
University of Maryland College Park

Institute for Advanced Computer Studies TR{2003{89

Department of Computer Science TR{4521

MATRAN

A Fortran 95 Matrix Wrapper�

G. W. Stewarty

August 2003

ABSTRACT

Matran is an wrapper written in Fortran 95 that implements matrix oper-

ations and computes matrix decompositions using lapack and the blas.

This document describes a preliminary release of matran, which treats

only real matrices. Its purpose is to get outside comments and suggestions

before the package jells. Consequently, this documentation is slanted to-

ward the experienced programmer familiar with both matrix computations

and Fortran 90/95. User oriented documentation will accompany the �nal

release.

�This report is available by anonymous ftp from thales.cs.umd.edu in the directory pub/reports

or on the web at http://www.cs.umd.edu/�stewart/.
yDepartment of Computer Science and Institute for Advanced Computer Studies, University of Mary-

land, College Park, MD 20742 (stewart@cs.umd.edu). This work was supported in part by the National

Science Foundation under grant CCR0204084.

MATRAN i

Contents

Preface iii

1 Overview and example 1

1.1 Overview . 1

1.2 A least squares solver . 3

2 The module MatranUtil m 8

3 The types Rmat and Rdiag 9

3.1 The type Rmat . 11

3.2 The type Rdiag . 16

4 Matrix Operations 17

4.1 Generalities . 17

4.2 The Transpose suite . 19

4.3 The Sum suite . 20

4.4 The Product suite . 20

4.5 The Solve suite . 22

4.6 The Join suit . 23

4.7 The Border suit . 23

4.8 The Submatrix suite . 24

5 Matrix miscellania 25

5.1 The Diag suite . 26

5.2 The Eye suite . 26

5.3 The Inverse suite . 27

5.4 The Norm and Norm2 suites . 28

5.5 The Pivot suite . 29

5.6 The Print suite . 29

5.7 The Rand suite . 31

6 Decompositions 32

6.1 Generalities . 32

6.2 The LU decomposition . 35

6.3 The Cholesky decomposition . 36

6.4 The QR decomposition . 36

6.5 The pivoted QR decomposition . 38

6.6 The spectral decomposition . 39

6.7 The singular value decomposition . 40

ii MATRAN

6.8 The real Schur decomposition . 42

6.9 The eigendecomposition . 44

7 The real core 45

8 Computing Arnoldi decompositions 47

9 Appendix: The Sun Fortran 95 6.2 Compiler 54

MATRAN iii

Preface

This document introduces a preliminary version of matran (pronounced MAY-tran),

a Fortran 95 wrpper that implements matrix operations and computes matrix decom-

positions using lapack and the blas. Although matran is not based on a formally

de�ned matrix language, it provides the avor and convenience of coding in matrix ori-

ented systems like matlab, octave, etc. By using routines from lapack and the

blas, matran allows the user to obtain the computational bene�ts of these packages

with minimal fuss and bother.

Matran originated as follows. In 2002, my colleague Dianne O'Leary and I received

an NSF grant to work on new algorithms for large-scale eigenvalue problems. Somewhat

rashly we promised to implement our algorithms in a standard high level language,

even though we knew that we would develop them using matlab. A couple of years

previously I had published a Java matrix package called jampack. The response was

less than enthusiastic, owing in part to the awkward syntax forced on it by the absence

of operator overloading in Java. Since Fortran 95 not only can overload operators but

can also can de�ne new ones, it occurred to me that jampack would look a lot cleaner

in Fortran 95 and could, in fact, provide natural and eÆcient implementations of code

from matrix oriented languages.

At present matran implements only real matrix operations and decompositions.

Consequently, it is still is small enough to survive signi�cant changes, provided they rep-

resent substantial improvements. The purpose of this release is to solicit comments and

suggestions before matran jells. For this reason, this document is addressed largely

to experts|people well grounded in matrix computations, Fortran 95, lapack, and

the blas. The formal release, which will contain complex types, will be accompanied

by a more conventional user's manual.

Matran may be obtained through my home page

http://www.cs.umd.edu/~stewart/

This project has many benefactors. I am supported by the National Science Foun-

dation at the Computer Science Department and the Institute for Advanced Computer

Studies of the University of Maryland. I am also a faculty appointee at the Mathemat-

ical and Computational Sciences Division of the National Institute for Standards and

Technology, where my division leader, Ron Boviert, has encouraged me to work on this

project.

I am greatly indebted to John Reid, who patiently steered me through my initial

fumblings with Fortran 95 and provided useful suggestions for the design of matran.

His excellent book withMichael Metcalf, Fortran 90/95 Explained, has been my constant

companion during this project. Bill Mitchel, the resident NIST expert on Fortran 90/95,

has made himself cheerfully available on a drop-in basis to answer my questions. Finally,

iv MATRAN

my student Che-Rung Lee, who came in at the middle of the project and quickly learned

the ropes, has been a valuable assistant ever since.

MATRAN

A Fortran 95 Wrapper for Matrix Operations

G. W. Stewart

1. Overview and example

Matran is an open wrapper written in Fortran 95 that implements matrix operations

and computes matrix decompositions using lapack and the blas. Matran is a

blending of \matrix" and \Fortran," and is pronounced MAY-tran. This document

describes a preliminary release of matran which treats only real matrices. Its purpose

to get outside comments and suggestions before the package jells. Consequently, it is

slanted toward the experienced programmer familiar with both matrix computations

and Fortran 90/95. User oriented documentation will accompany the �nal release.

1.1. Overview

Matran is a collection of derived types and generic subprograms in Fortran 95 that

implements matrix operations and computes matrix functions and decompositions. Al-

though matran is not based on a formally de�ned matrix language, the results of using

matran are akin to coding in a subset of matrix oriented programming languages like

matlab, octave, etc. By using routines from lapack and the blas, matran al-

lows the user to obtain the computational bene�ts of these packages with minimal fuss

and bother.

Here are some of the features of matran.

� This preliminary release of matran provides only two matrix types. The Rmat rep-

resents matrices stored in rectangular arrays. The Rdiag implements diagonal matrices

stored in a linear array.1 However, this poverty of types is illusory. The type Rmat

contains a tag �eld that subdivides the type into general, upper triangular, lower trian-

gular, symmetric, and symmetric positive de�nite matrices. The �rst formal release will

also include complex versions of the two types. Ultimately, I would like to see matran

support band and sparse matrices.

