
Language Support for Lightweight Transactions

Tim Harris
University of Cambridge Computer Laboratory

15 JJ Thomson Avenue
Cambridge, UK, CB3 0FD

tim.harris@cl.cam.ac.uk

Keir Fraser
University of Cambridge Computer Laboratory

15 JJ Thomson Avenue
Cambridge, UK, CB3 0FD

keir.fraser@cl.cam.ac.uk

ABSTRACT
Concurrent programming is notoriously difficult. Current
abstractions are intricate to use and make it hard to design
computer systems that are reliable and scalable. We ar-
gue in favour of a practical declarative style of concurrency
control in which programmers directly indicate the safety
properties that they require. In essence, the programmer
demarks sections of code which execute within lightweight
software-based transactions which commit atomically and
exactly once.

These transactions can update shared data, instantiate
objects, invoke library features and so on. They can also
block, waiting for arbitrary boolean conditions to become
true. These features support general-purpose shared data
structures such as hashtables, queues and buffers. In gen-
eral, no performance penalty is incurred for memory accesses
outside transactions. Furthermore, transactions which do
not access the same shared memory locations can commit
concurrently.

We present a detailed design of this proposal along with
an implementation and evaluation. We argue that the re-
sulting system (i) is easier for mainstream programmers to
use, (ii) prevents lock-based priority-inversion and deadlock
problems and (iii) offers compelling performance.

1. INTRODUCTION
Mainstream object-oriented programming languages provide
staid support for concurrency. Systems have gravitated to-
ward providing multiple threads and using mutual-exclusion
locks and condition variables to control access to shared
data. These abstractions have many problems. For instance,
consider implementing a shared buffer within an array. The
core of a Java-style design could be:

public synchronized int get() {

int result;

while (items == 0) wait ();

items --;

result = buffer[items];

notifyAll ();

return result;

}

The synchronized keyword means that a caller must ob-
tain a mutual-exclusion lock (mutex) associated with the
target object. The wait and notifyAll invocations are be-
ing used to block a thread which finds the buffer empty and
to wake other threads (which may have blocked elsewhere

having found the buffer full). There are numerous difficulties
here. Firstly, idioms such as the repeated while loop around
the call to wait are often forgotten or mis-understood by
novice programmers. Secondly, there is no check that the
data accesses made are protected by the locks that are held.
Thirdly, if a thread is pre-empted while holding the lock
then no other thread can safely use the buffer. Finally,
mutual-exclusion prevents get operations on a buffer pro-
ceeding concurrently with put operations, even if they do
not conflict.

As a solution to these problems, we have returned to one
of the oldest proposals for concurrency control – Hoare’s
conditional critical regions (CCRs) [14]. In their most gen-
eral style, CCRs allow programmers to indicate what groups
of operations should be executed under mutual-exclusion
rather than how to go about doing so with a particular
scheme of locking. The programmer can also guard the re-
gion by an arbitrary boolean condition, with calling threads
blocking until the guard is satisfied. The core of a shared
buffer based on CCRs could look like:

public int get() {

atomically (items != 0) {

items --;

return buffer[items];

}

}

This style closely expresses the safety properties which un-
derlie the design. For this reason CCRs have long been
popular in teaching concurrency and defining concurrent al-
gorithms. Unfortunately, no good implementation technique
has been known [2, 3]. The key problem is that the general
form of CCRs gives no indication of what specific data items
are to be accessed or, if a thread blocks at the guard, ex-
actly when it may be released. Existing implementations
allow only one CCR to execute at any time and re-evaluate
every blocked CCR’s guard condition whenevery any CCR
completes. Unsurprisingly, performance is poor. To im-
prove performance, mutual exclusion locks were introduced
so that unrelated operations can execute concurrently and
condition variables were introduced to control blocking and
unblocking.

However, recent work on practical non-blocking concur-
rent data structures has led us to develop a new implemen-
tation technique [8]. We map CCRs down onto a software
transactional memory (STM) which groups together series
of memory accesses and peforms them as-if atomically. We
evaluate this technique under a number of different scenar-
ios ranging from small multi-processors to a large server

with 106 CPUs. In our results, algorithms using CCRs can
vastly out-perform those using simple mutual-exclusion. At
all times they remain competitive with a well-engineered
mutex-based scheme; under many workloads, our CCRs per-
form and scale better.

The paper makes three contributions:

• The implementation of CCRs is the first (i) to allow
dynamically non-conflicting executions to operate con-
currently, providing disjoint-access parallelism, (ii) to
re-evalute CCR conditions only when one of the shared
variables involved has been updated, and (iii) to use
a non-blocking implementation, preventing deadlock
and priority inversion.

• This paper is the first to consider providing practical
software transactions within a modern object-oriented
programming language. Interesting problems arise over
how to integrate transactional and non-transactional
access to objects and how transactions interact with
existing mechanisms for concurrency control and the
memory consistency model.

• The STM developed is the first to allow word-size data
to be held “in the clear” – that is, without reserving
space in each word that may be accessed and without
requiring the programmer to segregate objects which
may be subject to transactional access. It is the first
STM to consider synchronization between threads as
well as simple atomic update.

After expounding on our motivation in Section 2, we survey
related work in Section 3. Section 4 describes how we inte-
grate CCRs in the Java programming language. Section 5
describes our software transactional memory. In Section 6
we introduce our current implementation and evaluate its
performance. Section 7 concludes.

2. MOTIVATION
Concurrency is the norm in current computers, whether on
large ccNUMA servers, on more modest symmetric shared-
memory multi-processors, or even on single processors sup-
porting simultaneous multi-threading. This provides a com-
pelling need for practical mechanisms for controlling concur-
rency. We suspect that, although many programmers do not
explicitly target parallel environments, this is in part due to
the current complexity of doing so – new abstractions are
needed if effective use is to be made of computer hardware.

Programmers using mutexes must decide what granularity
of locking is appropriate. Protecting large data structures
with a single lock aids implementation but reduces the par-
allelism that can be exploited. Using many smaller locks
allows better parallelism, but leads to intricate code which
spends much of its time juggling the locks. The optimal se-
lection depends on the system’s workload, meaning that an
informed decision is difficult in the general case.

Furthermore, current abstractions are entangled. Condi-
tion variables cannot be understood separately from mu-
texes; a “wait” on a condition variable must include an
atomic “release” on a lock. Similarly, the semantics of a
“notify” operation differ between systems – the program-
mer must know how many threads may (or must) be woken
and how their scheduling interacts with that of the notifier.

Deadlock must be considered in systems with non-trivial
locking. Unfortunately, preventing deadlock requires knowl-
edge of the complete system and the execution paths through
it. As well as deadlock, a programmer using priority-based
scheduling must also understand priority inversion. Some
cases can be handled by more sophisticated schedulers (e.g.
priority inheritance), but others again require global knowl-
edge (e.g. a priority ceiling protocol).

The root of these problems is the imperative style in which
existing facilities for concurrency control are exposed to pro-
grammers. The resulting hand-compilation into these oper-
ations obfuscates the safety and progress properties that the
programmer is actually trying to provide and commits the
code, at the time when it is written, to following a particular
locking discipline.

3. RELATED WORK
The JVM [17], Microsoft CLR [24] and POSIX pthreads
APIs all provide mutexes and condition variables. These
can either be used directly by programmers or can be built
upon to provide higher level abstractions. For instance, the
util.concurrent library being developed for future versions
of Java1 gives high-quality implementations of atomic vari-
ables, special-purpose locks, queues and thread pools.

