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ABSTRACT
Mining frequent closed itemsets provides complete and non-
redundant results for frequent pattern analysis. Extensive
studies have proposed various strategies for efficient frequent
closed itemset mining, such as depth-first search vs. breadth-
first search, vertical formats vs. horizontal formats, tree-
structure vs. other data structures, top-down vs. bottom-
up traversal, pseudo projection vs. physical projection of
conditional database, etc. It is the right time to ask “what
are the pros and cons of the strategies?” and “what and
how can we pick and integrate the best strategies to achieve
higher performance in general cases?”
In this study, we answer the above questions by a system-

atic study of the search strategies and develop a winning
algorithm CLOSET+. CLOSET+ integrates the advantages
of the previously proposed effective strategies as well as some
ones newly developed here. A thorough performance study
on synthetic and real data sets has shown the advantages of
the strategies and the improvement of CLOSET+ over ex-
isting mining algorithms, including CLOSET, CHARM and
OP, in terms of runtime, memory usage and scalability.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—
Data Mining

General Terms
Mining methods and algorithms

Keywords
Frequent closed itemsets, association rules

∗The work was supported in part by U.S. National Sci-
ence Foundation NSF IIS-02-09199, University of Illinois,
Microsoft Research, and IBM Faculty Award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD ’03, August 24-27, 2003, Washington, DC, USA
Copyright 2003 ACM 1-58113-737-0/03/0008 ...$5.00.

1. INTRODUCTION
Since the introduction of association rule mining [1], there

have been extensive studies on efficient frequent itemset min-
ing methods, such as [2, 11, 16, 6, 4, 3, 8, 7, 18, 10]. Most of
the well studied frequent pattern mining algorithms, includ-
ing Apriori [2], FP-growth [8], H-mine [13], and OP [10], mine
the complete set of frequent itemsets. These algorithms may
have good performance when the support threshold is high
and the pattern space is sparse. However, when the sup-
port threshold drops low, the number of frequent itemsets
goes up dramatically, and the performance of these algo-
rithms deteriorates quickly because of the generation of a
huge number of patterns. Moreover, the effectiveness of the
mining of the complete set degrades because it generates
numerous redundant patterns. A simple example is that, in
a database having only one transaction of length 100, it will
generate 2100−1 frequent itemsets if the absolute minimum
support threshold is set to 1.
The closed itemset mining, initially proposed in [12], mines

only those frequent itemsets having no proper superset with
the same support. Mining closed itemsets, as shown in [17],
can lead to orders of magnitude smaller result set (than min-
ing frequent itemsets) while retaining the completeness, i.e.,
from this concise result set, it is straightforward to generate
all the frequent itemsets with accurate support counts.
In the last several years, extensive studies have proposed

fast algorithms for mining frequent closed itemsets, such
as A-close [12], CLOSET [14], MAFIA (it has an option to
generate closed itemsets) [5], and CHARM [18]. Various
search strategies have been developed, such as depth-first
search vs. breadth-first search, vertical formats vs. horizon-
tal formats, tree-structure vs. other data structures, top-
down vs. bottom-up traversal, pseudo projection vs. phys-
ical projection of conditional database, etc. However, two
critical things are missing: (1) there is no systematic study
on comparing the strategies and evaluate their pros and cons
objectively; and (2) there is no thorough discussion on how
to integrate the winning strategies and achieve an even bet-
ter algorithm. With the research proceeded so far, it is the
right time to ask “what are the pros and cons of the strate-
gies?” and “what and how can we pick and integrate the best
strategies to achieve higher performance in general cases?”
In this study, we answer the above questions by a system-

atic study on the search strategies and develop a winning
algorithm CLOSET+. CLOSET+ integrates the advantages
of the previously proposed effective strategies as well as some



ones newly developed here. A thorough performance study
on synthetic and real data sets has shown the advantages of
the strategies and the improvement of CLOSET+ over ex-
isting mining algorithms, including CLOSET, CHARM and
OP, in terms of runtime, memory usage and scalability.
The remaining of the paper is organized as follows. In Sec-

tion 2, we briefly revisit the problem definition of frequent
closed itemset mining and the related work. In Section 3,
we present an overview of the principal search strategies de-
veloped before and analyze their pros and cons. In Section
4, we devise algorithm CLOSET+ by integrating some win-
ning strategies as well as some novel ones developed here.
A thorough performance study of CLOSET+ in compari-
son with several recently developed efficient algorithms is
reported in Section 5. We conclude this study in Section 6.

2. PROBLEM DEFINITION AND RELATED
WORK

A transaction database TDB is a set of transactions, where
each transaction, denoted as a tuple 〈tid, X〉, contains a set
of items (i.e., X) and is associated with a unique transac-
tion identity tid. Let I = {i1, i2, . . . , in} be the complete
set of distinct items appearing in TDB. An itemset Y is a
non-empty subset of I and is called an l-itemset if it con-
tains l items. An itemset {x1, . . . , xl} is also denoted as
x1 · · ·xl. A transaction 〈tid, X〉 is said to contain itemset
Y if Y ⊂ X. The number of transactions in TDB contain-
ing itemset Y is called the support of itemset Y , denoted as
sup(Y ). Given a minimum support threshold, min sup, an
itemset Y is frequent if sup(Y ) ≥ min sup.

Definition 1 (Frequent closed itemset). An item-
set Y is a frequent closed itemset if it is frequent and
there exists no proper superset Y ′ ⊃ Y such that sup(Y ′) =
sup(Y ).

