CMSC 651 Advanced Algorithms Lecture 09
Lecturer: Samir Khuller Feb 26, 2002

Notes by Samir Khuller.

16 The Max Flow Problem

Today we will study the Edmonds-Karp algorithm that works when the capacities are integral, and has a
much better running time than the Ford-Fulkerson method. (Edmonds and Karp gave a second heurisitc
that we will study later.)

Assumption: Capacities are integers.

1st Edmonds-Karp Algorithm:

while (there is an augmenting path s — ¢ in G¢) do
pick up an augmenting path (in G'y) with the highest residual capacity;
use this path to augment the flow;

Analysis: We first prove that if there is a flow in G of value |f|, the highest capacity of an augmenting

pathin Gy is > ‘mil In class we covered two different proofs of this lemma. The notion of flow decompositions
is very useful so I am describing this proof in the notes.

Lemma 16.1 Any flow in G can be expressed as a sum of at most m path flows in G and a flow in G of
value 0, where m is the number of edges in G.

Proof:

Let f be a flow in G. If | f| = 0, we are done. (We can assume that the flow on each edge is the same
as the capacity of the edge, since the capacities can be artifically reduced without affecting the flow. As
a result, edges that carry no flow have their capacities reduced to zero, and such edges can be discarded.
The importance of this will become clear shortly.) Otherwise, let p be a path from s to ¢ in the graph. Let
¢(p) > 0 be the bottleneck capacity of this path (edge with minimum flow/capacity). We can reduce the
flow on this path by ¢(p) and we output this flow path. The bottleneck edge now has zero capacity and can
be deleted from the network, the capacities of all other edges on the path is lowered to reflect the new flow
on the edge. We continue doing this until we are left with a zero flow (|f| = 0). Clearly, at most m paths
are output during this procedure. O

Since the entire flow has been decomposed into at most m flow paths, there is at least one augmenting
path with a capacity at least %

Let the max flow value be f*. In the first iteration we push at least f; > % amount of flow. The value
of the max-flow in the residual network (after one iteration) is at most

51— 1/m).

The amount of flow pushed on the second iteration is at least

foz ("= 1f)

1
o

The value of the max-flow in the residual network (after two iteations) is at most

Fefim <P f- () =0 -a- D <ra-D-Las
. 1
=Py

53

Finally, the max flow in the residual graph after the kt* iteration is

m—1
< fr(—)k
< ()
What is the smallest value of k that will reduce the max flow in the residual graph to 1?7
m—1

* k
f(T) <1,

Using the approximation logm — log(m — 1) = (=) we can obtain a bound on .
k= 0(mlog).

This gives a bound on the number of iterations of the algorithm. Taking into a consideration that a path
with the highest residual capacity can be picked up in time O(m + nlogn), the overall time complexity of
the algorithm is O((m + nlogn)mlog f*).

Tarjan’s book gives a slightly different proof and obtains the same bound on the number of augmenting
paths that are found by the algorithm.

History

Ford-Fulkerson (1956)

Edmonds-Karp (1969) O(nm?)

Dinic (1970) O(n%m)

Karzanov (1974) O(n?)
Malhotra-Kumar-Maheshwari (1977) O(n?)
Sleator-Tarjan (1980) O(nmlogn)
Goldberg-Tarjan (1986) O(nmlogn?/m)

54