Several languages have included CCR-style constructions.
DP provides a style of guarded region defined by a when

statement taking a series of boolean conditions and blocks
of code; the statement blocks until one of the conditions is
true and then executes the corresponding code [5]. Schedul-
ing follows a co-routine model so no further support for
mutual-exclusion is required. The Edison language provides
an alternative when statement that acts as an atomic if [6].
Only one when statement may execute at any time. Lynx
includes an await statement that allows a thread to block
until a boolean expression becomes true [26]. It uses co-
operative scheduling.

Rem shows how to build general CCRs over semaphores [2].
The design exhibits the classical problems: overly pessimistic
concurrency and frequent expression re-evaluation. Schmid
shows how static analysis can be used to avoid some re-
evaluations [25]. His analysis is limited to expressions which
are conditional on the values of statically allocated shared
counters.

Argus has a style of transactions with an enter state-
ment executing a body of code within a new transactional
context [18]. An explicit leave allows transactions to be
aborted. Nested transactions are permitted, but their defi-
nition is syntactically different from top-level ones, hindering
code re-use.

There is a substantial body of work on theoretical models
of concurrency, of which Hoare’s Communicating Sequen-
tial Processes [15] is a major starting point. The Pi Cal-
culus introduces notions of communication channels as first
class entities [22] and the Ambient Calculus introduces ex-
plicit notions of mobility and location [7]. The programming
model differs greatly from that of object-oriented languages
and there have been few successful attempts to integrate
the two. Polyphonic C] is a notable current exception, al-
though the emphasis there is on Internet programming and
asynchronicity rather than general concurrency [4].

Non-blocking data structures have been studied as a way

1JSR166, http://www.jcp.org/en/jsr/detail?id=166

of sidestepping the problems caused by mutual-exclusion. A
design is non-blocking if the failure of any (finite) number of
threads cannot prevent the remainder of the system from
making progress. This provides robustness against poor
scheduling decisions as well as against arbitrary thread ter-
mination. It naturally precludes the use of locks because,
unless a lock-holder continues to run, the lock can never be
released.

Non-blocking designs can be classified according to the
kind of progress guarantee that they make. In this work
we focus on obstruction-freedom, a recent suggestion which
is felt to make it easier to design efficient algorithms [11].
An obstruction-free algorithm guarantees that any thread
can make progress so long as it does not contend with other
threads for access to any location. This is strong enough to
prevent deadlock and priority inversion, but requires an out-
of-band mechanism to avoid livelock; exponential backoff is
one option.

Building practical non-blocking algorithms directly from
available hardware primitives is a very difficult task. For this
reason, there is great interest in programming abstractions
which make it easier to create non-blocking systems. One
promising example is transactional memory [13], which al-
lows memory accesses to be grouped into transactions which
either commit, becoming globally visible at the same instant
in time, or abort without being observed.

Although the original proposal suggested hardware sup-
port, Shavit and Touitou show how a similar design can be
provided by software [27]. However, their design has two
practical limitations: (i) it can only be applied to static
transactions, whose data sets and operations are known in
advance; and (ii) it requires a strong atomic primitive which
is not provided by any processor architecture. Although
mechanisms exist to build these stronger primitives, they
involve reserving space in each word that may be accessed,
so full word-size values can only be manipulated by frag-
menting them across multiple locations with an attendant
space cost [23].

More recently, Herlihy et al [10] have designed a practical
software transactional memory which is obstruction-free and
requires only the readily-available double-width compare-
and-swap (CAS) instruction. Unlike the design in Section 5,
it introduces per-object indirection and an explicit ‘open’
step when accessing an object in a transaction. This may
not allow as direct an implementation as we describe. How-
ever, it does allows a more streamlined non-blocking commit
and, aside from the ‘open’ operation, transactional access
proceeds in the same was as ordinary access.

4. LANGUAGE INTEGRATION
Many questions arise when considering how CCRs could
be integrated into an existing language. What operations
and method invocations should be permitted within a CCR?
What kinds of shared data may be accessed? What guaran-
tees are made about concurrent access to data items outside
CCRs? How do CCRs interoperate with existing features
for concurrency control?

With such questions in mind, our design is motivated by
two principles. Firstly, CCRs should be able to enclose code
with as few restrictions as possible. This encourages code re-
use by allowing single-threaded libraries to be made thread-
safe by wrapping each invocation with a CCR. The second
principle is that the system should permit an implementa-

tion which does not impose a high overhead in parts of an
application where CCRs are not used – it would be unfor-
tunate for the implementation to mandate an extra field for
every object or to complicate field accesses outside CCRs.

In this section we describe the high-level aspects of our
design, showing how we integrate CCRs with the Java Pro-
gramming Language. We will then turn to our implementa-
tion of these over a software transactional memory in Sec-
tion 5.

4.1 Identifying CCRs
Our basic syntax of

atomically (condition) {

statements;

}

defines a CCR which waits (if necessary) until condition

is true and then executes statements. All other threads
observe the CCR to take place atomically at some point be-
tween its start and its completion, so long as they follow the
memory consistency rules in Section 4.7. The thread exe-
cuting the CCR sees the updates it makes proceed according
to the usual single-threaded semantics.

The condition may be omitted if it is simply “true” and
atomically can also be applied as a method-modifier in
place of synchronized.

We provide exactly-once execution of the statements. We
did consider offering at-most-once semantics and using non-
execution as an indicator of contention. We concluded that
this may aid expert programmers, but most uses of CCRs
would then require external looping to retry until an oper-
ation succeeds. We also considered timeouts but again, for
simplicity, do not currently provide them – a thread blocked
on a CCR’s guard can be ‘interrupted’ in the same way as
a Java thread blocked on a condition variable.

Exceptions can be thrown from within a CCR to outside
it. This is consistent with our first design principle of allow-
ing their use as wrappers around existing single-threaded
code.

4.2 Data accessible to CCRs
The principle of allowing code re-use suggests that we should
not need to indicate through the class hierarchy which ob-
jects may be accessed within CCRs – for example by re-
quiring them to extend a designated superclass. Doing so
would require library classes to be re-implemented before
they could be used.

This fact, along with our principle of avoiding overhead
outside CCRs, led to the development of our word-based
software transactional memory which aids the sharing of
memory locations between transactional and non-transactional
accesses.

4.3 Native methods
It is not practicable, in general, to allow native methods
to execute within CCRs – native code containing arbitrary
memory accesses and system calls raises the same problems
that have hitherto made it difficult to provide CCRs. Native
methods include all those within the standard libraries for
performing I/O operations.

Our current design generally raises a runtime exception
if a native method is invoked within a CCR. However, we
treat a number of built-in native methods as special cases

in which their behavior is either thread local (for instance
cloning an object or computing an object’s identity hash
value) or relates to synchronization and therefore requires
special handling.

4.4 Nested CCRs
If CCRs are nested dynamically then the entire assembly
executes as-if atomically at a time satisfying all of the condi-
tions. Of course, the programmer is responsible for ensuring
that such a time will exist; for instance, code containing

atomically (x == 1) {

atomically (x == 0) {

...

}

}

will never complete.

4.5 Existing synchronization mechanisms
Allowing code re-use requires us to consider how concur-
rency control within CCRs interacts with the existing mech-
anisms of mutual-exclusion locks and condition variables;
what does it mean for a block of code that manipulates
locks or communicates through wait and notify operations
to execute as-if atomically?