� There are single and double versions of matran, corresponding to the single and

double precision versions of lapack and the blas. The default result of compilation is

double precision; but compilation of a single precision package can be forced by setting

a ag in the compilation command line. Unfortunately, one cannot mix or match: the

1In Fortran 95 these arrays are said to have rank two and one respectively. However, since the word

rank has other meanings in matrix computations, we use the terms rectangular and linear instead.

1

2 MATRAN

package is all single precision or all double precision. Incidently, if lapack quad codes

become avaliable, it will be easy to extend matran to a quad package.

� Matrix operations are provided by overloaded and de�ned operators. For example

A + B compute the sum of the matrices A and B, while A.xhy.B computes AHB. A

suite of subprograms computes products like A�1B or A�HB. In addition, matran

de�nes operations for combining matrices and extracting submatrices.

� Matran provides common matrix functions|e.g., norms|as well as constructors

for special matrices like the identity.

� Matrix types in matran are allowed to be void (aka empty)|that is, they may

have zero row or column dimension (or both). This feature is useful in starting matrix

algorithms that build up matrices by bordering.

� Matran provides types for the following decompositions: the pivoted LU decom-

position, the Cholesky decomposition, the pivoted and unpivoted QR decompositions,

the spectral decomposition of a symmetric matrix, the singular value decomposition,

and the Schur and eigendecompositions of a general square matrix. Matran provides

means for reusing decompositions, as, for example, when one wishes to solve several

linear systems all having the same matrix.

� Matran is modularized at a �ne-grained level. This means that the programmer can

pick and choose among matran's capabilities without linking to the entire package.

� Storage management in matran requires only a minimal assist from the user. How-

ever, matran provides additional means by which the user can force the reuse of

storage already allocated, thus reducing calls to the allocator. These features may be

useful to people doing large computations with small matrices, in which the allocation

of intermediate matrices can amount to a signi�cant part of the computational load.

� Many of matran's more advanced features are implemented via optional arguments,

so that when they are not needed they do not clutter the code.

� Matran is an open package in the sense that its modules and types have no private

components. This fact has two useful consequences.

1. The programmer can use the resources of Fortran 95 to manipulate matrices in

ways not provided by matran. This ability is especially important for matrix

computations, since the number of things people want to do with matrices far

exceeds the number of methods that a closed, object-oriented package can provide.

2. Closely related to the �rst is the fact that the programmer can do things in a

way that facilitates compiler optimization. To give a single example, a Rmat holds

its matrix in an array called a. In matran, the standard way to reference the

MATRAN 3

(i,j)-element of a Rmat M is M%a(i,j), which means the the compiler knows that

it is working with references to a rectangular array and can optimize the code

accordingly. If access were exclusively through functions, the compiler would not

be able to optimize.

However, there is a downside to being open. Matran cannot enforce its own conven-

tions. Thus the matran programmer must be more both knowledgeable and more

disciplined than the casual user of object-oriented packages.

1.2. A least squares solver

In this section we will illustrate some of matran's features and conventions by a simple

least squares solver. Suppose we are given an m�n matrix A of full column rank n.

Given an m-vector b we want to compute an n-vector x such that

kb�Axk22 = min;

where kuk22 =
P

i
u2
i
. In addition, we want to compute the residual r = b � Ax at the

minimum, and the residual sum of squares krk22.

The QR decomposition furnishes an elegant way of solving this problem. Speci�cally,

we can write A in the form

A = QR; (1.1)

where Q has orthonormal columns and R is upper triangular. It can be shown that

x = R�1QTb:

Hence, given the QR decomposition of A, one can �nd x by simple operations involving

b, Q, and R.

The code in Figure 1.1 implements this algorithm. The statement

use MatranRealCore_m

invokes a blanket module consisting of use statements invoking the core modules of ma-

tran (x7).2 The second use statement gets the module de�ning the QR decomposition

and its constructor.

The variables A, b, x, and r have changed to the Rmats A, b, x, and r. A Rmat is a

de�ned type that implements a matrix as a set of numbers stored in a rectangular array

in the usual way. We will have more to say about Rmats later. But note that matran

makes no distinction between matrices and vectors. The are all represented by the same

derived type|the Rmat.

2In matran all modules are suÆxed with m.

4 MATRAN

subroutine qrlsq(A, b, x, r, RSS)

use MatranRealCore_m

use RmatQR_m

implicit none

type(Rmat), intent(in) :: A, b

type(Rmat), intent(out) :: x, r

real(wp), intent(out) :: RSS

type(RmatQR) :: qra

!Protect temporaries.

call GuardTemp(A); call GuardTemp(b)

! Get the QR decomposition of A.

call QR(qra, A)

! Solve the least squares problem.

x = qra%R.xiy.(qra%Q.xhy.b)

r = b - A*x

RSS = NormF(r)**2

! Clean up.

call Clean(qra)

call CleanTemp(A); call CleanTemp(b)

end subroutine qrlsq

Figure 1.1: QR least squares

�

The residual sum of squares is returned via the paramenter RSS. It is declared to be

a real scalar of kind wp. The parameter wp (for Working Precision) is de�ned at compile

MATRAN 5

time in the module MatranUtil_m.

Let begin with the computational heart of the algorithm. The statement

call QR(qra, A)

computes the QR decomposition of A. In matran this decomposition has the form

type RmatQR

type(Rmat) :: Q

type(Rmat) :: R

logical :: companion

end type RmatQR

The �rst two components are Rmats containing the Q- and R-factors of A [cf. (1.1)]. The

third component will be discussed later (x6.1).

The computation in the statement

x = qra%R.xiy.(qra%Q.xhy.b)

consists of two parts. The �rst part, qra%Q.xhy.b computes t = QTb. The operator

.xhy. is to be read, \x conjugate transpose y," and it means just what it says: the

conjugate transpose of the �rst operand multiplies the second operand. This, of course,

is the same as multiplying by the transpose. But matran prefers to specify the conju-

gate transpose for both real and complex matrices to aid in generalizing programs from

real to complex arithmetic. (The practice is similar to the use of the superscript `�' to

denote the adjoint of a matrix or operator, whatever the underlying �eld.)

The second part computes R�1t. The operation .xiy. reads \x inverse y." But the

\inverse" is there only for brevity, and in fact it is never computed. Instead matran

solves the system Rx = t. Matran is smart enough to recognize that R is upper

triangular and use the appropriate algorithm.

