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In this paper we study several routing problems that generalize shortest paths and the Traveling
Salesman Problem. We consider a more general model that incorporates the actual cost in terms
of gas prices. We have a vehicle with a given tank capacity. We assume that at each vertex gas
may be purchased at a certain price. The objective is to find the cheapest route to go from s to t,
or the cheapest tour visiting a given set of locations. Surprisingly, the problem of find the cheapest
way to go from s to t can be solved in polynomial time and is not NP-complete. For most other
versions however, the problem is NP-complete and we develop polynomial time approximation
algorithms for these versions.
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1. INTRODUCTION

Optimization problems related to computing the shortest (or cheapest) tour vis-
iting a set of locations, or that of computing the shortest path between a pair of
locations are pervasive in Computer Science and Operations Research. Typically,
the measures that we optimize are in terms of “distance” traveled, or time spent (or
in some cases, a combination of the two). There are literally thousands of papers
dealing with problems related to shortest-path and tour problems.

In this paper, we consider a more general model that incorporates the actual cost
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in terms of gas prices. We have a vehicle with a given tank capacity of U . In fact,
we will assume that U is the distance the vehicle may travel on a full tank of gas
(this can easily be obtained by taking the product of the tank size and the mileage
per gas unit of the vehicle). Moreover, we may assume that we start with some
given amount of gas µ (≤ U) in the tank. We assume that at each vertex v gas may
be purchased at a price of c(v). This price is the cost of gas per mile. For example
if gas costs $3.40 per gallon and the vehicle can travel 17 miles per gallon, then the
cost per mile is 20 cents.

At each gas station we may fill up some amount of gas to “extend” the range of
the vehicle by a certain amount. Moreover, since gas prices vary, the cost depends
on where we purchase gas from.

In addition to fluctuating gas prices, there is significant variance in the price of
gas between gas stations in different areas. For example, in the Washington DC
area alone, the variance in gas prices between gas stations in different areas (on the
same day) can be by as much as 20%. Due to different state taxes, gas prices in
adjacent states also vary. Finally, one may ask: why do we expect such information
to be available? In fact, there are a collection of web sites [gas ; ] that currently
list gas prices in an area specified by zip code. So it is reasonable to assume that
information about gas prices is available. What we are interested in are algorithms
that will let us compute solutions to some basic problems, given this information.

In this general framework, we are interested in a collection of basic questions.

(1) (The gas station problem) Given a start node s and a target node t, how do
we go from s to t in the cheapest possible way if we start at s with µs amount
of gas? In addition we consider the variation in which we are willing to stop to
get gas at most ∆ times1. Another generalization we study is the sequence gas
station problem. Here, we want to find the cheapest route that visits a set of
p locations in a specified order (for example by a delivery vehicle).

(2) (The fixed-path gas station problem) An interesting special case is when we fix
the path along which we would like to travel. Our goal is to find an optimal
set of refill stops along the path.

(3) (The uniform cost tour gas station problem) Given a collection of cities T ,
and a set of gas stations S at which we are willing to purchase gas, find the
shortest tour that visits T . We have to ensure that we never run out of gas.
Clearly this problem generalizes the Traveling Salesman Problem. The problem
gets more interesting when S 6= T , and we address this case. This models the
situation when a large transportation company has a deal with a certain gas
company, and their vehicles may fill up gas at any station of this company at a
pre-negotiated price. Here we assume that gas prices are the same at each gas
station. This could also model a situation where some gas stations with very
high prices are simply dropped from consideration, and the set S is simply the
set of gas stations that we are willing to use.

1This restriction makes sense, because in some situations where the gas prices are decreasing as
we approach our destination, the cheapest solution may involve an arbitrarily large number of
stops, since we only fill up enough gas to make it to a cheaper station further down the path.
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(4) (The tour gas station problem) This is the same as the previous problem, except
that the prices at different stations can vary.

Of all the above problems, only the tour problems are NP -hard. For the first
two we develop polynomial time algorithms, and for the tour problems we develop
approximation algorithms.

We now give a short summary of the results in the paper:

(1) (The gas station problem) For the basic gas station problem, our algorithm runs
in time O(∆n2 log n) and computes an optimal solution. If we want to visit a
sequence of p cities we can find an optimal solution in time O(∆(np)2 log(np)).
In addition, we develop a second algorithm for the all-pairs version that runs
in time O(n3∆2). This method is better than repeating the fixed-destination
algorithm n times when ∆ < log n.

(2) (The fixed-path gas station problem) For the fixed-path version with an un-
bounded number of stops, we develop a fast O(n log n) time algorithm.

(3) (The uniform cost tour gas station problem) Since this problem is NP -hard,
we focus on polynomial time approximation algorithms. We assume that every
city has a gas station within a distance of αU

2 for some α < 1. This assumption
is reasonable since in any case, every city has to have a gas station within
distance U

2 , otherwise there is no way to visit it. A similar assumption is made
in the work on distance constrained vehicle routing problem [Li et al. 1992]. We
develop an approximation algorithm with an approximation factor of 3

2 ( 1+α
1−α

).
We also consider a special case, namely when there is only one gas station.
This is the same as having a central depot, and requiring the vehicle to return
to the depot after traveling a maximum distance of U . For this special case,
we develop an algorithm with factor O(ln 1

1−α
) and this improves the bound of

3
2(1−α) given by Li et al. [Li et al. 1992] for the distance constrained vehicle

routing problem.