4.5.1 Mutual-exclusion locks
If a CCR attempts to acquire mutexes then the system en-
sures that all of these are available at the point at which it
appears to atomically take effect. This means that mutexes
can be used to safely share data between access within CCRs
and external access. Consequently, if the CCR implementa-
tion is non-blocking, then it precludes the risk of deadlock
in code such as

atomically { atomically {

synchronized (a) { synchronized (b) {

synchronized (b) { synchronized (a) {

... ...

} }

} }

} }

We return to some further consequences of using locks when
discussing the consistency model in Section 4.7.

4.5.2 Condition variables
It is not possible to ascribe useful semantics to a wait oper-
ation on a condition variable within a CCR. The wait oper-
ation always blocks until selected for resumption by a notifi-
cation. This makes it impossible to identify a single point at
which the entire CCR executes as-if atomically. For symme-
try we also forbid notification within CCRs, although there
is no implementation impediment to allowing it. In both
cases this is consistent with the fact that in Java the oper-
ations on condition variables, wait, notify and notifyAll

are defined as native methods.

4.6 Class loading
The Java programming language defines times at which new
classes should be loaded and their initialization code be ex-
ecuted [16]. What happens if class loading or initialization
is attempted by the JVM while executing within a CCR?
There are two options:

The first is to consider that such operations are performed
in the context of the CCR that causes them to happen; the
class would appear to be loaded or initialized at the same
time as the atomically block appears to occur. This raises
difficult conceptual problems from a programmer’s view-
point; for instance classes whose initialization involves the
creation of a thread or calls to native methods.

The second option, which we select, is to dissociate class
loading and initialization from the point within a CCR’s
execution which triggers it. We require class loading and
initialization to occur at some point between when a CCR
begins and the point at which it appears to take place atom-
ically.

4.7 Consistency model
The final decision to highlight is the relationship between
CCRs and the proposed Java memory model [19]. Memory
consistency is particularly interesting in Java, because of the
reliance placed on type-safety and because of the ongoing
work to provide a formal definition.

In outline, the memory model defines safety properties
which cannot be violated no matter what the application
program does – for instance, if objects are implemented us-
ing a table of virtual methods, then that table and the ref-
erences to it must have been initialized before it is used in
method invocation. Beyond these properties, the model sets
out a practical notion of “correctly synchronized” programs
to define what is necessary for a memory access made in one
thread to be visible to another. We elide some details, but
broadly the requirement is that a memory update must be
visible if the writer releases a lock subsequently acquired by
the reader, or if the writer updates a volatile field subse-
quently read by the reader.

We extend this to CCRs in the natural way, placing the
same onus on the programmer in order to achieve the in-
tended atomicity if data is shared between different kinds
of concurrency control. An ordering is induced between any
CCRs that access common memory locations, between any
CCR that accesses a volatile field and any other access to
that field, and finally between CCRs that hold a mutex and
other acquire/release operations on that lock.

We intend to formalize this model in future work. How-
ever, we believe it leads to the same kind engineering rule as
currently proposed: if a location is shared between threads
then accesses to it must (in any combination) (i) be pro-
tected by mutexes, (ii) be protected by CCRs, or (iii) be
marked as volatile.

5. SOFTWARE TRANSACTIONS
We now turn to the STM we have developed as the ba-
sis for our implementation of CCRs. We present it here in
terms of a software system but a hardware-based transac-
tional memory could be used if available. We return to the
question of hardware support when discussing future work,
but for the moment we assume only that word-sized memory
accesses are atomic and that a word-sized atomic compare
and swap (CAS) instruction is available. This instruction,
or an equivalent, is available in all major architectures.

As with existing STMs, our design groups memory ac-
cesses into transactions and performs these as-if atomically.
The STM has a number of notable features which stem from
our requirements:

boolean done = false;

while (!done) {

STMStart ();

try {

if (condition) {

statements;

done = STMCommit ();

} else {

STMWait();

}

} catch (Throwable t) {

done = STMCommit ();

if (done) {

throw t;

}

}

}

Figure 1: A CCR of the most general form
atomically (condition) { statements; } expressed in
terms of transaction start/commit operations, as-
suming that done is an otherwise unused identifier.

• No reserved space is needed in the locations being ac-
cessed. This means that, in Java, fields can hold full
32-bit integers without additional per-field storage.

• It requires only word-sized updates to be atomic when
accessing heap locations. Supporting double-word data
types poses no problem.

• The permanent structure used to co-ordinate transac-
tions can be statically allocated outside the applica-
tion heap. We can trade off the likelihood that non-
conflicting transactions commit in parallel against the
size of the structure. Temporary data structures can
be allocated from the same heap used by the JVM, or
instead be held separately.

• Outside transactions, access to non-volatile heap loca-
tions uses standard memory reads and memory writes.

• Read operations, whether in transactions or otherwise,
do not cause any updates to shared memory. This is
important to ensure effective caching [9].

We will introduce the interface exported by the STM in
Section 5.1 and then describe the implementation in Sec-
tions 5.2-5.4.

5.1 STM interface
Our STM provides operations for non-nesting transactions
accessing memory locations on a word-addressed basis. We
define four operations for transaction management:

Transaction management
void STMStart()
void STMAbort()
boolean STMCommit()
void STMWait()

STMStart begins a new transaction within the executing
thread. It is an error to invoke STMStart if the current
thread is already running a transaction. Similarly, it is an

a1 7

Application
heap

Transaction
descriptors

Ownership
records

version 15

r3

r4

a4

a5

Status: ASLEEP

a5: (600,13) −> (600,13)

a4: (500,12) −> (500,12)

t1

t2

a3

r2

100

200

a2

500

600

r1

Status: ACTIVE

a1: (7,15) −> (7,15)

a2: (100,7) −> (300,8)

Figure 2: The STM heap structure. Two transac-
tions are in progress here; t1 is attempting to com-
mit accesses made to addresses a1 and a2 (checking
a1 holds 7 and updating a2 from 100 to 300). The
second transaction, t2, is asleep waiting for updates
to either a4 (where it read 500) or to a5 (where it
read 600).

error to invoke the other operations unless there is a current
transaction. STMAbort aborts the transaction in progress by
the executing thread. STMCommit attempts to commit the
transaction in progress by the executing thread, returning
true if this succeeds and false if it fails.
STMWait starts by validating the transaction so far – that

is, checking that the values seen represent a current and con-
sistent snapshot. If this validation succeeds then the thread
is blocked atomically with taking the snapshot. Otherwise
the thread continues. A thread blocked in STMWait is woken
when another thread commits an update to a location that
the waiter has accessed. The current transaction is always
aborted before STMWait returns.

Figure 1 summarises how a non-nesting atomically block
may be expressed in terms of these explicit transaction man-
agement operations. Note how the current transaction must
attempt to commit both for normal termination of the state-
ments and also for termination by throwing an exception.
Nesting CCRs are implemented within the same transac-
tion, counting the dynamic nesting depth and only invoking
STMCommit when the top-level completes; they do not require
support here.

The second set of operations exposed by the STM are for
performing memory accesses:

Memory accesses
stm word STMRead(addr a)
void STMWrite(addr a, stm word w)

Again, these may only be used while a transaction is active.
In our implementation an address of type addr is an ordinary
pointer into the heap and an stm word is simply an integer
of the machine word size.