Example 1. The first two columns in Table 1 show the
transaction database TDB in our running example. Suppose
min sup = 2, we can find and sort the list of frequent items
in support descending order. The sorted item list is called
f list. In this example f list = 〈f:4, c:4, a:3, b:3, m:3, p:3〉.
The frequent items in each transaction are sorted according
to f list and shown in the third column of Table 1. Itemset fc

is a frequent 2-itemset with support 3, but it is not closed,
because it has a superset fcam whose support is also 3.
facm is a frequent closed itemset.

Tid Set of items ordered frequent item list

100 a, c, f, m, p f, c, a, m, p

200 a, c, d, f, m, p f, c, a, m, p

300 a, b, c, f, g, m f, c, a, b, m

400 b, f, i f, b

500 b, c, n, p c, b, p

Table 1: A transaction database TDB.

Related work Popular algorithms for mining frequent
closed itemsets include A-close [12], CLOSET [14], MAFIA

[5] and CHARM [18]. A-close uses a breadth-first search
to find the frequent closed patterns. In dense datasets or
datasets with long patterns, breadth-first searches may en-
counter difficulties since there could be many candidates and

the searches need to scan the database many times. This is
shown in several performance studies (e.g., [14, 18]).

CLOSET[14], is an extension of the FP-growth algorithm
[8], which constructs a frequent pattern tree FP-tree and
recursively builds conditional FP-trees in a bottom-up tree-
search manner. Although CLOSET uses several optimization
techniques to enhance the mining performance, its perfor-
mance still suffers in sparse datasets or when the support
threshold is low.
Both MAFIA [5] and CHARM [18] use a vertical represen-

tation of the datasets. MAFIA is mainly designed for mining
maximal itemsets, but it has an option to mine closed item-
sets. One of its main features is the compressed vertical
bitmap structure. CHARM enumerates closed itemsets us-
ing a dual itemset-tidset search tree and adopts the Diffset
technique to reduce the size of the intermediate tidsets. The
most costly operation for the algorithms using vertical for-
mat is the intersection on tidsets. CHARM shows better
performance than A-close, Pascal, MAFIA, and CLOSET in
many dense datasets.

3. STRATEGIES FOR FREQUENT CLOSED
ITEMSET MINING

Various strategies for mining frequent closed itemsets are
proposed in the previous studies. In this section, we present
a systematic overview of these strategies, and analyze their
pros and cons.
One essential principle for frequent itemset mining is the

Apriori property [2]: “every subset of a frequent itemset
must be frequent”. Accordingly, every frequent itemset con-
sists of only frequent items.
Given a set of frequent items, F , the complete set of item-

sets is a lattice over 2F . It can be shown that the complete
set of closed itemsets forms a sub-lattice of 2F . Fig. 1(a)
draws the portion of frequent closed itemsets in our running
example.
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Figure 1: The set of frequent closed itemsets and

the FP-tree in the running example.

The problem of searching for the complete set of frequent
closed itemsets is to find the complete set of frequent item-
sets in the lattice of closed itemsets. Most methods start
from the top of the lattice (i.e., the frequent items). The
strategies can be divided into several orthogonal categories.

Breadth-first vs. depth-first search. The breadth-first
search approaches search the lattice level-by-level: it uses
the frequent itemsets at the current level with length k to
generate the candidates at the next level with length (k+1),
and a new database scan is needed to count the supports of



length-(k + 1) candidates. Due to its too many database
scans, it is not suitable for mining long patterns. In con-
trast, a depth-first search method traverses the lattice in
depth-first order, and the subtree of an itemset is searched
only if the itemset is frequent. Moreover, when the item-
sets becomes longer, depth-first search shrinks search space
quickly. As a result, the depth-first search method is usually
a winner for mining long patterns. Some previous studies
(e.g., [14, 5, 18]) clearly elaborate that the depth-first search
methods are usually more efficient than the breadth-first
search methods like A-close.

Horizontal vs. vertical data formats. The transaction
information can be recorded in two alternative formats. The
horizontal format is an intuitive bookkeeping of the transac-
tions. Each transaction is recorded as a list of items. In the
vertical format, instead of recording the transactions explic-
itly, a tid-list is kept for every item, where the identities of
the transactions containing the item are listed. A-close and
CLOSET use the horizontal data format, while CHARM and
MAFIA use the vertical one.
A vertical format-based method needs to maintain a tid-

set for each frequent itemset. When the database is big,
each tidset is on average big, and many such intermediate
results will consume a lot of memory. In contrast, if we prop-
erly choose a compressed structure like FP-tree, a horizontal
format-based method will not cause too much space usage,
because the itemsets can share common path if they share
common prefix, and each of their tidlists is represented by
a count. Moreover, for a vertical format-based algorithm,
one intersection operation can only find one frequent item-
set. For a horizontal format-based method like CLOSET,
one scan of a projected database can find many local fre-
quent items which can be used to grow the prefix itemset
to generate frequent itemsets. In this paper, we will com-
pare CLOSET+, a horizontal format-based algorithm, with
CHARM, a vertical format-based one, in terms of scalability
and efficiency in both runtime and space usage.

Data compression techniques. A transaction database
is usually huge. If a database can be compressed and only
the information related to the mining is kept, the mining can
be efficient. Recently, some data compression methods have
been devised. FP-tree and Diffset are two typical examples.
An FP-tree [8] of a transaction database is a prefix tree of

the lists of frequent items in the transactions. The idea can
be illustrated in the following example.

Example 2. The FP-tree of our running example is con-
structed as follows: Scan the database once to find the set
of frequent items and sort them in the support descending
order to get the f list (see Example 1). To insert a transac-
tion into the FP-tree, infrequent items are removed and the
remaining items in the transaction are sorted according to
the item ordering in f list, i.e., the least frequent item at the
leaf, and the items with higher global support at a higher
level in the FP-tree. Fig. 1(b) shows the FP-tree.

