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Notes by Samir.

4 Linear Programming

Linear programming is one of the most general problems known to be solvable in polynomial time. Many
optimization problems can be cast directly as polynomial-size linear programs and thus solved in polynomial
time. Often the theory underlying linear programming is useful in understanding the structure of optimiza-
tion problems. For this reason, L.P. theory is often useful in designing efficient algorithms for an optimization
problem and for understanding such algorithms within a general framework.

Here is an example of a linear programming problem.

max (521 + 4z2 + 3x3)
s.t. 221 +3x2 + 23 <5
4x1 + 29 + 223 <11
3x1 +4x0 + 223 <8
T1,22,T3 Z 0

The goal is to find values (real numbers) for the z;’s meeting the constraints so that the objective function
is maximized. Note that all of the constraints are linear inequalities or equations and the objective function
is also linear. In general, a linear program is a problem of maximizing or minimizing a linear function of
some variables subject to linear constraints on those variables.

Simplex Method. The most common method of solving linear programs is the simplex algorithm, due
to Dantzig. The method first converts the linear inequalities into equality constraints by introducing slack
variables. The original variables are referred to as the decision variables.

define
T4 =5 —2x1 —3x2 — X3
.’1,‘5:].].—4.'131—.'172—2.733
.’1:6:8—3.’1:1—43}2—2.733
2 = 5x1 + 4x2 + 323
Z1,%2,%3,T4,T5,T6 Z 0
max z

It then starts with an initial feasible solution (an assignment to the variables meeting the constraints,
but not necessarily optimizing the objective function). For instance, let x1,z2,23 = 0, so that x4 = 5,25 =
11,z¢ = 8 gives a feasible solution. The simplex method then does successive improvements, changing the
solution and increasing the value of z, until the solution is optimal.

Clearly, if we can increase x; without changing x5 or x3, we can increase the value of z. We consider
increasing x; and leaving z2 and 3 zero, while letting the equations for x4, x5, and g determine their
values. If we do this, how much can we increase x1 before one of x4, x5 or T becomes zero? Clearly, since
x4 > 0, we require that z1 < 2. Since z5 > 0, we require that z; < . Similarly, since z¢ > 0, we require
that 2, < %. We thus increase x; to g, and see that z = 12.5. Now z2,z3,24 = 0 and 1, x5, g are non-zero.

This operation is called a pivot. A pivot improves the value of the objective function, raises one zero
variable, brings one non-zero variable down to zero.

How do we continue ? We rewrite the equations so that all the non-zero variables (simplex calls these
the “basic” variables) are expressed in terms of the zero variables. In this case, this yields the following
equations.

max V4
=5 _3, _1lh0 1
s.t. I = ) 2.’L’2 21‘3 2184



Ts =14 5x9 + 224
1 1 1 3
xﬁ__+?$2_13x3+2$4
2.
227—§$2+5$3—§£L’4
Z1,%2,%3,T4,T5,Te Z 0

The natural choice for the variable to increase is xz3. It turns out that we can increase z3 to 1, and then
xg becomes 0. Then, the new modified system we get (by moving z3 to the LHS) is:

max z
s.t. 3 =14 22 + 3x4 — 224
T1 =2 —2x9 — 224 + Tg
Ts =14 529 + 224
2=13—-329 — T4 — T¢
T1,L2,T3,L4,T5,Te Z 0

Now we have z = 13 (with the current solution in which s, x4, 26 = 0). Also notice that increasing any
of the zero variables will only decrease the value of z. Since this system of equations is equivalent to our
original system, we have an optimal solution.



Possible Problems:

Initialization: Is it easy to get a starting feasible solution ?

Progress in an iteration: Can we always find a variable to increase if we are not at optimality?
Termination: Why does the algorithm terminate ?

Their are fairly easy ways to overcome each of these problems.

Linear Programming Duality

Given an abstract linear programming problem (with n variables and m constraints), we can write it as:

max z=clz cd'=1xn),z=(Mmx1)
s.t. Az <b A=(mxn),b=(mx1)
z>0

Simplex obtains an optimal solution (i.e., maximizes z). Notice that any feasible solution to the primal
problem yields a lower bound on the value of z. The entire motivation for studying the linear programming
dual is a quest for an upper bound on the value of z.

Consider the following linear programming problem:

max z=4x1 + T2 + 513 + 314
s.t. T1 —To — 23+ 324 <1
5x1 + 22 + 3x3 + 84 < 55
—x1 + 222 + 323 — 524 < 3
%1,%2,23,%4 > 0

Notice that (0,0,1,0) is a feasible solution to the primal, and this yields the value of z = 5, implying
that z* > 5 (z* is the optimum value). The solution (3,0, 2,0) is also feasible and shows that z* > 22.

If we had a solution, how would we know that it was optimal ?

Here is one way of giving an upper bound on the value of z*. Add up equations (2) and (3). This gives us
4x1 4 3z + 623 + 3x4 < 58. Clearly, for non-negative values of x; this is always > z, (4z1 + 2 + 53 + 314 <
4x1 + 3x2 + 623 + 3z4 < 58). This gives us an upper bound on the value of z* of 58.

