Chernoff-Hoeffding Bounds for Applications with
Limited Independence*

Jeanette P. Schmidt! Alan Siegel*
Computer Science Department Computer Science Department
Polytechnic University Courant Institute, New York University
Brooklyn, NY 11201 New York, NY 10012

Aravind Srinivasan®
Department of Computer Science
Cornell University

Ithaca, NY 14853

Abstract

Chernoff-Hoeffding bounds are fundamental tools used in bounding the tail probabilities
of the sums of bounded and independent random variables. We present a simple technique
which gives slightly better bounds than these, and which more importantly requires only limited
mndependence among the random variables, thereby importing a variety of standard results to
the case of limited independence for free. Additional methods are also presented, and the
aggregate results are sharp and provide a better understanding of the proof techniques behind
these bounds. They also yield improved bounds for various tail probability distributions and
enable improved approximation algorithms for jobshop scheduling. The “limited independence”
result implies that a reduced amount of randomness and weaker sources of randomness are
sufficient for randomized algorithms whose analyses use the Chernoff-Hoeffding bounds, e.g.,
the analysis of randomized algorithms for random sampling and oblivious packet routing.

1 Introduction

The most fundamental tools used in bounding the tail probabilities of the sums of bounded and
independent random variables, are based on techniques initiated by Chernoff [11] and generalized
by Hoeffding [17] more than thirty years ago. They are frequently used in the design and analysis
of randomized algorithms, derandomization, and in the probabilistic method. We present a sim-
ple method which generalizes, somewhat, the classical method for proving the Chernoff-Hoeffding
bounds, in the case of bounded random variables confined to the interval [0, 1]. More importantly,
this approach requires only limited independence among the random variables, and thereby imports

a variety of standard results to the case of limited independence for free. This and related bounds
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lead to a variety of applications ranging from improved bounds for tail probability distributions to
new algorithmic results.

The “limited independence” result implies that sources of randomness that are weaker than the
standard model of unbiased and independent bits, are sufficient for any algorithm whose analysis
uses the Chernoff-Hoeffding bounds. It also provides a better understanding of the proof techniques
behind these bounds, and gives improved bounds for various tail probability distributions. Via
standard techniques, it leads to a simple analysis of algorithms for such classical problems as random
sampling. The formulation also leads to approximation algorithms with better approximation
guarantees for certain problems.

Given n random variables Xy, X5,..., X,,, suppose we want to upper bound the “upper tail”
probability Pr(X > a), where X =37, X;, p = E[X],a = u(1+ ) and 6 > 0. The classical idea
behind the Chernoff-Hoeffding bounds (see, for instance, Chernoff [11], Hoeffding [17], Raghavan
[35] and Alon, Spencer, & Erdds [3]) is as follows. For any fixed t > 0, Pr(X > a) = Pr(e!X >

X
e’) < EE;Z ], by Markov’s inequality. Computing an upper bound u(t) on E[e!*] and minimizing

1;(;) over ¢ > 0 gives an upper bound for Pr(X > a).

An important situation in computation is the one in which X; € {0,1}, ¢ = 1,2,...,n. For
this case, we construct a class of functions of X that is as easy to analyze, and which includes
the class {e/X : ¢ > 0} and do the above minimization over this class. In the process, we discover
that Xy, Xg,..., X, need only be h(n,u,d)-wise independent for a suitably defined function
h(-,-,-), which is typically much less than n for many algorithms; recall that a set of random
variables V' exhibit k—wise independence if any subset of & or fewer random variables from V are
jointly independent, which is to say that their joint probability distribution function is just the
product of the individual distributions. One reason for the use of the ¢X function in the classical
methods is that F[e!X] generates all higher moments of X; using only a constant number of higher
moments, for instance, gives weak bounds. However, in the binary case, the first n moments
are sufficient to generate all higher moments, which motivates our method. Interestingly, this
formulation also can be applied to general X; that take arbitrary values in the interval [0, 1], even
though it is not true that the first n moments of X = >"7-; X; determine all higher ones.

The results have many applications to tail probability distributions. They imply similar “limited
independence” results when Xy, X5, ..., X, take values in the interval [0, 1]; this can be extended
to bounded random variables, by scaling their ranges to [0, 1]. In the case of the hypergeometric
distribution (sampling without replacement), it provides an elementary mechanism to attain slightly
better bounds than those implied in [17] and by Chvatal [13]. The method also yields good upper
bounds for the tail probabilities of the sums of random variables with limited independence.

These constructions also provide pointers to further improvement of the independence bounds.
For example, we will take the liberty of redirecting, somewhat, the estimation method as appropri-
ate, when attaining improved tools for analyzing the behavior of the sum of k—wise independent
random variables. The results simplify and sharpen some of the analyses done in [39] and [40]. In
particular, we derive good upper bounds on E[((XF, Xi) — E[>", X;])¥], where X1, Xo,..., X,
are k—wise independent random variables, each of which lies in the interval [0, 1]; this leads to
better independence bounds than our h(n,u,d) when § < 1. We also prove good bounds on the

probability of exactly r successes in a sequence of k—wise independent Bernoulli trials, which shows



that even with modest independence, probabilities and conditional probabilities are close to the
fully independent case, in situations like hashing.

The sufficiency of limited independence has several computational applications. First, it means
that any random process whose analysis uses the Chernoff-Hoeffding bounds can be simulated with
a weaker random source than one which outputs unbiased and independent bits. Next, via known
constructions of random variables with limited independence using fewer random bits (Joffe [19],
Carter & Wegman [9], Mehlhorn & Vishkin [26], Alon, Babai & Itai [1], Siegel [43]), we can reduce
the randomness required for certain algorithms. One simple example is that of random sampling:
given a universe U and a subset X C U, the problem is to estimate the fraction of objects of type X
in U, such that the absolute error of the output is at most § with probability at least 1—¢, for given
error parameters § and €. The new constructions imply that if R independent samples are required
to yield the desired bound, then it in fact suffices for those R samples to be k*-wise independent,
for k* = O(log(1)). These samples can be generated by O(log(1)) random samples from U, using
standard methods. Note that the above construction is not optimal with regards to the number
of random bits used (see Bellare, Goldreich & Goldwasser [6] for an optimal construction), but
is extremely simple. It is also easily parallelizable, while it is not known how to parallelize other
schemes for reducing randomness, e.g., random walks on expanders. It has come to our attention
that via weaker bounds on the £th moment, essentially the same bounds for the random sampling
problem have been obtained by Bellare & Rompel [7]. We believe that there should be additional
applications yielding reduced randomness. A spectrum of explicit constructions of oblivious routing
algorithms on the butterfly with varying time-randomness parameters is among the results of Peleg
& Upfal [32]; our “limited independence” result directly matches these bounds on the hypercube
and, we believe, should extend to other interconnection networks.

Finally, we combine the method of conditional probabilities [34, 44] with the new construction
to obtain two results. We get a much faster implementation of the sequential jobshop scheduling
algorithm of Shmoys, Stein & Wein [41]. It is comparable in time complexity to the speedups
due to Plotkin, Shmoys & Tardos [33] and Stein [45] but importantly, the approximation bound it
presents is better than the ones of [33] and [45]. Here, we show that a problem can be derandomized
directly, thereby avoiding the bottleneck step of solving a huge linear program. We also prove an
“exact partition” result for set discrepancy, and derive a polynomial-time algorithm for it.

The organization of the paper is as follows. Section 2 presents the new formulation and its

applications to tail probabilities, and Section 3 presents applications of these results to computation.

2 The Basic Method, and Applications to Tail Probabilities

In this section, we introduce the method, discuss its implications to the tail probabilities of various
distributions, and analyze some related approaches. We also prove probability bounds for exactly r
successes in a sequence of Bernoulli trials under limited independence. As discussed in Section 1, the
basic idea used in the Chernoff-Hoeffding (henceforth CH) bounds is as follows. Given n random
variables (henceforth “r.v.”s) Xy, Xq,..., X, we want to upper bound the upper tail probability



Pr(X > a), where X =5"", X;, p = E[X],a=p(l+46) and 6 > 0. For any fixed ¢ > 0,

Pr(X > a) = Pr(et* > e%) <

by computing an upper bound u(t) on F[e!X] and minimizing %}2 over t > 0, we can upper
bound Pr(X > a). When Xy, X3,..., X, are binary, we construct a class of functions of X that
includes the class {e’X : ¢ > 0} and do the minimization over this class; in the process, we discover
that Xy, X3,..., X, need only be h(n,u,d)-wise independent for a function A(-,-,-) that will
be defined in equation 3 of the next section.

Notation. If z is real and r is a positive integer, then (jf) will denote, as usual, ﬂx—_l%z_—ml
with (5) = 1.

2.1 Estimating tail probabilities of binary random variables

The CH bounds are frequently used when the r.v.’s Xy, X5,...X,, are binary and independent. In
this section, we first assume that X1, Xo,...X,, are 0-1 independent r.v.’s with Pr(X; = 1) = p;,
1 < ¢ < n; the independence assumption will be relaxed later, and the results will
be extended to r.v.’s X; with 0 < X; < 1, in Section 2.2. Let X =37, X;, and p =
E[X] = Yy pi. We want good upper bounds on Pr(X > u(1+4§)), for § > 0. Chernoff [11]
implicitly showed that for identically distributed 0-1 variables X;, Xs,...X,, and for a > p,

) < ) = (B (A By,

ming; <
et a’ ‘n—a

Hoeffding [17] extended this by showing that L(n, pt, @) is an upper bound for the above minimum
even if the X,’s are not identically distributed and range between 0 and 1. Replacing a with u(1+94)
in the Hoeffding estimate L(-, -, ) gives, for § > 0,

5 n—
(1+ (n—ulzilM))) ((149)

(14 8)1(159)

Pr(X > p(1446)) < F(n,u,d) =

Since L(n, p1, @) is symmetric with respect to (a, ) and (n — a,n — p), the Hoeffding estimate also
shows that

Pr(X <p(l-8)=Pr(n—X > 1-8) < F 5 = 0= Gty 0
r(X <p(l-368)=Pr(n—X>n—pu(l-19)) <F(n,p,—6) = (1 —6)n(1=9)

The following simple upper bounds for F(n,u,§) and F(n,u, —4§) are sufficient to derive most
of the useful approximations that have appeared in the literature [17, 4, 35, 3].

p

P(n, 1, 8) < G(p, 8) = (m

)# (see, for example, [35]);

ford <1, G(u,d)< e~ 13 [4]; ford >2e—1, G(u,d) < 2= (1+8)n [35], and
F(n,pu, —8) < G(u, —6) < e #1217, 4, 35, 3].

