
TS-754, Correct and Efficient Synchronization of Java Threads1

Correct and Efficient
Synchronization of
Java™ Technology-
based Threads
Doug Lea and William Pugh
http://gee.cs.oswego.edu
http://www.cs.umd.edu/~pugh

TS-754, Correct and Efficient Synchronization of Java Threads2

Audience

• Assume you are familiar with basics
of Java™ technology-based threads
(“Java threads”)
– Creating, starting and joining threads
– Synchronization
– wait and notifyAll

• Will talk about things that surprised a lot
of experts
– Including us, James Gosling, Guy Steele, …
(others discovered many of these)

TS-754, Correct and Efficient Synchronization of Java Threads3

Java Thread Specification

• Chapter 17 of the Java Language Spec
– Chapter 8 of the Virtual Machine Spec

• Very, very hard to understand
– Not even the authors understood it
– Has subtle implications

• That forbid standard compiler optimizations
– All existing JVMs violate the specification

• Some parts should be violated

TS-754, Correct and Efficient Synchronization of Java Threads4

Safety Issues in
Multithreaded Systems
• Many intuitive assumptions do not hold
• Some widely used idioms are not safe

– Double-check idiom
– Checking non-volatile flag for

thread termination
• Can’t use testing to check for errors

– Some anomalies will occur only on
some platforms

• e.g., multiprocessors

TS-754, Correct and Efficient Synchronization of Java Threads5

Revising the Thread Spec

• Work is underway to consider revising the
Java Thread Spec
– http://www.cs.umd.edu/~pugh/java/memoryModel

• Goals
– Clear and easy to understand
– Foster reliable multithreaded code
– Allow for high performance JVMs

• Will effect JVMs
– And badly written existing code

• Including parts of Sun’s JDK

TS-754, Correct and Efficient Synchronization of Java Threads6

What To Do Today?

• Guidelines we will provide should
work under both existing and future
thread specs

• Don’t try to read the official specs

• Avoid corner cases of the thread spec
– Not needed for efficient and reliable programs

TS-754, Correct and Efficient Synchronization of Java Threads7

Three Aspects of
Synchronization
• Atomicity

– Locking to obtain mutual exclusion

• Visibility
– Ensuring that changes to object fields made in

one thread are seen in other threads

• Ordering
– Ensuring that you aren’t surprised by the order

in which statements are executed

TS-754, Correct and Efficient Synchronization of Java Threads8

Don’t Be Too Clever

• People worry about the cost of
synchronization
– Try to devise schemes to communicate

between threads
• Without using synchronization

• Very difficult to do correctly
– Inter-thread communication without

synchronization is not intuitive

TS-754, Correct and Efficient Synchronization of Java Threads9

Quiz Time

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

Can this result in i = 0 and j = 0?

start threads

TS-754, Correct and Efficient Synchronization of Java Threads10

Answer: Yes!

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

How can i = 0 and j = 0?

start threads

TS-754, Correct and Efficient Synchronization of Java Threads11

How Can This Happen?

• Compiler can reorder statements
– Or keep values in registers

• Processor can reorder them
• On multi-processor, values not

synchronized in global memory

• Must use synchronization to enforce
visibility and ordering
– As well as mutual exclusion

TS-754, Correct and Efficient Synchronization of Java Threads12

Synchronization Actions
(approximately)

// block until obtain lock
synchronized(anObject) {

// get main memory value of field1 and field2
int x = anObject.field1;
int y = anObject.field2;

anObject.field3 = x+y;

// commit value of field3 to main memory
}

// release lock
moreCode();

TS-754, Correct and Efficient Synchronization of Java Threads13

When Are Actions Visible
to Other Threads?

x = 1

unlock M

Thread 1

lock M

i = x

Thread 2

TS-754, Correct and Efficient Synchronization of Java Threads14

What Does Volatile Mean?

