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Abstract— Increasing prevalence of large-scale distributed
monitoring and computing environments such as sensor net-
works, scientific federations, Grids etc., has led to a renewed
interest in the area of distributed query processing and opti-
mization. In this paper we address a general, distributed multi-
query processing problem motivated by the need to minimize
the communication cost in these environments. Specifically we
address the problem of optimally sharing data movement across
the communication edges in a distributed communication net-
work given a set of overlapping queries and query plans for
them (specifying the operations to be executed). Most of the
problem variations of our general problem can be shown to
be NP-Hard by a reduction from the Steiner tree problem.
However, we show that the problem can be solved optimally if the
communication network is a tree, and present a novel algorithm
for finding an optimal data movement plan. For general commu-
nication networks, we present efficient approximation algorithms
for several variations of the problem. Finally, we present an
experimental study over synthetic datasets showing both the need
for exploiting the sharing of data movement and the effectiveness
of our algorithms at finding such plans.

I. I NTRODUCTION

Recent years have seen a re-emergence of large-scale dis-
tributed query processing in a variety of applications. This
has in part been fueled by an increasing number of scientific
federations such as SkyServer [1], [2], GridDB [3] etc.,
where users may issue queries involving a large number of
distributed data sources. Many of these datasets tend to be
huge, and as the scale of these federations and the num-
ber of users issuing queries against them increase, network
bandwidth is expected to become the key bottleneck [4].
Similarly in publish-subscribe systems and other distributed
stream processing applications, a large number of queries must
be executed in a distributed manner across the network [5], [6].
To enable high throughput and low latencies in presence of
high-rate data streams, the query processing operators must
be placed judiciously across the network to minimize the
data movement cost. The emergence of large-scale monitoring
infrastructures such as wireless sensor networks poses similar
distributed query processing challenges; the queries must be
processed inside the network in a distributed fashion so that the
lifetime of the typically resource-constrained sensing devices
is maximized [7], [8].

Although these applications may appear very different from
each other, the query optimization challenges they pose are
quite similar to each other. In this paper, we formulate and
address a general multi-query optimization problem where

the goal is tominimize the total communication costwhile
executing a large number of queries simultaneously in a dis-
tributed environment. We note however that the algorithms we
develop are centralized. Our main focus is to optimally share
the movement of data across multiple queries. We assume
that thequery plansare provided as part of the input, which
specify the operations that need to be performed on the data
items1. We allow the query plans to consist of generaln-ary
operators and place no restrictions on the types of operators
that can be used; however we assume that any node in the
communication network is capable of executing any operator.
In application domains such as sensor networks, distributed
streams and publish-subscribe domains, these operators will
typically be aggregate operators, in which case we allow par-
tial aggregation of the results; whereas in distributed databases,
the operators will typically be relational operators like joins.
We note that in this paper we do not addressjoin order
optimization issues, instead adopting a two-phase approach
where the join order decisions are made independently of the
scheduling and operator placement decisions [9], [10], [11],
[12]. We plan to extend our algorithms to handle join order
optimization and load balancing issues in future work.

Prior analytical results on this problem have been limited
to the single-query optimization case (in the distributed query
optimization literature [13]) or to specific types of queries
and/or specific forms of communication networks [7], [8]. In
this paper, we develop a framework to address optimization
of general query plans under a flexible communication model.
We develop a novel algorithm that finds the optimal solution
in polynomial time if the communication network is a tree,
extending previous results by Silberstein and Yang [8]. The
optimization problem can be shown to be NP-Hard when the
communication graph is not a tree by a simple reduction from
the Steiner tree problem. In that case, we present a polynomial
time algorithm for the problem with anO(log n) approxi-
mation guarantee (this is a worst case bound on the quality
of the solution, compared to an optimal solution). We also
develop several constant-factor approximation algorithms for
special cases of the problem. Finally we present a performance
evaluation over synthetic datasets to illustrate the need for
sharing data movement when a large number of queries need
to be executed simultaneously in a distributed environment.

1We use the termsrelation, data sourceand data iteminterchangeably in
this paper.



A. Outline

We begin with a brief discussion of related work in Section
II. We formulate the multi-query optimization problem and
summarize our main algorithmic results in Section III. We
then present a polynomial-time algorithm to find the optimal
plan that minimizes the total communication cost when the
communication graph is restricted to be a tree (Section IV).
We then consider arbitrary communication graphs, and present
several approximation algorithms for the problem (Section
V). We conclude with a preliminary performance study that
illustrates the need to share data movement in distributed
multi-query processing (Section VI).

II. RELATED WORK

There has been much work on distributed query processing
and optimization (see the survey by Kossmann [13]). As with
our work, most of this work has focused on minimizing the
total communication cost for executing a single query by judi-
ciously choosing the join order and possibly adding semi-join
operators to the query plan [14], [15], [16], [17], [18], [19]. In
contrast to this prior work, we considermulti-query optimiza-
tion which is an inherently harder problem, with few results
known even for the centralized case [20], [21]. On the other
hand, we don’t consider join order optimization in this paper,
and assume that a two-phase approach to query optimization
is being followed; the two-phase approach, proposed by Hong
et al. [9] for parallel query optimization, separates join order
optimization from scheduling issues, and is commonly used
to mitigate the complexity of query optimization in distributed
and parallel settings [10], [22], [11], [12].

Hasan et al. [23] and Chekuri et al. [24] present algorithms
for minimizing communication cost in parallel query opti-
mization, again assuming that the query plans are provided as
part of the input. Although these algorithms bear superficial
similarities to the algorithms we present, the underlying prob-
lem they address is fundamentally different from our problem;
they assume a uniform communication cost model (the cost of
communicating data between any pair of nodes is identical),
whereas in distributed systems the underlying communication
cost model is non-uniform; this is in fact the chief reason
behind the complexity of the problem. Also, this prior work
only considered single-query optimization, whereas we focus
on multi-query optimization.

Trigoni et al. [7] study the problem of simultaneously
optimizing multiple aggregate queries in a sensor network.
They use linear algebra techniques to share computation of
aggregates, but assume that the communication is along a pre-
determined tree. Silberstein et al. [8] study a similar problem
under the same restriction (calledmany-to-many aggregate
queries problem), and propose a solution based on solving
a bipartite vertex cover problem for each edge. Similar to our
work, Silberstein et al. don’t consider sharing computation
between queries either (in other words, only the movement
of original data sources is shared between queries).The works
by Trigoni et al., and Silberstein et al. assume identical-sized
data items and assume that the aggregate size is constant as

well. In contrast, we allow arbitrary-sized data items and put
no restrictions on the intermediate result sizes either.

In content delivery networks and publish-subscribe systems,
the goal is to transmit the information from a set of sources
to a set of sinks as efficiently as possible (see e.g. [25], [26],
[27], [28]). Although some of this work has considered the
issues in allowing users to subscribe to aggregate functions
over the data sources, we are not aware of any work that
has considered simultaneous optimization of multiple queries
in such a framework. Our results can be directly applied to
similar problems in the publish-subscribe domain.