In general, we are searching for a linear combination of the constraints to give an upper bound for the
value of z*. What is the best combination of constraints that will give us the smallest upper bound ? We
will formulate this as a linear program ! This will be the dual linear program.

Consider multiplying equation (i) (i = 1,2, 3) in the above example by y; and adding them all up. We
obtain

(y1 + 5y2 — y3)z1 + (—y1 + y2 + 2y3)z2 + (—y1 + 3y2 + 3ys)zs + (3y1 + 8ya — 5ys)za < y1 + 55y2 + 3ys

We also require that all y; > 0.
We would like to use this as an upper bound for z. Since we would like to obtain the tightest possible
bounds (want to minimize the RHS), we could rewrite it as the following LP.

Y1 +dy2 —yz > 4
—y1+y2+2y3 >1
—y1 +3y2+3ys > 5
3y1 +8y2 —5yz > 3
Y1,Y2,Y3 Z 0

If these constraints are satisfied, we conclude that z < y14+55y2+3ys. If we try to minimize (y; 4+55y2+3y3)
subject to the above constraints, we obtain the dual linear program.
The dual linear program can be written succinctly as:

min by bl = (1 xm),y=(mx1)
s.t. yTA> T A=(mxn),cl =(1xn)
y=>0
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Primal LP (n variables, m equations):
max ) 7 ¢;%;
s.t. Z?:l a;;jr; < b (i=1...m)
z; >0 (G=1...n)

Dual LP (m variables, n equations):
. m
min } ;= biy;
m .
s.t. Doim1 QiYi > € (J=1...n)
yi >0 (i=1...m)

Theorem 4.1 (Weak Duality Theorem)
For every primal feasible solution x, and every dual feasible solution y, we have:

n m
Doz <Y by
=1 i=1

Proof:
The proof of this theorem is really easy and follows almost by definition.
n n m
PLLEDY > agudes = 3(3 ase i < szyz
j=1 7j=1 i=1 i=1 j=1

O

It is easy to see that if we obtain z* and y*, such that the equation in the Weak Duality theorem is met
with equality, then both the solutions, xz*,y* are optimal solutions for the primal and dual programs. By
the Weak Duality theorem, we know that for any solution z, the following is true:

n m n
D ocmi <Y bl =) )
j=1 i=1 j=1
Hence z* is an optimal solution for the primal LP. Similarly, we can show that y* is an optimal solution to

the Dual LP.

Theorem 4.2 (Strong Duality Theorem)
If the primal LP has an optimal solution x*, then the dual has an optimal solution y* such that:

ZC] Z bzyz

Proof:

To prove the theorem, we only need to find a (feasible) solution y* that satisfies the constraints of the
Dual LP, and satisfies the above equation with equality. We solve the primal program by the simplex method,
and introduce m slack variables in the process.

n
an:bi—Zaijwj (i:l,...,m)

Assume that when the simplex algorithm terminates, the equation defining z reads as:

n+m

z2=2"+ E CLTk-
k=1

Since we have reached optimality, we know that each ¢ is a nonpositive number (in fact, it is 0 for each
basic variable). In addition z* is the value of the objective function at optimality, hence z* = 2?21 CT.
To produce y* we pull a rabbit out of a hat ! Define y* = —¢,4; (¢ =1,...,m). To show that y* is an
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optimal dual feasible solution, we first show that it is feasible for the Dual LP, and then establish the strong
duality condition.
(From the equation for z we have:

n n m n
* — *
E Cjx; =2 + E CrTp — E Y; (bz — E aijmj).
=1 k=1 =1 j=1

Rewriting it, we get
n m

@ + Y aiy;)z;.
=1

= j=1 =

> i = (2" =) biy) +
Jj=1 =1 j

Since this holds for all values of z;, we obtain:
m
Zt = Z biy;
i=1
(this establishes the equality) and
m
cj =Cj —}—Zaijy;* (G=1,...,n).
i=1

Since ¢, < 0, we have
y; >0 (i=1,...,m).

m
Dayyi>¢; (j=1,...,n)
=1

This establishes the feasibility of y*. O

Complementary Slackness Conditions:

Theorem 4.3 Necessary and Sufficient conditions for x* and y* to be optimal solutions to the primal and
dual are as follows.

Zaijy,’-‘ =cj orz; =0 (or both) for j=1,...,n

i=1

n
Zaijw;f =b; ory; =0 (or both) fori=1,...,m
i=1

In other words, if a variable is non-zero then the corresponding equation in the dual is met with equality,
and vice versa.
Proof:

We know that

m
¢ry < (O ayyp);  (G=1,...,n)
i=1

O aiz)y; <by;  (i=1,...,m)
j=1

We know that at optimality, the equations are met with equality. Thus for any value of j, either z7 =0
or it a;;jyF = ¢;. Similarly, for any value of 4, either y* = 0 or Z?:l ai;x; = b;. O
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