• C/C++ spec
– There is no implementation independent

meaning of volatile

• Situation a little better with Java technology
– Volatile reads/writes guaranteed to go directly

to main memory
• Can’t be cached in registers or local memory

TS-754, Correct and Efficient Synchronization of Java Threads15

class Animator implements Runnable {
private volatile boolean stop = false;
public void stop() { stop = true; }
public void run() {
while (!stop)
oneStep();

}
private void oneStep() { /*...*/ }

}

Using Volatile

• Volatile used to guarantee visibility
of writes
– stop must be declared volatile
– Otherwise, compiler could keep in register

TS-754, Correct and Efficient Synchronization of Java Threads16

class Future {
private volatile boolean ready = false;
private Object data = null;
public Object get() {

if (!ready) return null;
return data;
}

// only one thread may ever call put
public void put(Object o) {

data = o;
ready = true;
}

}

Using Volatile to Guard
Other Fields Doesn’t Work
• Do not use - Does not work

TS-754, Correct and Efficient Synchronization of Java Threads17

Nobody Implements
Volatile Correctly
• Existing JVM requires sequential

consistency for volatile variables
– In quiz example, if x and y are volatile
– Should be impossible to see i = 0 and j = 0
– Haven’t found any JVMs that enforce it

• Reads/writes of volatile longs/doubles
– Guaranteed to be atomic

(see old or new value, not a mixture)
• Some JVMs ignore volatile flag

TS-754, Correct and Efficient Synchronization of Java Threads18

Volatile Compliance

 No Compiler
Optimizations

Sequential
Consistency

Atomic
Longs/Doubles

Solaris Sparc
JDK 1.2.2 EVM Pass Fail Pass
Solaris Sparc
JDK 1.3.0 beta
Hotspot Client

Fail Fail Fail

Windows
JDK 1.3.0

 Hotspot Client
Fail Fail Fail

Solaris Sparc
JDK 1.3.0 beta
Hotspot Server

Pass Fail Fail

Windows
JDK 1.3.0

 Hotspot Server
Pass Fail Fail

Windows IBM
JDK 1.1.8 Pass Fail Fail

TS-754, Correct and Efficient Synchronization of Java Threads19

Why Use Volatile?

• Since the semantics are implemented
inconsistently

• Future-proof your code
– Prohibit optimizations compilers might do

in the future
• Works well for flags

– More complicated uses are tricky
• Revising the thread spec...

– Test compliance
– Strengthen to make easier to use

TS-754, Correct and Efficient Synchronization of Java Threads20

Cost of Synchronization

• Few good public multithreaded
benchmarks
– See us if you want to help

• Volano Benchmark
– Most widely used server benchmark
– Multithreaded chat room server
– Client performs 4.8M synchronizations

• 8K useful (0.2%)
– Server 43M synchronizations

• 1.7M useful (4%)

TS-754, Correct and Efficient Synchronization of Java Threads21

Synchronization in
VolanoMark Client

90.3%

5.6%

1.8%

0.9%

0.9%

0.4%

0.2%

java.io.BufferedInputStream
java.io.BufferedOutputStream
java.util.Observable
java.util.Vector
java.io.FilterInputStream
everything else
All shared monitors

7,684 synchronizations on shared monitors
4,828,130 thread local synchronizations

TS-754, Correct and Efficient Synchronization of Java Threads22

Cost of Synchronization
in VolanoMark
• Removed synchronization of

– java.io.BufferedInputStream
– java.io.BufferedOutputStream

• Performance (2 processor Ultra 60)
– Larger is better
– HotSpot (1.3 beta)

• Original: 4788
• Altered: 4923 (+3%)

– Exact VM (1.2.2)
• Original: 6649
• Altered: 6874 (+3%)

TS-754, Correct and Efficient Synchronization of Java Threads23

Most Synchronization is on
Thread Local Objects
• Synchronization on thread local object

– Is useless
– Current spec says it isn’t quite a no-op

• But very hard to use usefully
– Revised spec will likely make it a no-op

• Largely arises from using synchronized
classes
– In places where not required

TS-754, Correct and Efficient Synchronization of Java Threads24

Synchronize When Needed

• Places where threads interact
– Need synchronization
– Need careful thought
– Need documentation
– Cost of required synchronization not significant