The FP-tree structure has several advantages in mining
frequent itemsets. First, FP-tree often has a high compres-
sion ratio in representing the dataset because (1) infrequent
items identified in the first database scan will not be used
in the tree construction, and (2) a set of transactions shar-
ing the same subset of items may share common prefix paths
from the root in an FP-tree. According to our experience, for

some dense datasets, its compression ratio can reach several
thousand. Even for sparse datasets, it is still quite effective
in compressing original datasets, especially when database
is large (e.g., many real retail databases contain billions of
transactions), since many transactions may share some com-
mon subsets of items. Second, the high compression ratio
leads to efficient frequency counting at iterative scanning of
FP-tree. Third, efficient depth-first search becomes straight-
forward using FP-tree. More importantly, FP-tree contains
all the necessary information for mining frequent itemsets,
its completeness can assure the correctness of an FP-tree

based algorithm.
Diffset is an efficient compression of the tid-set for meth-

ods adopting the vertical data format. For a vertical format-
based algorithm like CHARM, computing the supports re-
quires intersections on tidsets, when the tidset cardinality
becomes large, not only will the tidsets consume much mem-
ory, but also the tidset intersection gets costly. To overcome
this, CHARM develops a Diffset technique to keep track of
only the differences in the tids of a candidate pattern from
its parent pattern. Experiments in [18] showed Diffset can
reduce the space usage by orders of magnitude.

Pruning techniques for closed itemset mining. In the
previous studies of depth-first search approaches for mining
frequent closed (or maximal) itemsets, mainly two search
space pruning techniques have been proposed as the follow-
ing two lemmas. These techniques have been used in Max-
Miner [3], CLOSET [14], MAFIA [5] and CHARM [18].

Lemma 3.1. (item merging) Let X be a frequent item-
set. If every transaction containing itemset X also contains
itemset Y but not any proper superset of Y , then X ∪ Y

forms a frequent closed itemset and there is no need to search
any itemset containing X but no Y .

Example 3. In our running example shown in Table 1,
the projected conditional database for prefix itemset fc:3 is
{(a,m,p), (a,m,p), (a,b,m)} (items d and g are infrequent
and removed), from which we can see each of its transaction
contains itemset am but no proper superset of am. Itemset
am can be merged with fc to form a closed itemset fcam:3,
and we do not need to mine closed itemsets containing fc

but no am.

Lemma 3.2. (sub-itemset pruning) Let X be the fre-
quent itemset currently under consideration. IfX is a proper
subset of an already found frequent closed itemset Y and
sup(X) = sup(Y ), then X and all of X’s descendants in the
set enumeration tree [15] cannot be frequent closed itemsets
and thus can be pruned.

Example 4. Many frequent pattern mining algorithms
follow the divide-and-conquer paradigm. In our running ex-
ample shown in Fig. 1(b), a top-down divide-and-conquer

paradigm follows the f list order shown in Example 1 (in con-
trast, a bottom-up divide-and-conquer paradigm will follow
the inverse f list order): (1) first mine the patterns contain-
ing item f , (2) mine the patterns containing item c but no
f , (3) mine the patterns containing item a but no f nor c,
..., and finally mine the patterns containing only p. At some
point when we want to mine the patterns with prefix itemset
ca:3, we will find that ca:3 is a proper subset of an already
found closed itemset fcam:3 with the same support, we can
safely stop mining the closed patterns with prefix ca:3.



4. CLOSET+: AN EFFICIENT METHOD
FOR CLOSED ITEMSET MINING

In this section, we devise a new frequent closed itemset
mining algorithm, CLOSET+, by integrating some winning
search strategies and developing some novel ones.

4.1 Overview of CLOSET+
CLOSET+ follows the popular divide-and-conquer paradigm

which has been shown one possible instance in Example 4
and the depth-first search strategy which has been verified
a winner for mining long patterns by several efficient fre-
quent pattern mining algorithms. It uses FP-tree as the
compression technique. A depth-first search and horizontal
format-based method like CLOSET+ will compute the local
frequent items of a certain prefix by building and scanning
its projected database. Therefor, a hybrid tree-projection
method will be introduced to improve the space efficiency.
Unlike frequent itemset mining, during the closed itemset

mining process there may exist some prefix itemsets that
are unpromising to be used to grow closed itemsets. We
should detect and remove such unpromising prefix itemsets
as quickly as possible. Besides adopting the above men-
tioned item merging and sub-itemset pruning methods, we
also proposed the item skipping technique to further prune
search space and speed up mining.
Previous algorithms need to maintain all the frequent

closed itemsets mined so far in memory in order to check
if a newly found closed itemset candidate is really closed.
If there exist a lot of frequent closed patterns, such kind of
closure checking will be costly in both memory usage and
runtime. We have also designed an efficient subset-checking
scheme: the combination of the 2-level hash-indexed result
tree based method and the pseudo-projection based upward
checking method, which can be used to save memory us-
age and accelerate the closure-checking significantly. In the
following, the above mentioned mining techniques and the
CLOSET+ algorithm are developed step by step.

4.2 The Hybrid Tree Projection Method
Most previously developed FP-tree-based methods, such

as FP-growth and CLOSET, grow patterns by projection of
conditional databases in a bottom-up manner [8, 14]. How-
ever, such a search order may not always lead to the best per-
formance for different kinds of data sets. In CLOSET+, a hy-
brid tree-projection method is developed, which builds con-
ditional projected databases in two ways: bottom-up phys-
ical tree-projection for dense datasets and top-down pseudo
tree-projection for sparse datasets.