The problems we study in this paper are closely related
to several problems that have been extensively studied in the
theory literature, in particular, the Steiner tree problem and its
generalizations. Given an undirected graphG = (V,E) with
non-negative edge weightsce and a set ofterminals, T ⊂ V ,
the Steiner tree problem asks for the minimum weight tree
subgraph ofG that connects all the terminals [30], [31]. This
problem is known to be NP-Hard and several approximation
algorithms are known for it [30], [31].

A generalization of the Steiner tree problem is theSingle
Sink Rent-or-Buy (SROB) Problem. As we show later, this
problem is a special case of our optimization problem. In this
problem, along with a graphG as defined above, we are given
a setD ⊂ V of demandsand a parameterM > 1. Each
demandj ∈ D has a non-negative weightdj . A solution to an
instance of SROB consists of a set of facilitiesF ⊂ V to be
opened, a treeT of G spanningF , and an assignment,f(), of
demands to the open facilities. If this solution assigns demand
j to the open facilityf(j) ∈ F , the total cost of the solution
is
∑

j∈D dj · `(j, i(j)) + M
∑

e∈T ce where the functioǹ
denotes the shortest path distance using edge lengthsce. Note
that there is no cost for opening facilities but the open facilities
have to be connected together. This problem was also called
the Connected Facility Location Problem [32]. This problem
is NP -hard, and an approximation algorithm with a factor of
2.92 was presented recently [33].

III. PROBLEM OVERVIEW AND SUMMARY OF RESULTS

We begin with a formal definition of the problem, and
present an illustrative example that we use as the running
example in the paper. We use the terminology from multi-
query join processing to describe the problem and the al-
gorithms (in particular, we assume that the operations being
performed arejoins); however the results extend naturally
to the case when other operations (such as aggregates) are
being performed instead. We then briefly summarize our main
algorithmic results.

A. Formal Problem Definition

Let X = {Si|i = 1, . . . , n} denote a set of relations
(data sources) stored in a distributed fashion. Without loss
of generality, we assume that each relation is stored at a
different node (this assumption is easy to enforce by dupli-
cating nodes and connecting them to the original node). We
use an edge-weighted graphGC over the nodes to represent
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the communication network; the weight of an edge indicates
the communication cost incurred while sending a unit amount
of data from one node to another. Whenever a data item of
size |S| is shipped across an edgee of weight w(e), the
cost incurred is|S|w(e). In a wireless sensor network, this
may be the energy expended during transmission of the data,
whereas in a distributed setting this may capture the network
utilization [4].

We are also given a set of queries,Q1, ..., Qm, with the
queryQi requiring access to a subset of relations denoted by
QR

i ⊆ {S1, . . . , Sn}. For each query, aquery planis provided,
in the form of a rooted tree, which specifies the operations
to be performed on the relations and the order in which to
perform them. Finally for each query a destination (calledsink)
is provided where the final result must be shipped.

Given this input, our goal is to find a data movement plan
that minimizes the total communication cost incurred while
executing the queries.

We note that this metric does not capture the (CPU) cost
of operator execution at the nodes. In many cases (e.g., in
sensor networks or publish-subscribe domains), these opera-
tions (typically aggregates) are not very expensive, whereas
in other cases (in scientific federations or other distributed
databases) the operator execution cost can be very high. We
plan to address load balancing in future work, and we focus
on communication cost minimization in this paper.

The above framework is fairly general. In particular we
allow the query tree to containn-ary operators and make no
assumptions about the operators themselves (except that we
know the result sizes). Note however that themany-to-many
aggregate queriesproblem [8], where we are asked to compute
a set of aggregates (e.g. SUM), each over a subset of the data
items, with partial aggregation of the results allowed, cannot be
directly mapped onto this framework. However, that problem
can still be reduced to our problem. We discuss this further in
Section IV-D.

It is easy to see that the problem isNP -hard for arbitrary
communication networks by a reduction from the Steiner
Tree problem in graphs. LetGC = G, and supposeT =
{v0, . . . , vk}. Define a set of|T | − 1 queries:Qi = {v0, vi}
for all i = 1 . . . k. The data items are all assumed to have unit
size and the result sizes are zero. It is easy to see that there is

a Steiner tree on the terminals of costB if and only if there
is a solution to the problem with costB.

B. An Illustrative Example

In Figure 1 we show our running example with six data
sources over a tree network, with the data sizes shown in
parentheses. We also illustrate a collection of three queries,
along with their query plans and the destinations. The three
queries have one data source in common,S2, whereas the rest
of the data sources are different for each query. Hence the key
optimization challenge here is to share the movement ofS2

across the network while executing the queries.
Figure 2 shows an optimal data movement plan computed

by our algorithm to solve these queries.

• (Query 1) The data movement plan for Query 1 (which
is also optimal for it in isolation) involves (1) joining
S1 and S2 at C, (2) shippingS1 on S2 across the edge
(C,D), (3) joining it with S4 at D, and (4) shipping the
result back toC.

• (Query 2) S2 is also shipped across edge(C,D) all the
way to F , where a join is performed withS6 for Query
2 at F , and this result is finally shipped back toD.

• (Query 3) Finally note that the optimal plan for Query
3 in isolation (without the other queries) would have
shipped S5 all the way to B where we would have
performed a join withS2. However, sinceS2 is shipped
from B to F (via D), we can perform a join ofS5 with
S2 at D itself, and then ship the result toB.

S2S6
S2S5

D

A

B

C

F

E

S2

S2

S2

S1S2

S1

S1S2S4
S2S5

S5

(S2)

(S1)

(S6)

(S5)

(S4)

Q3

Q2

Q1:2

Q1:1

Fig. 2. An optimal Data Movement plan for the above example setup. The
figure also indicates where the query operations took place, e.g., the first join
for Q1 (denotedQ1:1) was done atC and the second join was done atD.



C. Summary of Results

We briefly summarize our main algorithmic results, which
we elaborate upon in the next two sections.

1) One of our main results is that the optimization problem
can be solved optimally in polynomial time when the
underlying communication network is a tree. The algo-
rithm involves |GC | hypergraph cut computations on a
graph constructed by “merging” the query trees (Section
IV).

2) When the underlying communication network is an
arbitrary graph, we can get anO(log n) approximation
by reducing this problem to an instance of a tree metric,
by considering a probabilistic embedding of the metric
into a distribution over tree metrics (Section V-A).

3) For arbitrary communication networks, we develop con-
stant factor approximation algorithms for several inter-
esting special cases where we restrict the structure of
the query-overlap graph (Section V-C).