The computation of

r = b - A*x

uses the overloaded operators - and * and is straightforward. However, you can get

unexpected results if you combine de�ned operators with overloaded operators because

the latter bind more tightly than the former. For example, the expression a + B.xhy.c

computes (a + B)Tc, not a + BTc as expected. To get the latter you must write a +

(B.xhy.c). In matran the watchword is: When in doubt, parenthesize.3

3There is another reason for being careful with parentheses. Suppose A B and C are respectively n x 1,

1 x n and n x n Rmats, and we wish to compute A*B*C. For de�ned or overloaded operators, Fortran 95

evaluates left to right| i.e., (A*B)*C, an expression which requires O(n3) oating-point operations to

compute. On the other hand, the expression A*(B*C) requires only O(n2) operations. Thus, in this

case, the expression A*B*C should be parenthesized in the form A*(B*C).

6 MATRAN

Another source of confusion arises from the fact that Fortran makes no distinction

between upper and lower case letters. Thus we could have just as well written

R = B - a*X

This can easily lead to programming errors in matrix computations, where capital letters

frequently denote matrices and small letters denote vectors. For example, consider

writing code based on a paper in which u represent a column of a matrix U .

Finally, the residual sum of squares is computed as the square of the Frobenius

norm of r. The function NormF is one of a suite of generic fuctions that compute matrix

norms.

Matran automatically takes care of �nding storage to hold the results of its compu-

tations. Unfortunately, the user must help with deallocation. This is because matran

uses pointer arrays, which are not deallocated automatically, to hold its matrices.4 The

rules for deallocation this are simple. The �rst rule is

Before returning from a subprogram use the Clean subroutine to deallocate

the storage of all locally de�ned matrix objects and decompositions.
(1.2)

For example, the statement

call Clean(qra)

in our sample program deallocates storage for the Rmats qra%Q and qra%R.

The second rule addresses a more subtle problem. Consider once again the state-

ment

r = b - A*x

The �rst thing that must be computed is the quantity A*x, which in matran is a Rmat.

This temporary Rmat|call it t|is no longer needed after it is used to compute b - t,

and matran silently deallocates it. Likewise another temporary Rmat is needed to hold

b - t before it is copied to r. Once again, matran silently allocates and deallocates

the temporary.

The problem comes when you invoke a subprogram with a temporary for an actual

argument. For example, one might call qrlsq as follows.

call qrlsq(A, c-d, x, r)

4The reason is that strict Fortran 95 does not allow allocatable arrays appear in de�ned types.

There is an extension of Fortran 95, guaranteed to be in the Fortran 200x standard, that allows such

constructions; but it is not everywhere implemented. In the future matran will use allocatable arrays,

and the extension will be backward compatible with code written in accordance with the conventions

of the present version.

MATRAN 7

In this case c-d will be a temporary Rmat|but one that has cut free from matran,

which therefore cannot deallocate it. The cure is contained in the following rule.

Just after entering a subprogram call GuardTemp with each dummy matrix

object of the subprogram having the intent in. Just before leaving, call

CleanTemp with each of the same dummy arguments.

(1.3)

Thus in qrlsq we have the statements

call GuardTemp(A); call GuardTemp(b)

at the beginning and the statements

call CleanTemp(A); call CleanTemp(b)

at the end.

Matran routines are not the only ones that generate temporary variables. When-

ever a user de�ned function returns a matran matrix type, the returned value must be

regarded as temporary, since it can only occur in an expression or as an actual param-

eter in an argument list. The subroutine SetTemp declares a matrix to be a temporary.

If a function returns a matrix object M, then execute

call SetTemp(M)

before returning.

(1.4)

Although these rules may seem involved, they generate very little code. Moreover,

the calls to GuardTemp occur only at the beginning of the routine in question. If the

routine is coded to have only one point of return (presumably at the end), the calls to

ClearTemp and SetTemp occur only at that point.

Finally, as we have noted above, matran uses pointer arrays to store matrices.

Eventually, when the Fortran world is suÆciently settled, the pointer arrays will be

replaced by allocatable arrays, which will obviate the need for the convention (1.2){

(1.4). However, to be consistent with the change to allocatable arrays, you should not

do things with the pointer array of a matrix object that cannot be done with allocatable

arrays. In particular, you should observe the following strictures.

Neither change the association of nor assign a pointer to the array in a

matrix object.
(1.5)

You may, however, allocate and deallocate the pointer arrays of a matrix object. Just

make sure you know what you are doing.

Owing to bug in Sun WorkShop 6 update 2 Fortran 95 6.2 2001/05/15, additional

initialization has to be done on the result of a function. See x9

8 MATRAN

2. The module MatranUtil m

The module MatranUtil_m is the root matran module. It contains a parameter for

de�ning the precision of real types, error handlers, and procedures for reshaping raw

arrays.

MatranUtil de�nes the parameter wp by

#ifdef sngl

integer, parameter :: wp = kind(1.0e0)

#endif

#ifdef dbl

integer, parameter :: wp = kind(1.0d0)

#endif

Thus the speci�cation

real(wp) :: <variable list>

declares the variables in the list to be of the precision selected for this version of Matran.

The default is double precision. The selection is done by de�ning one of the Fortran

preprocessor parameters sngl or dbl, which can be done at compilation time in the

command line. (Actually, if you do nothing, you get double precision.)

Matran provides operations between matrices and scalars. For example the code

type(Rmat) :: A, B

real(wp) :: s = 2

...

A = s*B

will perform exactly as expected, so that elements of A are twice those of B. However,

the code

A = 2*B

will not work. The reason is that 2 is an integer, not a type real of kind wp, and

matran does not implement multiplication of a Dmat by an integer. What you have

to do is supply the kind parameter. For example,

A = 2_wp*B

will work, provided you have used the module MatranUtil_m.

The general error handler for matran is

subroutine MatranError(ErrorMessage)

where

MATRAN 9

character(*), intent(in) :: ErrorMessage

The subroutine prints the error message and stops.

As we have mentioned, matran uses lapack and the blas to perform most of

its calculations. The former returns error indications via a standard parameter info.

In case of such an error, matran uses the following error handler.

\begin{frag}

subroutine SupportError(ErrorMessage, infonum)

\end{frag}

where

character(*), intent(in) :: ErrorMessage

integer, intent(in) :: infonum

The subroutine prints the error message followed by

<infonum>

and stops. (However, this procedure can be overridden. See x6.1.)