4.2.1 Bottom-up physical tree-projection
For dense datasets, their FP-trees can be hundreds (or

even thousands) times smaller than their corresponding orig-
inal datasets due to compression. Its conditional projected
FP-trees are usually very compact as well. Each projected
FP-tree is much smaller than the original FP-tree, and min-
ing on such a compact structure will also be efficient. As
a result, for dense datasets CLOSET+ still physically builds
projected FP-trees and it is done recursively in a bottom-up
manner (i.e., in support ascending order).
To assist the physical FP-tree projection, there is a header

table for each FP-tree, which records each item’s ID, count,
and a side-link pointer that links all the nodes with the
same itemID as the labels. The global FP-tree in our exam-
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Figure 2: Bottom-up physical tree-projection.

ple is shown in Fig. 2(a). To build conditional FP-tree for
prefix item p:3, we will first find the conditional database
containing p (denoted as TDB|p:3) by following item p’s
side-link pointers. A prefix path from a node, Np, which
has an itemID p and a count Cp, upward to the root node
represents an amalgamative transaction with support Cp for
prefix item p. Here TDB|p:3 consists of two amalgamative
transactions: 〈fcam : 2〉 and 〈cb : 1〉, from which the pro-
jected FP-tree for prefix p:3 is built as Fig. 2(b).
After the projected FP-tree for prefix p:3 has been con-

structed, we will mine the frequent closed itemsets with
prefix p:3 from it. (1) First, we mine the closed itemsets
with prefix pm:2. By following item m’s side-link pointer
in Fig. 2(b), we build prefix pm:2’s conditional database,
as TDB|pm:2 = 〈cfa : 2〉. According to the item merging
technique, prefix pm:2 can be merged with itemset cfa:2
to form a frequent closed itemset, pmcfa:2, and we do not
need to mine closed itemsets with prefix pmc:2, pmf :2, or
pma:2. (2) Second, we’ll mine closed itemsets with prefix
pa:2. Because pa:2 is a proper subset of an already mined
itemset pmafc:2 with the same support, according to the
sub-itemset pruning method, there is no need to mine closed
itemsets with prefix pa:2. (3) Similarly, prefix pf :2 cannot
be used as a start point to grow any closed itemsets. (4)
Finally, we will mine closed itemsets with prefix pc:3, by
following item c’s side-link pointer in Fig. 2(b), we find its
conditional database is empty, we only need to output prefix
pc:3 as a frequent closed itemset candidate. Until now all
the frequent closed itemsets for prefix p:3 have been mined.
Similarly, we can build physically projected FP-trees from

the global FP-tree and mine frequent closed itemsets from
them in a recursive way for prefixes m:3, b:3, a:3, c:4, and
f :4 respectively, these FP-trees are shown in Fig. 2(c)-(f)
(The FP-tree for prefix f :4 is empty and is not shown).

4.2.2 Top-down pseudo tree-projection
Physically projecting FP-trees will introduce some over-

head both in space usage and runtime (due to allocating
and freeing memory for projected FP-trees), especially if
the dataset is sparse, the projected FP-tree will not be very
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Figure 3: Top-down pseudo tree-projection.

compact and does not shrink quickly. Instead of physically
building projected FP-trees, a new method is developed for
sparse datasets: top-down pseudo projection of FP-tree. Un-
like bottom-up physical projection of FP-trees, the pseudo
projection is done in the f list order (i.e., in support de-
scending order).
Similar to bottom-up physical projection, a header table

is also used to record enough information such as local fre-
quent items, their counts and side-link pointers to FP-tree

nodes in order to locate the subtrees for a certain prefix item-
set. Based on our running example, the top-down pseudo-
projection method is illustrated as follows. Fig. 3(a) shows
the global FP-tree and the status of global header table. Ini-
tially only the child nodes (e.g., nodes f :4 and c:1) directly
under the root node are linked from the global header table.
Because we build FP-tree according to the f list order, all
the projected transactions containing item f can be found
from the subtree under the node with label f :4 (i.e., the
dashed polygon in Fig. 3(a)).
By following the side-link pointer of item f in the global

header table of Fig. 3(a), we can locate the subtree under
node f :4. The local frequent items can be found by scanning
this subtree and used to build the header table for prefix
itemset f :4, as shown in Fig. 4(a). Here only the child nodes
directly under node f :4 are linked from the header table
Hf :4. Based on the header table Hf :4, we can mine the
frequent itemsets with prefix f . (1) First, we’ll mine closed
itemsets containing fc:3. By scanning the subtree under
node c:3 in Fig. 4(a), we can find the local frequent items
and build the header table for prefix itemset fc:3, as shown
in Fig. 4(b). Items a and m have the same support as that
of prefix fc:3, according to the item merging technique, they
can be merged with fc:3 to form a new prefix fcam:3 (and
it is also a closed itemset) and we will not need to mine
closed itemsets with prefix fca:3 or fcm:3. Although fca:3
cannot be used as a prefix to grow closed itemsets, we still
need to follow item a’s side-link pointer to find all the child
nodes directly under node a:3 and make them linked from
header table Hfc:3. Because item b is infrequent in Hfc:3,