5.2 Heap structure
Our STM uses three kinds of data structure, as indicated
in Figure 2. The first is the application heap in which the
data itself is held. For instance, in the JVM, this would be

the objects allocated by the application, held in their usual
format and including any header fields needed.

The second kind of structure are the ownership records
(orecs) which are used to co-ordinate transactions. An own-
ership function maps each address in the application heap
to an associated orec. There need not be a one-to-one corre-
spondence between addresses and records – there could be
one orec per object or, as in our prototype, a fixed-size ta-
ble of records to which addresses map under a hash function.
Each orec holds either a version number or a current owner
for the addresses that associate with it. Each time a loca-
tion in the application heap is updated, the version number
must be incremented. Version numbers will be used to de-
tect whether a transaction may be committed. We assume
for the moment that they are never re-used in the same orec;
we return to this when discussing our implementation.

The final kind of structure holds transaction descriptors
which set out the current status of each active transaction
and the accesses that it has made to the application heap.
Each access is described by a transaction entry specifying
the address in question, the old and new values to be held
there and the old and new version numbers of those val-
ues. The status field indicates that the transaction is ei-
ther ACTIVE (able to have STMAbort, STMWait, STMCommit,
STMRead and STMWrite operations invoked for it), COMMITTED,
ABORTED or ASLEEP. Descriptors are initially ACTIVE and move
through the other states while attempting to commit, to
abort or to wait.

A descriptor is well formed if for each ownership record it
either (i) contains at most one entry associated with that
orec, or (ii) contains multiple entries associated with that
orec, but the old version number is the same in all of them
and the new version number is the same in all of them. As
with version numbers, we assume that descriptors are never
re-used; we again return to this for our implementation.

Given this structure, we introduce the concept of the log-
ical state of an address in the application heap. This is the
pair of the value conceptually held at that address and the
version number associated with that value being there. We
define the logical state by a disjunction of three cases. In
the first case the orec contains a version number:

LS1 The version number is taken from the orec and the
value is held directly in the application heap. For in-
stance, in Figure 2, the logical state of a1 is (7, 15).

In the second and third cases the orec refers to a descriptor:

LS2 If the descriptor contains an entry for the address then
that entry gives the logical state. For instance, the
logical state of a2 is (100, 7) because the descriptor
shown has not yet committed and it holds an entry
updating a2 from (100,7) to (300,8).

LS3 If the descriptor does not contain an entry for the ad-
dress, then the descriptor is searched for entries about
other addresses which map to the same orec as the
requested address. The value is taken from the appli-
cation heap and the version is taken from the entry;
the new version number if the transaction is COMMITTED
and the old version number otherwise. The ‘well formed’
property ensures that this is uniquely determined. For
instance, the logical state of a3 is (200, 7) taking old
version 7 from the entry for a2.

At run time, the logical state of an address can be deter-
mined from a consistent snapshot of the locations on which
its value depends: the address itself, its orec, the status of
an owning descriptor and information from entries in that
descriptor.

Fortunately, a general-purpose snapshot algorithm is not
necessary here and we can directly compute the logical state
by reading locations as described in the three cases LS1..LS3.
The non-re-use of descriptors and version numbers lets us
employ a simple re-read-then-check design, re-computing
the logical state if the orec’s value changes part-way through:

do {

orec = orec_of (addr);

<directly compute logical state based on orec>

} while (orec_of (addr) != orec);

As we shall see in the implementation of the STM opera-
tions, if the orec’s value is unchanged then the derived logical
state is consistent with a snapshot of the locations involved.
For LS1 the value is read from the application heap – it can-
not have changed if the orec did not. For LS2 and LS3, the
locations accessed in descriptor entries relating to an orec
are constant once the pointer is installed as that record’s
owner. The only other location involved – the descriptor’s
status – can change exactly once from ACTIVE to one of the
other states. The snapshot is consistent with the time when
the status is read.

5.3 STM operations
We will now describe the implementation of the STM oper-
ations using this heap structure. In outline, orecs ordinarily
hold version numbers, as r1 does in Figure 2. An orec only
refers to a descriptor when that transaction is attempting to
commit or to sleep – until STMCommit or STMWait is invoked
the transaction execution is private, building up a series of
entries in the descriptor which set out the locations that it
has accessed.

5.3.1 STMStartTransaction
Starting a transaction allocates a fresh descriptor and ini-
tializes its status field to ACTIVE.

5.3.2 STMAbortTransaction
Aborting a transaction writes ABORTED into its status field.

5.3.3 STMReadValue
To read a value we must consider two cases. Firstly, if the
current descriptor already contains an entry (te) for the re-
quested location then return te.new value. Otherwise de-
termine the logical state of the location and initialize a new
entry with the value seen as old value and as new value.
Record the version seen as old version. If the descriptor
already contains an entry for this orec then copy that entry’s
new version number to this entry in order to keep the de-
scriptor well formed, otherwise use old version. Although
we describe these operations in terms of searching and copy-
ing, this can be streamlined in implementation as we shall
describe in Section 5.4.

5.3.4 STMWriteValue
The implementation of STMWriteValue first ensures that the
descriptor contains an entry (te) relating to the location be-
ing accessed. This can be done by performing a read opera-
tion from the location. Set te.new value to the value being

written and set te.new version to te.old version+1, copy-
ing this new version number to any other entries relating to
the same orec so that the descriptor remains well formed.

5.3.5 STMCommit
Commit proceeds by temporarily acquiring each of the own-
ership records it needs, then – if it can acquire them all
– it updates the descriptor’s status field from ACTIVE to
COMMITTED, makes any updates to the application heap and
then proceeds to release each of the ownership records. The
key to all of these operations is that logical states are only
updated when the status field is changed.

The details lie in how the acquire and release steps are
implemented and, in particular, what happens when one
transaction wishes to acquire an orec that is already held.
Both take as parameters the descriptor in question (td) and
an index into that descriptor’s table of transaction entries.

acquire (transaction_descriptor *td, int i) {

transaction_entry te = td.entries[i];

orec seen;

seen = CAS (orec_of(te.addr),

te.old_version, td); /*C1*/

if (seen == te.old_version || seen == td) {

return TRUE; /*1*/

} else if (holds_version_number (seen)) {

return FALSE; /*2*/

} else {

return BUSY; /*3*/

}

}

This attempts to install td in the ownership record asso-
ciated with the selected transaction entry. It may only be
called for a descriptor that is ACTIVE or ABORTED. The only
possible update to shared memory is at /*C1*/. If this suc-
ceeds then it preserves the logical contents of that location
(case LS2); it also preserves the logical contents of any other
locations which alias to the same ownership record (case LS3
and well-formedness).

In return case /*1*/ either /*C1*/ succeeded, or transac-
tion td already held the orec. In return case /*2*/ the orec
contained a version number other than the one expected by
this transaction: the transaction is doomed to fail. In return
case /*3*/ the orec is discovered to be owned already and
cannot be acquired.

Given this operation, STMCommit proceeds by invoking
acquire for each entry in turn. If any invocation returns
FALSE then the logical contents of that location were not con-
sistent with the version expected in the entry; the commit
has failed and the status is updated to ABORTED and release

invoked for any entries successfully acquired. If any invoca-
tion returns BUSY then the transaction has encountered an-
other active on the same orec. A simple reaction is to (i)
abort the existing owner, (ii) wake it if it was blocked in
STMWait and (iii) abort the current transaction and leave it
to retry (hopefully when the existing owner has completed
its own operation and relinquished ownership). We discuss
alternative non-blocking strategies in Section 5.4.