At the heart of these estimates are the simple calculations associated with the multiplicative
nature of E[e*X]. Recall that e!X = 32220 £ X", Consider X2, for instance. X% = (X;+Xo+---+



Xp)? = Y X2+ 2 cicip<n XiXj = S0t Xi + 21 <i <ip<n Xi X, since X2 = X, for X; €
{0, 1}. Similarly, other higher powers of the X;’s are unnecessary, implying that a form simpler and
more useful than functions of the form {e*X : ¢ > 0} might exist. There are many ways to formalize
this. We define, for z = (z1,23,...,2,) € R", a family of symmetric multilinear polynomials
5i(2),7=0,1,...,n, where So(2) = 1, and for 1 < j < n, 5;j(2) = Y1<ijciycij<n 2ir Zip *** Ziy- WWe
start with the simple

Lemma 1 Suppose z1,zz,...,2, take on binary values. Then for any positive integer j, (z1 +
Zg ot 2p) =3, (3:m) @;Si(21, 22, ..., %), for some non-negative inlegers ay, az, ..., tmin(jn)-

The proof of Lemma 1 is trivial and is omitted. The converse of Lemma 1 also is true; if

z=(2z1,22,...,2,) €4{0,1}", then for any j, 7 =0,1,...,n,

J

J
Y(uo, - -, uj) € RITY F(vg, ..., v;) € I ZUiSz’(Z) = Z%’(Zl +zt 4z

So, the two forms: polynomial of z; 4+ 22+ - -+ 2z, and linear combination of So(z), S1(2), ..., 5.(2)
are equivalent. Note that if the binary random variables X;, X5,..., X,, are independent, then

E[S:(X1, Xg, ..., X,,)]is explicitly available: E[S;(X1, Xg,..., X,)] = Si(p1,p2,...,Pn), where p; =
Pr(X; =1). This explains our preference for the S;’s.

Since the expansion e'? = $°2°, ’i—LZZ converges for all ¢t and Z and since all the coefficients %

-
S R

are positive if t > 0, we get

Corollary 1 Let 2,23, ..., 2, take on binary values. Then for anyt > 0, there exist non-negative

reals ag, ay, ..., a, such that e:1t=242) = S0 0.6 (21 2y .., 2,).

One reason for the use of the function e’ in the CH bounds is the need for higher moments of
X. In particular, the moment generating function of X is defined to be E[e"X] = 3222, %E[Xi];
its derivatives generate all higher moments of X. Moreover, the use of moment generating functions
embed the problem of attaining probability estimates in a space rich with algebraic structure and
convex inequalities. (More about the computational aspects of such an alternative approach can
be found in [42].) The need for higher moments is due to the fact that a direct application of
Markov’s or Chebyshev’s inequality to upper bound Pr(X > F[X]- (14 §)) leads to weak bounds.
Higher moments and exponentials give dramatically better estimates. But when X is the sum of
random bits X, Xo,..., X,;, Lemma 1 and Corollary 1 imply that all the higher moments of X
can be linearly generated by {E[S;(X1, X2,...,X,)]: ¢=0,1,...,n}. Equivalently, they are also
generated linearly by any n higher moments of X.

So, we now consider functions of the form > ,vy;5:(X1, Xg,..., X,,) where yo,y1,...,y, > 0,
instead of restricting ourselves to those of the form e, for some ¢ > 0. Indeed, by Corollary 1,
we will be considering a class of functions which includes the class {e!* : ¢ > 0}. For any y =
(Yo, Y1, + -y Yn) € §R1+1 and z = (21,22,...2,) € R”, define f,(2) = >y S:i(z). With this
notation, we can restate Corollary 1 as Vi > 0 dy € 3?1"’1 C Xy, Xoy o X)) = XL Let
a = pu(1 4 J) be assumed to be integral. Note that for any non-negative integer m, X = m iff



fy(X17X27 i 7Xn) = Z;mzo yz(T) and hence7

r a) = Pr ! ) a E[fy()(lw'w)(n)] _ E?:O yiSi(p17p27"'7pn)
Pz 0= e (1% 602 (1)) < TR Srou()
(1)

So, our goal now is to minimize this upper bound over (yo, y1,...yn) € %:L_‘H. To do this, note that

Ya+1, Yat+2, - - -5 Yo must all be set to 0 since they contribute non—negative terms to the numerator
and nothing to the denominator. Next, note that the r.h.s. of inequality(1) is minimized by setting

y; = 1if i = j* and 0 otherwise, where j* is the integer at which S;(p1, p, ..., pn)/(}) is minimized,

over the range 1 = 0,1,...,a. To get a better handle on this minimum, we need
Lemma 2 Foranyi > 0 ands > 0, S;i(z1, 22, ..., 2,) is mazimized by setting 2y = 29+ -+ = 2z, = 7,
when subject to the constraints that (z1,22,...,2,) € R} and 3°7_, z; = s.

PROOF. Suppose z, < z, for some vector z satisfying the constraints (21, 22,...,2,) € R} and

> 7=12j = s. Then, set 2, = z,+¢€ and z; = z, — e for any € < z;, — 2, and set z} = z; for all indices
7y j & {p,q}. Tt is easy to verify that 2z’ satisfies the above constraints, and that S;(z') > S;(2).

Hence S;(z) is maximized at z = z*, where 27 = 2 for j = 1,2,...,n. O

i=1 Pt

Inequality(1) and Lemma 2 imply that if p = = £ then for any y € %i‘H,

Pr(X >a) < ———%—. 2
n Y il @ .
Since (‘712))])‘./(53“) = (7;__2270 which is less than, equal to, or greater than 1 according as 7 is less
than, equal to, or greater than la__:f;, (")p'/(%) is minimized at
- L a—H 1
= h(n, @, 0) = [ 1= 1. (3)

1—p/n 1—p/n

So, the r.h.s. of inequality(2) is minimized at y = y*, where y = 1 if i = ¢*, and 0 otherwise.

Hence, we get

ey < Ul d) = s
]* *

k3

PT()( > :u(l +5)) < Ul(naplv . '7pn75) =

Ui(n,p1,...,pn,0) is guaranteed to be better than any estimate based on the CH method, since we
have considered a larger class of functions. Also, the upper bound Us(n, i, ) on Uy (n, p1,...,pn,0)
is better than any such estimate which depends only on g and which is oblivious to the actual
values of p1,p2, ..., pn; this includes F(n,u,d) and G(u,d).

But most importantly, note that these new bounds will hold even if X, X,,...X, are
only h(n,p,d)-wise independent. This is because each term in Si(Xi, Xg,...,X,) is of the
form X;, X, ...X;, for any integer k, and hence, F[S;(X1, X3,...X,)] will be the same for k-
wise independent X1, Xo,...X,, as for completely independent X;, X,...X,. Since p(1+94) < n,
h(n, i, 8) < m;in typical algorithmic situations, h(n, p,6) < n. This will be seen to be of great use

later on.



Theorem 1 Let bits X1, X2,..., X, be random with Pr(X; = 1) = p;, X = Y-y X; and p =
E[X]=3"" pi. Suppose further, that the X; are k-wise independent for k > h(n,u,8). Then for
any § > 0,

PT(X > :u(l + 5)) < Ul(n7p17 <oy Pny 5) < UQ(TL,H, 6)

Furthermore, Uy(n,u,8) < F(n,u,8) < G(u,0), i.e., the CH upper bounds hold even if the
X;s are only h(n,u,d)-wise independent.

Our results also imply upper tail bounds for r.v.’s with smaller independence than h(n, u,d).
Lemma 3 Let Xy, Xo,..., X, be binary r.v.’s with X = Y X; and p = FE[X]. Then for any
§ >0, Pr(X > p(1+49) < (7) (u/n)k/(“(lljé)), if the X;’s are k-wise independent for any k <
h(n, u,d).

ProoF. Set y; =0 for i # k and y; = 1 in inequality(2). O
It turns out that Uy(n, i, §) is almost the same as F(n, u, d).

Theorem 2 Given n random bits X1, Xq,..., X, let X = 37 X;, p = FE[X], and p = p/n.
Then for any ¢ > 0,

1. If the X;’s are [ud|-wise independent, then Pr(X > pu(1+96)) < G(p,d), where:

& e—H%/3 if 0 < 1;
G(p,d) = (W)M > {6—#51n(1+5)/2 < e M3 if > 1.

2. If the X;’s are [%}fwise independent, then Pr(X > u(1+494)) < F(n, u, ).
3. If the X;’s are [“7;5] = [nd]-wise independent, then Pr(X < p(1 —36)) < F(n,u, —6), where:

—us?/(2(1— : .
F(n, p,—0) < {E_‘;puéi Wi <172,
€ , if p>1/2.