4) We show how to reduce the many-to-many aggregate
queries problem to a simpler problem called thepairs
problem, where each query only contains two sources
and all result sizes are 0. This reduction holds for
arbitrary communication networks, allowing us to apply
our algorithms to solve this problem. For the case
when GC is a tree, we use this reduction to derive a
considerably simpler proof for the algorithm given by
Silberstein et al. [8] (Section IV-D).

IV. CASE WHENGC IS A TREE

In this section we present a polynomial-time algorithm for
minimizing the data movement cost when the communication
networkGC is a tree. Our algorithm involves solving a series
of min-cut problems on appropriately constructed hypergraphs
(one for each edge inGC). We begin with some background
on min-cuts for hypergraphs, and then present our algorithm
and the correctness proof. We then present a reduction from
many-to-many aggregate queries to our problem (the reduction
does not require thatGC be a tree).

A. Background: Hypergraph Min-Cut and Partition Problems

A hypergraphH is specified by a vertex setV and a set
of hyperedgesE, where each hyperedge inE is a subset of
V (see Figure 3(i)). We are also given two special verticess
and t. The goal is to partitionV into S and T , with s ∈ S
andt ∈ T while minimizing the weight of the hyperedges that
include vertices in bothS andT (that arecut).

This problem generalizes the standards-t min-cut problem
which is usually solved by a max-flow algorithm. In fact, the
hypergraph min cut problem can also be solved by a max-
flow computation on a derived graph [34]. For completeness
we briefly describe the procedure here. In essence, every
hyperedge in the original graph is replaced by a subgraph,
containing directed edges, as shown in Figure 3(ii). For every
hyperedge, we add two new nodes and a directed edge between
them of capacity equal to the weight of the hyperedge. Several
high-capacity edges are also added as shown in the figure.
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Fig. 3. (i) An example of an edge-weighted hypergraph with one 4-node
hyperedge(X2, X3, X4, X5), of weightc, and several two-node hyperedges
(drawn as normal edges, e.g.,(S, X2), weights not shown); (ii) Reduction of
the s-t cut problem on the hypergraph to an edge capacitated flow problem
requires adding two new nodes per hyperedge (two-node hyperedges remain
unchanged in this construction); solving the max-flow problem on the new
graph gives us the mins-t hypergraph cut on the original hypergraph.

Hyperedges containing two nodes do not need to be changed
in the process. Solving thes-t max-flow problem on this new
graph (which contains no hyperedges) gives us a mins-t cut
on the hypergraph.

We define and utilize a variant of the above problem called
thehypergraph partitionproblem, where instead of two special
verticess and t, we are given two sets of vertices,Ls ⊂ V
andLt ⊂ V , Ls∩Lt = ∅, and we are asked to find a partition
of V into (S, T ) that separates the vertices inLs from the
vertices inLt such thatLs ⊆ S, andLt ⊆ T . We denote such
an instance by(H, Ls, Lt). It is easy to see that this problem
can be reduced to thes-t min-cut problem by: (1) adding two
special nodess andt, and (2) by connectings (similarly t) to
all the nodes inLs (similarly Lt) by infinite-weight edges.

B. Algorithm

The high level approach behind our algorithm is quite
simple. The algorithm follows three main steps:

1) Build a weighted hypergraph,HD, by combining the
query trees for all the queries. This hypergraph explicitly
captures all the opportunities for sharing the movement
of data sources among the queries.

2) For each edgee = (x, y) in GC , decide which data
sources and intermediate results move across that edge
by solving an instance of the weighted hypergraph
partition problem.

3) Combine the local solutions for all the edges into a
single global data movement plan.

This approach is quite similar to the approach taken in [8]
for solving many-to-many aggregate queries, even though the
problem we address is much more general. We discuss this
connection in more detail in Section IV-D.



(10)

S1 S2

   S4
(10)

(7)

(5)

(100)

C

C B

C

?

?

(10)

S1 S2

   S4
(10)

(7)

(5)

(100)

C

C C

D

?

?

(10)

S1 S2

   S4
(10)

(7)

(5)

(100)

C

C C

D

D

C

(10)

S1 S2

   S4
(10)

(7)

(5)

(100)

C

C B

C

C

C

(ii) Finding labeling for edge (B, C) (iii) Finding labeling for edge (C, D)(i) HD for a single query Q1

(10)

S1 S2

   S4
(10)

(7)

(5)

(100)
S1 S2

S1 S2 S4

destination

Fig. 4. (i) For a single query (Query 1), the hypergraph construction simply involves adding a new node corresponding to the designation; (ii, iii) Example
labelings for two of the edges in the communication network for Query 1. The “?”s indicate the decisions that need to be made, and the dashed edges indicate
that the edges that were cut (indicating data movement across the corresponding edge).

Steps 1 and 2 for a Single Query
We begin by describing Steps 1 and 2 for a single query
(Figure 4). We additionally assume that each leaf in the
query tree is a distinct data source (see the general algorithm
for when this assumption does not hold). The hypergraph
construction is quite easy in this case. LetT be the rooted
query tree for the query. We constructHD by adding a new
root vertex toT and attaching the original root ofT to the
new root – the new root denotes the node where the results
have to be shipped. The weight of an edge(b, a) ∈ HD is set
to be the size ofb, whereb is the child ofa. Figure 4(i) shows
an example of this construction forQuery 1 of our running
example. No hyperedges with more than 2 nodes need to be
created in this case.

Now consider an edgee = (x, y) in GC . Let Gx
C and

Gy
C denote the two connected subgraphs (trees) obtained by

deleting the edgee (with x ∈ Gx
C andy ∈ Gy

C).
The communication cost incurred in a candidate solution

because of the data transmitted over the edge(x, y) is fully
determined if we know where each internal node ofT (corre-
sponding to a query operator) is evaluated (at a node inGx

C or
at a node inGy

C); if a node is evaluated inGx
C and its parent is

evaluated at a node inGy
C (or vice versa), then we must ship

the result of that internal node across the edge(x, y).
We capture this using the following partition problem. In

the graphHD, we assign a label to each node based on which
connected component it lies in. All the leaf nodes which lie in
Gx

C are labeledx, and the leaf nodes inGy
C are labeledy. The

new root node (corresponding to the destination) is labeled
according as well (depending on whether the destination is in
Gx

C or Gy
C). The partition problem is simply to find a cut in the

graphHD that separates the nodes labeledx from the nodes
labeledy.

It is easy to see that this partition problem exactly captures
the communication cost minimization problem for the edge
(x, y). Each edge inHD that is cut (i.e., has different labels
for its endpoints) corresponds to a data movement (of a data
source or an intermediate result) across the edge(x, y). We
illustrate this with two examples.