the node b:1 under node a:3 does not need to be linked from
Hfc:3, instead, its child node m:1 will be linked from Hfc:3.
The new header table Hfc:3 with adjusted side-link pointers
is shown in Fig. 4(c). Similarly, we do not need to mine
closed itemsets with prefix fcm:3, but the child nodes under
nodes m:2 and m:1 should be linked from Hfc:3, as shown
in Fig. 4(d). When we mine the closed itemsets with prefix
fcamp:2, we find the subtree under node p:2 is empty, we’ll
output fcamp:2 as a frequent closed itemset candidate and
stop mining closed itemsets with prefix fc:3. (2) Second,
after the child node a:3 of node c:3 (see Fig. 4(a)) has been
linked from header table Hf :4, we can mine closed itemsets
with prefix fa:3 but no c. (3) In a similar way, we can mine
closed itemsets with prefix fb but no c nor a, with fm but
no c nor a and nor b, and those only with fp, respectively.
As illustrated in the above example, we need to do two

kinds of things in the process of mining closed itemsets for
a certain prefix: (1) find its subtrees by following its side-
link pointers and recursively mine these subtrees to find all
its frequent closed itemsets; and (2) after that, do side-link
pointer adjustment, i.e., all its child nodes should be linked
from the head table. Fig. 3(b), Fig. 3(c), and Fig. 3(d)
show the side-link adjustment of the global header table H

after closed itemsets with prefix f :4, c:4, and a:3 have been
mined respectively, and the dashed polygons in those figures
represent the projected FP-trees for prefix c:4, a:3 and b:3,
respectively.
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Figure 4: Top-down pseudo tree-projection for f :4.

4.3 The Item Skipping Technique
Since CLOSET+ adopts depth-first search, at each level,

there will be a prefix itemset X associated with a header
table and a projected FP-tree. According to the Apriori

property, a local frequent item in X’s header table must also
appear in the higher-level header tables. If a local frequent
item has the same support in more than one header table
at different levels, we can use Lemma 4.1 to prune search
space.

Lemma 4.1. (Item skipping) If a local frequent item has
the same support in several header tables at different levels,



one can safely prune it from the header tables at higher lev-
els.

Proof. Assume item x at level l is a local frequent item
of prefix itemset Xl and has the same support in level k’s
header table of prefix itemset Xk, where (0 ≤ k < l)∧ (Xk ⊂
Xl). Let X ′

k = Xk ∪ x and X ′

l = Xl ∪ x, it is obvious that
(X ′

k ⊂ X ′

l )∧(sup(X ′

k) = sup(X ′

l )), which means any frequent
itemset grown from X ′

k can be subsumed by a corresponding
frequent itemset grown from X ′

l . As a result it is non-closed
and item x can be pruned from header table at level k.

This pruning method can be used in both bottom-up phys-
ical and top-down pseudo tree-projection paradigms. For
example, in Fig. 2(c), there is a local frequent item a with
support 3 for prefix itemset m:3. We also find that item a

appears in the global header table (see Fig. 2(a)) with the
same support, item a can be safely pruned from the global
header table. Similarly, from Fig. 4, we know that items a,
m, and p in Hfc:3 have the same supports as those in Hf :4,
these items can be safely removed from Hf :4.

4.4 Efficient Subset Checking
The search space pruning methods can only be used to

remove some prefix itemsets that are unpromising to be
used as a start point to grow closed itemsets, but they can-
not assure that a frequent prefix itemset is closed. When
we get a new frequent prefix itemset, we need to do two
kinds of closure checking: the superset-checking checks if
this new frequent itemset is a superset of some already found
closed itemset candidates with the same support, while the
subset-checking checks if the newly found itemset is a sub-
set of an already found closed itemset candidate with the
same support. Because both bottom-up physical projection
and top-down pseudo projection work under the divide-and-
conquer and depth-first-search framework, the following the-
orem states that CLOSET+ only needs to do subset-checking
in order to assure a newly found itemset is closed.

Theorem 4.1. (Subset checking) Under the framework
of divide-and-conquer and using the item merging pruning
method introduced in Lemma 3.1, a frequent itemset found
by CLOSET+ must be closed if it cannot be subsumed by any
other already found frequent closed itemset.

Proof. Let the list of items in which order CLOSET+ mines
frequent closed itemset be m list = 〈I1, I2, . . . , In〉 and
the current frequent itemset CLOSET+ has just found is
Sc = Ic1Ic2 . . . Icx. Also, we define the relationship between
two items Im and In as Im < In if item Im is located before
item In in m list. For any two itemsets S1 = I11I12 . . . I1i

and S2 = I21I22 . . . I2j where i > 0 and j > 0, we define
S1 < S2 if there exists an integer k (k ≥ 1), I1k < I2k

and I1l = I2l (for all l < k) hold. Following we will prove
itemset Ic1Ic2 . . . Icx cannot be subsumed by a later found
frequent closed itemset, which also means Ic1Ic2 . . . Icx can-
not subsume any other already found closed itemsets.
First, for any frequent itemset Sl = Il1Il2 . . . Ily which is

mined later than Sc, we can classify it into one of the two
categories: (1) Sl is generated by growing Sc; (2) Sl is not
generated by growing prefix Sc. If Sl belongs to the first cat-
egory, Sl is a superset of Sc, but because we have applied
the item merging technique, which means all the local items
with the same support as Sc’s must have been included in Sc,
sup(Sl) must be smaller than sup(Sc). As a consequence, Sc

cannot be subsumed by Sl. If Sl belongs to the second cate-
gory, based on the nature of our divide-and-conquer frame-
work, we know Sc < Sl, and there must exist an integer k,
Ick < Ilk holds, which means Sl does not contain item Ick

and as a result Sl cannot be a superset of Sc.

From Theorem 4.1, we know that a newly found frequent
itemset cannot be subsumed by any later found frequent
itemset. That is, if it cannot be subsumed by any already
found closed itemset, it must be closed. To assist the subset-
checking, we have designed two efficient techniques.