In managing storage, matran always attempts to �t things into existing arrays.

Only if the array is too small is it reallocated. The allocation is managed by a generic

subroutine ReshapeAry. Its function is best illustrated by an example. Figure 2.1 gives

an incarnation of this subroutine that reshapes a rectangular double precision array.

The arguments m and n specify the minimal extents of the array. If the array is large

enough, the subroutine does nothing, except set the array to zero. If not it deallocates

the array, if necessary, allocates it to have shape (m,n), and sets it to zero. The module

MatranUtil_m provides subroutines to reshape linear and rectangular arrays of type

integer, double precision, and double complex.

3. The types Rmat and Rdiag

In this section we will consider the two matrix types currently implemented inmatran:

the Rmat and the Rdiag. It is important to keep in mind that a matran matrix type is

really a storage type. In particular, the type Rmat implements double precision oating-

point matrices that can be represented in natural order in a rectangular array. In

principle, this means any double precision matrix; but if we add the requirement that

the representation use storage eÆciently, the set of candidates for a Rmat shrinks. For

example, a diagonal matrix could be written as a Rmat. But that would be an ineÆcient

use of storage, since a diagonal matrix of order n has at most n nonzero elements,

all lying on its diagonal. Therefore, matran provides a type Rdiag which stores the

nonzero elements in a linear array.

10 MATRAN

subroutine ReshapeAryD2(Ary, m, n)

real(wp), pointer :: Ary(:,:)

integer, intent(in) :: m, n

integer :: shp(2)

if (associated(Ary)) then

shp = shape(Ary)

if (m>shp(1) .or. n>shp(2)) then

deallocate(Ary)

allocate(Ary(m, n))

end if

else

allocate(Ary(m, n))

end if

Ary = 0.0

end subroutine ReshapeAryD2

Figure 2.1: An incarnation of ReshapeAry

�

MATRAN 11

type Rmat

real(wp), pointer & ! The matrix array

:: a(:,:) => null() !

integer :: nrow = 0 ! Number of rows in the matrix

integer :: ncol = 0 ! Number of columns in the matrix

integer :: narow = 0 ! Number of rows in the array

integer :: nacol = 0 ! Number of columns in the array

character(2) & ! Type of matrix

:: tag = 'GE' !

logical :: adjustable =.true. ! Adjustable array

integer, pointer ! Intermediate value

:: temporary => null() !

end type Rmat

Figure 3.1: The type Rmat
�

3.1. The type Rmat

The type Rmat in Figure 3.1 is de�ned in the module Rmat_m. Let us look at the

components in order.

� a(:,:). This is the array containing the matrix. It can be allocated and deallocated,

so that over time the array of a Rmat can vary in size.

The reason for using a single letter a for the array of a Rmat is that the elements

of the matrix are referenced through the array. If X is a Rmat, then X%a(i,j) is the

(i,j)-element of the corresponding matrix. This is easier to read in a program than a

lengthier alternative like X%Array(i,j).

The array a of a Rmat is always rectangular. This means, as we have noted earlier,

that matran has no vector types as such. Instead, an n�1 matrix represents a column

vector and an 1�n matrix represents a row vector.

The initial status of a is unassociated. An important convention of matran is the

following.

If the array of a Rmat A is associated, then A is a well-formed Rmat; i.e.,

a has the dimensions narow and nacol and 0 � nrow � narow and 0 �

ncol � nacol.

(3.1)

� nrow, ncol, narow, nacol. The convention (3.1) shows that matran makes a

distinction between a matrix and the array that contains it. The dimensions of the

latter can be greater than the former. Thus a Rmat must have two pairs of dimensions,

one for the matrix and one for the array that contains it. The matrix of a Rmat is always

12 MATRAN

in the northwest corner of the corresponding array, and all entries of the array outside

the matrix are zero.

It is permissible for nrow or ncol (or both) to be zero. Such a matrix is called a

null matrix . Null matrices are especially useful in starting o� matrices that expand as

an algorithm progresses.

� tag. We have already mentioned that Rmats can represent di�erent kinds of com-

monly used matrices. The tag component speci�es the kind of matrix, as shown in the

following table.

Matrix type Tag

General GE

Upper triangular UT

Lower triangular LT

Hermitian HE

Hermitian positive (semi) de�nite HP

The tag of a Rmat tells programs that manipulate the Rmat that there is special structure

present. For example, if the tag of A is UT, the routine in the Solve suite that computes

A�1B uses a special blas algorithm to compute its result.

The tags UT and LT apply to rectangular matrices as well as square ones. In ma-

tran, a matrix A, regardless of its dimensions, is upper triangular if

i > j =) aij = 0

and is lower triangular if

i < j =) aij = 0:

Rectangular triangular matrices are sometimes called trapezoidal in the literature.

The tags HE and HP stand for `Hermitian' and `Hermitian Positive de�nite'. Note

that for Rmats this is the same as symmetric and symmetric positive de�nite. However,

to have a consistent notation that will extend to complex matrices, the tags have names

that serve for both.

Matrices with the tag HP are usually generated in a way that mathematically guar-

antees that they are positive de�nite, or at least positive semide�nite (e.g., as with

the cross-product ATA). However, it should be kept in mind that rounding error may

cause the matrix to not be de�nite. In such cases the constructor for the Cholesky

decomposition will fail See x6.3).

Matran does not support packed versions of the matrices in the table above. Thus

an upper triangular matrix is represented in a rectangular array zeros and all. So that

everyone is sure what is in the array of a Rmat, we adopt the following convention.

A matrices is fully represented in the array of its Rmat. Elements of the array

outside the matrix are zero.

MATRAN 13

Thus, in a symmetric Rmat both the upper and lower part of the matrix are present.5

� adjustable. This component addresses the following problem. It may sometimes

happen that a result to be stored in a Rmat is larger than the array of the Rmat. If the

Rmat is adjustable, then matran is permitted to reallocate the array to contain the

result. We will return to this point at the end of this section.

� temporary. This component is used in conjunction with SetTemp, GuardTemp, and

CleanTemp to deallocate temporary Rmats. If temporary is null(), the Rmat is not

temporary. If temporary is one or greater the Rmat is temporary. As long as you follow

the conventions (1.3) and (1.4), your temporary arrays will be deallocated at the proper

time. Note that temporary should be manipulated only by SetTemp, GuardTemp, and

CleanTemp.6

|

Asmentioned above, he module Rmat_m de�nes the three generic subroutines SetTemp,

GuardTemp, and CleanTemp used to deallocate temporaries. It also de�nes a sanitizer

Clean that restores a Rmat to its pristine condition.