If all locations can be acquired, the descriptor’s status
field is updated to COMMITTED. This has the effect of atom-
ically updating the logical state of all of the locations – at
that point the descriptor is referred to by all of the ownership
records relating to locations it has acted on. The transaction

then writes the new values to the application heap – note
again that concurrent operations, when determining the val-
ues held at those locations would use the versions held in the
descriptor; they will be unaware that these writes themselves
occur at different times to different locations.

Finally, once it has made all of the writes, the transaction
invokes release for each entry in turn. This attempts to
remove a reference to a descriptor from an ownership record:

release (transaction_descriptor *td, int i) {

transaction_entry te = td.entries[i];

if (td.status == COMMITTED) {

CAS (orec_of(te.addr),

td, te.new_version); /*C2*/

} else {

CAS (orec_of(te.addr),

td, te.old_version); /*C3*/

}

}

Again, note that it preserves the logical contents of all lo-
cations associated with the orec so long as the descriptor’s
state is COMMITTED or ABORTED and the locations have been
updated as necessary.

5.3.6 STMWait
The last function to consider is the STMWait operation which
causes the thread executing the current transaction to val-
idate the accesses it has performed thus far and then to
either abort directly (if they are not valid) or to block until
an update is made to any of the locations concerned, again
before aborting.

The implementation initially proceeds as with STMCommit

in attempting to acquire all of the orecs relating to the trans-
action. If successful, this confirms that the memory accesses
made so far are valid; the thread sleeps, settings its status
field to ASLEEP and leaving references to its descriptor in-
stalled at the acquired orecs. These will act as “software
tripwires” and signal the presence of the sleeper to any other
transaction which attempts to commit an update to those
locations; its acquire operation will return BUSY and it can
wake the sleeper.

The simplest design is to provide sleep and wake as op-
erations built over per-transaction mutexes and condition
variables:

sleep (transaction_descriptor td) {

mutex_lock (td.mutex);

CAS (&td.status, COMMITTING, ASLEEP);

if (td.status == ASLEEP) {

condvar_wait (td.cv, td.mutex);

}

mutex_unlock (td.mutex);

}

wake (transaction_descriptor td) {

mutex_lock (td.mutex);

if (td.status == ASLEEP) {

CAS (&td.status, ASLEEP, ABORTED);

condvar_signal (td.cv);

}

mutex_unlock (td.mutex);

}

Figure 2 illustrates this situation, showing a transaction t2

whose thread is asleep waiting for updates to locations asso-
ciated with orecs r3 and r4. Although we do not describe it
here, wake could be made non-blocking by using a counting
semaphore in place of mutexes and condition variables.

5.4 Optimizations
The basic design in Section 5.3 provides safe concurrent
transactions. However, as presented, it has several infelici-
ties which would limit its practical performance – (i) at most
one thread can sleep on any particular ownership record,
(ii) both read and write operations involve searching the
current descriptor for entries associated with a particular
orec, (iii) processing an entry describing a read-only access
to a location still involves updating its orec twice, harming
data-cache performance, and (iv) the simple retry operation
prompted by a BUSY return value prevents the design from
being non-blocking.

We now introduce remedies to these problems. We present
these separately to avoid cluttering the main design.

5.4.1 Multiple sleeping threads
In the basic design, both STMCommit and STMWait respond
to a BUSY signal by waking the thread currently holding the
orec if it is asleep. This means that at most one transac-
tion can be asleep associated with any one orec. To allow
multiple threads to sleep on the same location we extend
each descriptor to include a list of other threads which wish
to sleep on locations acquired by the descriptor. The list is
protected by the same mutex used to control sleeping and
waking.

5.4.2 Read sharing
Modern cache coherence protocols allow multiple CPUs to
concurrently hold the same cache block, so long as they do
not attempt to write to it [9]. This makes it important to
avoid contended writes to shared locations. Our basic de-
sign risks such writes to the locations that hold ownership
records; an STMCommit operation must acquire and then re-
lease each of these records even when the underlying access
in the transaction was a read.

We can modify STMCommit to introduce an additional phase
to deal with read-only locations. It is tempting to do this
by simply (i) acquiring the locations subject to updates and
then (ii) checking the logical state of the locations which are
just being read against the old value and old version in
the descriptor before (iii) attempting to update the trans-
action’s state to COMMITTED. However, this does not provide
atomicity: another transaction may update the locations
being read between the second and third steps.

To prevent this problem we introduce a new transaction
state, READ PHASE, which is entered before checking read-
only locations and therefore held throughout those checks
up to the point at which the transaction commits or aborts.
If another transaction encounters one in READ PHASE then it
causes the one encountered to abort. In practice the read
phase is so short that it is not observed by other transactions
under any non-synthetic workloads we have found.

5.4.3 Avoiding searching
We observe that many transactions exhibit temporal local-
ity in the locations that they access. We can exploit this by
maintaining, for each thread, a table mapping from owner-

Application
heap

Transaction
descriptors

Ownership
records

100

200

7

version 15

2

0

4

a6

a7

a8

a9 Status: COMMITTED

t4

r5

r6

Status: ACTIVE

t3

a6: (100,7) −> (200,8)

a7: (200,7) −> (100,8)

a8: (4,6) −> (5,7)

a8: (5,7) −> (5,8)

Figure 3: Ownership records extended to allow
obstruction-free STMCommit operations. In this case
transaction t3’s descriptor has stolen ownership of
r5 from the lower descriptor. It now includes up-
dates from both descriptors, even though t4’s write
to a8 has not yet been performed to the application
heap.

ship records to entries in the thread’s current descriptor. In
particular, this streamlines STMWrite operations which fol-
low earlier transactional reads – the cache directly identifies
the entry to update. A designated value indicates if there
are multiple entries relating to the same ownership record,
in which case a search of the descriptor is unavoidable.

5.4.4 Non-blocking commit
The final and most intricate development to describe is how
to make the STMCommit operation non-blocking – currently,
if a thread encounters an ownership record that is already
held, it must wait for the current holder to release it. In
some settings this may be an academic concern rather than
a practical one; if the holder is making good progress then
“helping” them complete their operation will do nothing but
harm caching. However, in other settings, the stronger guar-
antees of non-blocking algorithms are desirable for the rea-
sons given in Section 2.

Our approach is to permit one thread to steal ownership
by using an atomic compare-and-swap on the orec. There
are two problems in allowing this:

• Firstly, we must ensure that the theft does not change
the logical contents of any location.

• Secondly, if a previous owner has COMMITTED but not
yet written to the underlying locations in the applica-
tion heap, there is no control over when those writes
occur. We must ensure that the writes made by the
new owner succeed those made by the previous owner.

Both of these problems have solutions. We will illustrate our
solutions with respect to Figure 3. To ensure that the logical
contents of locations are not updated, a transaction such as
t3 that steals ownership of an orec from another (t4) must
merge entries relating to the orec from t4’s descriptor into its
own. We cannot merge from an ACTIVE transaction in case it
commits while we are doing so; we would then risk changing
the logical state of addresses when stealing. This is avoided
by aborting the victim if it has not already committed. The
stealer takes the old value and old version if the victim is

aborted and new value and new version if it has committed.
In the figure, t3 has merged the entry for address a8.