Two-level hash-indexed result tree. The first method
maintains in a compressed way the set of closed itemsets
mined so far in memory. Inspired by the FP-tree [8] imple-
mentation, we can store all the frequent closed itemsets in
a compressed result tree which has been used in a slightly
different way to do both superset and subset checking [9].
Here we will use it to perform subset-checking in order to
assure a newly found itemset is closed and only if it is closed
can we insert it into the result tree.
Now we need to consider how to design efficient subset-

checking based on the result-tree. In CLOSET+, we try
to exploit some features of closed itemsets to reduce the
search space. If the current itemset Sc can be subsumed
by another already found closed itemset Sa, they must have
the following relationships: (1) Sc and Sa have the same
support; (2) length of Sc is smaller than that of Sa; and (3)
all the items in Sc should be contained in Sa.

f:4,1 c:4,1

c:3,2 b:2,2

a:3,3

m:3,4

p:2,5

root

...

c

...

a

...

...
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3
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3

...

itemID

support

Figure 5: Two-level hash indexed result tree.

Using these heuristics, we can improve the structure of
result tree. First, we introduce 2-level hash indices into re-
sult tree: one level uses ID of the last item in Sc as hash
key, another uses support of Sc as hash key, and the re-
sult tree nodes falling into the same bucket will be linked
together. Second, we insert each closed itemset into the re-
sult tree according to the f list order, and at each node we
also record its length of the path from this node to the root
node. Following we use our running example to illustrate the
maintenance of result tree and how to do subset checking.

Example 5. Under depth-first search paradigm, the set
of closed itemsets shown in Fig.1(a) will be mined and in-
serted into the result tree in the following order: f :4, fcam:3,
fcamp:2, fb:2, c:4, cb:2, cp:3, and b:3. Fig.5 depicts the
status of the result tree after inserting closed itemset c:4
(Here we only show part of the index structure due to lim-
ited space). In each node, we record the itemID, support,
and the length (relative to root node) respectively. Differ-
ently from the FP-tree structure, when several closed item-
sets share some common prefixes, the support of a node in
the common prefix will be the maximum one among the sup-
ports of itemsets sharing the common prefix instead of the
sum of supports of itemsets sharing the common prefix.



At the status shown in Fig. 5, we may later get a frequent
itemset ca:3. By using itemID a and support 3 as hash keys
and following the corresponding hash link, we will find the
node labeled as a:3,3 with a length greater than 2, we then
check if ca:3 can be absorbed by the path from node a:3,3
to the root. Unfortunately it cannot pass the checking and
will not be inserted into the result tree.

Pseudo-projection based upward checking. Although
the result tree can compress the set of closed itemsets a
lot, it still consumes much memory and is not very space-
efficient for sparse datasets. Can we totally remove the re-
quirement of maintaining the set of closed itemsets in mem-
ory for subset-checking? As we know, the global FP-tree
contains the complete information about the whole set of
frequent closed itemsets, thus we can use the global FP-tree
to check if a newly found frequent itemset is closed. In such
a way, we do not need any additional memory for storing the
set of already mined closed itemsets and once a newly found
itemset has passed the checking, it will be directly stored in
an output file, F.
The problem becomes how to do subset-checking based

on the global FP-tree. As we know, in the top-down pseudo
projection method, all the tree nodes and their correspond-
ing prefix paths w.r.t. a prefix itemset, X, can be traced
by following its side-link pointer recorded in its header ta-
ble. We can use the following lemma 4.2 to judge whether
a newly found frequent itemset is closed.

Lemma 4.2. For a certain prefix itemset, X, as long as
we can find any item which (1) appears in each prefix path
w.r.t. prefix itemset, X, and (2)does not belong to X, any
itemset with prefix X will be non-closed, otherwise, if there’s
no such item, the union of X and the complete set of its local
frequent items which have the same support as sup(X) will
form a closed itemset.

Proof. The first part is easy to prove: If we can find an
item, ix, which (1)appears in each prefix path w.r.t. prefix
itemset, X, and (2) does not belong to X, this will mean
(X ⊂ (X ∪ {ix})) and (sup(X) = sup(X ∪ {ix})) hold, as a
result, X or any itemset with prefix X will be non-closed.
For the second part, because we cannot find any item

which (1)appears in each prefix path w.r.t. prefix itemset,
X, and (2) does not belong to X, and any other possible
items that always appear together with X can only belong
to the set ofX’s local frequent items, as a result, the union of
X and the complete set of its local frequent items which have
the same support as sup(X) must form a closed itemset.
Here we’ll use some examples to illustrate the upward

subset-checking. Assume the prefix X=c:4, we can locate
nodes c:1 and c:3 by following the side-link pointer of item c

in Fig 3(b) and find there is only one item, f , which appears
in prefix itemset c:4’s prefix paths to the root, and it only
co-occurs 3 times with prefix c:4. In addition, there’s no
local frequent item of prefix c:4 with support 4, thus c:4 is
closed and will be stored in output file F. Using this method,
we can easily figure out that prefix am:3 is not closed, be-
cause in the prefix paths of nodes m:2 and m:1, there are
two other items, f and c, which appear with am 3 times.

4.5 The Algorithm
By integration of the techniques discussed above, we de-

rive the CLOSET+ algorithm as follows.

Algorithm 1: Closed itemset mining with CLOSET+
Input: (1)A transaction database TDB, and (2) support
threshold min sup.
Output: The complete set of frequent closed itemsets.
Method:

1. Scan TDB once to find the global frequent items and
sort them in support descending order. The sorted fre-
quent item list forms the f list.