The module Rmat_m overloads the assignment operator for Rmats in four ways.

Rmat A = Rmat B

The statement A = B copies B to A. It is not quite an exact copy: A%temporary

and A%adjustable are unchanged whatever the values of the corresponding

components of B. Moreover, the shape of A%a may be di�erent from B%a, as

we will see in a moment.

Rmat A = Array B(:,:)

The statement A = B causes A to be a Rmat whose matrix is the contents of

B. A%tag is set to GE, The components A%temporary A%adjustable remain

unchanged.

Rmat A = integer vec(:)

If vec = (/m,n/), then A becomes an m x n zero matrix an an array whose

size is determined as described below. If vec = (/m,n, ma,na/), then A

5All this is consistent with the fact that matran segregates matrices by storage type. A packed

symmetric matrix, for an example, would be a new storage type and would have to have its own de�ned

type.
6For those who want the full story, here it is. The real problem with temporaries is knowing when

to deallocate them. If, for example, a subprogram with a temporary argument passes it on to another

subprogram, the second subprogram should not deallocate it, since the invoking program may need

to use it on return. To avoid premature deallocation, GuardTemp simply increases temporary by one,

provided it is nonnull. CleanTemp decreases temporary by one provided it is greater than one, but it

does not deallocate the array a unless temporary is one after decrementation. You can easily convince

yourself that if the convention (1.3) is followed religiously then only the �rst subprogram invoked with

the temporary Rmat will deallocate its storage.

14 MATRAN

becomes an m x n zero matrix contained in an ma x na array. The component

adjustable remains unchanged, but the array will be adjusted, whether

or not the Rmat A is adjustable. The array A%a is set to zero. The array

A%temporary is unchanged.

Rmat A = real(wp) s

The statement A = s produces a 1 x 1 Rmat whose single element is s.

Three of these overloaded assignments have operator forms, generically written .dm.,

for use in expressions.

.dm.ary

Produces a Rmat C de�ned by C = ary, where ary is a rectangular array.

.dm.vec

Produces a Rmat C de�ned by C = vec, where vec=(/m,n/) or

vec=(/m,n, ma,na/).

.dm.s

Produces a Rmat C de�ned by C = s, where s is of type real(wp).

The Rmats created by Rmat A = vec and .dm.vec are initialized to zero. Hence

matran does not provide special routines to construct zero matrices.

It is now time to be more precise about how matran treats arrays. When matran

must transfer an m x n matrix to a Rmat A, it always tries to use the space available in

A%a. If A%a can contain the matrix matran uses A%a as is. If A%a is too small and

A is adjustable, matran reallocates A%a to be m x n. Otherwise, matran gives an

error return. A good way of summing this up is to say: Left to itself matran may

increase the size of a Rmat array, but it will not decrease it. The only exceptions are the

subroutine Clean, which deallocates the array, and the assignment Rmat = vec which

changes the array shape according to the contents of vec.

The above recipe for adjusting arrays is implemented by the generic subroutine

subroutine ReshapeAry(A, n, m)

Here m and n are the row and column dimensions of the matrix to be placed in A. The

�nal array is always set to zero. We have already seen an example of this subroutine in

Figure 2.1, where the concern was with reshaping a raw array, rather than the array of

a matrix type.

We conclude this subsection with the implementation in Figure 3.2 of the assignment

Rmat = Rmat, which illustrates some of the points above. Many of the subprograms

implementing matran are as simple as this. When in doubt about what matran

does in a particular situation, try looking at the code.

MATRAN 15

interface assignment (=)

module procedure RmEqualsRm, RmEqualsAry, RmEqualsRowCol

end interface

...

contains

...

subroutine RmEqualsRm(A, B)

type(Rmat), intent(inout) :: A

type(Rmat), intent(in) :: B

call GuardTemp(B)

call ReshapeAry(A, B%nrow, B%ncol)

A%a = 0

A%a(1:A%nrow, 1:A%ncol) = B%a(1:B%nrow,1:B%ncol)

A%tag = B%tag

call CleanTemp(B)

end subroutine RmEqualsRm

...

Figure 3.2: Implementation of Rmat = Rmat

�

16 MATRAN

3.2. The type Rdiag

The type Rdiag implements a diagonal matrix. It is de�ned in the module Rdiag_m

by

type Rdiag

real(wp), pointer & ! The matrix array

:: a(:) => null()

integer :: order = 0 ! The order of the matrix

integer :: na = 0 ! The length of the array

logical :: adjustable = .true. ! Adjustable array

integer, pointer& ! Intermediate value

:: temporary => null()

end type Rdiag

The components of Rdiag are analogous to those of Rmat.

� a(:). Since a diagonal matrix is nonzero only on its principal diagonal, it can be

represented by a linear array, which in a Rdiag, as with a Rmat, is called a.

� order, na. The order of the diagonal matrix represented by a Rdiag can be less

than the size na of the array containing its diagonal.

� adjustable, temporary. These components serve the same functions as they do in

a Rmat.

|

The module Rdiag_m de�nes the usual generic subroutines SetTemp, GuardTemp,

and CleanTemp for dealing with temporaries. It also de�nes ReshapeAry, whose calling

sequence is

call ReshapeAry(Rdiag, n)

to reallocate the array a, if necessary. As with a Rmat, Clean(D) restores the Rdiag D

to its default state.

Rdiag_m also overloads the assignment operator. The implementing functions all

use ReshapeAry to get storage. The components temporary and adjustable are un-

changed.

Rdiag D = Rdiag E

The statement D = E copies E to D.

Rdiag D = Array E()

The statement D = E causes D to be a Rmat, whose diagonal is the contents

of E. The component adjustable remains unchanged.

MATRAN 17

Rdiag D = vec

If vec = (/n/), then D is a zero Rdiag of order n in an array obtained by

reshaping D%a. If vec = (/n, na/) then D is a zero Rdiag of order n in an

array of length na. Note that the array will be adjusted regardless of the

status of the component adjustable, which remains unchanged.

Rdiag D = real(wp) s

The statement D = x produces a Rdiag of order one whose single diagonal

element is s.

Rmat A = Rdiag D

A is the Rmat corresponding to D.