ProoF. The first claim follows by setting & = [pud] < h(n,u,d) in Lemma 3. The only
interesting case is that k < h(n,p,d8). We apply the inequality (})(u/n)*/(3) < Q(n,k,a) =
(Z)5(p/n)k (27)"~*(2=2)2=*  valid for any a < n; this inequality follows by induction on k, com-
bined with the fact that the function (1 — 1)#~! is nonincreasing for z > 1. Let a = (1 + )p and

k" = ud. Then,

o (nf(n— )" 1 ) us \"H 5 .
Q(n, k' a) = (14 0)n(1+8)  — <1+5) (1—|— n—,u5) < Ao =G(p, d).

It is easy to verify that Q(n, z, a) is nonincreasing for < h(n, i, ), and hence the bound Gy, 6)
established for &’ also holds for £ = [ué]. The upper bounds for G'(u, §) are either straightforward
or have been established in [4, 35, 3].

The second claim follows immediately from Theorem 1, while the third claim follows by obtain-
ing lower tail bounds from the upper tail of 7 ,(1 — X;), and importing the upper tail bounds
established in [17]. By Theorem 1, these bounds hold with independence h(n, u, ). O

As we will show in Section 2.3, bounds almost as good as G'(u, é) and F(n, 1, —§) hold with the
much smaller independence k = |2 |, when § < 1.



2.2 Tail probabilities of bounded random variables

We now show that almost the same results hold for arbitrary r.v.’s which take values in [0, 1].
Analogous bounds for bounded r.v.’s that are constrained to lie in other intervals can be obtained
by a linear transformation of their ranges to [0, 1]. Given arbitrary r.v.’s X; such that 0 < X; <1,
i =1,2,...,n, we wish to upper bound Pr(X > u(1+46)), where X = 3", X;, u = F[X] and
d > 0. Hoeffding [17] has proved upper tail bounds for bounded random variables, assuming full
independence among the X;’s; the main point of interest here again is that partial independence

suffices, giving almost as good bounds as Hoeffding’s. Almost all of the work is done by

Lemma 4 Let z; be real numbers, with 0 < z; < 1,1=1,2,...,n, and suppose that a > 0, j < |a|

and Yy z; > a. Then,
a
SJ(Z17227 c '7Zn) > (]) .

Proor. We will just consider the case "7, z; = a; then the upper bound will directly follow
if iz >a If0 <z, <z <1forp# q, then S;(2) decreases if we set z, := 2z, — € and
zy 1= zy + ¢, for any € < min(z,, 1 — 2z,). So, if S;(2) is minimized at z* in the domain [0, 1]" under
the constraint that Y ;- z; = @, then 0 < z7 < 1 for at most one ¢, 1 <7 < n.

If @ is integral, then 2f € {0,1},¢=1,2,...,n, and hence S;(z*) = (;") Otherwise, suppose a
is non—integral; let a; = [a]| and az = a — a;. Hence, z; = a3 for some index p, and z} € {0,1} for
i€ {1,2,....,n} — {p}; so,

o= () o (),

and we need to show that this is at least (j), i.e., that

[a1]; + a2j - [a1]j—1 2 [a1 + az]; = [a];,
where [z], denotes z(z—1) - - - (z—r+1) and [z]p = 1. This is easily seen by induction on 7, as follows.

Equality clearly holds for j = 1. For j > 1, [a1]; +azj - [a1]j—1 = [a1]; + (7 — D) az[a1]j—1 + az[a1];-1.

Since ag < 1, agai];—1 > agla; + ag — 1];_; and hence,

[a1]; + azj - [a1)j=1 > ai(lan — i1 + (5 — Dagfar — 1]j-2) + asfar + az — 1]_4
indhyp. 01[01 _I_ ay — 1]]'_1 + CLQ[QI + ay — 1]j—1

[a1 + az];.

[l v

By essentially the same analysis as before, we get

Theorem 3 Given n arbitrary r.v.’s X1, Xo,..., X,, with 0 < X; < 1 and E[X;] = p;, let X =
Yoy X and p = E[X]. Then if X1, Xs,...,X,, are k-wise independent for k > h(n, u,d), then
P?“(/Y 2 N(l + 5)) < Ul(n7p17 e -7pn75) < U2(”7M75)} fOT any 6> 0.



ProOOF. From Lemma 4, we have that for any a > 0 and for non-negative yo, y1, - - -, Yn,

L fa\.  EIf(X1,. ., X))
Pr(X >a) < Pr(fy(Xq,...,X,) > z())S y a7 2 Xn)]
1 2 S ()

and the rest of the proof follows as before. a
Remark. The methods of Section 2.1 were motivated by the fact that if X is the sum of n

0-1 random variables, then any n higher moments of X linearly generate all the higher moments

of X. However, note that if random variables Xy, X5,..., X, take arbitrary values in the interval
[0,1] and if X = 3" ,, then such a result is not true: in fact, no bound can be put on the number
of higher moments needed to generate all the moments of X. However, the intuition gained from
Section 2.1 has helped us obtain a large deviation bound for X, which is as good as the known
bound [17]. This is despite the fact that we have not considered all the higher moments of X;
one of the original motivations for Chernoff to consider E[e’X] was that it generates all the higher
moments of X. A possible interpretation of our result of this subsection is that it pinpoints the

“crucial” higher moments.

2.3 Redirecting the method

Recall that in Section 2.1 we introduced the class of functions Sy(2), S1(2), . .., S,(2) and generalized
Chernoft’s idea by working with non-negative linear combinations of these functions. A natural
generalization of this is to allow arbitrary linear combinations, but the corresponding optimization
problem, described below, seems hard to analyze.

Suppose we have n binary random variables X1, Xo,..., X,, with Pr(X; = 1) = p; and with
X =37, X;, and we want good upper bounds on Pr(X > a) where a > F[X], when the X;’s are
k—wise independent. As before, let

n

Fo(X1, Xay o X0) = D uiSi(Xq, Xa, ., X0),

=0
with the further restriction that y; = 0 for ¢ > k + 1 to capture the idea of k—wise independence;
note that f,(Xy, Xo,..., X,,) is a function of X,

fy()(le%'"vXn):gy(X)i E yz<)()

Now, if g(t) > 0 fort = 0,1, ..., n (so that Markov’s inequality can be applied) and if ¢, (b) > g,(a)
for b > a, then

Pr(X > a) < Pr(gy(X) > gy(a)) < Elgy(X)] _ Ef:o v:Si(p1, 2, - - .,pn).

N gy(a) gy(a)

We can scale the y;’s so that g,(a) = 1 and thus, we get the following linear program with

Yo, Y1, - - -, Yr being arbitrary real variables.

LP((L, k7p17p27 .. '7pn):
Minimize S5, 1.5 (p1, P2, - - -, pn) subject to



e g,(7)>0,7=0,1,...,n.
e g,(a) =1, and
e g,(b) > 1, b=a+1l,a+2,...,n

We unfortunately have been unable to analytically compute the optimum of this linear program.
However, we now consider an important case where some of the multipliers are negative, and which
is a feasible solution to the above LP; our results generalize a result of [22, 8, 27]. We use the kth

moment inequality
E[IX = BIX]]
OE[X])F 7

which is attributable, in various formulations and generalizations, to Chebyshev, Markov, and Loéve

Pr(1X - E[X]| 2 $E[X]) <

[18], and has been used to attain probability deviation estimates for over a century. Note that if
X =X1+ Xo+- -+ X,, where the X;’s are random bits, then (X — E[X])]C is a linear combination
of So(X1, Xay..., Xn), S1(X1, Xg, ..., X0), ..., Sk(X1, Xg,..., X,), with some of the multipliers
being negative. We derive good upper bounds on E[|X — E[X]|¥], where X = 3_% | X;, with the X;’s
being k—wise independent random variables which satisfy | X; — F[X;]| < 1, yielding bounds that
are better than those given Theorem 1 and Lemma 3, when k < h(n, p,6) and § < 1. Moreover,
the large deviation bounds derived in Theorem 5 for k-wise independent random variables agree
with the simple exponential forms of the large deviation bounds most often cited for sequences of
fully independent Bernoulli trials.

Theorem 4 is similar in spirit and proof to Lemma 4.19 of [22] for identically distributed X; and
constant k, but the present result is somewhat tighter even in the case of identically distributed
X, especially if X =3 ", X; has small variance. A slightly weaker form of a special case of one
of the inequalities proven in Theorem 4 was also obtained in [8] and some related formulae were
given in [27]. The proof of Theorem 4, as well as related proofs presented elsewhere, is based
upon estimates for the k-th moment of X. Estimates related to ours, but for a more general class
of random variables, were established in [28]. That formulation however, is considerably more
complicated than ours, and is not as tight for the cases specifically considered here. In particular,
Theorem 5 cannot be derived from the bounds in [28] for the k-th moment. Other related work
was done by Gladkov ([15], with later improvements in [16]). He shows that if Y7,Y2,...,Y,, are
independent r.v.’s with Y; having the same distribution as X; and with Y =Y; +Y;+---4Y,,, then
as m — 0o, the convergence of Y to the normal distribution implies a comparable convergence for

X, provided k is sufficiently large.

Theorem 4 Let Xy,...,X, be a sequence of k-wise independent random variables, that satisfy
|X; —E[X;]| € 1. Let X =37, X; with E[X] = u, and let 0?[X] denote the variance of X, so that
o[ X] =", 0%X;] (provided k > 2, which we require.) Then the following hold for any even k.

(I) For' C > o?[X] Pr(|X —pu| >T) <V2cosh Ll (E)m
or > 0% X|, (|~ un = < Ccos 360 T2 .