(4) (The tour gas station problem) For the tour problem with arbitrary prices, we
can use the following scheme: sort all the gas prices in non-decreasing order
c1 ≤ c2 ≤ . . . cn. Now guess a range of prices [ci . . . cj ] one is willing to pay,
and let βij =

cj

ci
. Let Sij include all the gas stations v such that ci ≤ c(v) ≤ cj .

We can run the algorithm for the uniform cost tour gas station problem with
set Sij and cities T . This will yield a tour T [i,j]. We observe that the cost of

the tour T [i,j] is at most O(
βij

1−α
) times the cost of an optimal solution, since

its possible that we always pay a factor βij more than the optimal solution, at
each station where we fill gas. Taking the best solution over all O(n2) possible
choices gives a valid solution to the tour gas station problem.

1.1 Related Work

The problems of computing shortest paths and the shortest TSP tour are clearly
the most relevant ones here and are widely studied, and discussed in several books
[Lawler et al. 1985; Papadimitriou and Steiglitz 1998].

One closely related problem is the Orienteering problem [Arkin et al. 1998; Awer-
buch et al. 1998; Golden et al. 1987; Blum et al. 2003]. In this problem the goal
is to compute a path of a fixed length L that visits as many locations as possible,
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starting from a specified vertex. For this problem, a factor 3 approximation has
been given recently by Bansal et al. [Bansal et al. 2004]. (In fact, they can fix the
starting and ending vertices.) This algorithm is used as subroutine for developing
a bicriteria bound for Deadline TSP. By using the 3 approximation for the Orien-
teering problem, we develop an O(log |T |) approximation for the single gas station
tour problem. This is not surprising, since we would like to cover all the locations
by finding walks of length at most U .

There has been some recent work by Nagarajan and Ravi [Nagarajan and Ravi
2006] on minimum vehicle routing that is closely related to the single gas station
tour problem. In this problem, a designated root vertex (depot) and a deadline D

are given and the goal is to use the minimum number of vehicles from the root so
that each location is met by at least one of the vehicles, and each vehicle traverses
length at most D. (In their definition, vehicles do not have to go back to the
root.) They give a 4-approximation for the case where locations are in a tree and
an O(log D) approximation for graphs with integer weights.

Another closely related piece of work is by Arkin et al. [Arkin et al. 2006] where
tree and tour covers of bounded length are computed. What makes their problem
easier is that there is no specified root node, or a set of gas stations one of which
should be included in any bounded length tree or tour. Several pieces of work deal
with vehicle routing problems [M. Haimovich 1985; 1988; Frederickson et al. 1978]
with multiple vehicles, where the objective is to bound the total cost of the solution,
or to minimize the longest tour. However these problems are significantly easier to
develop approximation algorithms for.

2. THE GAS STATION PROBLEM

The input to our problem consists of a complete graph G = (V, E) with edge lengths
d : E → R+, gas costs c : V → R+ and a tank capacity U . (Equivalently, if we are
not given a complete graph we can define duv to be the distance between u and v

in G.) Our goal is to go from a source s to a destination t in the cheapest possible
way using at most ∆ stops to fill gas. For ease of exposition we concentrate on the
case where we start from s with an empty tank. The case in which we start with
µs units of gas can be reduced to the former as follows. Add a new node s′ such
that ds′s = U − µs and c(s′) = 0. The problem of starting from s with µs units of
gas and that of starting from s′ with an empty tank using one additional stop are
equivalent.

We would also like to note that our strategy yields a solution where the gas tank
will be empty when one reaches a location where gas can be filled cheaply. In
practice, this is not safe and one might run out of gas (for example if one gets stuck
in traffic). For that reason we suggest defining U to be smaller than the actual
tank capacity so that we always have some “reserve” capacity.

In this section we develop an O(∆n2 log n) time algorithm for the gas station
problem. In addition, when ∆ = n we show how to solve the problem in O(n3)
time for general graphs, and O(n log n) time for the case where G is a fixed path.

One interesting generalization of the problem is the sequence gas station problem
where we are given a sequence s1, s2, . . . , sp of vertices that we must visit in the
specified order. This variant can be reduced to the s-t version in an appropriately
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defined graph.

2.1 The gas station problem using ∆ stops

We will solve the gas station problem using the following dynamic program (DP)
formulation:

A(u, q, g) =
Minimum cost of going from u to t using q refill stops, starting
with g units of gas. We consider u to be one of the q stops.

The main difficulty in dealing with the problem stems from the fact that, in
principle, we need to consider every value of g ∈ [0, U ]. One way to avoid this is to
discretize the values g can take. Unfortunately this only yields a pseudo-polynomial
time algorithm. To get around this we need to take a closer look at the structure
of the optimal solution.

Lemma 2.1. Let s = u1, u2, . . . , ul be the refill stops of an optimal solution using
at most ∆ stops. The following is an optimal strategy for deciding how much gas
to fill at each stop: At ul fill just enough to reach t with an empty tank; for j < l

i) If c(uj) < c(uj+1) then at uj fill up the tank.

ii) If c(uj) ≥ c(uj+1) then at uj fill just enough gas to reach uj+1.