Example 1:Continuing with the example shown in Figure
4(i), Figure 4(ii) shows the partition problem instantiated for

the edge(B,C) of the communication network. In this case,
nodeS2 has labelB and all the other leaf nodes have label
C (including the node corresponding to the new root, i.e., the
destination lies in the connected component corresponding to
C). By giving both internal nodes of the tree labelC, we can
see that there is only one edge (shown as a dashed edge) with
ends having different labels (of cost 10). This corresponds
to shipping S2 across the edge(B,C), and evaluating all
operators at the nodes in the connected componentGC

C . This
is precisely the cost of shipping data itemS2 across the edge
(B,C).

Example 2:Now consider the example shown in Fig-
ure 4(iii). This is the same query tree, but the labeling now
corresponds to edge(C,D). Note that the only leaf with
label D is S4. With the labeling of the leaves as shown, if
the internal labels are set asC and D for the two internal
nodes then the cost of the solution corresponds to the two
dashed edges shown in the figure since the ends of these edges
have different labels. Note that this corresponds to the cost of
shipping S1 on S2 from C to D and then finally the result
S1 on S2 on S4 back in the other direction.

Steps 1 and 2 for a Multiple Queries
Given a set of queries and corresponding query plan trees,
we first add new root nodes to the query trees (corresponding
to the destinations) as above. We then superimpose all the
query trees into a single directed acyclic graph,HQ, where
we merge the leaves carrying the same information together
into a single node. The edges inHQ are oriented from a node
to its parent in a query tree. Letp(v) = {v} ∪ {u|(v, u) ∈
HQ} denote the set of parents ofv. We define the hypergraph
HD = (V (HQ)2, {p(v)|v ∈ V (HQ)}), i.e., for each vertexv
in V (HQ), we add a hyperedge containing that vertex and all
its parents inHQ. The weight of hyperedgep(v) is set to be
the size of data itemv.

Figure 5(i) shows how this construction is done for the three
query trees in our running example. All three queries share
the data sourceS2, and we capture this by using a hyperedge
that containsS2 and three appropriate internal nodes from the
query trees. The weight of the hyperedge is set to be the size

2V (HQ) denotes the vertex set ofHQ.
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of data itemS2.
Next consider an edge(x, y) in GC and letGx

C andGy
C be

the connected components obtained by deleting(x, y). Once
again we assign a label (x or y) to each of the leaf nodes in
HD depending on which connected component ofGC it lies
in; we then find the minimum cost cut that separates the nodes
labeledx from the nodes labeledy.

We denote the minimum weight cut found for edge(x, y)
by C(Axy; Āxy), Axy ⊆ V (HD), Āxy ⊆ V (HD) (with Axy

denoting the set of vertices labeledx).
Example 3:Consider the example in Figure 5. Here we

show all three queries super-imposed with the shared source
S2 creating one large hyperedge. All the other hyperedges
have size 2 and are shown as regular edges. In Figure 5(ii) we
show the labeling based on edge(C,D) of the communication
networkGC . Several source and destination nodes are labeled
in advance, and the min hypergraph cut computation labels the
remaining nodes in an optimal way. Note that this labeling
corresponds to all the costs that are incurred for the data
shipped across edge(C,D).

For example for Query 1,S1 on S2 of size 10 is shipped
across edge(C,D) and the result (S1 on S2 on S4) of size 5 is
shipped back. In addition, we pay the cost to shipS1 of size
10 across the edge (this is the cost of the hyperedge having
nodes with labelC andD) so it is part of the cut. In addition
for Query 3, we pay the cost of shippingS2S5 of size6 across
the edge.

Step 3
The above two steps can be used to find the locally optimal
solutions for each edge in the communication graph. However
these solutions may not be consistent with each other (the
locally optimal solutions for two different edges may not agree
on where the internal nodes should be evaluated).

Let i denote an internal node in the hypergraphHD. We
will construct adirectedgraphJ i with vertex setV (GC), and
edges defined as follows: fore = (x, y) ∈ GC , if i is assigned
label y in the hypergraph cut found above (i.e., ifi ∈ Āxy),

then add a directed edge fromx to y in GC (and vice versa if
the i is assigned labelx). For instance, in the example shown
in Figure 5,J S1S2S4 will contain a directed edge fromC to
D (since the nodeS1S2S4 is assigned labelD).

Now we consider a vertexv in J i with out-degree0. This
implies that the decisions made on all edges incident tov
agree to placei on v; then we simply place the query operator
corresponding toi at v. The input data items for that operator
are shipped from their respective locations tov. For example,
the internal nodeS1S2S4 is evaluated atD in our running
example (see Figure 2 for the complete solution), andS1S2,
which is evaluated atC, is accordingly shipped fromC to D
(the other input data itemS4 is already atD).

In the next section, we will prove there is exactly one such
vertex with out-degree0 (denotedφ(i)), for every internal
nodei ∈ V (HD), under the assumption that each hypergraph
partition problem has a unique solution (this can be guaranteed
by adding small random perturbations to the data item sizes).
We call such a solution “globally consistent”. We will also
prove that the cost of acquiring the data items (original data
sources or the intermediate results) required to evaluate the
operator corresponding toi at v is accounted for in the costs
of the local hypergraph cuts.

C. Proof of Correctness

We begin with some notation. LetGC = (V,E) denote the
communication graph as before. For an edge(x, y) ∈ GC ,
let Lx

xy and Ly
xy denote the nodes inHD labeled x and

labeled y respectively. As above, we denote the minimum
cut corresponding toe by C(Axy; Āxy) (so we have that
Lx

xy ⊆ Axy andLy
xy ⊆ Āxy).

Consider two adjacent edgese1(u, v) and e2(v, w) in
the communication networkGC . We call C(Auv; Āuv) and
C(Avw; ¯Avw), the minimum weight cuts corresponding toe1

ande2, locally consistentif Auv ⊆ Avw.

The following simple lemma shows that “local consistency”
on every pair of adjacent edges implies thatJi has exactly one
vertex with out-degree 0,∀i.

Lemma 1:All cuts form a globally consistent solution if
for any two adjacent edges, the two corresponding minimum
cuts are locally consistent.

Proof: First we note thatJ i is a tree with all its edges
directed (since it is obtained by making each of the edges in
GC directed). It can be shown that any such tree has exactly
one node with out-degree 0 if and only if no two adjacent
edges inJ i share the same tail.

ForJ i to not satisfy the latter property, we must have that,
for a pair of adjacent edges(u, v), (v, w) ∈ GC :

in cut C(Auv; Āuv), i is labeledu (i.e., i ∈ Auv), but
in cut C(Avw; ¯Avw), i is labeledw (i.e., i ∈ ¯Avw).

But if Auv ⊆ Avw, there is no such node. Therefore,J i has
exactly one vertex with0 out-degree for alli ∈ V (HD).

The next lemma guarantees that local consistency holds for
any pair of adjacent edges.



