CMSC 858K Advanced Algorithms Lecture 26
Lecturer: Samir Khuller Tu. May 4, 1999

Original notes by Chung-Yeung Lee and Gisli Hjaltason.

12 Bin Packing

Problem Statement: Given n items s1, s2, ..., s, where each s; is a rational number, 0 < s; < 1, our goal
is to minimize the number of bins of size 1 such that all the items can be packed into them.

Remarks:
1. Tt is known that the problem is NP-Hard.
2. A Simple Greedy Approach (First-Fit) can yield an approximation algorithm with a performance ratio

of 2.

12.1 Approximate Schemes for bin-packing problems

In the 1980’s, two approximate schemes were proposed. They are
1. (Fernandez de la Vega and Lueker) Ve > 0, there exists an Algorithm A, such that
A(I) < (14+€O0OPT(I)+1
where A, runs in time polynomial in n, but exponential in 1/e (n=total number of items).
2. (Karmarkar and Karp) Ve > 0, there exists an Algorithm A, such that
A.(I) < OPT(I) + O(log® (OPT(I))

where A, runs in time polynomial in n and 1/e (n=total number of items). They also guarantee that
A(I) < (14 €OPTI) +O(%).

We shall now discuss the proof of the first result. Roughly speaking, it relies on two ideas:
e Small items does not create a problem.

e Grouping together items of similar sizes can simplify the problem.

12.1.1 Restricted Bin Packing
We consider the following restricted version of the bin packing problem (RBP). We require that

1. Each item has size > 4.

2. The size of each item takes only one of m distinct values vy, vs, ..., vy,. That is we have n; items of size
v; (1 <i<m), with > n; =n.

For constant § and m, the above can be solved in polynomial time (actually in O(n + f(m,d))). Our overall
strategy is therefore to reduce BP to RBP (by throwing away items of size < ¢ and grouping items carefully),
solve it optimally and use RBP(d, m) to compute a soluton to the original BP.

Theorem 12.1 Let J be the instance of BP obtained from throwing away the items of size less than & from
instance I. If J requires 8 bins then I needs only max(8, (1 + 26)OPT(I) + 1) bins.

29

Proof:

We observe that from the solution of J, we can add the items of size less than ¢ to the bins until the
empty space is less than 6. Let S be the total size of the items, then we may assume the number of items
with size < ¢ is large enough (otherwise I needs only § bins) so that we use 8’ bins.

S>@1-90)(B -1)
S
g <1+ 15
OPT(I)
1-6
B' <1+ (1+250PT(I)
as (1—-6)"1<1+25for0<4< 3. o

B <1+

Next, we shall introduce the grouping scheme for RBP. Assume that the items are sorted in descending
order. Let n' be the total number of items. Define G;=the group of the largest k items, Go=the group that
contains the next k items, and so on. We choose

e2n'
k= .
15
Then, we have m+1 groups G, .., Gimt1, where
nl
m = L%J

Further, we consider groups H; = group obtained from G; by setting all items sizes in G; equal to the
largest one in G;. Note that

e size of any item in H; > size of any items in G;.
e size of any item in G; > size of any items in H;41.

The following diagram (Fig 1) illustrates the ideas:
We then define Jio be the instance consisting of items in Hs, .., Hyp41. Our goal is to show

OPT(JIOW) < OPT(J) < OPT(JIOW) +k,

The first inequality is trivial, since from OPT(J) we can always get a solution for Jiy-

Using OPT(Jjow) We can pack all the items in Ga,...,G,41 (since we over allocated space for these by
converting them to H;). In particular, group Gi, the group left out in Jioy, contains k items, so that no
more than k extra bins are needed to accommodate those items.

Since (H1 U Jiow) is an instance of a Restricted Bin Packing Problem we can solve it optimally, and then
replace the items in H; with items in G; to get a solution for J.

Directly from this inequality, and using the definition of k, we have

en’

Soln(J) < OPT(H, U...UHpy1) < OPT(Jiow) + k < OPT(J) + k < OPT(J) +

Choosing § = €/2, we get that

so we have

e2n’

Soln(J) < OPT(J) + —— < OPT(J) + eOPT(J) = (1 + ¢)OPT(J).

By applying Theorem 12.1, using 8 < (1 + €¢)OPT(J) and the fact that 26 = €, we know that the number of
bins needed for the items of I is at most

max{(1 + €)OPT(J), (1 + €)OPT(I) + 1} < (1 + ¢)OPT(I) + 1.

30

y H,
~. G1

H,

‘A
3
a

......... Hm+1

Grouping Scheme for RBP

Figure 2: Grouping scheme

The last inequality follows since OPT'(J) < OPT(I).

We will turn to the problem of finding an optimal solution to RBP. Recall that an instance of RBP(d, m)
has items of sizes vy, va,...,Um,, with 1 > vy > vy > --- > v, > §, where n; items have size v;, 1 < i <
m. Summing up the n;’s gives the total number of items, n. A bin is completely described by a vector
(Th,Ts,...,T,), where T; is the number of items of size v; in the bin. How many different different (valid)
bin types are there? From the bin size restriction of 1 and the fact that v; > ¢ we get

1> zijm,. > ;Tﬂi:&;ﬂ N ZT < %

As % is a constant, we see that the number of bin types is constant, say p.
Let 7MW, 7®) . T®) be an enumeration of the p (valid) different bin types. A solution to the RBP can

now be stated as having z; bins of type T(®). Let Tj(i) denote the number of items of size v; in T . The
problem of finding the optimal solution can be posed as an integer linear programming problem:

P
min E T,
i=1

such that »
inTj(i) =n; Vj=1,...,m.

i=1
z; > 0,z; integer Vi=1,...,p.
This is a constant size problem, since both p and m are constants, independent of n, so it can be solved
in time independent of n. This result is captured in the following theorem, where f(d,m) is a constant that
depends only on é and m.

Theorem 12.2 An instance of RBP(6,m) can be solved in time O(n, f(§,m)).

An approximation scheme for BP may be based on this method. An algorithm A, for solving an instance
I of BP would proceed as follows:

31

Step 1: Get an instance J of BP(4,n') by getting rid of all elements in I smaller than § = €/2.
Step 2: Obtain H; from J, using the parameters k and m established earlier.

Step 3: Find an optimal packing for H;U. ..UH ;41 by solving the corresponding integer linear programming
problem.

Step 4: Pack the items of G; in place of the corresponding (larger) items of H; as packed in step 3.
Step 5: Pack the small items in I'\ J using First-Fit.

This algorithm finds a packing for I using at most (1 + €)OPT(I) + 1 bins. All steps are at most linear in
n, except step 2, which is O(nlogn), as it basically amounts to sorting J. The fact that step 3 is linear in n
was established in the previous algorithm, but note that while f(d,m) is independent of n, it is exponential
in 1 and m and thus % Therefore, this approximation scheme is polynomial but not fully polynomial. (An

s
approximation scheme is fully polynomial if the running time is a polynomial in n and %

32