'Recall that cosh(z) = €I+2e_r . Throughout this manuscript, e denotes, as usual, the base of the natural logarithm.
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k/2
(1) For2 <k <3(c2[X)V/3,  Pr(X —p|>T)<?2 (’“ﬁiﬂ) _

kO k/2
2
(111) For C > maz{k,o*[X]}, Pr(| X —pu>T)< <W)
ProOOF. We use the kth moment inequality
) B{X - plf]
Pr(X —p > 7)< —— (1)

For even k, E “X - ,u|k} =E [(X — 1 )k} Most of our effort will therefore be invested in estimating
the k-th moment of X — p. Let p; = E[X}], for 1 <i < n. Then

Bl(X—p)] =8

n k
(Z(Xz - Pz)) ] = > (h k ln> E[(X1 = p)] - E[(Xn — pa)™].

=1 11+i2-Fin=k
(5)

Clearly, E[X; — p;] = 0 and any term in (5) that has some 7; = 1 must be zero. More generally,
IE[X; — ps]f| € 0?[X;] for any £ > 2, since | X; — p;| < 1 and therefore | X; — p;|* < | X; — p;|?, hence
IE[X; — p]¢] < |E[X; — pi]?| = ¢?[X,]. Thus,

k/2-1 A kj2—t _
o] = 2 oy () e Ty
=0 stiztAigpp_e=k \IDIT 0 JR2=0) G i Ty, et
Ji>2

k/2-1 k k/2—¢
2
> oy () s T
£=0 Jl+]2+"'+]k/2_g=k ‘717‘727 o .7‘7k/2_é i1<i2<"'<ik/2—8 r=1

3i 22

k/2—-1 ~\E/2—L
>y G ) - o)
Z:O J1+J2+'”+Jk/2—Z:k ]17]27“'7]1{?/2—( (k/Q_g)'

Ji22

IN

IN

Estimate (6) comes about because the summation

kj2—t

> II °[x:,]

il <i2<"'<ik/2_g r=1

is maximized when all the 0?[X;_] are equal, by Lemma 2, and hence is at most

ie

(o) (22"
k/2—¢) \ " n =T k20

Let To, T1, ... Tyj2—1 denote the k/2 terms in summation (6), hence:

k o[ X))/t
L= % ( ke )7< ih S @
]1+J2+'”+]k/2—Z:k .]17]27“'7]]6/2—( ( / - )
Ji22

and

11



2 /2
Ty - ( ¢ )7@’ XD 0

2,2,...,2 (k/2)!
) k/2+0—1 ) : . . L . )
There are exactly ( 20 ) terms (i.e., possible sets of assignments for ji, ja,. . oy Jkj2—¢) in
Ty, since > 7; = k and j; > 2. For each such assignment of values, z/zzl_é(jk — 2) = 24, hence

2/221_4 gx! > 28274328 (and equality holds only when £ < k/6 and exactly 2¢ of the k/2 — £ values

equal 3, while the remaining values equal 2). Hence ( k ) < (2/9)(, ka ,), and

J15025e-00k J2—4

/2461 2 \* (k/2)!
Tfﬁ( 20 )(902[)(]) k201

k/2-1
o (55 2 < O e e B -] €55 o i T

£=0 '

k/2—1 B\E
Series for cosh(z) = <= = > %, we see that /z: % < cosh ( 36:23[)(])' Con-
sequently =
k k?
E{(X—,u) } §cosh( 36072[)(]) To. (9)
k!

To is readily bounded by expanding (8) to get Ty = (UQ[X])]“/Q. We may apply a strong

2k/2(1;/2)!

version of Stirling’s Formula [37]:

(r/e)r\/ﬁel/(ur‘H) <rt< (r/e)r\/ﬁel/(ur),

e

k/2
which is valid for all » > 1, to bound both k! and (k/2)!. This yields Ty < ﬂ(kg2[X]) / .
Substituting for Ty in (9) gives

3 o2 k/2
E[(X—u)’“}s\/icosh( 36;[)(]) (k G[X]) , (10)

which establishes the desired bound for E {(X — ,u)k}

Now, estimate (6) is an increasing function of o?[X], and the estimate in (10) exceeds (6).
Therefore a?[X] can be replaced by any C' > ¢?[X] in (10). The proof of (I) is completed by
applying this estimate to (4).

All other bounds are special cases of (I). When k < 3(0%[z])'/3, we use C' = ¢[X]in Theorem 4.1

and overestimate cosh ( #3[)(] by cosh (\/g) < V2.
(IIT) is easily verified for k = 2, by applying Chebyshev’s inequality:

o?[X]  20%[X]
P’f‘(lX - lu| 2 T) < T2 < 62/3T2
2 . . k3
For k > 4 we may replace C' by maz{c*[X], k} in (I) and overestimate cosh {4/ by

36C
cosh(k/6). Since cosh(z) < e*/y/2 for x > 1/2, we get cosh(k/6) < €*/¢/1/2, and hence

kC )W

Pr(|X —pl2T) < <m

12



This concludes the proof of estimate (III). ]
We now combine the results of Theorem 4 and Theorem 2 to establish Chernoff-like bounds

[11, 17], where the independence k might even be much smaller than the deviation we wish to

bound.

Theorem 5 If X is the sum of k—wise independent r.v.’s, each of which is confined to the interval
[0, 1] with p = F[X], then:

(1) For 6 <1,

(a) if k < [ue 2] then Pr(|X — p| > o) < e” /),
(b) if k = [52ue‘1/3J, then Pr(|X — u| > ou) < e~ 12013].
(1) For 6 > 1,

(a) if k < [Spe3], then Pr (X — p| > o) < e 4/,
(b) if k = {épe—l/sJ, then Pr(|X — p| > éu) < e~ 19n/3],
(I11) For § > 1 and k = [du], then

Pr(X —pl>ou) < Gud)<e 3" <,

Proor. (I). To prove that (Ia) holds we apply Theorem 4.1I1 with C = u, T = du and
k= {52;1/61/%, which is permissible since g > k and p > ¢?[X] for variables in the range [0, 1].
When &k = {52;1/61/:1 and k is even, this gives a bound of

L k/2 52
Pr(|X —pul >ép) < <W) < k2 < e_L “/SJ, since 2¢/3 < 3.
€ K

If k is odd, we follow a calculation similar to that above, but only use independence k£ — 1. This

E—1 k—1/2 k-1 (k—1)/2 o o
Pr(lX —p| = d0p) < (m) < < oy ) < e~ (b=1)/2=(k=1)/2k,

Since k > 2 for the above bound to give anything less than 1, e=(k=1)/2k < ¢=1/3 and hence,

gives

Pr(IX — ul > o) < e (=0/241/3) < = [50/3],

In part (I7) we follow the same iterations as in part (I), but set C' = du and k < |[su/e'/?], for
(ITa); in (I1b) we use k = |8u/e'/| or [du/e'/?| — 1, depending on the parity of [du/e'/?]. In
part (/1) we reiterate the result of Theorem 2, combined with Theorem 3. O

Remark. The proofs of parts (I) and (III) of Theorem 5 also point out the relative merits of
the basic method (Sections 2.1 and 2.2) versus its redirection of this subsection. The basic method
of using non—negative linear combinations of the symmetric polynomials S; gives better probability
bounds when 4, the relative deviation from the mean, is greater than 1: it yields the probability
bound of exp(—O(dIn(1l + &)x)) in this case. On the other hand, the formulation involving the
kth moment inequality gives a much smaller bound on the amount of independence needed, when
§< 1.
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2.4 Probability Bounds for Exactly r Successes under Limited Independence

Some applications require estimates for the probability that exactly r successes occur in cases
where the occurrence of at least r successes is not too improbable. The following theorem shows
how and when this can be done. It also provides relative errors, which can be useful for estimating

conditional probabilities.

Theorem 6 Let X1, Xo,..., X, and Y1,Ys,...,Y, be Bernoulli trials with probabilities of success
E[X;] = E[Y;] = p;. We let the Y;’s be independent, but only require the X;’s to be k-wise indepen-
dent. Let p(r) = Pr(}_;Y; =r), and pr(r) = Pri(X = r), where the subscript k denotes the k-wise
independent trials. Let P(r) =3 ,, p(), and Py(r) =3 s, pu(f).

k
(1) Ifr <k, then Ipe(r) — p(r)] < (Z) (’“) (1)

(1) If k> ep+In(1/p(0)) + 1+ D, then px(r) = p(r)| < e Pp(r).

(1) If k> ep+1In(1/p(0)) +r+ D, then |Pr(r) — P(r)] < (1 — P(r))eP.

(IV) Ifr > (14 6)u+ k, then Pi(r) < (14 8)7* and P( )< (14 8)7F
and hence |PL(r) — P(r)| < (14 6)7F

Although (IV) holds for all values of k it is meant to be used for k < [dp], indeed:

(V) Ifr> 1+ 8p+k and k > [dp], then Pr(r) < G(p,6) and P(r) < G(u,d),
and hence |Pi(r) — P(r)| < G(u,d).