Lemma 2:We assume the uniqueness of the minimum
cut solutions. LetC(Auv; Āuv) and C(Avw; ¯Avw) be min-
imum solutions for the instances(HD, Lu

uv, Lv
uv) and

(HD, Lv
vw, Lw

vw) respectively whereLu
uv ⊆ Auv and Lv

vw ⊆
Avw. If Lu

uv ∪ Lv
uv = Lv

vw ∪ Lw
vw = L andLu

uv ⊆ Lv
vw, then

Auv ⊆ Avw.
Proof: Suppose the lemma is not true. LetS be the set

of verticess such thats /∈ L, s ∈ Auv ands /∈ Avw. It is not
hard to see

w({e|e ∩ S 6= ∅ ∧ e ∩ Āuv 6= ∅ ∧ e ∩ (Auv − S) = ∅})
< w({e|e ∩ S 6= ∅ ∧ e ∩ (Auv − S) 6= ∅ ∧ e ∩ Āuv = ∅})

since otherwiseC(Auv−S; Āuv +S) is a better solution than
C(Auv; Āuv). But we have

C(Avw + S; ¯Avw − S) = C(Avw; ¯Avw)
+w({e|e ∩ S 6= ∅ ∧ e ∩ ( ¯Avw − S) 6= ∅ ∧ e ∩Avw = ∅})
−w({e|e ∩ S 6= ∅ ∧ e ∩Avw 6= ∅ ∧ e ∩ ( ¯Avw − S) = ∅})

< C(Avw; ¯Avw).

The inequality holds since:
{e|e ∩ S 6= ∅ ∧ e ∩ ( ¯Avw − S) 6= ∅ ∧ e ∩Avw = ∅}

⊆ {e|e ∩ S 6= ∅ ∧ e ∩ Āuv 6= ∅ ∧ e ∩ (Auv − S) = ∅}
which follows from ¯Avw − S ⊆ Āuv and:
{e|e ∩ S 6= ∅ ∧ e ∩ (Auv − S) 6= ∅ ∧ e ∩ Āuv = ∅}

⊆ {e|e ∩ S 6= ∅ ∧ e ∩Avw 6= ∅ ∧ e ∩ ( ¯Avw − S) = ∅}
which follows fromAuv − S ⊆ Avw.

Lemma 3:The cost of moving data items as needed to
execute the query operators is equal to the total cost of the
hypergraph cut solutions.

Proof: Consider an internal nodei ∈ V (HD), and let
φ(i) ∈ GC denote the vertex with out-degree 0 inJ i. Consider
an edge(x, y) ∈ GC . It is easy to see that ifi has labely in
C(Axy; Āxy), thenφ(i) ∈ Gy

C .
Let j denote a child ofi in HQ (the DAG from which

HD is derived). Now ifφ(j) ∈ Gx
C , then we must ship the

data generated byj to φ(i) through(x, y). However sincej
is labeledx in that case, the edge(j, i) ∈ E(HD) is cut in
the hypergraph cutC(Axy; Āxy), and the cost of shipping the
data across(x, y) is appropriately counted in the weight of
the hypergraph cut. On the other hand, ifφ(j) ∈ Gy

C , then
the data generated byj does not have to be communicated
across(x, y); this is appropriately captured in the hypergraph
cut weight, since the nodesi and j are labeled the same in
that case, and the edge(j, i) is not cut.

Theorem 1:The algorithm finds a global optimum solution.
Proof: It is easy to see the minimum cut instances

we solve satisfy the condition in Lemma 2. Therefore, we
have local consistency for all adjacent edges from which the
global consistency follows. Since each of the local solutions
is optimal for the corresponding communication edge, the
solution obtained by putting those together is also globally
optimal.

We remark that our solution does not work for the case
where multiple nodes inGC carry the same data nor do

we allow sharing of intermediate results across queries. The
problem is if we identify all internal nodes carrying the same
information together inHD, the connectivity of all edges used
for sending this information is enforced in our solution while
an optimal solution may have them disconnected. But if we
don’t merge them together, the possibility of the information
sharing is automatically ruled out, thus still possibly rendering
a suboptimal solution.

D. Many-to-many Aggregate Queries

Recall that in this problem each query needs to compute an
aggregate function over the values produced by a subset of the
data items, and the result needs to be transmitted to a specified
sink. The sizes of data items are assumed to be identical, and
the data may be aggregated along the way to the sink (the size
of the partial aggregate is assumed to be a constant, and may
be different from the size of a data item). As with our setup,
the aggregated values cannot be shared across queries. Figure
6 (i) shows an example instance of this problem with two
queries,Q1 which computes an aggregate function over three
sourcesS1, S2, S3, andQ2 which computes an aggregate over
sourcesS3, S4. All data sources are assumed to be unit sized,
and the size of a partial aggregate is also assumed to be of
size 1 (corresponding to a function like SUM). As mentioned
before, this problem cannot be mapped to our general problem
directly (because of partial aggregation). Next we show how
to reduce this problem to a simpler problem called thepairs
problem, and then present an algorithm for it.

Pairs problem: We define thepairs problem to be a special
case of our general problem where all queries are restricted
to be over two nodes each, and furthermore, the query results
are all of size 0 (in other words, the query results do not need
to be shipped to any sinks). The data items are allowed to be
of unequal sizes. Note that with just two data sources in each
query, the issue of whether partial aggregation is allowed or
not is irrelevant.

Definition 1: A query-overlap graph(denotedH) corre-
sponding to an instance of the pairs problem is defined to
be a graph where the vertices correspond to the set of data
items and each edge corresponds to a pair query (see Figure
7 for an example).

Reduction from many-to-many aggregate queries:Let a
queryQ be an aggregate query over data sourcesS1, . . . , Sk,
and let the destination be nodeSd. We introduce a new
data source,SRd, with size equal to the size of a partial
aggregate, and attach this data source to the nodeSd with
a zero cost edge. We then createk “pair” queries:(S1, SRd),
. . . , (Sk, SRd). We then construct an instance of our (pairs)
problem by combining the queries generated for each of the
aggregate queries.

Figure 6 (ii) shows the resulting set of queries for the
example instance, where we introduce the sourcesSR7 and
SR6 for Q1 andQ2 respectively.

Figure 6 (iii) shows an example solution to the resulting
pairs problem (assuming the size of the partial aggregate to



Q11: select * from S1, SR7
Q12: select * from S2, SR7
Q13: select * from S3, SR7

Q1 - sink S7:
select F1(S1, S2, S3) 
from S1, S2, S3

Q2 - sink S6:
select F2(S3, S4) 
from S3, S4
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Q21: select * from S3, SR6
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(ii) Reduction to "pairs" problem (iii) A solution for the reduced problem

Fig. 6. Reducing a set of many-to-many aggregate queries to the “pairs”
problem entails adding a new data source for each query, and replacing each
query with a collection of pair queries.

be the same as the size of a data item). It is easy to see this
solution corresponds to a solution to the original two queries.
Specifically, the movement ofSR6 or SR7 (the new nodes
added to represent the sinks) across an edge corresponds to
a movement of a partial (or full) aggregate in the opposite
direction. For example, in Figure 6 (iii),SR7 is moved across
the edge(S7, S9). This corresponds to movement of the partial
aggregateF1(S2, S3) across the edge(S9, S7). We formalize
this in the following lemma.