• For most applications
• No need to get tricky

• Elsewhere, using a synchronized class can
be expensive

TS-754, Correct and Efficient Synchronization of Java Threads25

Synchronized Classes

• Some classes are synchronized
– Vector, Hashtable, Stack
– Most Input/Output Streams

• Contrast with 1.2 Collection classes
– By default, not synchronized
– Can request synchronized version

• Using synchronized classes
– Often doesn’t suffice for concurrent interaction

TS-754, Correct and Efficient Synchronization of Java Threads26

Synchronized Collections
Aren’t Always Enough
• Transactions (DO NOT USE)

ID getID(String name) {
ID x = (ID) h.get(name);
if (x == null) {

x = new ID();
h.put(name, x);}

return x; }

• Iterators
– Can’t modify collection while another

thread is iterating through it

TS-754, Correct and Efficient Synchronization of Java Threads27

Concurrent Interactions

• Often need entire transactions to
be atomic
– Reading and updating a Map
– Writing a record to an OutputStream

• OutputStreams are synchronized
– Can have multiple threads trying to write to the

same OutputStream
– Output from each thread is nondeterministicly

interleaved
– Essentially useless

TS-754, Correct and Efficient Synchronization of Java Threads28

Cost of Synchronization in
SpecJVM DB Benchmark
• Program in the Spec JVM benchmark
• Does lots of synchronization

– > 53,000,000 syncs
• 99.9% comes from use of Vector

– Benchmark is single threaded, all of it
is useless

• Tried
– Remove synchronizations
– Switching to ArrayList
– Improving the algorithm

TS-754, Correct and Efficient Synchronization of Java Threads29

Execution Time of Spec JVM
_209_db, Hotspot Server

0

10

20

30

40

Original 35.5 32.6 28.5 16.2 12.8
Without Syncs 30.3 32.5 28.5 14.0 12.8

Original Use
ArrayList

Use
ArrayList
and other

minor

Change
Shell Sort
to Merge

Sort
All

TS-754, Correct and Efficient Synchronization of Java Threads30

Lessons

• Synchronization cost can be substantial
– 10-20% for DB benchmark
– Consider replacing all uses of Vector,

Hashtable and Stack
• Use profiling
• Use better algorithms!

– Cost of stupidity higher than cost of
synchronization

– Used built-in merge sort rather than
hand-coded shell sort

TS-754, Correct and Efficient Synchronization of Java Threads31

Designing Fast Code

• Make it right before you make it fast
• Avoid synchronization

– Avoid sharing across threads
– Don’t lock already-protected objects
– Use immutable fields and objects
– Use volatile

• Avoid contention
– Reduce lock scopes
– Reduce lock durations

TS-754, Correct and Efficient Synchronization of Java Threads32

Isolation in Java™ Foundation
Classes (JFC)/Swing
• JFC/Swing relies entirely on Isolation

– AWT thread owns all Swing components
• No other thread may access them

– Eliminates need for locking
• Still need care during initialization
• Can be fragile

– Every programmer must obey rules
– Rules are usually easy to follow
– Most Swing components accessed in

handlers triggered within AWT thread

TS-754, Correct and Efficient Synchronization of Java Threads33

Accessing Isolated Objects

• Need safe inter-thread communication
– Swing uses via runnable Event objects

• Created by some other thread
• Serviced by AWT thread

SwingUtilities.invokeLater(new Runnable(){
public void run() {

statusMessage.setText("Running");
}});

TS-754, Correct and Efficient Synchronization of Java Threads34

GetX/SetX Access Methods

• Not synchronizing access methods
– int thermometer.getTemperature()

(doesn’t work for references)

• Synchronizing access methods
– account.getTotalBalance()

• Omitting access methods
– queue doesn’t need getSize()

TS-754, Correct and Efficient Synchronization of Java Threads35

Things That Don’t Work

• Double-Check Idiom
– Also, unsynchronized reads/writes of refs

• Non-volatile flags

• Depending on sleep for visibility

TS-754, Correct and Efficient Synchronization of Java Threads36

Initialization Check - v1 - OK

Basic version:
class Service {

Parser parser = null;

public synchronized void command() {

if (parser == null)

parser = new Parser(...);

doCommand(parser.parse(...));
}

// ...