The second problem means that we cannot release owner-
ship of a location until we can guarantee that (i) there are no
transactions still making writes to the location, and (ii) the
final value written relates to the most recent transaction.
We deal with this by introducing a counter into each orec
saying how many transactions are in the process of making
updates to the locations it manages. In the figure r5 has
two transactions making writes to its locations (t3 and t4)
and r6 has none because it is not owned. When stealing, the
counter is incremented atomically with updating the owner.
When releasing ownership, the counter is decremented, ei-
ther leaving the owner unchanged (if the counter will remain
above zero), or restoring the version number (if the counter
becomes zero). If a thread discovers that ownership has
been stolen from it (because it sees a different descriptor
in the orec) then it re-does the updates made by the new
owner, ensuring that the final value written before releasing
ownership if that of the most recent transaction.

6. IMPLEMENTATION AND EVALUATION
Our implementation is based on version 1.2.2 of the Sun
Java Virtual Machine for Research. This JVM implementa-
tion has already undergone extensive optimization; we are
comparing our prototype against a best-of-breed system [1].

6.1 Modifications to the JVM and compilers
The implementation is split between compile-time support
in the source-to-bytecode compiler and run-time support in
the bytecode-to-native compiler. The intermediate .class

file format is unchanged. At the bytecode level we im-
plement atomically blocks only on a per-method basis,
signalling them to the run-time system by suffices to the
method’s name. If an atomically block is defined within
a method then the source-to-bytecode compiler extracts it
into a separate method. In this way the implementation of
transactions can directly access local variables without need-
ing to keep undo information in case of abort and therefore
without needing to use the transactional operations.

The run-time compiler produces specialised code for trans-
actional methods, generating calls to STMRead and STMWrite

for bytecodes which access heap locations. Each class has
a second method table holding references to transactional
versions of its methods (compiled on demand). This table is
used by method invocations within transactional methods.

The run-time compiler generates specialised code for ac-
cessing volatile fields outside CCRs. For the moment they
are translated as “small” transactions performing a single
read or write as appropriate and looping until they com-
mit successfully. This provides the ordering required by the
memory model in Section 4.7. Access to other shared fields
is unordered and is implemented directly by memory reads
or writes to the application heap.

6.2 Memory management
The design presented here has assumed that descriptors are
managed through a garbage collector. While we could sim-
ply allocate them on the garbage-collected heap, our imple-
mentation provides build-time options to allow re-use where
possible. The options include simple reference counting [21]
and the more recent designs due to Michael [20] and Herlihy
et al [12].

In our experiments we allocate descriptors on the garbage-
collected heap and use the pass the buck algorithm for re-
use between collections [12], holding re-usable descriptors
in thread-local pools. Descriptor allocation and dealloca-
tion form less than 2% of the time spent within the STM
implementation.

Ownership records are statically allocated. Our experi-
ments used a table of 65 536 records, indexed by bits 2. . . 18
of a location’s address. We tested our implementation for
sensitivity to the number of orecs. So long as aliasing of dif-
ferent locations to the same orec is rare, the precise number
has only a marginal effect on performance – less than 1%
going from 4 096 to 65 536 in our experiments.

6.3 Version numbers
We represent version numbers as odd integer values, allow-
ing us to distinguish them in the ownership records from
aligned pointers to descriptors. We do not consider the pos-
sibility of overflowing the remaining 31 bits: a simple scheme
would be to periodically suspend all threads, abort any ac-
tive transactions and reset the version numbers to 1. Such a
brief ‘stop-the-world’ situation already exists in the garbage
collector. We use a double-word-width CAS to maintain
counters in the non-blocking commit operation.

6.4 Performance
Of course, key to good performance on any shared-memory
multiprocessor is avoiding contention for cache blocks. For
application data this is the responsibility of the programmer,
whether using locks or whether using CCRs.

Our implementation makes a substantial separation be-
tween common-case code and the more involved aspects of
our design. For instance, there is an ‘optimistic’ commit
that assumes the contention is rare and executes an out-of-
band non-blocking commit only if another descriptor is en-
countered; the code was invoked on fewer than 1% of com-
mit operations in our experiments. Remember that even
long-running transactions remain private until they start to
commit.

Where a transaction commits without contention, reading
from r locations and updating w locations involves w CAS
operations to acquire ownership, r reads to check read-only
locations, 2 updates to the status field, w writes to the ap-
plication heap and then w CAS operations to release own-
ership.

6.5 Experimental set-up
We will present results from three different experimental
settings:

• Hashtable compares various implementations of con-
current hashtables. The first of these uses the hashtable
implementation from the JDK 1.2.2 java.util library
which uses a single mutex to protect the entire table.
The second implementation uses ConcurrentHashMap

taken the util.concurrent package (release 1.3.2).
This is a carefully engineered design which allows most
read-only operations to proceed without locking and
often allows non-conflicting updates to proceed con-
currently. The third implementation uses the same
underlying simplistic design as java.util.Hashtable

but wraps each access in a CCR without using any
locks. In each case the table contains 4096 mappings
and we perform a mix of p% reads and (100 − p)%

Figure 4: Experimental configuration for the Wait
test. t threads are conceptually arranged in a ring
with a shared buffer between each. Initially n
of these buffers contain tokens and the others are
empty. In this case t = 5 and n = 2.

updates. Operations are uniformly distributed across
the keys.

• Compound compares operations involving several ac-
cesses to a hashtable. Each compound operation se-
lects (uniformly) two keys and then swaps the val-
ues that they map to – the combined update must be
atomic. We implement this either (i) with a single mu-
tex, (ii) using per-key locks and ConcurrentHashMap

or (iii) using an atomically block. We can vary the
size of the table in order to vary the likelihood of con-
tention.

• Wait evaluates blocking operations. The experimen-
tal configuration has t threads conceptually arranged
in a ring with a shared buffer between each adjacent
pair. Of these buffers, initially n contain tokens and
the remainder are empty. Each thread loops remov-
ing an item from the buffer on its right and placing it
in the buffer on its left. Figure 4 illustrates this con-
figuration. We compare an implementation based on
CCRs against one built using the mutexes and condi-
tion variables provided by the JVM.

In each case we ran tests for three wall-time seconds and
took the median of 5 runs. In Section 6.6 we will use an
entry-level symmetric shared-memory system and then in
Section 6.7 we will use a larger ccNUMA sever.

Aside from trivial single-threaded cases, our results for a
simple implementation using CCRs out-perform an equiva-
lent implementation using locks. Our implementation could
be extended to handle single-threaded execution as a special
case. In every case our simple CCR-based implementation
remains competitive with well-engineered locking; in some
cases it performs even better.

6.6 Small systems
Our first set of measurements are from a 4-processor Sun-
Fire v480. Figure 5 compares the performance of CCRs
against lock-based implementations of the hashtable and
compound tests.

In the individual operations of the hashtable test the so-
lution based on fine-grained locking in ConcurrentHashMap

performs best of all, sometimes by a factor of just over 2.
However, the implementation of that class is much more
involved than that of our simple comparison using CCRs.

µs per operation

1% updates 16% updates
CPUs CCR S-l FG-l CCR S-l FG-l

1 1.8 1.1 0.9 1.9 1.1 0.9
2 1.8 3.3 0.9 2.0 7.9 1.0
3 2.1 25 1.3 2.4 23 1.1
4 1.8 30 1.1 2.4 30 1.4

size=256 size=4096
CPUs CCR S-l FG-l CCR S-l FG-l

1 4.8 2.1 2.6 5.1 2.3 2.7
2 6.2 17 5.0 6.3 17 4.4
3 7.2 27 6.4 7.2 28 6.3
4 7.4 37 8.3 7.5 40 6.9

Figure 5: Performance of the hashtable test at 1%
and 16% update rates (above) and of the compound
test at table sizes of 256 entries and 4096 entries (be-
low). In each case we record the mean number of
microseconds to complete an operation using CCRs,
using a single lock (S-l) and using fine-grained lock-
ing in ConcurrentHashMap (FG-l).