Proor. For an arbitrary event A, we may use standard inclusion-exclusion to estimate the
probability of the event {A A Aegiy,.iy (Xe = 0)]} The probability p(r) can be expressed in terms

of events A = [A;cy;, ., 1(X; =1)], which admits a simple estimation as follows.

pr(r) = Z Pry, ( ( /\ (X; = 1)) A ( /\ (X, = 0)))
i1 <ip< <y J€{i1,nir} £¢{i1,.vir }
= > ni > (—=1)'Pry ( A (X = 1))

11 <t <<ty =0 Gl <o <l JE{t15entryr }
Zr+1 ,...,Zr+le{21,...,lr}

-y ¥ (—1)l<rjl>P’"k( A (XJ:U)-

1=0 i1< - <ipyq GE€{i1mirgr}

Truncating the outer summation at [ = k — r introduces an error that is bounded by the last
term of the truncated sum. Let pl(r) and pT(r) denote these truncated sums, in the respective
cases of k-wise and full independence. Since the first £ — r terms in the outer summation are

the same for both fully and k-wise independent random variables, p!(r) = p(r). Furthermore,

14



Pry, (/\je{il,...,ik}(Xj = 1)) = H§:1 pi,- Hence,

k
pr(r) = p"(r) = (=1)* 75 (k) 2. II»

il <<Zk j:l

for some §;, € [0, 1], and an identical inequality holds without the & subscripts. Hence,

k
ka(r)—p(f‘)lﬁ(g > IIpi- (11)

21<<2k j:l

k
Z H pi, is maximized when all p; are equal (Lemma 2), and hence,

n 1 2 n k n
Ipe(r) — p(r)] < (’“) (k) R (k) (f)w/n)’:

and (I) now follows.

r
To get multiplicative error bounds, let @, = Z H (#), and define the summation
11 <tg < <Lty £=1 - Pi
in the error estimate of equation (11) by Ry = 37, <. <, H;?:l pi,- Observe that Ry is the expected

number of size k sets of successes among n trials, so that z successes total accounts for (7) such

sets. In the fully independent case, p(r) = p(0) Z H (L) = p(0)Q,. Furthermore,
in<iy iy =1 M1 T Pie
R, <Q,, and (ff)Rk < R, X Rp_,. It follows that

k r
|pk(7‘) —p(?“)| < (T’) Rk < Rr X Rk—r < QrRk—r < 2%7

kE—r

since Rp—, < (")) (%)k_r < h

—r k—r
For k > epr—log(p(0)) +r+ D, the factor #};_T)! is bounded by (W) e~ loe(r(0) <
e~P | which establishes (II).
Part (II1) is immediate, since

Pyr) = 1= Y pi(6) and hence [Pu(r) - P(r)] < Y pa(6) - p(0] < 3 p(0)eP = (1= Pr))eP.
{<r i<r {<r

Finally, suppose that r = (14 §)u + k. Then by Lemma 3,

p* u
Pr(r) < k) Sr(r_l)(r_Q)...(r—k+1)
< (A48 12

Part (IV) is completed by observing that (12) also holds with P(r) substituted for Py(r). Part

(V) is an immediate consequence of Theorem 2. This concludes the proof of Theorem 6. O

It is worth pointing out that parts (I) through (III) of Theorem 6 are not strong when g >
V/n, since it follows from the work of Linial & Nisan [24] that Pr(X = ¢) = Pr(Y = 0)(1+
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O(e“Q(k_é)/ﬁ)) independently of p, which gives a much sharper bound in this case. Also, inde-
pendent of our work, a result similar to part(l) of Theorem 6 has been proven by Even, Goldreich,
Luby, Nisan & Veli¢kovié¢ [14]: they show that |pg(0) — p(0)] < 279(5),

Theorem 6, in fact, achieves its greatest strength when p is small, say ¢ = o(n), or even
# = O(1). Such instances are not unusual when pseudorandom integers are being generated
uniformly in the range [0, n] and a successful trial corresponds to just a few different values. This
is precisely the usual circumstance in, for instance, hashing [40, 51]. As an example, consider the
(uniformly distributed) random placement of n balls among n slots. The expected number of items
in slot 1 is just 1. The probability p(0) that no item lands in a given slot is about % Theorem 6
shows that if the independence k is e+ 147+ D, the probability that exactly r items land in that slot
is the same in the k-wise independent case as in the fully independent case, up to a multiplicative
factor of (1+e~") or less. Suppose that, during the placements of balls [ through m, exactly r balls
fall intoslot jfor 1 <I{<m<mn,r<m-—1[+1. Let thm] denote this event (with the dependence

upon j understood). The conditional probability that, under k-wise independence, ball m + 1 also

1
[m+1,m+1]

it will be uniformly distributed while the previous m balls will enjoy (k£ — 1)-wise independence.

Pr(xt )
r 1 __Cm4lm41]) Gy
[l,m]|X[m+1,m+1]) X Pt () Since both

falls into slot 7 is Pry(x |X7["l m]). If we use one degree of freedom for the m + 1-st ball,

We may estimate the conditional probability as Pry(x
Pri_1(X,,,p) and Pre(xg m]|x[1m+1 m41]) can be estimated by Pr(x(, ;) (1+errz_1) where erry_y is

the relative error that results from the limited independence, we see that Prk(X[lm+17m+1]|X7[ﬂz7m]) is
very close to 1/n, with a relative error that is approximately 2erry_y. For k > 14+e+1+4r+ D, the
resulting accuracy is about 1+ 2e~P. Thus even with modest independence, this process behaves
“as expected” much of the time; that is, the corresponding conditional probabilities for k-wise

independence are very close to the ones for full independence, in many cases.

2.5 How close to optimal are our results?

It is known that the standard Chernoff-Hoeffding bounds are optimal in general to within a constant
factor in the exponent, since we know by the Central Limit Theorem that as n — oo, the tail of the
scaled sum of i.i.d. r.v.’s tends to the tail of a normal distribution, and hence we cannot significantly
improve the tail probabilities presented by Theorem 5. However, what about the independence we
get? Can it be reduced further to get the same tail probabilities?

To answer this, we note that the tail probabilities presented by Theorem 5 for k—wise indepen-
dent r.v.’s are of the form e~“*. However, n k—wise independent r.v.’s require a sample space of
size at least

Lk/2) 7

> () ~ (O(n/k)) /2,

. 1

=0
as shown for binary unbiased r.v.’s by Chor, Goldreich, Hastad, Friedman, Rudich & Smolensky
[12] and for general r.v.’s by Alon, Babai & Itai [1]. Noting next that any nonzero probability in

—c~k7 we

a sample space of size t is at least 1/t, we see that to get a tail probability of the form e
need at least Q(

reduced by more than a factor of O(logn).

m)fwise independence. Thus, the independence we get cannot in general be
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However, by using results from the newly developing theory of approzimating probability distri-
butions (Naor & Naor [29], Azar, Motwani & Naor [5], Alon, Goldreich, Hastad & Peralta [2], Even,
Goldreich, Luby, Nisan & Velickovié¢ [14] and Chari, Rohatgi & Srinivasan [10]), we get optimal
results in the case where the X;’s are binary with Pr(X; = 1) = 1/2. A sample space X for n-bit
vectors was defined to be k-wise e-biased by Naor & Naor [29] (see also Vazirani [49]) if

VS C {1,2,...,TL},1 < |S| < k7|Pr(@$Z - 1) - PT(@:CZ = 0)| < €,
1€S €S
where @ denotes the XOR function and z; denotes the ith bit of an n—bit string z picked uniformly
at random from X. One property of such a sample space is that V¢, £ = 1,2, ..., k,V{iy,iq,...77} C
{1,2,...,n},Ybiby...by € {0,1},

1
|Pr(z;y = by, 2y = ba, ... 25, = b)) — ?| <e. (13)

X is e-biased if it is n-wise e-biased. Constructions of k—wise e-biased sources of size poly(k, logn, %)
were presented in [29, 2]. Such sample spaces have been shown to have several applications to ex-
plicit constructions and to derandomization, mainly since probabilistic analyses may be expected
to be robust under small perturbations of the probabilities. Now, it is easy to see how our methods
can be used to derive large deviation bounds for z; + z3 + - - - 4 z,; from inequality (13), it follows

that for a k—wise ¢—biased source X,

1
Ve < k E[SZ($17$2,...7$7L)] < (Z) . <?+6)

and hence by picking € < 2%, this quantity can at most be double its unbiased value of (Z) -

20
Thus, for a k-wise ¢ biased random source with k = h(n,n/2,8) = né and with ¢ = 27,
Pr(> a; > gu +8)) <2 Uy(n,n/2,0). (14)
=1

Since such a source can be generated using poly(k,logn) random bits, we see that this result is
optimal as long as k = Q(logn); if £ = O(logn), then the probability space is polylogarithmic in
size and should in most cases be dispensable, via brute-force search of the sample space. Similar
results hold when the X;’s are binary with their probabilities of being one being the same negative

power of two (not necessarily 1/2), using identical methods.

2.6 Upper Tail Bounds for some other Distributions

Suppose we have random bits Xy, Xy, ..., X,, with some arbitrary distribution. Let X = >"7; X},
and let p = F[X]. Then, for any ¢ > p, the methods of Section 2.1 yield

Z?:O yzE[Sz(Xh X27 RS )(n)]

Pr(X > a
(X 2a)< o ui()

) v(y(hyla i 'ya) € §R1+1‘

The following theorem is immediate.

Theorem 7 Given n random bits X1, Xo, ..., X, with X =37, X; and p = E[X], suppose z; is
an upper bound on E[S;(X1,Xq,..., X,)], 7=1,2,...,n. Then, if a= pu(1+ 6) for § > 0,
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o Pr(X>a)< iz YiZi

<& o V(Yo, Y1, -
22:0y2<2) (0 !

o If X1,Xs,..., X, are k-wise independent, then Pr(X > a) < min;=; 2 =i

(3)

As an example of a distribution which benefits from the above, consider the self-weakening

Ya) € YL

random variables defined and used in [31]: random bits Xy, Xs,..., X, are defined to be self—
weakening with parameter A in [31] if for all j and for all distinct indices X, Xy,,..., X,
E[ll;_, X;,] < Ay, E[X;,]; note that z; < A(7) (£)7 in this case. Hence, Theorem 7 directly implies
one of the main theorems of [31], which states that if Xy, Xo,..., X,, are self~weakening random
bits with parameter A with X =", X; and y = F[X], then for any § > 0, Pr(X > p(1+44)) is at
most A times any Chernoff-Hoeffding type upper bound on the corresponding probability had the
X; been independent, with the same individual distributions. Indeed, it was the work of [31] which
mainly motivated the methods of Section 2.1. Further, the applications sketched in Section 3.2 use
Theorem 7.