Proof. If c(uj) < c(uj+1) and the optimal solution does not fill up at uj then
we can increase the amount filled at uj and decrease the amount filled at uj+1.
This improves the cost of the solution, which contradicts the optimality assump-
tion. Similarly, if c(uj) ≥ c(uj+1) then we can decrease the amount filled at uj

and increase the amount filled at uj+1 (without increasing the overall cost of the
solution) until the condition is met.

Consider a refill stop u 6= s in the optimal solution. Let w be the stop right
before u. Lemma 2.1 implies that if c(w) ≥ c(u), we reach u with an empty tank,
otherwise we reach u with U − dwu gas. Therefore, in our DP formulation we need
to keep track of at most n different values of gas for u. Let GV (u) be the set of
such values, namely

GV (u) = {U − dwu |w ∈ V and c(w) < c(u) and dwu ≤ U} ∪ {0}

The following recurrence allows us to compute A(u, q, g) for any g ∈ GV (u):

A(u, 1, g) =

{

(dut − g) c(u) if g ≤ dut ≤ U

∞ otherwise

A(u, q, g) = min
v s.t.

duv≤U

{

A(v, q−1, 0) + (duv − g) c(u) | c(v) ≤ c(u) ∧ g ≤ duv

A(v, q−1, U− duv) + (U − g) c(u) | c(v) > c(u)

}

The cost of the optimal solution is min1≤l≤∆ A(s, l, 0). The naive way of filling
the table takes O(∆n3) time. However, this can be done more efficiently.

Theorem 2.2. There is an O(∆n2 log n) time algorithm for the gas station prob-
lem with ∆ stops.

Instead of spending O(n) time computing a single entry of the table, we spend
O(log n) amortized time per entry. More precisely, for fixed u ∈ V and 1 < q ≤ ∆
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we show how to compute all entries of the form A(u, q, ∗) in O(n log n) time using
entries of the form A(∗, q−1, ∗). Theorem 2.2 follows immediately.

The DP recursion for A(u, q, g) finds the minimum, over all v such that duv ≤
U , of terms that corresponds to the cost of going from u to t through v. Split
each of these terms into two parts based on whether they depend on g or not.
Thus we have an independent part, which is either A(v, q − 1, 0) + duv c(u) or
A(v, q − 1, U − duv) + Uc(u); and a dependent part, −g c(u).

fill-row(u, q)
1 R← {v ∈ V | duv ≤ U}
2 for v ∈ R do

3 if c(v) ≤ c(u)
4 then indep(v)← C[v, q − 1, 0] + duvc(u)
5 else indep(v)← C[v, q − 1, U − duv ] + Uc(u)
6 sort R in increasing indep(·) value
7 let v ∈ R be first in sorted order
8 for g ∈ GV (u) in increasing value do

9 while g > duv do

10 let v ∈ R be next vertex in sorted order
11 C[u, q, g]← indep(v) − gc(u)

Fig. 1. An O(n log n) time procedure for computing C[u, q, ∗].

Our procedure begins by sorting the independent part of every term. Note that
the minimum of these corresponds to the entry for g = 0. As we increase g, the
terms decrease uniformly. Thus, to compute the table entry for g > 0 just subtract
g c(u) from the smallest independent part available. The only caveat is that the
term corresponding to a vertex v such that c(v) ≤ c(u) should not be considered
any more once g > duv , we say such a term expires after g > duv . Since the
independent terms are sorted, once the smallest independent term expires we can
walk down the sorted list to find the next vertex which has not yet expired. The
procedure is dominated by the time spent sorting the independent terms which
takes O(n log n) time. Its pseudocode is given in Figure 1.

Theorem 2.3. When ∆ = n the problem can be solved in O(n3) time.

We can reduce the problem to a shortest path question on a new graph H . The
vertices of H are pairs (u, g), where u ∈ V and g ∈ GV (u). The edges of H and
their weight w(·) are defined by the DP recurrence. Namely, for every u, v ∈ V and
g ∈ GV (u) such that duv ≤ U we have w

(

(u, q), (v, 0)
)

= (duv−g) c(u) if c(v) ≤ c(u)

and g ≤ duv , or w
(

(u, q), (v, U−duv

)

= (U−g) c(u) if c(v) > c(u).
Our objective is to find a shortest path from (s, 0) to (t, 0). Note that H has at

most n2 vertices and at most n3 edges. Using Dijkstra’s algorithm [Cormen et al.
2001] the theorem follows.

2.2 Faster algorithm for the all-pairs version

Consider the case in which we wish to solve the problem for all starting nodes i,
with µi amount of gas in the tank initially. Using the method described in the
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previous section, we get a running time of O(n3∆ log n) since we run the algorithm
for each possible destination. We will show that for ∆ < log n we can improve this
and get a bound of O(n3∆2).

Add new nodes i′ such that di′i = U − µi and c(i′) = 0. If we start at i with µi

units of gas, it is the same as starting from i′ where gas is free. We fill up the tank
to capacity U , and then by the time we reach i we will have exactly µi units of gas
in the tank. (Since gas is free at any node i′ in any optimal solution we fill up the
tank to capacity U). This will use one extra stop.