Our benchmark accentuates the performance difference by
attempting operations as frequently as possible; any real ap-
plication would have less than a 100% duty cycle.

In the compound test the CCR-based solution contin-
ues to outperform the basic lock-based scheme in all but
single-threaded use. Furthermore, the difference in perfor-
mance between it and ConcurrentHashMap reduces and is
eventually reversed under higher contention. Of course, us-
ing our CCR implementation brings the attendant benefits
of its lock-free design.

Finally, in the wait test measuring the throughput of
blocking operations, the implementation using CCRs oper-
ated at 80% of the lock-based rate when using 2-4 threads,
irrespective of the number of tokens circulating.

6.7 Large systems
Our second experiments use a 106-processor ccNUMA Sun-
Fire e15k machine. Figure 6 shows the results for 1..48
processors running the hashtable and compound tests.
For the hashtable tests the performance of the lock-based
system is deleterious on multi-threaded workloads. When
write-contention is low, the ConcurrentHashMap design per-
forms best; this is to be expected because it avoids the
transaction management overheads of the STM. However,
as write-contention rises, so does contention for locks and
the STM-based design performs best.

Of course, it may be possible to specialise the lock-based
designs in order to improve performance for this workload.
However, the point we emphasise is that under every work-
load here, the design using CCRs around a naive hashtable
has performance that is comparable with these other tech-
niques. Furthermore, aside from its performance and pro-
gramming ease, its non-blocking guarantees are automati-
cally providing robustness against deadlock and priority in-
version.

For the compound tests the CCR-based designs are fastest
in every setting with more than 1 CPU (in the single-threaded
case it is 15% slower than ConcurrentHashMap and 36%

0

5

10

15

20

25

5 10 15 20 25 30 35 40 45 50

C
P

U
 ti

m
e

pe
r

op
er

at
io

n
/ µ

s

CPUs

Single lock

Fine-grained locking

CCR

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40 45 50

C
P

U
 ti

m
e

pe
r

op
er

at
io

n
/ µ

s

CPUs

Single lock

Fine-grained locking

CCR

(a) Individual hashtable operations, 1% writes (b) Individual hashtable operations, 16% writes

0

200

400

600

800

1000

1200

1400

5 10 15 20 25 30 35 40 45 50

C
P

U
 ti

m
e

pe
r

op
er

at
io

n
/ µ

s

CPUs

Single lock

Fine-grained locking

CCR

0

200

400

600

800

1000

1200

1400

5 10 15 20 25 30 35 40 45 50

C
P

U
 ti

m
e

pe
r

op
er

at
io

n
/ µ

s

CPUs

Single lock

Fine-grained locking

CCR

0

200

400

600

800

1000

1200

1400

5 10 15 20 25 30 35 40 45 50

C
P

U
 ti

m
e

pe
r

op
er

at
io

n
/ µ

s

CPUs

Single lock

Fine-grained locking

CCR

0

200

400

600

800

1000

1200

1400

5 10 15 20 25 30 35 40 45 50

C
P

U
 ti

m
e

pe
r

op
er

at
io

n
/ µ

s

CPUs

Single lock

Fine-grained locking

CCR

(c) Compound operations, 256-element table (d) Compound operations, 4096-element table

Figure 6: Performance of concurrent updates running 1..48 threads. In (a) and (b) we perform individual
atomic updates to a single hashtable. In (c) and (d) we perform compound operations making two updates
to the table in one atomic step. The insets show 1..8 threads, confirming that our scalability is combined
with good absolute performance.

slower than using a single lock). The improved performance
comes from the fact that using CCRs allows parallelism be-
tween non-conflicting operations which would contend for
the same lock in ConcurrentHashMap and from the fact that
occasional pre-emption of one thread in any of the lock-
based designs will stall other threads. Note that the CCRs
performing swap operations commit only 2 updates to the
application heap; the number of atomic operations to ac-
quire and release those locations is likely to be the same as
the number in a conventional lock implementation.

Figure 7 shows the performance of the wait test on the
e15k, plotting how many put or get operations are achieved
per second on the machine as a whole as the number of
tokens available to the 48 threads increases. In principle

the results should scale linearly, although in practise any
scheme reaches a plateau, representing the point at which
the threads’ time is consumed managing the shared buffers
rather than exchanging tokens through them. Again, the
STM-based design performs only marginally below the tra-
ditional one.

6.8 Ease of programming
We now turn to the final aspect of evaluation; do CCRs
provide a programming abstraction that is easier to use than
the existing facilities of Java? At the moment we can offer
only anecdotal observations.

Firstly, as we remarked in Section 2, CCR-style abstrac-
tions are popular when introducing the topic of concurrency

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

5 10 15 20 25 30 35 40 45 50

T
ok

en
-p

as
se

s
pe

r
se

co
nd

Number of tokens

Traditional

CCR

Figure 7: Performance of blocking operations run-
ning 48 threads.

to students. We suspect that reasoning about the behaviour
of CCRs – whether at a formal or an informal level – is made
easier by the ability to consider the enclosed statements as a
single step in an operational model. In contrast, lock-based
schemes other than simple monitors require reasoning about
interleavings between parts of operations.

Secondly, the provision of CCRs has close analogies with
the concept of database transactions. Both provide simple
semantics and isolated execution behaving as-if atomically.
Both leave the exact implementation of this behaviour to
a run-time system rather than requiring programmers to
identify where to acquire and release locks. The popularity
of transactional concepts, and the acceptance of this model
by mainstream programmers, gives us confidence about our
style of CCR.

Finally, we can compare the design of simple shared data
structures using Java’s existing monitors against the corre-
sponding design using CCRs. For data structures which do
not involve wait, the difference is solely that synchronized

is replaced by atomically on each method; the result is that
the implementation may extract more concurrency from dy-
namically non-conflicting operations and that the risk of ac-
cessing shared data from outside the locked object is avoided.
For data structures which involve blocking using wait and
notify, the simplification is even greater – the CCR-based
design expresses the pre-conditions directly and avoid lost-
wake-up and premature-wake-up problems.

We hope, in the future, to be able to perform more me-
thodical user-studies.

7. CONCLUSION AND FUTURE WORK
In this paper we have argued that concurrent programming
is made easier by moving away from locks and condition
variables and instead using facilities that more closely cap-
ture the safety properties that a programmer is trying to
enforce.

We have a number of directions for future work. We plan
to explore the performance of a wider range of data struc-
tures and, if suitable multi-threaded benchmarks are avail-
able, to study performance in larger systesm. Our Java CCR
implementation benefits from the fact that the bytecode in-

structions let us easily distinguish between accesses to lo-
cal variables and accesses to potentially-shared fields. The
underlying STM is more general; indeed source code to the
core implementation is available under a BSD-style license at
http://www.cl.cam.ac.uk/Research/SRG/netos/lock-free.
It will be interesting to consider applying it to a lower level
language such as C++.

