have to see most
recent write

• But doesn’t handle all of the cases we
need

47

Example

Can we observe r1 == r2 == 1?

Thread 1
r1 = x
y = 1

Thread 2
r2 = y
x = 1

• If justification order is consistent with
program order, either r1 = x or r2 = y
must come first
– can’t see r1 == r2 == 1

48

Use dependences?
• Idea: allow justification order to be reordered,

except where prohibited by control and data
dependences
– Doesn’t work
– Control and data dependences determined by

semantics
• which are determined by the memory model
• thus using them to define the memory model would

result in an ill-defined circular definition
– Compiler can do dependence-breaking

transformations
• based on the semantics

49

Prescient actions

• An action x is prescient if there exists a
action y that occurs later in the
justification order such that y hb x

50

Back to an Example

Thread 1
r1 = x
if r1 >= 0 then
 y = 1

Thread 2
r2 = y
if r2 >= 0 then
 x = 1

Initially, x = y = 0

Can this result in r1 = r2 = 1?
Justification order:

y = 1; r2 = y(1); x = 1; r1 = x (1)

51

Justification of
Prescient Actions

• After executing a, we want to perform a
prescient action x

• Show if you continue execution without
performing any (more) prescient actions

• action x will always occur

53

Strictly weaker than
dependences

• This approach is strictly weaker than
allowing actions to be reordered except
where prevented by dependences

54

Is This too Strict?
• Action may only be performed presciently if

it happens in all executions
• Memory model allows many

executions/behaviors
• Compiler transformations and/or VM design

may rule out some possible behaviors
• If this guarantees an action will occur

– that wasn’t guaranteed to occur previously
– we need to be able to perform it early

55

Transformations that
eliminate behaviors

• Redundant Read Elimination
• Compiler Thread Scheduling
• Atomic reads of longs and doubles
• Fairness guarantees

56

Example

• To get this behavior, we need to perform y = 1 presciently
• But y=1 doesn’t occur in all executions

– doesn’t occur when r1 == 2 and r2 == 0,
or when r1 == 0 and r2 == 2

Thread 1
r1 = x
r2 = x
if r1 == r2 then
 y = 1

Thread 2
r3 = y
x = r3

Initially, x = 0, y = 0

Can we see r1 == r2 == r3 == 1?

Thread 3
x = 2

57

We need to allow
 this behavior

• Replace r2 = x with r2 = r1
• Replace r1 == r2 with true

– removing control dependence
• Move write of y early

Thread 1
r1 = x
r2 = x
if r1 == r2 then
 y = 1

Thread 2
r3 = y
x = r3

Initially, x = 0, y = 0

Can we see r1 == r2 == r3 == 1?

Thread 3
x = 2

Resulting Thread 1
 y = 1
r1 = x
r2 = r1

58

Forbidden executions

• An execution E can be shown legal
– if there exists a set of forbidden executions
– that allow justification of all prescient

actions in E
– Bunch of consistency constraints to make

the forbidden executions sensible
• an execution can be forbidden only because

– a read would see a different value
– a different scheduling decision would be made

61

Difference between Sarita’s
model and our model

• Very close agreement on litmus tests
– formalisms are somewhat close

• One essential difference
– What is out of thin air?

62

Agreement on some cases (4)

Thread 1
r1 = x
y = r1

Thread 2
r2 = y
x = r2

Initially, x = y = 0

Must not result in r1 = r2 = 42

63

Difference on others (5, 10)

Thread 1
r1 = x
y = r1

Thread 2
r2 = y
x = r2

Initially, x = y = z = 0

Sarita’s model: does allow in
r3 == 0; r1 == r2 == 42

Manson/Pugh: doesn’t allow
r3 == 0; r1 == r2 == 42

Thread 3
z = 1

Thread 4
r3 = z
if r3 == 1

x = 42

64

Is (6) same as (5,10)?

Thread 1
r1 = x
if (r1 == 1)

y = 1

Thread 2
r2 = y
if (r2 == 1)

x = 1
else x = 1

Initially, x = y = 0

Agree: can result in r1 = r2 = 1
Sarita: among statements that execute, seems to be an

out-of-thin-air race, just like (5, 10)
Us: model doesn’t talk about statements. The actions that

occurred can be justified in order.