We define B(i, h, p) as the minimum cost solution to go from i to h (destination),
with p stops to get gas, given that we start with an empty tank at i. Since we
start with an empty tank, we have to fill up gas at the starting point (and this is
included as one of the stops). Clearly, we will also reach h (destination) with an
empty tank, assuming that there is no trivial solution, such as one that arrives at
the destination with no fill-ups on the way.

Our goal is to compute B(i′, h, ∆ + 1) which is a minimum cost solution to go
from i′ to h with at most ∆ stops in-between. Note that the first fill-up is the one
that takes place at node i′, after that we stop at most ∆ times.

We will now show how to compute B(i, h, p). There are two options:

—If the gas price at the first stop after i (e.g. k) is cheaper than c(i) then we will
reach that station with an empty tank after filling dik units of gas at i (as long
as dik ≤ U):

B(i, h, p) = B(k, h, p − 1) + dikc(i)

—If the first place where the cost of gas decreases from the previous stop is the
q + 1st stop and the price is in increasing order in the first q stops then

B(i, h, p) = C(i, k, q) + B(k, h, p − q)

We define C(i, k, q) as the minimum cost way of going from i to k with at most
q stops to get gas, such that we start at i with an empty tank (and get gas at
i, which counts as a stop) and finally reach k with an empty tank. In addition,
the price of gas in intermediate stations is in increasing order except for the last
stop.

We define B(h, h, p) = 0. For i 6= h let B(i, h, 1) = c(i) dih if dih ≤ U , and
B(i, h, 1) = ∞ otherwise. In general:

B(i, h, p) = min

{

min
1≤k≤n

1<q≤p

C(i, k, q) + B(k, h, p−q), min
1≤k≤n

s.t.dik≤U

B(k, h, p−1) + dik c(i)

}

If we are able to compute C(i, k, q) efficiently then B(i, h, p) can be computed.
There are n2∆ states in the dynamic program, and each one can be computed in
time O(n∆). This yields a running time of O(n3∆2). We will see that the time
required to compute C(i, k, q) is O(n3∆) for all relevant choices of i, k, q.

Suppose that in going from i to k we stop at i1 = i, . . . , iq, iq+1 = k . Note that
c(i1) ≤ c(i2) ≤ . . . ≤ c(iq), however c(iq) > c(iq+1). In fact, at i1 we will get U

amount of gas. When we reach ij for 1 < j < q, we will get dij−1ij
units of gas (the

amount that we consumed since the previous fill-up) at a cost of c(ij) per unit of
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Refill stop

Start with

empty tank
Reach with

Cost of gas

empty tank

i2

i = i1

i3

i4

k = i5

Fig. 2. Example to show C(i, k, q) for q = 4.

gas. The amount of gas we will get at iq is just enough to reach k with an empty
tank. Now we can see that the total cost is equal to Uc(i1) + di1i2c(i2) + . . . +
diq−2iq−1

c(iq−1) + (diq−1 iq
+ diqk −U)c(iq). Note that the last term is not negative,

since we could not reach k from iq−1 even with a full tank at iq−1, without stopping
to get a small amount of gas.

We compute C(i, k, q) as follows. First note that if dik ≤ U then the answer is
dikc(i). Otherwise we build a directed graph G′ = (V ∪ VD, E ∪ ED), where V is
the set of vertices, and VD = {i′|i ∈ V }.

We define E: add a directed edge from i ∈ V to j for each vertex j ∈ V \ {i}
such that dij ≤ U and c(i) ≤ c(j). The weight of this edge is dijc(j).

We define ED as follows: add a directed edge from each j ∈ V to k′ for each
vertex k′ ∈ VD \ {j′} such that U < djk ≤ 2U . The weight of this edge is

min
{

(djz + dzk − U)c(z) | c(j), c(k) < c(z) and djz , dzk ≤ U
}

Now we can express C(i, k, q) as Sp(i, k′, q)+Uc(i) where Sp(i, k′, q) is the short-
est path from i to k′ in the graph G′ using at most q edges.

To see why it is true, we can see that for any given order of stops between i and
k (where the gas price is in increasing order in consecutive stops), the minimum
cost is equal to the weight of the path in G′ that starts from i, goes to the second
stop in the given order (e.g., i2) and then traverses the vertices of V in the same
order and from the second last stop goes to k′. It is also possible that q = 2 and
the path goes directly from i = i1 to k in this case, and i2 is the choice for z that
achieves the minimum cost for the edge (i, k′).

For any given path P in G′ between i and k′, if the weight of the path is WP we
can find a feasible plan for filling the tank at the stations so that the cost is equal
to WP + Uc(i). It is enough to fill up the tank at the stations that are in the path,
except the last one in which the tank is filled to only the required level to reach k.
We can conclude that C(i, k, q) is equal to Sp(i, k′, q) + Uc(i).