Lemma 4:A solution for the resulting pairs problem can
be mapped back to a solution for the original many-to-many
aggregate queries problem with the same cost.3

Silberstein-Yang Construction: Our algorithm, based on
solving a hypergraph partition problem for each edge ofGC ,
reduces to the algorithm presented by Silberstein and Yang [8].
For each edge(x, y) of GC (treated as a directed edge from
x to y), they construct a bipartite graph where on one side
there are nodes corresponding to the queries, and the other
side has nodes corresponding to the data items. There is an
edge in the bipartite graph between a query node and a data
node if the query needs to aggregate the data item, and if
the query destination (sink) is inGy

C and the data item is in
Gx

C . They then solve a minimum vertex cover (VC) problem
over this bipartite graph. The main point is that, for a query
Q, either all the data items for it that are inGx

C are shipped
across the edge (this corresponds to choosing the data items
as part of the minimum vertex cover), or the aggregation is
done first and the result shipped across the edge (the latter
corresponds to the query node being chosen as part of the
minimum vertex cover). The main issue to establish is that
all the Vertex Cover solutions (corresponding to each edge of
GC) can be put together to create an optimal solution for the
entire problem. Next we show a simpler proof of correctness
for this algorithm.

Formally, let us consider two adjacent edgese1 = (u, v) and
e2 = (v, w). RootGC at v. Let T (u) be the subtree rooted at

3The omitted proofs can be be found in the extended version of the paper.

nodeu. Let A = V (T (u)), C = V (T (w)), B = V −A−C and
EH(X;Y ) = {(x, y) ∈ E(H)|x ∈ X, y ∈ Y }. Let NG(v) =
{u|(u, v) ∈ E(G)} and NG(S) = ∪v∈SNG(v). Essentially,
for edgee1, we run minimum vertex cover (VC) algorithm on
bipartite graphG1(A,B ∪ C;EH(A;B ∪ C)) and for e2, on
G2(A ∪B,C;EH(A ∪B;C)).

Proof of Correctness:We only need to prove that for any
vertex a ∈ A, if a ∈ V C(G2), then a ∈ V C(G1). The
interpretation of a nodea ∈ V C(G2) is that it is shipped
across edgee2. For the solutions to be consistent, we need to
havea also shipped acrosse1 so that it can be shipped across
e2. Otherwise if the solution fore1 corresponds to aggregating
a and not shipping it acrosse1, but shipping it acrosse2 then
they are not consistent.

Suppose this is not true, letS be the set of vertices such
that v ∈ V C(G2) but v /∈ V C(G1). Let U = NG2(S)∩ (C −
V C(G2)). Observe thatw(S) < w(U), since if the converse is
true we can replaceS with U and obtain a vertex cover inG2

with lower weight (recall that the optimum solution is assumed
to be unique). SinceS ∩ V C(G1) = ∅, we getNG1(S) ⊆
V C(G1). ThusU ⊆ V C(G1). We claim thatV C(G1)−U+S
is a vertex cover forG1. The key observation here is

NG1(U) ⊆ NG2(U) ⊆ V C(G2) ⊆ V C(G1) ∪ S.

Thus, each edge that cannot be covered byV C(G1) − U
has an endpoint inS. So our claim is true, but this violates
the optimality of V C(G1) since w(V C(G1) − U + S) =
w(V C(G1))− w(U) + w(S) < w(V C(G1)).

V. CASE WHENGC IS NOT A TREE

In this section, we first present anO(log(n)) approximation
obtained by embeddingGC into a tree (using the result on
embedding arbitrary metrics into trees [35], [36]). We are
also able to develop an exact dynamic programming-based
algorithm for when we have only one query plan. In the rest
of the section, we focus on thepairs problem, and present
several constant factor approximations for it by restricting
the complexity of the query overlap graphH (Section V-C).
We leave open the question of developing a constant factor
approximation for the general version of this problem.

A. An O(log n) Approximation for GeneralGC

We use the notation from [36]. LetV be the set of vertices
of a graph, and letd, and d′ be distance functions overV .
The metric (V, d′) is said to dominate the metric(V, d) if
d′(u, v) ≥ d(u, v) for all u, v ∈ V . Let S be a family of
metrics overV , andD a distribution overS. (S,D) is called
a α-probabilistic approximationof (V, d) if every metric in
S dominates(V, d) andEd′∈(S,D)d

′(u, v) ≤ αd(u, v). A tree
metric is a metric induced by shortest path distances over a
tree.

Theorem 2:[36] For any given metric(V, d), we can pro-
duce a distribution of tree metrics which is anO(log n)-
probabilistic approximation ofd in polynomial time.



We sketch our approximation algorithm: suppose(S,D) is
the O(log n) approximation of(V, d). We randomly pick a
treeT from S according to the distributionD. We solve the
problem onT optimally by using the algorithm introduced
earlier for trees. SupposeSOLT is the solution. Now, we map
SOLT back to original graph. Specifically, if an edgee =
(u, v) ∈ T is used for sendingi’s (i could be a leaf node or
internal node of some query plan tree) information inSOLT

for i ∈ V (H), we use the shortest path fromu to v in GC for
sendingi’s information.

First, we claim ET∈S(OPTT ) ≤ O(log n)OPT where
OPTT and OPT are optimal solution inT andGC , respec-
tively. This can be easily shown by seeing that if there is an
optimal solution of costOPT in GC , then the expected cost
of this solution (expectation taken over the choice of tree)
increases by a factor ofO(log n). The cost of an optimal
solutionOPTT cannot be more than this cost. Since the tree
metric of T dominates the original metric, we can see the
(expected) cost of our solution is at mostET∈S(OPTT ).

B. Dynamic Programming Algorithm for a Single Query

In contrast with some of the other problems in distributed
query processing (e.g. the many-to-many aggregate queries
problem), our main problem can be solved in polynomial time
for a single query (even if the query contains arbitraryn-
ary operations). This follows from the observation that the
principle of optimality holds in this case, and the optimal
plan can be computed in a bottom-up fashion using dynamic
programming.

For each subtreeT in the query tree and for each nodev,
we compute the optimal cost of computing and transmitting
the result of T to v (denoted byOPT (T, v)); the final
operation (corresponding to the root of the subtree) may or
may not be done atv. Now, consider a subtreeTi with c
children,T 1

i , . . . , T c
i . For each nodevk, we can easily compute

the optimal cost of computing the result ofTi at vk using
OPT (Tm

i , vk),∀1 ≤ m ≤ c, 1 ≤ k ≤ n, by considering all
possible locationsvk for computing the final operation inTi.
Namely,

OPT (Ti, v) = min
vk∈V

(
c∑

m=1

OPT (Tm
i , vk) + w(Ti) · d(vk, v)

)
Wherew(Ti) is size of the result ofTi. This can be done in
timeO(nc), giving us aO(n2m+n3) algorithm for computing
the optimal cost, wherem is the size of the query tree. The
second term accounts for the cost to compute shortest paths
between all pairs of nodes.