Note that there is no operator corresponding to Rdiag D = Rmat A to extract the

diagonal of a Rmat. See the RmatDiag suite.

The Rdiag suite also has conversion operators.

.dd.ary

Produces a Rdiag D de�ned by D = ary, where ary is a linear array.

.dd.vec

Produces a Rdiag D de�ned by D = vec, where vec = (/order/) or

vec = (/order, na/).

.dd.s

Produces a Rdiag D de�ned by D = s, where s is of type real(wp).

.dm.D

Produces a Rmat A de�ned by A = D, where D is a Rdiag.

4. Matrix Operations

In this section we introduce the basic matrix operations supported by matran. Other,

less basic operations are gathered together in a loose grab bag called matrix miscellany.

4.1. Generalities

Matrix operations in matran are divided into suites of related generic subroutines and

operators. Here is a list of the operator suites described in this section.

18 MATRAN

Transpose AH, AT

Sum A+B, A�B, �A

Product �A, AB, ATB, . . .

Solve A�1B, AB�1, A�TB, . . .

Join (A B),

�
A

B

�

Border A = (A B), A = (B A), . . .

Submatrix A(i1:i2; j1:j2), A(:; j), . . .

Each suite is implemented by a sequence of modules corresponding to the derived

matrix types in the wrapper. The types are arranged in a hierarchy, and each module

is responsible for providing operations for both its type and for types lower in the

hierarchy.

For example, suppose matran has three types, Rmat, Rdiag, and Cmat, arranged

hierarchically in that order. Then the module RmatSum_m is responsible for all sum

operations between Rmats. The module RdiagSum_m is responsible for all sum operations

between Rdiags and Rdiags and Rmats. CmatSum_m is responsible for all sums between

Cmats and Cmats, Rdiags, and Rmats.

In addition the type that is higher in the hierarchy has the responsibility for imple-

menting mixed assignment operators involving itself and types lower in the hierarchy.

That is why the assignment Rmat = Rdiag is implemented in Rdiag_m instead of Rmat_m.

This system has the advantage of clearly delineating who is responsible for what, so

that it is conceptually easy to add new types to the wrapper. However, the code needed

to implement a new type grows at least quadratically with the number of types. For-

tunately, it may not be necessary to implement all possible combinations of operations.

For example, if someone decides to introduce a type Dband for band matrices, it may

be decided that while we need a product between Dbands and Rmats, we do not need a

product between Dbands and Dbands.

Except for the Border suite, matrix operations are implemented in two forms: as an

operator (or function) and as a subroutine. For example, the * operator is overloaded

so that the expression

C = A*B (4.1)

results in a Rmat C containing the product of the matrices A and B. This is the form

one would ordinarily use. However, it has some hidden storage allocation in the form

of a temporary Rmat to hold the product A*B before it is assigned to C.

Temporary objects are a potential source of ineÆciency, since in a loop they are

repeatedly allocated and deallocated. For programs involving large matrices this will

not usually be a problem; the arithmetic calculations will tend to dominate. For small

matrices, however, calls to the allocator may slow things down. To address this problem

matran shadows each operation with a subroutine that performs the operation and

MATRAN 19

Operation Operator Subroutine

C = AH C = .ctp.A call Ctp(C, A)

C = AT C = .trp.A call Trp(C, A)

� These operations are not available for Rdiags

Figure 4.1: The Transpose Suite

�

places the result in a Rmat of your choosing. Suppose, for example, we have a loop of

the form

do i=1, maxi

...

r = b - A*x

...

end do

If we make the declaration

type(Rmat) :: temp

then we can write

do i=1,maxi

...

call Times(temp, A, x)

call Minus(r, b, temp)

...

end do

This does not get rid of the need for the temporary temp to hold the intermediate value

A*x, but temp's storage is reused rather than being allocated and deallocated with each

iteration of the loop.

It is recommended that one initially use operators to write and debug programs,

after which they can be �ne tuned by using the subroutine forms where necessary.

4.2. The Transpose suite

The Transpose suite has two operations: the conjugate transpose and the transpose,

as given in Figure 4.1. The format of the table is the desired matrix operation, the

operator version, and the subroutine version.

We have already observed that de�ned binary operators bind so loosely that it may

be necessary to use parentheses to make an expression parse correctly. The operators in

20 MATRAN

Operation Operator Subroutine

C = A+B C = A + B call Plus(C, A, B)

C = A�B C = A - B call Minus(C, A, B)

C = �A C = -A call Minus(C, A)

� These operations are de�ned for any combination of Rmats and Rdiags.

Figure 4.2: The Sum suite

�

this suite are unary operators. By Fortran 95 convention they have precedence over all

other operators. Thus A + .cpt.B does not have to be recast in the form A + (.ctp.B)

to work as expected.

It is important to note that for real matrices the transpose and the conjugate trans-

pose are the same. It is strongly recommended that the conjugate transpose be used

in working with real matrices. In the overwhelming majority of cases, when a program

dealing with real matrices is rewritten for complex matrices, the conjugate transpose

is what you want. The transpose operator should be used exclusively with complex

matrices.

This convention a�ects the nomenclature of some of matran's operations. For

example, for real matrices the operator that computes ATB is .xhy., not .xty. as

might be expected. See the Product and Solve suites.

4.3. The Sum suite

The Sum suite overloads the operators + and - to provide the sum and di�erence of two

matrix objects. In addition the suite implements the unary minus. Figure 4.2 shows

the usage.

The operations set the tags of the results appropriately. For example if A and B are

agged UT, so is C. The other suites do the same.

4.4. The Product suite

The product suite implements products of matrices and their transposes, as shown in

Figure 4.3

All the operations in the suite involving transposes could be implemented using the

operator * and .ctp. operator from the Transpose suite. For example, to compute

C = AHB one could write

C = .ctp.A*B

MATRAN 21

Operation Operator Subroutine

C = sA C = s*A call Times(C, s, A)

C = As C = A*s call Times(C, s, A)

C = AB C = A*B call Times(C, A, B)

C = AHB C = A.xhy.B call TimesXhy(C, A, B)

C = ABH C = A.xyh.B call TimesXyh(C, A, B)

C = AHA C = .xhx.A call TimesXhx(C, A)

C = AAH C = .xxh.A call TimesXxh(C, A)

� In the above s is a scalar.

� The operations s*A, A*s, and A*B are de�ned for any combinations of

Rmats and Rdiags.