One design question is whether to directly expose a trans-
actional API in addition to CCRs. This raises interest-
ing questions about reflective access, for instance allowing
a thread to determine whether a transaction is active, to
examine the set of updates that have been proposed thus
far, or perhaps to explicitly create and attempt to commit
transactions or to enter and leave transactional contexts.

Another question is whether there are merits in having all
methods be implicitly atomic. In some cases this may sim-
plify the mental model of an object’s behaviour: it receives a
series of method invocations, each of which updates its state
in isolation. The programmer would be concerned only with
the interleaving of complete method calls. Of course, the
initial problem with this is deciding when updates should
actually become visible; perhaps models developed for pure
functional languages may be appropriate.

A further avenue for research is to investigate how our
in-memory atomic updates can be integrated with external
storage. The correspondence between CCRs and database
transactions may provide a particularly fruitful direction.

Another question, about which numerous viewpoints al-
ready exist in the literature, is what kinds of hardware sup-
port would benefit designs such as our STM. Proposals have
already been made for hardware transactional memories,
with suggestions for implementation techniques based on
extended cache coherence protocols [13]. It would be inter-
esting to consider what hardware/software interface would
be appropriate to build STMwait – perhaps one in which
“tripwire” locations can be registered with the CPU and
an interrupt delivered should one be updated. Another op-
tion is support for multi-word atomic updates some where
between the current single-word operations and a fully gen-
eral transactional model. We have often found algorithms
that would be simplified, both here and in previous work,
through an operation to perform one CAS conditional on
another location holding a specified value [8].

In summary, we have shown how general conditional crit-
ical regions can be supported and how a basic implementa-
tion of a data structure using this construct is competitive
with a well-engineered lock-based scheme. We believe that
this approach makes it substantially easier to write reliable
concurrent systems; it is no coincidence that the same con-
struct is frequently used in text books and in the specifica-
tion of concurrent systems.

8. ACKNOWLEDGEMENTS
This work has been supported by a donation from the Scal-
able Synchronization Research Group at Sun Labs Mas-
sachusetts.

9. REFERENCES
[1] Agesen, O., Detlefs, D., Garthwaite, A.,

Knippel, R., Ramakrishna, Y. S., and White, D.

An efficient meta-lock for implementing ubiquitous
synchronization. In Proceedings of Object-Oriented

Programming, Systems, Languages & Applications
(Nov. 1999), vol. 34(10) of ACM SIGPLAN Notices,
pp. 207–222.

[2] Andrews, G. R. Concurrent Programming:
Principles and Practice. Benjamin/Cummings
Publishing Company, Inc., 1991.

[3] Bacon, J., and Harris, T. L. Operating Systems:
Concurrent and Distributed Software Design, 3rd ed.
Addison Wesley, 2003.

[4] Benton, N., Cardelli, L., and Fournet, C.

Modern concurrency abstractions for C]. In
Proceedings of European Conference on
Object-Oriented Programming (June 2002), vol. 2374
of Lecture Notes in Computer Science, pp. 415–425.

[5] Brinch Hansen, P. Distributed processes: A
concurrent programming concept. Communications of
the ACM 21, 11 (Nov. 1978), 934–941.

[6] Brinch Hansen, P. Edison – a multiprocessor
language. Software – Practice and Experience 11, 4
(Apr. 1981), 325–361.

[7] Cardelli, L., and Gordon, A. Mobile Ambients. In
Proceedings of Foundations of Software Science and
Computation Structures (FoSSaCS), European Joint
Conferences on Theory and Practice of Software
(Lisbon, Portugal, 1998), M. Nivat, Ed., vol. 1378 of
Lecture Notes in Computer Science, Springer-Verlag,
Berlin, pp. 140–155.

[8] Harris, T. L., Fraser, K., and Pratt, I. A. A
practical multi-word compare-and-swap operation. In
Proceedings of the 16th International Symposium on
Distributed Computing (Oct. 2002), pp. 265–279.

[9] Hennessy, J. L., and Patterson, D. A. Computer
Architecture – A Quantitative Approach, 3rd ed.
Morgan Kaufmann Publishers, San Francisco, CA,
USA, 2003.

[10] Herlihy, M., Luchangco, V., and Moir, M.

Obstruction-free software transactional memory for
supporting dynamic data structures. To appear.

[11] Herlihy, M., Luchangco, V., and Moir, M.

Obstruction-free synchronization: Double-ended
queues as an example. To appear.

[12] Herlihy, M., Luchangco, V., and Moir, M. The
repeat offender problem: A mechanism for supporting
dynamic-sized, lock-free data structures. In
Proceedings of the 16th International Symposium on
Distributed Computing (Oct. 2002), pp. 339–353.

[13] Herlihy, M., and Moss, J. E. B. Transactional
memory: Architectural support for lock-free data
structures. In Proceedings of the 20th Annual
International Symposium on Computer Architecture
(May 1993), IEEE Computer Society Press,
pp. 289–301.

[14] Hoare, C. A. R. Towards a theory of parallel
programming. In Operating Systems Techniques
(1972), vol. 9 of A.P.I.C. Studies in Data Processing,
Academic Press, pp. 61–71.

[15] Hoare, C. A. R. Communicating Sequential
Processes. Prentice-Hall, 1985.

[16] Liang, S., and Bracha, G. Dynamic class loading in
the Java Virtual Machine. In Proceedings of
Object-Oriented Programming, Systems, Languages &
Applications (Oct. 1998), vol. 33(10) of ACM

SIGPLAN Notices, pp. 36–44.

[17] Lindholm, T., and Yellin, F. The Java Virtual
Machine Specification, 2nd ed. Addison-Wesley,
Reading, MA, USA, 1999.

[18] Liskov, B., and Scheifler, R. Guardians and
actions: linguistic aupport for robust, distributed
programs. ACM Transactions on Programming
Languages and Systems 5, 3 (July 1983), 381–404.

[19] Manson, J., and Pugh, W. Semantics of
multithreaded Java. Tech. Rep. UCMP-CS-4215,
Department of Computer Science, University of
Maryland, College Park, Jan. 2002.

[20] Michael, M. M. Safe memory reclamation for
dynamic lock-free objects using atomic reads and
writes. In Proceedings of the 21st Annual ACM
Symposium on Principles of Distributed Computing
(July 2002), ACM Press, pp. 21–30.

[21] Michael, M. M., and Scott, M. L. Correction of a
memory management method for lock-free data
structures. Tech. Rep. TR599, University of
Rochester, Computer Science Department, Dec. 1995.

[22] Milner, R. The pi calculus and its applications. In
Proceedings of the 1998 Joint International
Conference and Symposium on Logic Programming
(June 1998), pp. 3–4.

[23] Moir, M. Transparent support for wait-free
transactions. In Proceedings of the 11th International
Workshop on Distributed Algorithms (Sept. 1997),
vol. 1320 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 305–319.

[24] Platt, D. S. Introducing Microsoft .NET, 2nd ed.
Microsoft Press, 2002.

[25] Schmid, H. A. On the efficient implementation of
conditional critical regions and the construction of
monitors. Acta Informatica 6, 3 (Aug. 1976), 227–249.

[26] Scott, M. L. Language support for loosely coupled
distributed programs. IEEE Transactions on Software
Engineering SE-13, 1 (Jan. 1987), 88–103.

[27] Shavit, N., and Touitou, D. Software transactional
memory. In Proceedings of the 14th Annual ACM
Symposium on Principles of Distributed Computing
(Aug. 1995), ACM Press, pp. 204–213.