C. Results for Pairs Problem

In the rest of this section, we focus on the pairs problem.
Recall that in this problem, each query is defined by a pair
of nodes whose data should meet somewhere in the network,
andH is the query overlap graph formed by treating these
“pairs” as edges (Figure 7). This problem generalizes the
Steiner tree and Single Sink Rent-or-Buy (SROB) problems
(see below), and the many-to-many aggregation problem can

(i)

(iii)

Q1: select * 
       from S1 JOIN S2
Q2: select * 
       from S1 JOIN S3

Q3: select * 
       from S1 JOIN S4
Q4: select * 
       from S1 JOIN S5
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Fig. 7. (i) An instance of the pairs problem with 4 queries; (ii) The
corresponding query overlap graph,H, is astar; (iii) Mapping the case when
H is a star to Single Sink Rent-or-Buy (SROB) Problem.

also be reduced to it. While the pairs problem is of interest
in its own right, we also believe that a better solution for it
(e.g., a constant approximation) will shed light on the general
problem.

Consider a special case of the pairs problem whereH
is a “star” graph. Figure 7 (i,ii) shows an example of this.
If, furthermore, all data items have the same size, then the
problem is exactly equivalent to the Steiner tree problem
(which is NP -hard even for planar graphs). When the data
item sizes are unequal, then it reduces to the SROB problem
(or the connected facility location problem). Essentially, in the
reduction to the SROB problem, the center of the star pushes
the data to all opened facilities and each leaf of the star simply
sends its data to its nearest opened facility. See Figure 7 for
an example of the reduction. HereS1 is shipped on a tree to
S9 andS5, with S2 andS3 being shipped toS9, andS4 being
shipped toS8. This solution corresponds to “buying” the edges
on which S1 is shipped, and “renting” the other edges since
we pay a fixed cost (size ofS1) for the edges on whichS1

is shipped and a variable cost (depending on the size of the
other items) for the other edges.

We will make use of approximation algorithms for the
Steiner tree problem (when data item sizes are equal) or
the SROB problem (when data item sizes are arbitrary) as
subroutines. Letρ denote the approximation ratio for the
appropriate problem. As discussed in Section II, the best
known values forρ for the Steiner tree and SROB problems
are 1.55 [30] and 2.92 [33] respectively.

Our main result is a constant approximation ifGC has con-
stantstar arboricity. The algorithm contains many important
special cases, for example,H being a tree, planar or degree-
bounded. In the special case whenH is a tree of depth two,
we can develop an improved bound.

Before presenting the algorithm, we need some definitions.
Definition 2: The star arboricitySN(G) of a graphG =

(V,E) is the minimum numberk such thatE can be parti-
tioned into setsE1, E2, . . . , Ek and each connected compo-
nent ofGi = (V,Ei) is a star for1 ≤ i ≤ k.

Theorem 3:If SN(H) can be computed in polynomial time
we can obtain anρSN(H)-approximation.



Proof: The algorithm simply first decomposes the query-
overlap graphH into star forestsH1, . . . ,HSN(H), solvesHi

separately, then glues together the solutions for allHi together.
It is trivial to see that the cost of an optimal solutionOPTi

for Hi for any i is at most the cost of an optimal solution
OPT . So, the cost of our approximation is at most

∑SN(H)
i=1 ρ·

OPTi ≤ ρ · SN(H) ·OPT .
The constant approximations for the following special cases

can be easily obtained by applying the above theorem.

1) H is a tree: It is easy to seeSN(T ) ≤ 2 for any tree
T (by defining the centers of stars as alternate levels of
the tree). So, we have a2ρ approximation.

2) H is a bounded degree tree:We can solve this case
optimally (in polynomial time) using dynamic program-
ming. The dynamic program is similar to the one we
used to solve single query case in Section V-B. Suppose
Tv is the subtree rooted atv and v1, . . . , vc are v’s
children.OPT (Tv, u) is the optimal cost for the instance
where H = Tv ∪ {(v, u)} with w(u) = ∞ Then,
OPT (Tv, u) = minu1,...,uc∈V (

∑c
i=1 OPT (Tvi

, ui) +
w(v) · MST (u1, . . . , uc, v, u)) where MST (.) is the
cost of minimum Steiner (or SROB) tree connecting all
vertices in its argument (Note that minimum steiner or
SROB trees can be computed in polynomial time for a
constant number of terminals).

3) H has arboricity α: We have a2αρ approximation4.
4) H is a planar graph: It is known that the arboricity of

any planar graph is at most 3 ([37]). So, we can have a
6ρ approximation.

5) The maximum degree ofH is a bounded constant
∆: We can have a∆-approximation, since we can
decomposeH into at most∆ bounded degree star forests
(by repeatedly finding a arbitrary spanning star forest
and deleting it).

It H is a tree and all data items are equal-sized, we adopt the
following algorithm that performs strictly better than gluing
together Steiner trees for alternating levels of stars: Grow a
Steiner tree bottom up in the following manner: LetT (v) is
the tree grown fromv, and v1, v2, . . . , vl are v’s children.
T (v) is the (approx) Steiner tree connectingv and allT (vi)s.
T (v) can be computed by first shrinking allT (vi)s to single
nodes, then run Steiner tree approximation withv and these
shrunk nodes as terminals. We prove in next lemma it is1.5ρ
approximation if the height ofH is at most 2. The question
whether it achieves a ratio strictly better than2ρ is left open.

Lemma 5:The above algorithm is a1.5ρ-approximation
whenH has maximum height 2.

VI. EXPERIMENTAL RESULTS

In this section, we present a preliminary performance eval-
uation of the algorithms presented in this paper over syntheti-
cally generated datasets and query workload. The main goals
of our evaluation are to illustrate the importance of sharing

4The arboricity of a graph is defined in a similar way to the star arboricity,
except that each connected component is required to be a tree, not a star.

data movement during multi-query optimization in distributed
systems, and to show the effectiveness of our approximation
algorithms at finding good sharing plans. We begin with a
brief description of the experimental setup.

In all the experiments, we compare the performance of
our proposed algorithms with the approach of optimizing
each query optimally in isolation using the DP algorithm
described in Section V-B (calledIND-DP). When using the
latter approach, although we don’t try to explicitly share
data movement, any incidental sharing is accounted for when
computing the total communication cost. For each experiment,
we also compute the optimal cost of aNAIVE approach
wherein the data from all data sources that are referenced
in the queries, is collected at a single site. We use the cost
incurred by this NAIVE approach to normalize the costs of
our algorithm andIND-DP, and report these normalized costs.