Theorem 7 helps improve the known upper tail probability bounds for the hypergeometric
distribution, an important source of self-weakening random variables. Suppose n balls are picked
at random without replacement from an urn containing M red balls and N — M balls of other
colors. Let X be the number of red balls picked in the random sample, and let p = M/N. Then for
d > 0, a special case of a result of Hoeffding [17] (see Chvatal [13] for another proof) implies that

Pr(X > np(1446)) < F(n,np,d). (15)
We prove the following strengthened version of inequality (15).

Lemma 5 Suppose a random set of n balls is picked from an urn containing M red balls and
N — M balls of other colors. If X denotes the number of red balls picked, p = M/N, § > 0 and if
k = h(n,np,0) = o(N), then

Pr(X > np(1+48)) < Uy(n,np, §)e"®F/M) < P(n, np, §)e-@F /M),

Proofr. (SKETcCH) Number the balls picked as 1,2,...,n, and let X; be the indicator r.v. for
the event that ball ¢ was red. Then X =3 ; X; and
E[Sp( Xy, Xoy..., Xy
Pr(X > a) < Us(n,np,8) = [k (X1, X3, )],

(%)

where @ = [np(1 + 6)|. For distinct indices 1,12, ..., ik, E[HleXij] = Pr( ;?:1 X, = 1) =

k—1 M—i.
[TEd 2= hence,

Us(n,np,8) N, "=0 M —i 1 N i RN
AL RO 11 =11 - (= - 1)—) < =1 N
Uy(mnp,8) ~ 1) Z.ZO(N—z') (=g -y <e™ n

which is e"@**/M) if o = o(N). O

Remark. Note that sampling without replacement produces r.v.’s which are self-weakening

with parameter 1. Lemma 5 gives good improvements over inequality (15) in many interesting
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cases, e.g., consider the case p = constant, § = constant, and Q(M®*+¢) < n = o(N), for any fixed
€ > 0.

Also, the CH bounds [11, 17, 35, 3] depend only on g and not on the actual values of p;, and
give the upper bound F(n,u,d) > U(n,p,6). We know for any § > 0 that Pr(X > pu(144)) <
Up(nyp1y. .oy pny ) = Sk(p1, - .pn)/(“(lljg)), where k = h(n,u,d). By Lemma 2, this is maximized
by setting p; = p/n Vi, subject to the constraint that F[X] = p. But if the values p; are rather
different, we get bounds formally superior to Us(n, i, ) and F(n, pu,d); suppose, for example, that
p=n/2,p;=¢1=1,2,...,n/2;and p;=1—¢,i=n/24+1,...,n, where 0 < ¢ < 1/2. Then,

Ui(n,p1,p2, .-, Pn,0) N k n/2 n/2\ y .

where k = h(n, u,8). Note that f(0) < e=®**/7) by Lemma 5 and that f(e) can get arbitrarily

close to f(0) since f(-) is continuous.

Remark. This particular result can only increase the constant factor in the exponent of
Uz(m, p,6). But, it is a small step towards better understanding of the dependence of Pr(X >
u(14+48)) on n,p1,...,pn, and §. Similar improvements can also be made in the case of non-binary
r.v.’s. An alternative approach might be to derive Chernoff-Hoeffding bounds for a sum of Bernoulli
trials as a function of the variance as well as p, a, and n, as in [42].

A final application is to the semi-random source introduced by Santha & Vazirani [38]. A

random source which outputs bits Xy, Xo,..., X,, is defined to be e-semirandom in [38] if
Y1 1/2—€<Pr( —1|X17X2,...7)§ri_1)§1/2+€7

e., the random bits can be correlated, but only to a limited extent, independent of the past
history. Despite its seemingly weak nature, such a model has been shown to be able to simulate
complexity classes such as RP (Vazirani & Vazirani [50]), and the study of a generalization of this
model due to Zuckerman [53] has led to rich results recently (Nisan & Zuckerman [30], Wigderson
& Zuckerman [52]). Noting that for such a source,

k
H 1< (1/2+ "
for all £ > 1 and for all distinct indices iy, ?9,..., 7%, we see that
Z n(1/24 ¢)(1 4 8)) < Uz(n,n(1/2 4 ¢),8), ¥6 > 0,

for an e-semirandom source.

Inequality (14) shows another application of our techniques.

3 Applications to Computation

The most striking point of Theorems 1 and 5 in our opinion is that bounds as good as the CH
bounds can be obtained with small independence. This implies, for any analysis that relies on the
CH bounds, much weaker requirements on the random sources used. We now present some further

computational applications of the new results.

19



3.1 Reduced independence for randomized algorithms

There are known constructions of r.v.’s with limited independence using a small number of random
bits; for example, the construction of [19] and the use of universal hash functions [9] to generate
|| many k—wise independent random elements from a finite field I’ using O(klog |F’|) random bits,
and the result of [1] using coding techniques [25], which gives a polynomial (in n) time algorithm to
construct n k-wise independent and unbiased random bits, given O(klogn) independent unbiased
bits for any &, £ < n. Combining these with our result on reduced independence for the CH bounds,

we get a major reduction in the amount of randomness needed for several randomized algorithms.

3.1.1 Reduced randomness for random sampling

In random sampling, we have a huge finite universe U and a subset W C U, and we want to
estimate the fraction f* = |W|/|U|. Given error parameters §, ¢ > 0, the method used is to pick a
random sample S of size N (6, €) from U and output the fraction f of type W elements in S; N (4, ¢€)
must be such that Pr(|f* — f| > §) < e. This is required, for instance, in PAC learning [47] and
in running BPP algorithms. What was known so far is that N (6,¢) = O(zlog(L)) with all the

samples being independent. We can improve this to

Theorem 8 Given a universe U, a subset W C U, and error parameters §,¢ > 0, suppose a set S
of O(35 log(1)) random samples with O(log(1))-wise independence are picked from U. Then, if f*
and f are the respective fractions of type W elements in U and S, Pr(|f* — f| > 6) < e will hold.

Proor. Consider a randomized algorithm which looks at a random set of samples S from U,
and outputs the ratio f of type W elements in S. We now look at the random properties of S
which are required for the claim Pr(|f* — f| > §) < € to hold.

Let |S] = n. In the notation of Theorem 5, we want to claim that Pr(|X — u| > é'u) < ¢,
where ¢ = F[X], X = nf and &' = §/f*. We apply Theorem 5 with X = fn and g = f*n,
and choose k* consistent with (/a) and (/1a). For such a suitable choice of independence k*
among the elements of S, Pr(|X — pu| > 6'u) can be bounded by e~l5"/2]. Hence, it suffices to
choose k* > 2[111(%)-‘, for the above probability to be bounded by e¢. To compute the required
sample size n, we distinguish between the two cases & < 1 and &’ > 1. Then, from part (Ia) of
Theorem 5, the probability that |X — p| is greater than &’y is bounded by e~l*¥"/2] provided that
k* < [6”pe~t/?3], and k* > 2[In(L)] for this probability to be bounded by e. It therefore suffices
to choose §2pe/3 > 2[In(1)]. This will hold if né?e “13/(2f%) > [In (1)]. Since 32> 1/3, it
suffices to choose n > Ny (4, ¢) = Bf*[ (1)]. If & > 1, then a similar analysis using Theorem 5.11a

1

implies that Ny(8,¢) = 2[In(1)] many samples with 2[In(L)]-wise independence suffice to satisfy
the error bounds.

Note that since both f* and ¢ are clearly bounded by 1, the number of samples and independence
needed in both the above cases can be upper bounded by N5(4,€) = &[In(1)] and &* = 2[In(1)].
Note further though that by Theorem 5 the choice for the independence that minimizes the error
bound is an increasing function of the sample size, increasing the sample space size when given a
fixed independence will reduce the error probability; a proof of this claim follows. In the proof of
Theorem 5, parts(l) and (II) were derived from part(Ill) of Theorem 4 with C' = p. Note that
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in the current problem, C' = nf* and T = nd where n is the number of random samples picked,
in the notation of Theorem 4. When the independence £ is fixed, the bound given by part(Ill) of
Theorem 4 decreases with n for these values of C' and T, and the claim follows. a

Theorem 4 also allows an estimate for the required size of a sample space with k—wise indepen-

dent variables, in case k < 2[In(1)].

Theorem 9 Given a universe U, a subset W C U, and error parameters é,¢ > 0, suppose that S
is a sample space of U whose elements are k-wise independent, for some even k. Then, if f* and
f are the respective fractions of of type W elements in U and S, then for Pr(|f*— f| > J) < e to

hold, it is sufficient to choose |S| > 52;—%, for some constant c.

Proor. Use part(Ill) of Theorem 4 by setting C' = n, where n = |S]|. O

Theorems 8 and 9 imply “reduced randomness” results for random sampling, if the universe U
has some properties. For instance, if U is a finite field and if the field operations can be done in
polynomial (in % and log(%)) time, then any number of k—wise independent samples from U can
be generated from k& independent random samples [19, 9]. Also, via weaker bounds on the kth
moment, it has been independently shown in [7] that essentially the same bounds as those given
in Theorem 8 can be obtained for random sampling; they also show how iterated sampling can be
used to decrease the number of random bits, at the expense of a controlled increase in the sample
size.