� The operations A.xhy.B, A.xyh.B, .xhx.A, and .xxh.A are de�ned for

Rmats only.

Figure 4.3: The Product suite

�

where .ctp. is the matran unary operator that computes the conjugate transpose

(the same as the transpose for real matrices). However, one can also write

C = A.xhy.B

where by convention xhy is shorthand for XHY . The second form is superior to the

�rst, since the second calls a blas subroutine that calculates AHB directly from A and

B without forming the transpose.

The Rmats produced by .xhx. and .xxh. are tagged HP. Mathematically, these ma-

trices have to be at least semide�nite; however, rounding error may cause the computed

matrices to be inde�nite.

Ordinarily, the operands in a product must be conformable for matrix multiplica-

tion|that is, the number of columns of the �rst operand must be the same as the

number rows of the second. However, if one of the operands represents a 1�1 matrix,

which is essentially a scalar, this requirement is dropped. A common example of this is

the statement

xp = x - (q.xhy.x)*q

which orthogonalizes the vector x against the vector q of 2-norm one.7

7At least mathematically. Numerically, xp and x may be far from orthogonal. A way out of this

predicament is given by the subroutine gsro in x8.

22 MATRAN

Operation Operator Subroutine

C = A=s C = A/s call Solve(C, A, s)

C = A�1B C = A.xiy.B call SolveXiy(C, A, B)

C = A�HB C = A.xihy.B call SolveXihy(C, A, B)

C = AB�1 C = A.xyi.B call SolveXyi(C, A, B)

C = AB�H C = A.xyih.B call SolveXyih(C, A, B)

� Except as noted below, these operations are de�ned for Rmats and Rdiags.

� The operations A.xihy.B and A.xyih.B are de�ned only for Rmats.

� The operation A.xiy.B is not de�ned for A a Rmat and B a Rdiag. Use

the Inverse suite.

� The operation A.xyi.B is not de�ned for A a Rdiag and B a Rmat. Use

the Inverse suite.

Figure 4.4: The Solve suite

�

4.5. The Solve suite

The Solve suite contains operations to compute the product of a matrix and its inverse.

It is called the Solve suite, because a principal application is to solve linear systems

like Ax = b, whose solution can be written in the form x = A�1b. The routines do not

compute an inverse and multiply; instead, if necessary, they computed a decomposition

of the matrix in question and use it to solve systems of equations to get the answer.

The operations are shown in Figure 4.4. These operations interrogate the tag �eld

of the Rmat whose inverse appears in the �rst column. If the matrix is triangular, it

solves the system directly using an appropriate blas. If not, it computes a pivoted

LU decomposition (tag = GE, HE) or a Cholesky factor (tag = HP) and uses that to

perform the operation.

In many applications, systems involving the same matrix must be solved repeatedly.

For matrices of tag GE, HE, or HP, this means recomputing a factorization of the same

matrix for each solve operation. To avoid this expense, the solve subroutines have two

additional optional arguments LU and Chold. To see how this is used, consider the

following code

MATRAN 23

do

call SolveXiy(y, A, x, LU=lua)

...

<modify x>

...

end do

At each call, SolveXiy determines if LU contains a pivoted LU decomposition by check-

ing its companion component. If it does does not, then SolveXiy initializes LU to an

LU decomposition of A. Otherwise, SolveXiy assumes that the LU decomposition is

associated of A. In either case, it uses the LU decomposition to compute A�1x. It is

the responsibility of the user to maintain the integrity of the relation between A and

LU. The programmer can announce that the relation has been broken by setting (in the

above example)

lua%companion = .false.

in which case SolveXiy will compute a new factorization.

4.6. The Join suit

Given two matrices A and B we can join them in two ways. First, if A and B have the

same number of rows, we can form the matrix

C = (A B):

We say that A and B have been joined from west to east. Second, if the two matrices

have the same number of columns we can form the matrix

C =

�
A

B

�
:

We say that the matrices have been joined north to south.

Matran's Join suite provides these operation, as shown in Figure 4.5.

4.7. The Border suit

Many matrix algorithms expand a matrix by bordering it with other matrices. For

example, we might replace A with

�
A B

C D

�
:

This bordering can be implemented using the Join suite by the following fragment.

24 MATRAN

Operation Operator Subroutine

C = (A B) C = A.jwe.B call JoinWE(C, A, B)

C =

�
A

B

�
C = A.jns.B call JoinNS(C, A, B)

� These operations are de�ned for any combinations of Rmats and Rdiags.

Figure 4.5: The Join suite

�

A = A.jwe.B

T = C.jwe.D

A = A.jns.T

(4.2)

However, this code is awkward and requires four temporaries| three implicit tempo-

raries for the assignments and the explicit temporary T. Matran allows you to accom-

plish this by a single call to a subroutine:

call BorderSE(A, C, B, D)

Since there are many ways of bordering, let us introduce some conventions. In the

above example, we say that A is border on the southeast. Obviously, we can also border

on the southwest, the northeast, and the northwest. Moreover, we can border A by a

single matrix to the north, south, east and west. Figure 4.6 describes the subroutines

that accomplish the bordering.

Arguments in the border subroutines must have dimensions for which the operation

make sense. For example in BorderE(A, E) both A and E must have the same number

of rows.

The subroutines of the Border suite are generic and could potentially mix matrix

types. However, the number of arguments to the border subroutines is so great that

we would have an explosion of implementing subroutines. For example if we allow

arbitrary combinations of Rmats and Rdiags, the suite would have 264 subroutines. For

this reason, matran allows only matrices of a single type in the arguments of a border

subroutine|and at present that is only the type Rmat. One cure for the problem of

mixed types is to convert every argument of the function to the the type of the natural

result before calling the subroutine. Another is to use the Join suite, which does allow

mixed types. See (4.2). Fortunately, mixed types are rare in practice.

4.8. The Submatrix suite

The �nal suite extracts submatrices from a Rmat. Since specifying a submatrix requires

information beyond the Rmat in question, submatrix extraction cannot be implemented

MATRAN 25

Operation Subroutine Result

Border southeast BorderSE(A, S, E, SE) [A, E; S, SE]

Border northeast BorderSE(A, N, E, NE) [N, NE; A, E]

Border northwest BorderNW(A, N, W, NW) [NW, N; W, A]

Border southwest BorderNW(A, S, W, SW) [W, A; SW, S]

Border north BorderN(A, N) [N; A]

Border south BorderS(A, S) [A; S]

Border east BorderE(A, E) [A, E]

Border west BorderW(A, W) [W, A]

� The result is expressed in matlab notation.