For each of the experiments, we randomly generate a set
of data sources, distributed in a 2-dimensional plane, and we
add communication edges between pairs of sources that are
sufficiently close to each other. If the communication network
is required to be a tree, we compute the minimum spanning
tree of the communication network and discard the rest of the
edges. We report results for two different setups:

• Dataset 1: The sizes of all the data sources were set to
be identical; this captures application domains such as
sensor networks and distributed streams, where the data
sources generate equal amounts of data in each time step.

• Dataset 2:The data source sizes were randomly chosen
from a tri-modal distribution as follows: for 75% of the
data sources, the data item sizes were chosen uniformly
at random from the interval [100, 200], for 20% of the
data sources, the sizes were chosen from [1000, 2000],
whereas for the remaining 5% data sources, the sizes were
chosen from the interval [10000, 20000].

The query workload is randomly generated by choosing each
query to be over a random subset of the sources, with the
number of sources in it chosen randomly between 2 andmax-
query-size(an experimental parameter). We also experiment
with a query workload where all queries are chosen to be over
geographically co-located sources (denoted LOCAL); this is
enforced by requiring that all the sources in a query be within
a specified distance of each other. Each plotted point in the
graphs corresponds to an average over 25 random runs.

A. GC is a Tree

With the first set of experiments, we compare the per-
formance of our hypergraph-based algorithm (HYPR) with
IND-DP. As mentioned above, we restrict the communication
network to be a tree by finding the minimum spanning tree
and deleting all edges that are not part of the MST.

We ran experiments with several values of the experimental
parameters, and report the results from a representative set
of experiments in Figure 8. In these experiments, we set
the number of data sources to be 100, and compare the
performance of the two algorithms as the number of queries
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Fig. 8. Results for when the communication network is a tree: the costs of HYPR and IND-DP are normalized using the cost of the NAIVE solution.
LOCAL refers to a query workload where the queries are restricted to be over geographically co-located sources.

(default value: 50), the number of nodes, and the max-query-
size (default value: 5) were varied.

Figures 8 (i) and (ii) show the effect of increasing number of
queries on the performance of the two algorithms for the two
datasets and for the two query workloads. As we can see, in all
four cases, the communication cost incurred by our approach
(HYPR) is significantly lower than the costs of the other two
approaches (IND-DP or NAIVE); this validates our assertion
that sharing of data movement is paramount when executing
many queries over distributed data sources. The performance
of HYPR and NAIVE illustrates several interesting features.
As the number of queries is increased, there is a point at which
the optimal solution degenerates to NAIVE (i.e., the optimal
solution requires collecting all data at a central location). This
is especially true for Dataset 1 (equal-sized data sources) and
non-local queries. Since the query may involve data sources
that are far from each other, the total amount of data movement
required to execute the queries is quite high, and the NAIVE
option soon becomes preferable.

Dataset 2 however penalizes the NAIVE approach signifi-
cantly – it contains several very large data sources (about 5),
because of which the optimal solution typically collects the
rest of the data sources at those locations and evaluates the
queries there; on the other hand, NAIVE is forced to move all
but one of those data sources, thus incurring a high penalty.
For both datasets, the performance of IND-DP and HYPR is
much better than NAIVE for the LOCAL query workload; the
NAIVE solution forces a much higher data movement than
required to execute such local queries.

Figures 8 (iii) and (iv) show the results of experiments
where the number of nodes in the network, and the max-query-
size were varied, for Dataset 2. As we can see, HYPR contin-
ues to outperform both NAIVE and IND-DP by large margins
across a range of values of the experimental parameters.

B. GC is a not a Tree

In this case, we restrict ourselves to the case when all
queries are of size 2. IND-DP once again optimizes each
query optimally but independently from the other queries.
We compare it against an approach that greedily chooses the
largeststar in the query overlap graph, and uses the Steiner
tree-based algorithm (STN) presented in Section V. We use
the 11/6 approximation by Zelikovsky [31] for computing

Steiner trees. We would like to note that this algorithm does
not take the data item sizes into consideration, and hence is
not expected to perform well for Dataset 2.

In Figures 9 (i) and (ii), we report the results for the two
datasets, Dataset 1 and Dataset 2, and for the two query
workloads. As we can see, for Dataset 1, STN always performs
better than IND-DP for both query workloads, and both of
them find much better solutions than NAIVE for the LOCAL
query workload. However, both STN and IND-DP perform
worse than NAIVE for the non-local query workload for larger
numbers of queries. As expected, STN performs much worse
than IND-DP and NAIVE for Dataset 2.

In Figure 9 (iii), we compare the performance of the
three algorithms for the case when the query overlap graph
is restricted to be a tree. Note that this limits the number
of queries to 99 (=number-of -data-sources − 1). As we
can see, STN performs significantly better than IND-DP, but
approaches NAIVE as the number of queries approaches its
upper limit. Finally in Figure 9 (iv), we report the performance
of the algorithms as the number of data sources is varied.
The number of queries was set to be half the number of data
sources. As we can see, the comparative performance of the
three algorithms is quite consistent across a range of network
sizes. We observed similar behavior for other settings of the
parameters.

Our experimental evaluation for the general case suggests
that the best option might be to run all three algorithms, and
take the best solution among those. Development of better
algorithms, with guaranteed approximation ratios, is clearly
an open and fertile area of further research.

VII. C ONCLUSIONS

In recent years we have seen a rise in distributed query
processing driven by an increasing number of distributed mon-
itoring and computing infrastructures. In many of these envi-
ronments the communication cost forms the chief bottleneck.
In environments such as sensor networks, the communication
cost directly affects the energy consumption of the sensing
devices and dictates the lifetime of the network. In Internet-
scale environments such as scientific federations, the network
bandwidth is the limiting factor. In this paper we addressed
the problem of optimizing data movement when executing
a large number of queries over distributed data sources. We
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Fig. 9. Results for the general case - all queries are restricted to be over two sources each

presented a framework for analyzing this problem by showing
the similarities between several variations of the problem. Our
main contribution is a new algorithm for finding an optimal
sharing plan when the communication is restricted to be along
a tree. This algorithm also allows us to develop aO(log(n))
approximation algorithm for general communication graphs.
We also develop several approximation algorithms for special
cases of the problem. Interestingly, even some very special
cases correspond to well studied problems in the literature.
Our preliminary experimental analysis shows that sharing of
data movement is critical when executing a large number of
queries over distributed data sources.

Our work has opened up many avenues for further research.
Although we exploit sharing of base data sources, we do
not consider sharing of intermediate results. Incorporating
intermediate result sharing, load balancing, and join order
optimization into our framework for multi-query optimization
remains a rich area for further research. Our algorithms assume
that the set of queries to be executed is provided as the input;
in practice, we expect the queries to arrive one-by-one and we
plan to address the issue of developing online algorithms to
handle such scenarios.
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