The above constructions are not optimal with regards to the minimum number of random bits
used. Using random walks on expander graphs to generate the random bits, it is shown in [6] that
O(log(|U|) + log(3)) random bits are necessary and sufficient for this problem. Our construction

has the advantage of being elementary and parallelizable.

3.1.2 Reduced randomness for oblivious permutation routing

We now show how our results directly imply bounds that match the explicit constructions of
algorithms with reduced randomness due to Peleg & Upfal [32], for oblivious permutation routing
on fized interconnection networks (see also [20, 35, 36, 46, 48]).

Given some interconnection network with N nodes and a permutation ¢ : {1,2,...,N} —
{1,2,..., N}, the problem is to route a packet v; residing at each node ¢, to its destination o(¢) so
that the total time taken is small. Further, the routing must be oblivious in that the path P,(z)
chosen for a packet 2 must be “independent” of the path P,(y) chosen for any other packet y (see
[32] for a precise definition when randomized routing protocols are allowed). Explicit constructions
of algorithms with a spectrum of time-randomness parameters are among the results proved in
[32] for the degree-4 butterfly network; these are also extendible to other networks (see Karloff
& Raghavan [20] for a protocol for the hypercube with slightly weaker bounds). Here, we show
how our results of Section 2.1 directly imply the bounds of [32] for the hypercube; we believe that
similar results should hold for other interconnection networks.

Consider the implementation of Valiant’s two-phase scheme [46] (see also Valiant and Brebner
[48]) on a hypercube with N = 2" nodes: (I) Each vertex i picks a random p(i) € {1,2,...,N}

as an intermediate destination for v;, and routes v; there; (II) Each packet v; is routed to its final
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destination o(i). We now follow the discussion of the standard aspects of this from [35]. Assume
FIFO queues at each edge, and that phase(I) routes v; from i to p(i) by “correcting” its bits from
left to right assuming that the nodes of the hypercube are indexed by n bits, and that phase(II)
“corrects” bits right to left. So, phase(Il) is like “running phase(l) backwards”, and so we consider

phase(l) alone here. It is shown in [35] that the time taken for packet v; in phase(l) is at most
N
n + Z Hij7 (16)
i=1

where H;; = 1 if the paths < i, p(i¢) > and < j, p(j) > share an edge in phase(l), and 0 otherwise
(recall that n = logy N). It is also shown in [35] that if each p(i) is uniformly distributed in
{1,2,..., N}, then Vi, E[Zé\le H;;] < n. Here is the theorem that matches the explicit construction
of [32].

Theorem 10 There are explicit constructions of oblivious routing algorithms on the hypercube
which, for any T, clogN <T < /N (¢ >4 is a constant):

1. use O(% log N) random bits and terminate in T steps with probability at least 1 — Q)

forany 0 < Q <1;

2
2. use O(%) random bits and terminate in expected time at most T .

Proor. (SkETcH.) Consider any packet v;; the probability that it takes more than 7'/2 steps
in phase(l) is at most PT(Z;‘\; H;; >T/2—log N). If the p(¢)s are picked uniformly and in k—wise
independent fashion, then the H;; are (k — 1)-wise independent, while E[Zé\le H;;] < logN, as
before. It follows from our discussion of Section 2.1 and from Lemma 3 that, if 7" > E[Zévzl H;;l,
(i.e., if T > 4log N ), then

N ( N )(logN)k—l log N)k-1
_ g
Pr(}_Hy > T/2-logN) < ot < — (log V) —.
j=1 ( k—1 ) Hj:O (T/2 - IOgN - j)

By picking k£ = @(%), we can ensure that Pr(Zj-V:l H;; >T/2—1logN) < Q/(2N) holds.
Arguing similarly for phase(ll) and summing up over all 7, we get (1) above.

For (2) above, we set ) = 1/(2N) and replace T by T'— 1 in (1). Let T4, be a random variable
denoting the time taken by the protocol, i.e., the maximum, over all packets ¢, of the number of
steps taken by packet v; to reach (7). Note that T},4, < log N + N, from the upper bound (16).
Also,

Pr(The: > (T-1)) <Q,

from (1) above. Hence,

ElTpas] < (T 1) Pr(Toas < (T = 1)) + (log N + N) - Pr(Tpae > (T = 1))
< (T-1)(1- %) + (logN—}—N)%
< T.
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Note that for any k, k-wise independent p(7)s can be generated from klog N random bits using
hash functions [9], since the p(7)s can be thought of as belonging to the field GF(2"). Hence, we
get bounds that match those of [32]. O

The above example typifies the type of application we expect our methods to find, i.e., as direct

“plug—in”s in analyses where the CH bounds are normally used.

3.2 The New Formulation and the Method of Conditional Probabilities

The method of conditional probabilities [34, 44] is an important technique for the deran-
domization of algorithms; the reader is referred to [35] for details. We now show how this method
can be combined with the formulation of Section 2.6. This will enable us to derive simple and effi-
cient deterministic polynomial-time algorithms from randomized algorithms which can be analyzed
using our formulation, in a unified way.

Given n random bits Xy, X3,..., X, can the conditional expectation
E[Sk(X1, Xoy .o, Xn)| X1 = b1, Xo=bg, ..., X; =b)]

be evaluated, or at least be given a “reasonable” upper bound, for any k, any 2,7 =0,1,2,...,n—1,
and any biby...b; € {0,1}*? If the X;’s are identically distributed, then it is reasonable to assume
that an upper bound U, on E[II‘_, X, |X| = b1, Xy = by,..., X; = b;] is known for all £, £ =
1,2,...,n — ¢, and for all distinct indices X;,, X;,,..., X;, € {i+1,i4+2,...,n}; this is sufficient

for the two applications shown below. Then, if

it <i<i) A (b =1} =1,

we can see that

min(i1 k) /. .
E[Su(X1, Xay o, X)Xy = b1, Xy = by, Xy = b)) < Y (’;) (Z:i) Uper.  (17)
r=0

We now present two applications where the combination of our formulation and the method of
conditional probabilities leads to fast polynomial-time algorithms, via upper bound(17). The first
application, to jobshop scheduling, is a “natural” derandomization of the randomized algorithm of
[41], faster than the derandomization techniques of [41] and [33]; this is shown in Section 3.2.1. The
second application is to discrepancy theory, and is discussed in Section 3.2.2. The “usual” method
of conditional probabilities for these problems frequently calls for independence among the random
variables corresponding to the bits Xi, Xo,..., X, seen above; this is not the case for these two

problems and in general for many other problems.

3.2.1 Improved algorithms for packet routing and jobshop scheduling

We now present simpler approximation algorithms for packet routing (Leighton, Maggs & Rao
[23]) and jobshop scheduling (Shmoys, Stein & Wein [41]) which provide improved approximation
guarantees, by using ideas from above. The non-preemptive jobshop scheduling problem is as follows:
given n jobs, m machines and a sequence of operations for each job where each operation is

assigned to a specific machine, construct a schedule to run the jobs so that the time taken to process
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all the jobs is minimized, subject to: (i) the operations of each job must be done in sequence; (ii)
no operation of any job running on any machine can be preempted till it is completed, and (iii) a
machine can process at most one operation at a time. One of the results of [23] tackles a special
case of this problem; the general case is handled in [41]. Both these papers give polynomial-time
algorithms to produce good approximations to an optimal schedule.

Let P; be the total time needed for job .J;, and let P, = mazg(y o Fi. Let 11; be the total
time for which machine Mj is needed, and let I, = maw;cy ,,,)ll;. Before an actual schedule
is constructed in [41], a pseudo—schedule § is constructed which temporarily assumes that each
machine can work on upto D operations simultaneously, where D > 1 depends on the input
instance. The pseudo—schedule is later used to construct an actual schedule. The only step where
randomization is used in [41] is during the construction of the pseudo—schedule and is the following.

An initial random delay d; € {1,2,...,1l,,4,} is assigned for each job J;. Suppose that the
sequence of operations of job J; are O;1,...0;,,, and that operation O;, takes time #;,; then,
in the pseudo—schedule S, job .J; is scheduled to start at time d; and runs to completion without
interruption, i.e., operation O;, starts at time d; + 22;11 t;o. We denote the offset 22;11 tie by
7(0; ). As shown in [23, 41], if the d;’s are generated uniformly and independently, then with high
probability, every machine at every unit of time will have (a congestion of) at most D(n, myez) =
c- ﬁ&:—nﬂ;‘x% jobs scheduled on it for some constant ¢, where m,,,; is the maximum number
of operations in any job. This step is then derandomized to deterministically compute initial
delays leading to a congestion bound of O(log(n - Myqz)). Linear programming is used for the
derandomization, making this step the bottleneck. This step is sped up in [33, 45]. Here, we get a
better congestion bound of D(n, my,,s) as opposed to the previously known O(log(n-my,q4.)) bound,
with an algorithm which is more direct than the ones of [33, 45], while having time complexities
comparable to theirs.

We assign random initial delays {d; € {1,2,...,1,,4,}} uniformly and independently to the

jobs. Suppose that the operations scheduled on machine M; are Oy,...0O,,,, which respectively

belong to jobs J;,,Ji,,..., i, and take i,... ¢y, units of time. For any machine M; and time
instance t € {1,2,..., 1,00 + Ppnasz}, we define > tefi,m te = Il; many indicator r.v.’s Xﬂt),
7 = 1,2,...,1I;, to analyze the congestion on machine M, at time ¢ in §; each of these r.v.’s is

an indicator for the event that a particular unit of time of some operation gets scheduled on M;
at time ¢ in &, as follows. The index j encodes the time unit and operation: let j,. = E;;ll ty for

r=1,2,...,myg; then if 5. < 7 < j,.41, J represents the 7 — j.th time unit of O, as follows.