The running time for finding the shortest path between all pairs of nodes with
different number of stops (at most ∆) can be computed in O(n3∆) by dynamic
programming [Lawler 2001]. If we precompute C(i, k, q) the running time for com-
puting B(i′, h, ∆+1) is O(n3∆2) assuming we start at i with µi amount of gas. So
in general the running time is O(n3∆2).
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2.3 The sequence gas station problem

Suppose instead of a given source and destination, we are asked to find the cheapest
way to start from a given location, visit some a set of locations in a given order
during the trip and then reach the final destination. We define the problem in a
formal way as follows:

Given an edge weighted graph G = (V, E) and a list of vertices s0, . . . , sp, we
wish to find the cheapest way to start from s0, visit s1, . . . , sp−1 in this order and
then reach sp.

Note that we cannot reduce this problem to p separate source-destination sub-
problems and combine the solutions directly. To see why, consider the case where
the gas price is very high at some station si and on the way from si−1 to si there
is a very cheap gas station near si. If we want to use the solution for the separate
subproblems and then combine them, we will reach si with an empty tank so we
have to fill the tank at si since we are out of gas; but the optimal solution is to
reach si with some gas in the tank to make it possible to reach next station after
si without filling the tank at si. between some node sj and sj+1 is not an optimal
way that would be chosen in the

To solve this problem, we will make a new graph as follows: Make p − 1 new
copies of the current graph G and call them G1, . . . , Gp−1. G will become G0. Call
vi in Gj as vi,j . Now connect Gi and Gi+1 by merging si+1,i and si+1,i+1 into one
node. The solution to the original problem is to find the cheapest way to go from
s1,0 to sp,p−1 in the new graph. we can see that any path in this graph that goes
from s1,0 to sp,p−1 will pass through si+1,i ∀i 0 ≤ i ≤ p − 1.

2.4 Fixed-path

Number the nodes along the path from 1 to n, so that we start at 1 and want
to reach n. Without loss of generality assume we start with an empty tank. We
present a fast, yet simple, exact algorithm for the case where the number stops is
unbounded.

Theorem 2.4. There is an O(n log n) time algorithm for the fixed-path gas sta-
tion problem with an unbounded number of stops.

The first step consists in finding, for each gas station i, its previous and next
station. Define prev(i) as the station j ≤ i with the cheapest gas among those that
satisfy dji ≤ U . Similarly let next(i) be the station j > i with the cheapest gas
such that dij ≤ U . Any eventual tie is broken by favoring the station closest to n.

To compute these two values we keep a priority queue on the stations that lie on
a moving window of length U . Starting at 1, we slide the window toward n inserting
and removing stations as we go along. Right after inserting into (removing from)
the queue some station i, asking for the minimum in the queue gives us prev(i)
(next(i)). The whole procedure takes O(n log n) time.

Station i is said to be a break point if prev(i) = i. Identifying such stations is
important because we can break our problem into smaller subproblems (to go from
one break point to the next) and then paste these solutions to get a global optimal
solution.

Lemma 2.5. Let i be a break point. There is an optimal solution that reaches i
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with an empty tank.

Proof. Let j < i be the last station we stopped to get gas before reaching i.
Since i is a break point, we have c(i) ≤ c(j). Therefore at j we fill just enough gas
to reach i with an empty tank.

Now consider the subproblem of going from i to k starting and ending with an
empty tank, such that there is no break point in (i, k). The following algorithm
solves our subproblem optimally.

drive-to-next(i, k)

1 Let x be i.
2 If dxk ≤ U then just fill enough gas to go k.
3 Otherwise, fill up and drive to next(x). Let x be next(x), go to step 2.

The key observation is that for every station x considered by the algorithm, if
dxk > U then c(x) ≤ c(next(x)). Since all stations in a range of U after x offer
gas at cost at least c(x), an optimal solution fills up at x and drives up to the next
cheapest station, i.e., next(x).

Remark: even though drive-to-next solves our special subproblem optimally,
the strategy does not work in general. To see why consider an instance where
c(i) > c(i + 1) and d1n = U . While the optimum stops on every station, drive-

to-next will tell us to go straight from 1 to n.

3. THE UNIFORM COST TOUR GAS STATION PROBLEM

In this section we study a variant of the gas station problem where we must visit
a set of cities T in arbitrary order. We consider the case where gas costs the same
at every gas station, but some cities may not have a gas station.

More formally, the input to our problem consists of a complete undirected graph
G = (V, E) with edge lengths d : E → R+, a set of cities T ⊆ V , a set of gas
stations S ⊆ V , and tank capacity U for our vehicle. The objective is to find a
minimum length tour that visits all cities in T , and possibly some gas stations in
S. We are allowed to visit a location multiple times if necessary. We require any
segment of the tour of length U to contain at least one gas station, this ensures we
never run out of gas. We call this the uniform cost tour gas station problem. We
assume that we start with an empty tank at a gas-station.

The problem is NP -hard as it generalizes the well-known traveling salesman
problem: just set the tank capacity to the largest distance between any two cities
and let T = S. In fact, there is a closer connection between the two problems: If
every city has a gas station, i.e., T ⊆ S, we can reduce the gas station problem to
the TSP. Consider a TSP instance on T under metric ` : T × T → R+, where `xy

is the minimum cost of going between cities x and y starting with an empty tank
(this can be computed by standard techniques). Since the cost of gas is the same
everywhere, a TSP tour can be turned into a driving plan that visits all cities with
the same cost and vice-versa. Let OPT denote an optimal solution, and c(OPT )
its cost.
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As mentioned earlier, we can use the algorithm for the uniform cost case to
derive an approximation algorithm for the general case by paying a factor β in the
approximation ratio. Here β is the ratio of the maximum price that an optimal
solution pays for buying a unit of gas, to the minimum price it pays for buying a
unit of gas (in practice this ranges from 1 to 1.2).