2. Scan TDB and build FP-tree using the f list.

Note: In the tree building process, compute the average
count of an FP-tree node. After the tree has been built,
we will judge whether the dataset is dense or sparse
according to the average count of an FP-tree node: for
dense dataset, choose bottom-up physical tree-projection
method; whereas for sparse dataset, use top-down pseudo
tree-projection method. According to the chosen tree
projection method, initialize the global header table.

3. With the divide-and-conquer and depth-first searching
paradigm, mine FP-tree for frequent closed itemsets in
a top-down manner for sparse datasets or bottom-up
manner for dense datasets. During the mining pro-
cess, use the item merging, item skipping, and sub-
itemset pruning methods to prune search space. For
each candidate frequent closed itemset, use the two-
level hash indexed result tree method for dense datasets
or pseudo-projection based upward checking method for
sparse datasets to do closure checking.

4. Stop when all the items in the global header table have
been mined. The complete set of frequent closed item-
sets can be found either from the result tree or the out-
put file F.

5. PERFORMANCE EVALUATION

5.1 Test environment and datasets
In this section we will evaluate CLOSET+ in comparison

with three algorithms, OP, CHARM and CLOSET. All the
experiments were performed on an IBM ThinkPad R31 with
384 MBmemory andWindows XP installed. We used an im-
proved implementation of CLOSET with better performance
than that claimed in [14]. The source code of CHARM and
the executable of OP were provided by their authors. We
ran the four algorithms on the same Cygwin environment
and with ′-e 1 -d′ options turned on for CHARM. Because
our performance study showed that both OP and CLOSET

cannot compete with CLOSET+, we only compared the peak
memory usage between CLOSET+ and CHARM.
We used six real datasets to evaluate the performance

and memory usage, and some synthetic datasets to test the
scalability by varying database size and the number of dis-
tinct items. The characteristics of the datasets are shown
in Table 2 (the last column shows the average and maximal
transaction length).
Real datasets: Among the six real datasets three are dense

and three are sparse (see the distribution of the number
of frequent closed itemsets by support threshold in Table
3). The connect dataset contains game state information,
mushroom dataset contains characteristics of various species
of mushrooms, pumsb* contains census data. The gazelle
dataset contains click-stream data from Gazelle.com. These



Dataset # Tuples # Items A.(M.) t. l.

connect 67557 150 43(43)
pumsb* 49046 2089 50.5(63)
mushroom 8124 120 23(23)
gazelle 59601 498 2.5(267)

retail-chain 106632 22036 2.98(61)
big-market 838466 38336 3.12(90)
T10I4DxP1k 200k-1400k 978 10(31)
T10I4D100kPx 100k 4333-29169 10(31)

Table 2: Dataset Characteristics.

have been used in the previous performance studies [18, 19].
Two other datasets, retail-chain and big-market are different
retail transaction datasets.
Synthetic datasets: The synthetic datasets were generated

from IBM dataset generator, with an average transaction
length 10 and average frequent itemset length 4. To test
the scalability against base size, we generated dataset series
T10I4DxP1k by varying the number of transactions from
200K to 1400K and fixing the number of unique items at
1k. To test scalability in terms of number of unique items,
we generated dataset series T10I4D100kPx by fixing number
of transactions at 100k and setting the number of distinct
items at 4333, 13845, 24550, 29169 (generated by setting
nitems parameter at 5k, 25k, 125k, 625k respectively).

Dataset Num. of F.C.I. (rel. sup.(%))

connect 24346(75), 94916(55), 328344(35)
pumsb* 2610(40), 16154(30), 122315(20)
mushroom 1197(20), 12855(5), 76199(0.5)
gazelle 808(0.2), 5706(0.09), 20447(0.07)

retail-chain 2788(0.025), 5147(0.015), 17399(0.005)
big-market 14881(0.005), 24478(0.003), 92251(0.001)
T10I4D100k 46993(0.05), 71265(0.03), 283397(0.01)

Table 3: Number of frequent closed itemsets vs. rel-

ative support threshold.
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Fig. 7. Runtime (gazelle).

5.2 Experimental results
Comparison with OP. Our experiments show that due to
generating a huge number of frequent itemsets, even the best
frequent itemset mining algorithm like OP cannot compete
with CLOSET+. Fig. 6 and Fig. 7 show the experimental
results for mushroom and gazelle datasets.

As we can see in Fig. 6, for dense datasets like mush-
room CLOSET+ always outperforms OP and when the sup-
port threshold is low, CLOSET+ is more than one order of
magnitude faster than OP. For sparse datasets like gazelle
(see Fig. 7), when the support is high there will not be
too many frequent itemsets, and due to overhead incurred
by closure checking in CLOSET+, OP is a little faster than
CLOSET+. But once the support threshold is lowered to a
certain point, there will be explosive increase in the num-
ber of frequent itemsets (e.g., with support 0.05%, a not too
low support threshold for a sparse dataset like gazelle, the
longest frequent closed itemset has a length 45, from which
245 − 1 frequent itemsets can be generated), the pruning
methods adopted by CLOSET+ will make CLOSET+ orders
of magnitude faster than OP.
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Comparison with CHARM and CLOSET. We used all the
6 real datasets to test CLOSET+’s performance and memory
usage in comparison with two other closed itemset mining al-
gorithms: CHARM and CLOSET. For dense dataset connect,
Fig. 8 and Fig. 9 show the results. Fig. 8 shows CLOSET+
can be orders of magnitude faster than CLOSET. When the
support is not too low (i.e., higher than 20%), CLOSET+
is several times faster than CHARM. When support thresh-
old is further lowered, they will have similar performance,
but at support 10%, CHARM cannot run by reporting an
error ′REALLOC: Not enough core′. From Fig. 9 we know
overall CLOSET+ uses less memory than CHARM. For ex-
ample, at support 85%, CLOSET+ consumes about 1MB
while CHARM consumes about 15MB.
Pumsb* is another dense dataset. Fig. 10 and Fig. 11