65

Argument against (5, 10)
• Profoundly disturbing (to us)
• No causality means no audit trail

– don’t buy argument that 6 is the same
• Hard to imagine debugging or trying to

ensure security without causality
• Consider method that always returns a key,

but also always logs it

Key getKey() {
auditLog.record(“Gave out key”);
return privateKey;
}

66

Attacker writes

Thread 1
r1 = x
y = r1

Thread 2
r2 = y
x = r2

Initially, x = y = null, z = 0

Allows r1 == r2 == key, r3 = 0,
no log in audit trail

Thread 3
sleep(1000);
z = 1

Thread 4
r3 = z
if r3 == 1

x = getKey()

67

Core Memory Model
Summary

• If you correctly synchronize your code,
you get SC behavior.

• If you don’t, you can get surprising
results, but such results must always
stem from a causal sequence of actions
– may or may not be consistent with

program order

68

Immutability and Final Field
Semantics

69

Immutability in Java
• final fields are written once by bytecode,

in an object’s constructor, and never changed.
• This provides immutability, right?

• Caution: much of this is ugly. We cannot
break backwards compatibility.
– Yes, we would design it differently if we were

starting over

70

String Class Example

• Implementation can
– Create final char array as “/tmp/usr”, final

start index of 4, final string length of 4
• But offset might not be perceived correctly

or consistent by thread 2
– offset of 0 in myS.equals(“/tmp”),
– offset of 4 during print, so it prints “/usr”

• Massive potential security hole

Thread 1
Global.s =
 "/tmp/usr".substring(4);

Thread 2
String myS = Global.s;
if (myS.equals("/tmp"))
 System.out.println(myS);

71

Goals for final fields (What
do we need to fix?)

• Value is not intended to change
– Compiler should never have to reload the

value of it, if possible
– In general, the semantics of final should

impose a minimal architectural cost
• Objects that have only final fields

should appear immutable, even if
passed by a data race after construction

72

Indirect guarantees

• If a final field references write-once but
non-final data
– e.g., a final reference to an array of

characters
• Reads of write-once data via final field

should see correctly initialized values

73

Require correct construction
and publication

• Lots of issues arise if object is made
visible to other threads before final
fields are set or construction is complete

• Programmers should strive to avoid
these cases

• Fair bit of hair in model to deal with
such cases
– make sure semantics are defined
– but don’t impose implementation cost

74

Implementation goals

• Want additional barriers only at
construction time
– except on Alpha

• Don’t want to treat them as volatile
• Keep finals in registers across

synchronization and unknown function
calls

76

Pretty Close
• At the end of a constructor, have a conceptual

“freeze” of the state of the final fields
• A reference to an object is “correctly

published” if it is written after the freeze.
• Writes in constructor are ordered before

reads of final field done by other threads
from that reference
– as are reads transitively reached via final field

77

String Example Revisited

• Thread 2 only accesses string length and
offset after correct publication, so is
guaranteed to see correct value

• Since guarantee applies transitively, char
array is correctly seen, too

Thread 1
Global.s =
 "/tmp/usr".substring(4);

Thread 2
String myS = Global.s;
if (myS.equals("/tmp"))
 System.out.println(myS);

78

Complications
• Several ways to ensure that an object is

correctly published
– write during construction, use Java

synchronization to ensure no other thread sees
until after construction

– write reference after construction
• If thread T1 sees an incorrectly published

version of an object, thread T2 can still see a
correctly published version

• Final fields set multiple times
– e.g., via deserialization, after construction

• Can hoist reads of final fields

79

Can hoist reads of final fields

• If a thread sees an incorrectly published
reference to x

• All other references to x are spoiled as
well

r1 = p // incorrectly published
r2 = r1.x
r3 = q // correctly published
if (r1 == r3 && r2 == r3.x)
 // compiler should be able to eliminate r2 = r3.x

85

Implementation
• May need a memory barrier at end of

constructor
– e.g., don’t need them for thread local objects or

objects with no final fields
• No memory barriers or reordering constraints

for reads of final fields
– except on Alpha

• Can perform aggressive optimizations of final
fields
– compiler can treat them as constant

86

What to Take Away

• Don’t allow other threads to see an
object until it is fully
constructed/initialized
– including deserialization, which occurs

after construction
• If you do this, final fields will appear

immutable to other threads