Unfortunately this reduction to the TSP breaks down when cities are not guar-
anteed to have a gas station. Consider going from x to y, where x does not have a
gas station. The distance between x and y will depend on how much gas we have
at x, which in turn depends on which city was visited before x and what route we
took to get there.

An interesting case of the tour gas station problem is that of an instance with
a single gas station. This is also known as the distance constrained vehicle routing
problem and was studied by Li et al. [Li et al. 1992] who gave a 3

2(1−α) approx-

imation algorithm, where the distance from the gas station to the most distant
city is αU

2 , for some α < 1. We improve this by providing an O(log 1
1−α

) approxi-
mation algorithm. Without making any assumptions on α we show that a greedy
algorithm that finds bounded length tours visiting the most cities at a time is a
O(log |T |)-factor approximation.

For the general case we make the assumption that every city has a gas station
at distance at most αU

2 . This assumption is reasonable, because if a city has

no gas station within distance U
2 , there is no way to visit it. We show a 3(1+α)

2(1−α)

approximation for this problem. Note that when α = 0, this gives the same bound
as the Christofides method for the TSP.

3.1 The tour gas station problem

For each city x ∈ T let g(x) ∈ S be the closest gas station to x, and let dx be the
distance from x to g(x). We assume that every city has a gas station at distance
at most αU

2 ; in order words, dx ≤ αU
2 for all x ∈ T .

Recall that it is assumed that the price of the gas is the same at all the gas
stations. We define a new distance function for the distance between each pair of
cities. The distance ` is defined as follows: For each pair of cities x and y, `xy is
the length of the shortest traversal to go from x to y starting with U − dx amount
of gas and reaching y with dy amount of gas. If dxy ≤ U − dx − dy then we can
go directly from x to y, and `xy = dxy. Otherwise, we can compute this as follows.
Create a graph whose vertex set is S, the set of gas stations. To this graph add x

and y. We now add edges from x to all gas stations within distance U − dx from
x. Similarly we add edges from y to all gas stations within distance U − dy to y.
Between all pairs of gas stations, we add an edge if the distance between the pair
of gas stations is at most U . All edges have length equal to the distance between
their end points. The length of the shortest path in this graph from x to y will be
`xy. Note that the shortest path (in general) will start at x and then go through a
series of gas stations before reaching y. This path yields a valid plan to drive from
x to y without running out of gas, once we reach x with U − dx units of gas. When
we reach y, we have enough gas to go to gy. Also note that `xy = `yx since the
path is essentially “reversible”.

In Fig. 3 we illustrate the definition of function `xy. We assume here that all
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F
C

A

B

D

E

y

U − dx

gx

x
dx

gy

U − dy dy

Fig. 3. Function `xy. The path shown is the shortest valid path from x to y.

distances are Euclidean. Note that from x, we can only go to B and not A since
we start from x with U − dx units of gas. From B, we cannot go to D since the
distance between B and D is more than U , even though the path through D to
y would be shorter. From C we go to E since going through F will give a longer
path, since from F we cannot go to y directly.

Note that the function ` may not satisfy triangle inequality. To see this, suppose
we have three cities x, y, z. Let dxy = dyz = U

2 . Let dx = dy = dz = U
4 and

dxz = U . We first observe that `xy = `yz = U
2 . However, if we compute `xz, we

cannot go from x to z directly since we only have 3
4U units of gas when we start at

x and need to reach z with U
4 units of gas. So we have to visit gy along the way,

and thus `xz = 3
2U .

The algorithm is as follows:

(1) Create a new graph G′, with a vertex for each city. For each pair of cities x, y

compute `xy as shown earlier.

(2) Find the minimum spanning tree in (G′, `). Also find a minimum weight perfect
matching M on the odd degree vertices in the MST. Combine the MST and
M to find an Euler tour T .

(3) Start traversing the Eulerian tour. Add refill trips whenever needed. (Details
on this follow.)

It can be shown that the total length of the MST is less than the optimal solution
cost. Suppose x1, . . . , xn is the order in which the optimal solution visits the cities.
Clearly, the cost of going from xi to xi+1 in the optimal solution is at least `xixi+1

.
Since the collection of edges (xi, xi+1) forms a spanning tree, we can be conclude
that the weight of the `(MST) ≤ c(OPT ). Next we show that the cost of M is at

most c(OPT )
2 . Suppose the odd degree vertices are in the optimal solution in the

order o1, . . . , ok. We can see that `oioi+1
is at most equal to the distance we travel

in the optimal solution to go from oi to oi+1. So the cost of minimum weighted

matching on the odd degree vertices is at most c(OPT )
2 . So the total cost of the

Eulerian tour T is at most 3c(OPT )
2 .

Now we need to transform the Eulerian tour into a feasible plan. First, every
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indirect edge

refill trip

direct edge

city

gas stationx1
i x2

i x3
i x4

i xk+1
ix0

i xk
i

. . .