depict the results. Both CLOSET+ and CHARM have sig-
nificantly better performance than CLOSET and once the
support is lower than 20%, CLOSET just cannot finish run-
ning. Overall CLOSET+ and CHARM have very similar per-
formance when the support threshold is not too low. At
low support threshold like 15%, CHARM will outperform
CLOSET+. Fig. 11 shows that CLOSET+ uses much less
memory than CHARM.
Fig. 12 and Fig. 13 demonstrate the results for mushroom

dataset. We can see CLOSET can be orders of magnitude
slower than CLOSET+ and CHARM, and CLOSET even can-
not finish running once the support is less than 0.1%. But
there is no clear winner between CLOSET+ and CHARM:
At high support threshold, CLOSET+ is several times faster
than CHARM; and at very low support threshold, CHARM is
a little better than CLOSET+. But CLOSET+ always beats
CHARM in terms of memory usage.
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Fig. 14 and Fig. 15 present the evaluation results for
sparse dataset gazelle. Fig. 14 shows that CLOSET+ and
CHARM are faster than CLOSET. At high support CLOSET+
and CHARM have similar performance, and at a little lower
support, CHARM is several times faster than CLOSET+, but
once we continued lowering the support threshold to 0.005%,
CHARM could not run by reporting an error ′REALLOC:
Not enough core′. From Fig. 15, we see that CHARM con-
sumes about two orders of magnitude more memory than
CLOSET+ at low support.
Fig. 16 and Fig. 17 demonstrate the results for retail-chain

dataset. CLOSET+ runs the fastest among the three algo-
rithms and uses less memory than CHARM: When support
threshold is set to 0.005%, CLOSET+ runs almost 5 times
faster than CHARM, but uses only 1/9 of the memory that
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CHARM consumes.
Fig. 18 and Fig. 19 show the results for the big-market

real dataset. We can see that CLOSET+ is also the fastest
among the three and uses less memory than CHARM. It runs
several times faster than CHARM but uses less memory.
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Fig. 21. Scalability
test(T10I4D100kPx).

Scalability test. We used the IBM synthetic datasets to
test the scalability of CLOSET+ and compared it with both
CHARM and CLOSET. We first tested the scalability in
terms of database size using the dataset series T10I4DxP1k
with base size from 200k tuples to 1400k tuples and sup-
port threshold set at 0.005%. From Fig. 20 we can see that,
CLOSET has the poorest scalability, and it even cannot run
when the dataset contains more than 600K tuples. In com-
parison with CHARM, CLOSET+ not only runs much faster,
it also has much better scalability in terms of base size:



the slope ratio for CHARM is much higher than that for
CLOSET+.
We also tested the scalability of CLOSET+ in terms of

number of distinct items using T10I4D100KPx series with
number of distinct items set at 4333, 13845, 24550 and
29169, respectively, and minimum support set at 0.005%.
From Fig. 21, we can see that initially these three algo-
rithms have very similar performance when the number of
distinct items is small, but once the number of distinct items
increases, the runtime of CHARM and CLOSET will have a
much bigger jump than CLOSET+, which means CLOSET+
also has better scalability than both CHARM and CLOSET

in terms of the number of distinct items.
The above experimental results show that: (1) Although

CHARM adopts theDiffset technique which can reduce space
usage significantly [18], it still consumes more memory than
CLOSET+, and in some cases it can use over an order of
magnitude more memory than CLOSET+. (2) Due to the
new techniques developed here, such as the hybrid tree-projection
mining strategy, the item-skipping pruning method, and the
subset-checking techniques(i.e., the two-level hash-indexed
result-tree and pseudo-projection based upward checking),
CLOSET+ can be orders of magnitude faster than CLOSET,
and is very efficient with low support even in the case CLOSET

and CHARM cannot run. (3) CLOSET+ has linear scalabil-
ity and is more scalable than CHARM and CLOSET in terms
of both base size and the number of distinct items.

6. CONCLUSIONS
Frequent pattern mining has been studied extensively in

data mining research. In this study, we have re-examined
some previously proposed methodologies, and mainly fo-
cused on the new techniques developed for CLOSET+, a
highly scalable and both runtime and space efficient algo-
rithm for dense and sparse datasets, on different data dis-
tributions and support thresholds.
The thorough performance evaluation in this study reveals

that: (1) For mining frequent patterns, one should work on
mining closed patterns instead of all patterns because the
former has the same expressive power as the latter but leads
to more compact and meaningful results and likely better
efficiency. (2) There is a popular myth: Algorithms based
on the vertical-format are better than those based on the
horizontal-format. Our study shows that an algorithm based
on the vertical format, due to its necessity to identify tids
(even using the Diffset compression technique) will likely
take more memory than an FP-tree-based algorithm and is
less scalable if the latter is implemented nicely. (3) Mul-
tiple, integrated optimization techniques for database pro-
jection, search space pruning, and pattern closure-checking
are needed for high performance pattern mining. Often,
different data characteristics may require different mining
methodologies, e.g., in CLOSET+, we use the top-down
pseudo tree-projection and upward subset-checking for sparse
datasets, whereas for dense datasets, the bottom-up physi-
cal tree-projection and a compressed result-tree have been
adopted.
Currently CLOSET+ has been successfully employed to

mine non-redundant association rules. In the future, we
will explore more applications, including association-based
classification, clustering, and dependency/linkage analysis
in large databases.
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