}

TS-754, Correct and Efficient Synchronization of Java Threads37

Initialization checks - v2 - OK

Isolate check:
class ServiceV2 {

Parser parser = null;

synchronized Parser getParser() {

if (parser == null)

parser = new Parser();

return parser;

}

public void command(...) {

doCommand(getParser().parse(...));
}}

TS-754, Correct and Efficient Synchronization of Java Threads38

Single-check - DO NOT USE

Try to do it without synchronization:
class ServiceV3 { // DO NOT USE

Parser parser = null;

Parser getParser() {

if (parser == null)

parser = new Parser();

return parser;

}}

TS-754, Correct and Efficient Synchronization of Java Threads39

Double-check - DO NOT USE

Try to minimize likelihood of synch:
class ServiceV4 { // DO NOT USE

Parser parser = null;

Parser getParser() {

if (parser == null)
synchronized(this) {

if (parser == null)

parser = new Parser();

}

return parser;

}}

TS-754, Correct and Efficient Synchronization of Java Threads40

Problems with Double-check

• Can reorder
– Initialization of Parser object
– Store into parser field

• …Among other reasons
– See JMM web page for gory details

• Can go wrong on uniprocessors
– e.g., Symantic JIT

• Using volatile doesn’t help
– Under current JMM

TS-754, Correct and Efficient Synchronization of Java Threads41

Alternatives to
Double–Check
• Use synchronization
• Double check OK for primitive values

– hashCode caching
(still technically a data race)

• For static singletons
– Put in separate class
– First use of a class forces class initialization
– Later uses guaranteed to see class initialization
– No explicit check needed

TS-754, Correct and Efficient Synchronization of Java Threads42

Rare Heavy New Objects

• Sometimes, need singleton that is
expensive to create

static final Font HELVETICA
= new FONT(“Helvetica”,Font.PLAIN, 24);

Font getFont() {
if (!chinese)
return HELVETICA;
else
return new ChineseFont();

}

TS-754, Correct and Efficient Synchronization of Java Threads43

Using Static Singletons

static final Font HELVETICA
= new Font(“Helvetica”,Font.PLAIN,24);

static class CFSingleton{
static final Font CHINESE

= new ChineseFont(...);
}

Font getFont() {
if (!chinese)

return HELVETICA;
else

return CFSingleton.CHINESE;
}

TS-754, Correct and Efficient Synchronization of Java Threads44

Unsynchronized
Reads/Writes of References
• Beware of unsynchronized getX/setX

methods that return a reference
– Same problems as double check
– Doesn’t help to synchronize only setX
private Color color;
void setColor(int rgb) {

color = new Color(rgb);
}

Color getColor() {
return color;
}

TS-754, Correct and Efficient Synchronization of Java Threads45

Thread blinker = null;
public void start() {

blinker = new Thread(this);
blinker.start();

}

public void stop() {
blinker = null;}

public void run() {
Thread me = Thread.currentThread();
while (blinker == me) {

try {Thread.currentThread().sleep(delay);}
catch (InterruptedException e) {}
repaint();

}
}

Thread Termination in
Sun’s Demo Applets

unsynchronized access to blinker field

confusing but not wrong: sleep is a static method

TS-754, Correct and Efficient Synchronization of Java Threads46

Problems

• Don’t assume another thread will see
your writes
– Just because you did them

• Calling sleep doesn’t guarantee you see
changes made while you slept
– Nothing to force thread that called stop to

push change out of registers/cache

TS-754, Correct and Efficient Synchronization of Java Threads47

Wrap-up

• Cost of synchronization operations
can be significant
– But cost of needed synchronization rarely is

• Thread interaction needs careful thought
– But not too clever

• Need for synchronization...

TS-754, Correct and Efficient Synchronization of Java Threads48

Wrapup - Synchronization

• Communication between threads
– Requires both threads to synchronize

• Or communication through volatile fields

• Synchronizing everything
– Is rarely necessary
– Can be expensive (3%-20% overhead)
– May lead to deadlock
– May not provide enough synchronization

• e.g., transactions

TS-754, Correct and Efficient Synchronization of Java Threads49