Fig. 4. Decomposition of the solution into strands.

edge (x, y) in T is replaced with the actual plan to drive from x to y that we found
when computing `xy. If dxy ≤ U − dx − dy the plan is simply to go straight from
x to y, we call these direct edges. Otherwise the plan must involve stopping along
the way in one or more gas stations, we call these indirect edges. Notice that the
cost of this plan is exactly that of the Eulerian tour T . Unfortunately, as we will
see below this plan need not be feasible.

Define a strand, to be a sequence of consecutive cities in the tour connected by
direct edges. If a city is connected with two indirect edges, then it forms a strand
by itself. Suppose the ith strand has cities x1

i , . . . , x
k
i . To this we add x0

i (xk+1
i ),

the last (first) gas station in the indirect edge connecting x1
i (xk

i ) with the rest of
the tour. Each strand now starts and ends with a gas station. We can view the
tour as a decomposition into strands as shown in Fig. 4. Note that if the distance
between x0

i and xk+1
i is more than U the overall plan is not feasible. To fix this

we add for every city a refill trip to its closest gas station and then greedily try to
remove them, while maintaining feasibility, until we get a minimal set of refill trips.
Let us bound the extra cost these trips incur.

Lemma 3.1. Let Li be the length of the ith strand. Then the total distance
traveled on the refill trips of cities in the strand is at most 2α

1−α
Li.

Proof. Assume there are qi refill trips in this strand. Label the cities with

refill trips to their nearest gas stations x
j1
i , . . . , x

jqi

i . Also label x0
i as x

j0
i and xk

i as

x
jqi+1

i . Note that `(T (x
jp

i , x
jp+2

i )) ≥ (1−α)U (otherwise the refill trip at x
jp+1

i can
be dropped). This gives us:

2Li >
∑

0≤p≤qi−1

`(T (x
jp

i , x
jp+2

i )) ≥ qi(1 − α)U =⇒ qi ≤
2Li

(1 − α)U

The length of each refill trip no more than αU . Therefore, the total length of the
refill trips is at most αUqi, and the lemma follows.

The cost of the solution is the total length of the strands (which is the length of
the tour) plus the total cost of the refill trips. (Note that without loss of generality
we can assume that our tour always starts from a gas station. For the case with
only direct edges, there is exactly one strand, starting and ending at the first city
with the gas station).

In other words, the total cost of the solution is:

`(T ) +
∑

i

αUqi ≤

(

1 +
2α

1 − α

)

`(T ) ≤

(

1 + α

1 − α

)

3

2
c(OPT).
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Theorem 3.2. There is a 3 (1+α)
2 (1−α) -approximation for the tour gas station prob-

lem.

3.2 Single Gas Station

In this version, there is a single gas station and our vehicle starts there. It must
return to the gas station before it runs out of gas after traveling a distance of at
most U from the previous fill-up. Fix constants (ρ1, ρ2, . . . , ρl). Our algorithm
first visits cities at distance ρ1

U
2 from the gas station (we refer to these cities as

C0). Beyond ρ1
U
2 we work in iterations. In the ith iteration we visit cities (Ci)

that lie at distance
(

U
2 ρi,

U
2 ρi+1

]

from the gas station. If we make 1−ρi

1−ρi+1
= γ a

constant, after
⌈

logγ
1−ρ1

1−α

⌉

iterations we will have visited all cities. We will argue

that in each iteration we travel O(c(OPT )) distance, which gives us the desired
result. The ρi values will be chosen to minimize the constants involved to get the
following theorem.

Theorem 3.3. There is a 6.362 ln 1
1−α

−1.534 factor approximation for the uni-
form cost tour gas station problem with a single station, for α ≥ 0.5.

Notice that that for α ≥ 0.5 the above approximation ratio is ≥ 1.
First we consider the cities C0 at distance ρ1

U
2 or less from the gas station.

Find a TSP tour on the gas station and C0 and chop it into segments of length
(1−ρ1)U . The distance from the gas station to any location is at most ρ1

U
2 and so

the segments can be traversed with loops of length at most U . In fact we can start
chopping the TSP tour at the gas station and make the first and the last segment
be of length (1 − ρ1

2 )U . The total length of these tours will be:

cost(C0) ≤

⌈

cost(TSP) − ρ1U

(1 − ρ1)U

⌉

U ≤
cost(TSP)

(1 − ρ1)
≤

3

2(1 − ρ1)
· OPT

The second inequality holds if we assume ρ1 ≥ .5. The third comes from using
Christofides [Christofides 1976] algorithm [Christofides 1976] to find the TSP tour
and the fact that OPT is a valid TSP tour.

Notice that it does not work well when cities are far away from the gas station
(α ≈ 1). In our scheme those far away cities will be visited in a different fashion. In
the ith iteration we visit cities Ci at distance (ρi

U
2 , ρi+1

U
2 ] by finding a collection

of paths of length at most (1−ρi+1) U spanning Ci and then turning these segments
into loops.

Suppose we knew that in the optimal solution there are ki loops that span some
city in Ci—this quantity can be guessed. First we run Kruskal’s algorithm but stop
once the number of components becomes ki, let Ri be the resulting forest. Each tree
is doubled to form a loop and then chopped into segments of length (1 − ρi+1) U .
Let k′

i be the number of such segments. The cost of the these loops is therefore,

cost(Ci) ≤ 2 cost(Ri) + k′
i ρi+1U

Lemma 3.4. The number of segments k′
i is at most (2γ + 1)ki.

