CMSC 651 Advanced Algorithms Lecture 4
Lecturer: Samir Khuller Th. Feb 7. 2002

Notes by Samir Khuller.

13 Two Processor Scheduling

We will also talk about an application of matching, namely the problem of scheduling on two processors.
The original paper is by Fujii, Kasami and Ninomiya [7].

There are two identical processors, and a collection of n jobs that need to be scheduled. Each job requires
unit time. There is a precedence graph associated with the jobs (also called the DAG). If there is an edge
from ¢ to j then ¢ must be finished before j is started by either processor. How should the jobs be scheduled
on the two processors so that all the jobs are completed as quickly as possible. The jobs could represent
courses that need to be taken (courses have prerequisites) and if we are taking at most two courses in each
semester, the question really is: how quickly can we graduate?

This is a good time to note that even though the two processor scheduling problem can be solved in
polynomial time, the three processor scheduling problem is not known to be solvable in polynomial time, or
known to be NP-complete. In fact, the complexity of the k processor scheduling problem when k is fized is
not known.

From the acyclic graph G we can construct a compatibility graph G* as follows. G* has the same nodes
as G, and there is an (undirected) edge (i,) if there is no directed path from i to j, or from j to ¢ in G. In
other words, 7 and j are jobs that can be done together.

PR [R H—-l I
| I ! Jl
Jo — —eo /2 J2 - / /r 2
nodesin S Js -—— * J;
—— matched edge in M* .
nodesin S
-~ - new matched edge —— matched edge in M*
@ (b)

Figure 12: (a) Changing the schedule (b) Continuing the proof.

A maximum matching in G* is the indicates the maximum number of pairs of jobs that can be processed
simultaneously. Clearly, a solution to the scheduling problem can be used to obtain a matching in G*. More
interestingly, a solution to the matching problem can be used to obtain a solution to the scheduling problem!

Suppose we find a maximum matching in M in G*. An unmatched vertex is executed on a single processor
while the other processor is idle. If the maximum matching has size m*, then 2m™* vertices are matched, and
n — 2m* vertices are left unmatched. The time to finish all the jobs will be m* +n — 2m* = n — m™*. Hence
a maximum matching will minimize the time required to schedule all the jobs.

We now argue that given a maximum matching M*, we can extract a schedule of size n — m*. The key
idea is that each matched job is scheduled in a slot together with another job (which may be different from
the job it was matched to). This ensures that we do not use more than n —m* slots.

43

Let S be the subset of vertices that have indegree 0. The following cases show how a schedule can be
constructed from G and M*. Basically, we have to make sure that for all jobs that are paired up in M™*, we
pair them up in the schedule. The following rules can be applied repeatedly.

1. If there is an unmatched vertex in S, schedule it and remove it from G.

2. If there is a pair of jobs in S that are matched in M™, then we schedule the pair and delete both the
jobs from G.

If none of the above rules are applicable, then all jobs in S are matched; moreover each job in S is
matched with a job not in S.

Let J; € S be matched to J{ ¢ S. Let J> be a job in S that has a path to Jj. Let Jj be the mate of
Ja. If there is path from J] to J3, then J5 and J} could not be matched to each other in G* (this cannot be
an edge in the compatibility graph). If there is no path from Jj to J| then we can change the matching to
match (J1, J2) and (J{, J3) since (J{, J3) is an edge in G* (see Fig. 12 (a)).

The only remaining case is when Jj has a path to Ji. Recall that J also has a path to J|. We repeat
the above argument considering J4 in place of J;. This will yield a new pair (J3,J3) etc (see Fig. 12 (b)).
Since the graph G has no cycles at each step we will generate a distinct pair of jobs; at some point of time
this process will stop (since the graph is finite). At that time we will find a pair of jobs in S we can schedule
together.

44

