CMSC 651 Advanced Algorithms Lecture 7
Lecturer: Samir Khuller Tu. Feb 19, 2002

Notes by Samir Khuller.

14 Assignment Problem

Consider a complete bipartite graph, G(X,Y, X xY), with weights w(e;) assigned to every edge. (One could
think of this problem as modeling a situation where the set X represents workers, and the set Y represents
jobs. The weight of an edge represents the “compatability” factor for a (worker,job) pair. We need to assign
workers to jobs such that each worker is assigned to exactly one job.) The Assignment Problem is to
find a matching with the greatest total weight, i.e., the maximum-weighted perfect matching (which is not
necessarily unique). Since G is a complete bipartite graph we know that it has a perfect matching.

An algorithm which solves the Assignment Problem is due to Kuhn and Munkres. We assume that all
the edge weights are non-negative,

w(zs,y;) > 0.

where
z,€ X,y; €Y.

We define a feasible vertez labeling | as a mapping from the set of vertices in G to the real numbers, where
Uzi) +U(y;) > w(zi, yj)-

(The real number I(v) is called the label of the vertex v.) It is easy to compute a feasible vertex labeling as
follows:

(Vy; € Y) [Uy;) = 0],

and
l(z;) = maxw(x;,y;)-
J

We define the Equality Subgraph, G, to be the spanning subgraph of G which includes all vertices of
G but only those edges (z;,y;) which have weights such that

w(zi,y;) = Uzs) +1(y;)-

The connection between equality subgraphs and maximum-weighted matchings is provided by the fol-
lowing theorem:

Theorem 14.1 If the Equality Subgraph, Gy, has a perfect matching, M*, then M* is a mazimum-weighted
matching in G.

Proof:
Let M* be a perfect matching in G;. We have, by definition,

w(M*) = Z w(e) = Z 1(v).

ec M* vEXUY

Let M be any perfect matching in G. Then

Hence,

45



O

In fact note that the sum of the labels is an upper bound on the weight of the maximum weight perfect
matching.

High-level Description:

The above theorem is the basis of an algorithm, due to Kuhn and Munkres, for finding a maximum-
weighted matching in a complete bipartite graph. Starting with a feasible labeling, we compute the equality
subgraph and then find a maximum matching in this subgraph (now we can ignore weights on edges). If the
matching found is perfect, we are done. If the matching is not perfect, we add more edges to the equality
subgraph by revising the vertex labels. We also ensure that edges from our current matching do not leave
the equality subgraph. After adding edges to the equality subgraph, either the size of the matching goes up
(we find an augmenting path), or we continue to grow the hungarian tree. In the former case, the phase
terminates and we start a new phase (since the matching size has gone up). In the latter case, we grow the
hungarian tree by adding new nodes to it, and clearly this cannot happen more than n times.

Let S = the set of free nodes in X. Grow hungarian trees from each node in S. Let T = all nodes
in Y encountered in the search for an augmenting path from nodes in S. Add all nodes from X that are
encountered in the search to S.

Some More Details:
We note the following about this algorithm:

S=X-85.
T=Y-T.
S| > [T

There are no edges from S to T, since this would imply that we did not grow the hungarian trees
completely. As we grow the Hungarian Trees in GG;, we place alternate nodes in the search into S and T'. To
revise the labels we take the labels in S and start decreasing them uniformly (say by A), and at the same
time we increase the labels in 7' by A. This ensures that the edges from S to 7' do not leave the equality
subgraph (see Fig. 13).

As the labels in S are decreased, edges (in G) from S to T will potentially enter the Equality Subgraph,
G;. As we increase A, at some point of time, an edge enters the equality subgraph. This is when we stop
and update the hungarian tree. If the node from T added to G; is matched to a node in S, we move both
these nodes to S and T, which yields a larger Hungarian Tree. If the node from 7 is free, we have found an
augmenting path and the phase is complete. One phase consists of those steps taken between increases in
the size of the matching. There are at most n phases, where n is the number of vertices in G (since in each
phase the size of the matching increases by 1). Within each phase we increase the size of the hungarian tree
at most n times. It is clear that in O(n?) time we can figure out which edge from S to T is the first one to
enter the equality subgraph (we simply scan all the edges). This yields an O(n*) bound on the total running
time. Let us first review the algorithm and then we will see how to implement it in O(n?) time.

The Kuhn-Munkres Algorithm (also called the Hungarian Method):

Step 1: Build an Equality Subgraph, G; by initializing labels in any manner (this was discussed earlier).
Step 2: Find a maximum matching in G; (not necessarily a perfect matching).
Step 3: If it is a perfect matching, according to the theorem above, we are done.

Step 4: Let S = the set of free nodes in X. Grow hungarian trees from each node in S. Let T = all nodes in
Y encountered in the search for an augmenting path from nodes in S. Add all nodes from X that
are encountered in the search to S.

Step 5: Revise the labeling, [, adding edges to G; until an augmenting path is found, adding vertices to S
and T as they are encountered in the search, as described above. Augment along this path and
increase the size of the matching. Return to step 4.

46



Only edges in G; are shown

S T
:\\>
KZ

A —@ +A
\
— 7

HRYYE

9]

Figure 13: Sets S and T as maintained by the algorithm.

More Efficient Implementation:
We define the slack of an edge as follows:

slack(z,y) = U(z) +1(y) — w(z,y)-

Then
A= min_slack(z,y)
z€S,yeT
Naively, the calculation of A requires O(n?) time. For every vertex in T, we keep track of the edge with
the smallest slack, i.e.,

slackly;] = mé% slack(z;,y;)

The computation of slackly;] requires O(n?) time at the start of a phase. As the phase progresses, it is
easy to update all the slack values in O(n) time since all of them change by the same amount (the labels of
the vertices in S are going down uniformly). Whenever a node u is moved from S to S we must recompute
the slacks of the nodes in T, requiring O(n) time. But a node can be moved from S to S at most n times.

Thus each phase can be implemented in O(n?) time. Since there are n phases, this gives us a running
time of O(n?).

47