Proof. The edges in Ri form a minimum weight forest with ki components, we
can relate this to the cost of OPT. Consider turning each loop in OPT into a path
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by keeping the stretch between the first and the last city in Ci. The set P of such
paths is a forest with ki components, therefore cost(Ri) ≤ cost(P ) ≤ (1 − ρi)Uki

Using this we can bound the number of segments we get after doubling and
chopping Ri:

k′
i ≤

⌊

2 cost(Ri)

(1 − ρi+1)U

⌋

+ ki ≤

⌊

2 (1− ρi)Uki

(1 − ρi+1)U

⌋

+ ki ≤ (2 γ + 1) ki

We now bound the cost of visiting the cities in Ci.

cost(Ci) ≤ 2 cost(Ri) + k′
i ρi+1U

≤ 2 cost(OPT) − 2kiρiU + (2 γ + 1) ki ρi+1U

≤ 2 cost(OPT) + (2 γ − 1) (cost(OPT) − kiρiU) − 2kiρiU + (2 γ + 1) ki ρi+1U

≤ (2 γ + 1) cost(OPT) + (2 γ + 1) ki (ρi+1 − ρi)U

Let k be the number of loops in the optimal solution whose length is greater
than ρ1U , notice that loops spanning cities beyond ρ1

U
2 must be at least this long,

therefore k ≥ ki for all i. Adding up over all iterations we get:

l
∑

i=1

cost(Ci) ≤ (2 γ + 1) (l cost(OPT) + k(ρl − ρ1)U)

≤ (2 γ + 1)

(

l +
1 − ρ1

ρ1

)

cost(OPT)

After l =
⌈

logγ
1−ρ1

1−α

⌉

iterations we will have visited all cities at a cost of:

[

3

2(1 − ρ1)
+ (2γ + 1)

(

logγ

1 − ρ1

1 − α
+ 1 +

1

ρ1
− 1

)]

cost(OPT)

We can use numerical optimization to minimize the approximation ratio in the
expression from above. The values ρ1 = 0.7771 and γ = 3.1811 gives us Theo-
rem 3.3.

3.3 A Greedy Algorithm

In this case we do not make any assumption on the maximum distance from a
city to its closest gas station. We will use the Point-to-Point Orienteering path as
the basis of the greedy scheme. In the Point-to-Point Orienteering problem, each
vertex in the graph has a prize. The goal is to find a path P of maximum length
d (predefined) between two given vertices s and t so that the total prize of P is
maximized. A 3-approximation algorithm for this problem is described in [Bansal
et al. 2004]. The greedy algorithm works as follows: At the beginning the prize of
all the cities are initialized to 1. As the algorithm proceeds whenever we visit a city
in a tour, we reset its prize to 0. The greedy algorithm will repeatedly choose the
Point-to-Point Orienteering path that begins and ends at s with maximum length
U , until the prize of all the vertices are reset to zero. Using an argument similar to
that in set-cover it can be shown that both the total cost and the number of cycles
given by this approach is at most O(log |T |) times the optimum cost.
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Theorem 3.5. The greedy method gives an O(log |T |) approximation guarantee
for both the total cost and the number of the cycles in the single gas station problem.

Proof. Observe that if an algorithm approximates the number of cycles in the
optimal solution, it also approximates the total length of the tour over the optimal
solution. For any given solution, we can merge each two cycles of length less than
U
2 together. The new tour is still feasible and of length less or equal the initial tour.
Thus, there exists a minimum-length solution in which the sum of the lengths of
any two cycles is at least U . Consider the solution with minimum length and with
the property that we can merge no more cycles. If the number of cycles in this tour
is Nc and the total length traversed is L, by the above argument we conclude that
L ≥ dJ

2 eU . Now, suppose we give an algorithm which cover all the points in aOPTc

cycles where OPTc is the optimal number of cycles to cover all the points.We can
conclude that the length of the tour is at most 2aT . From now on we try to find the
approximation factor for the number of cycles in our solution. Suppose the optimal
number of cycles is J . The total length of the tour will be at most U × J . Let ui

and si denote the number of elements covered in round i and the total number of
elements covered from the beginning till this round, respectively. Therefore, con-
sidering the way we choose the cycles we can assert that u1 ≥ n

3J
(where n in the

number of cities), and also for each ui ui ≥
n−si−1

3J
holds. The algorithm continues

until si ≥ n. We define si, by the following recursion:

si ≥

{

n
3J

i = 1

si−1 + n−si−1

3J
i > 1

After solving the above recursion, we see that si ≥ n(1 − 1
3J

)i. Our goal is to
find the smallest i so that si > n− 1. Hence, if iterate for i > J ×O(log n), all the
cities would be covered. So the greedy method will give us an O(log n) approximate
solution for both length and number of cycles.

4. CONCLUSIONS

Current problems of interest are to explore improvements in the approximation
factors for the special cases of Euclidean metrics, and planar graphs. In addition
we would also like to develop faster algorithms for the single source and destination
case, perhaps at the cost of sacrificing optimality of the solution.
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