. 1 ifj=4.+p, 1< p<t,, and the pth time unit of O, is scheduled for time ¢,
/Y]Z‘(t) = ie,ifd;, +7(0,)+p—-1=t;
0 otherwise.

It is easy to see that E[Xﬁt)] < =+—, and that for any positive integer k, the probability that

Hmaa: ?

machine M; has congestion at least k£ at time unit ¢ is

I1; ) . . ; g
Pr(}° Xt > k) < E[Sk(X{(t),. .., X, (1) < (l_l[c) (Hi) '

r=1

In addition, if Y%, X7(¢) > k holds for some time #, then "% X7 (¢') > k also holds for some

time t', where ' is one of the starting times of the operations scheduled on M;. Further, the starting
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time of each operation O, is uniformly distributed in [7(O,), 1,4 — 1 4+ 7(O,)]. Hence, for any k,

Pr(some machine has congestion at least k at some time instance) is at most

mo My, Hmam_1+7 ) 1

)3 DD DI T

1=1r=1 t=7(0r)

ma$ Hz 1 k=t “ m;
ZmZ maz (k_l) <Hmaz) Sz(k_l)'

=1

E[Sk—l(X{(t%"'7Xﬁ¢(t))]7 (18)

which is at most

! .
= og(n-mimaz) g1 some suitable constant c1
loglog(nmmaxz) ’

the above probability estimate is less than one. We may now use the above form as a pessimistic

Clearly Y /2y m; < n - Myqz, hence for k — 1> k* =

estimator [34] to deterministically set the delays d; for the jobs one-by—one by the method of

conditional probabilities [34, 44], to achieve the congestion bound of D(n, myaz).

Assume inductively that initial delays dy = dj,dy; = d3,...,ds = d} have been set determin-
istically for the jobs Ji,.J3,...,J,; the aim is to compute dj,; now. Consider any machine M;
on which Js4; has at least one operation; let these operations be As11 1, Ast1,2,...; Asy1,q,- Let

Bs1,Bsa,...,Bsy, be the operations which belong to some job in {Jy,Js,...,Js} and which are
scheduled on M;, and let ¢,1,%52,...,ts5, be the times at which they are scheduled to start on
M;; these times are known, since we know the values of dy,dy,...,d;. Let O1,04,...,0,, be the
operations on machine M; that belong to jobs from the set {Jsy2, Jsi3, ..., Jn}. We define, for any
t€41,2,..., Puaz +paz} and r € {1,2,..., 4},

g(s+ 1,4, t,7) = B[S (X1 (), X5(8), ..., Xi, () |dy = df,dy = d3, .. ., ds = d5, dsy1 = 7],

and num(i,t, < z1,zg,...,2; >) to be the number of operations from jobs .Jy, J3,...,J; that are
scheduled on machine M; at time ¢, given that d; = 2z1,...,d; = z;.

When conditioned on the event dy = df,dy = d3,...,ds = d%,ds11 = Aforany A € {1,2,...,[L4:},
upper bound(18) becomes

m @y bz ( +H'ma.r
f(s+1,A) = Z Zg(s—}—l,i,T(AsH’j)—}—A,A)—}—Zg(s—l—l,i,tw, —}—Z Z 0 g(s+1,4,t,A)).
=1 j=1 7=1 = T(O]) maxr

Recall that the method of conditional probabilities will set ds41 = d5, |, where d, , is the index
at which f(s+ 1,-) is minimized. Note that f(s+ 1,A) can be readily computed for any A and

hence, so can d;, ;. To make the computation more efficient, we use the following observations.

1. Suppose we need to compute f(s+ 1, A) for some A, using upper bound (17). Then, for any

machine M; which has some operation from job J,11, the term “n —4” in upper bound (17)

corresponds to the number of operations of jobs Ji,Js, ..., Js;1 on machine M;, i.e., a; + b;.
Hence, for any t € {1,2,..., Pnaz + ez}, g(s+1,7,£,A) can be computed in O(k*) time if
num(j,t, < di,ds, .. 7d57 A >) is known, since upper bound(17) involves a sum over at most

k* terms (recall that £* is an upper bound on the number of operations scheduled at the same

time).
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2. Suppose inductively that num(i,t, < di,d5, ..., d% >) is known, for all machines M; and for
all times ¢. Let wy4q be the number of operations of job Jsy1. We will consider only those
machines that have some operation of Js,1; the number of such machines is clearly at most
wst+1. Hence, given the num(i, t, < di, d3,...,d% >) values, the num(-,-, < d5,d5,...,d% 1 >)
values need to be updated for at most w,yy machines and for P4, + Il time units, and
can be done in O(wst1(Praz + maz)) time. Given the num(-,-, < di,d;, ..., d% 1 >) values,
computation of f(s+1,1) takes O(ws4+1k*(Ppaz+14e)) time, since g(+, -, 1) can be computed

in O(k*) time, given these values.

3. Suppose we have computed the num(-,-, < dj, d3,...,d%, A >) values and f(s+1, A) for some
value A, and that we need to compute f(s+ 1, A+ 1). We can proceed to first compute the
num(-, -, <df,d5, ..., d*, A+1>) values and then f(s+ 1, A+ 1), as follows. Suppose some

operation « of Js41 is scheduled to run on some machine M; from time ¢; to time ¢z, when
we set ds41 = A. Then, note that

num(i, ', < di,d5, ..., ds A+ 1>) = num(i,t', < di,d5, ..., d5 A >), V' €[t +1,t3).

s

Hence, this operation « leaves at most two of the num(-,-, < df,d3,...,d%, A+ 1 >) values
different from the corresponding num(-,-, < df,d;,...,d% A >) values. Hence, num(-,-, <
yds, ., di A+ 1 >) can be updated in O(wsy1) time. It now follows from arguments

similar to those used above that f(s+ 1, A+ 1) can be computed in O(k*ws4q1) time.

The above observations imply an efficient algorithm to compute dsyq1: inductively maintain
the num(-,-, < df,d5,...,d% r >) values as r goes from 1,2,..., to Il,,,,, and compute f(s +
1,1), f(s+1,2),..., f(s+ 1,I1,,42) in that order by sequentially updating the corresponding num
values. Since computing d3,; takes O(ws41k*(Praz + Ilnae)) time, the total time complexity is

O(wk*(Praz + nas)), where w is the total number of operations. Hence, we have

Theorem 11 [Initial delays {d; : 1 < i < n} in the range {1,2,..., 1,4} for each job J; can be
set in O((Praz + Hmaz)w%) time where w is the total number of operations, such that
in the (infeasible) schedule in which every job J; starts at time d; and runs without interruption,

every machine has at most O(ﬁ%—”%) jobs scheduled on it at any time.

We feel that the above is a natural derandomization of the randomized algorithm since it sets

the delays one—by—one, as opposed to the more complex ways used before.

3.2.2 Exact Partitions in Set Discrepancy

Set discrepancy problems [3] are combinatorially important, special cases of which can model
divide—and—conquer situations; see, e.g., the RNC edge coloring algorithm of Karloff & Shmoys
[21]. Given a finite set X and a family of subsets F = {51, 953,...,5,} of X, the goal is to come
up with a “2-coloring” x : X — {0,1} such that the discrepancy disc(x) = maz; disc;(x),
where disc;(x) = {|(>;es, x(4)) — [Sil/2}, is minimized. It is known that a 2-coloring x with
disc(x) = O(v/Alogn) exists and can be computed in polynomial (in |X| and n) time [3], and
that a 2—coloring x with disc(x) = O(A%5*¢/logn) for any fixed ¢ > 0 can be computed in NC
[8, 27, 29], where A = max;|5;|. Using the ideas of Section 2.1, we can prove
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Theorem 12 Given a finite set X with | X| even and a family of subsets F = {S1,S52,...,5,} of
X such that A = max;|S;|, there exists a 2-coloring x* : X — {0, 1} computable in polynomial (in

| X| and n) time, such that: (i) disc(x*) = O(/Alogn), and (ii) {y € X : x*(y) = 0}| = {y €
X :x*(y) =1}.

Proor. For the existence proof, we can show that if we pick a random subset Z C X with
|Z] = | X|/2 uniformly from the set of all size | X|/2 subsets of X and set xz(y) = 1iff y € Z, then
Prz(disc(xz) = O(v/Alogn)) > 0, as follows. It is well-known [3] and easily checked via the CH
bounds that there is a constant ¢ > 0 such that if x(y) is picked uniformly and independently from
{0, 1}, then for any S;, Pr(disc;(x) > ¢v/Alogn) < 1; hence,

Pr(disc(x) > ev/Alogn) = Pr(3i: disc;,(x) > en/Alogn) < n - 1_ 1.
n

Note that {xz(y) : y € X} is a set of self-weakening random bits with parameter 1, i.e., if 7
is picked uniformly at random from the set of |X|/2 sized subsets of X, then for any distinct

Y1, Y2, -, ¥ € X,
E[_xz(y))] = Prixz(n) = xz(y2) = -+ = xz(y:) = 1) <Wie Prxz(y;) = 1) = Wis, Elxz ().

Hence, it follows from Section 2.6 that for any S;, Pr(disci(xz) > cy/Alogn) < 1 still holds,
concluding the existence proof.
Assume that | X| = m and that X = {1,2,...,m}. To use the method of conditional probabil-

ities to derandomize the above construction, note that for {7;,42,...,4;} C{i+1,i+2,...,m},
E[szlxz(i(gﬂxz(l) =by,...,xz(r) =b,] = undefined, if r; > m/2 or ro > m/2
= 0,ifri4+j>m/2
(ot
= %, otherwise
<m/2—7“1)
where

{1 Q<0< A e=1}=r
and ro = r — ry. This can now be derandomized, by our initial discussion in Section 3.2. a
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