� All arguments to a Border subroutine must be of the type Rmat.

Figure 4.6: The Border suite

�

Submatrix Function Subroutine

C = A(i1:i2; j1:j2) C = Sbm(A, i1, i2, j1, j2) GetSbm(C, A, i1, i2, j1, j2)

C = A(:; j1:j2) C = Col(A, j1, j2) GetCol(C, A, j1, j2)

C = A(:; j) C = Col(A, j) GetCol(C, A, j)

C = A(i1:i2; :) C = Row(A, i1, i2) GetRow(C, A, i1, i2)

C = A(i; :) C = Row(A, i) GetRow(C, A, i)

� These routines are de�ned only for Rmats.

Figure 4.7: The Submatrix suite

�

as a de�ned operator. Instead, we give functions and companion subroutines, as shown

in Figure 4.7.

The e�ect of these functions can also be attained by using the operator .dm. com-

bined with Fortran 95's subarray expressions. For example Sbm(A, i1, i2, j1, j2)

is equivalent to .dm.A%a(i1:i2, j1:j2). However, one must be careful with colons.

The equivalent of Col(A; j) is .dm.A%a(1:A%nrow ,j), not .dm.A%a(:, j).

5. Matrix miscellania

This section describes a miscellany of suites to perform various functions. Right now it

is rather small, but it will grow.

26 MATRAN

5.1. The Diag suite

The kth diagonal diag(A; k) of a matrix A is de�ned as the diagonal starting with a1;k+1
if k � 0 and with a�k+1;1 if k < 0. Thus diag(A; 0) is the main diagonal of A; diag(A; 1)

is the �rst superdiagonal; and diag(A;�1) is the �rst subdiagonal. The Diag suite

provides a generic subroutine and function for extracting a diagonal.

The subroutine has the form

subroutine GetDiag(D, A, k)

where

type(Rdiag), intent(inout) :: D

On return contains the kth diagonal of A.

type(Rmat), intent(in) :: A

The matrix whose diagonal is to be extracted.

integer, optional, intent(in) :: k

The diagonal to be extracted. If not present, extract the main diagonal.

The function has the form

function Diag(A, k) result(D)

where

type(Rdiag) :: D

A Rdiag containing on return the kth diagonal of A.

type(Rmat), intent(in) :: A

The matrix whose diagonal is to be extracted.

integer, optional, intent(in) :: k

The diagonal to be extracted. If not present, extract the main diagonal.

5.2. The Eye suite

The module RmatEye_m generates identity matrices|or rather zero matrices with ones

on their principal diagonals. As usual, it de�nes both a generic subroutine and an

associated function. The subroutine has the calling sequence

call Eye(A, m, n)

where

type(Rmat), intent(inout) :: A

On return A is a Rmat with ones on its principal diagonal and zeros elsewhere.

MATRAN 27

integer :: m

integer, optional :: n

If n is not present A is m x,m.

If n is present A is m x n.

The functional form is

function Reye(m, n) result(A),

where

type(Rmat) :: A

On return I is a Rmat with ones on its diagonal and zeros elsewhere.

integer :: m

integer, optional :: n

If n is not present A is m x,m.

If n is present A is m x n.

5.3. The Inverse suite

The inverse of a matrix is seldom needed: the Solve suite computes matrices like A�1B

faster and more stably than by inverting A and multiplying. But for the rare occasions

when an explicit inverse is required, matran provides the Inverse suite. As usual it

has a subroutine and operator form.

The subroutine has the form

subroutine Inv(C, A, luda, chola, info, mywork)

where

type(Rmat), intent(out) :: C

The inverse matrix.

type(Rmat), intent(in) :: A

The matrix to be inverted.

type(RmatLudpp), optional, intent(inout) :: luda

A pivoted LU decomposition. If present and luda.companion is true, the de-

composition is used to compute the inverse. If present and luda.companion

is false, the LU decomposition is computed and returned. If absence an LU

decomposition is silently computed. Applies only to Rmats of tag GE.

type(RmatChol), optional, intent(inout) :: chola

A Cholesky decomposition. If present and luda.compantion is true, the de-

composition is used to compute the inverse. If present and chola.companion

is false, the decomposition is computed and returned. If absence a Cholesky

decomposition is silently computed. Applies only to Rmats of tag HP.

28 MATRAN

integer, optional, intent(out) :: info

When a decomposition is computed to calculated the inverse, info, if present,

contains on return the value of the info parameter from the lapack routine

that computed the decomposition. Applies only to Rmats of type GE, HE, and

HP.

real(wp), pointer :: mywork(:)

For matrices of type HE, the lapack routine DSYTRF requires an auxiliary

work array, which is ordinarily allocated and deallocated by Inv. If mywork

is present and contains enough storage, it is used as the work array. If it is

present but does not contain enough storage, it is reallocated and used as the

work array. This storage is not deallocated, so that mywork can be reused

when Inv is called in a loop.

The operator has the form

.inv.A

where A is a Rmat.

5.4. The Norm and Norm2 suites

The Norm suite provides generic functions to compute the following three norms.

1. The 1-norm: kAk1 = maxj
P

i
jaij j

2. The Frobenius norm: kAkF =
qP

ij
jaij j2

3. The 1-norm: kAk1 = maxi
P

j
jaijj

The functions have the following calling sequences.

Norm1(A); NormF(A); NormInf(A)

where A is a Rmat.

The 2-norm of a matrix A is de�ned by

kAk2 = maxkxkF=1 kAxkF.

The Norm2 suite provides a generic function

Norm2(A)

to compute the 2-norm of a Rmat. The reason that the 2-norm is segregated in a separate

suite is that its computation requires the expensive solution of an eigenvalue problem.

Think twice before using it!

MATRAN 29

5.5. The Pivot suite

The Pivot suite provides subroutines to apply interchanges to the rows or columns of a

Rmat, thus e�ecting a permutation of the rows or columns. It also applies the inverse

permutation. The permutation is speci�ed by an array pvt of length npvt. The e�ect

of pivoting and its inverse on an array x is given by the following fragments of pseudo-

code.

Pivoting Inverse pivoting

do i=1 to npvt do i=npvt,1,-1

swap x(i) and x(pvt(i)) swap x(i) and x(pvt(i))

end do end do

There are four generic functions in the suite.

subroutine PivotRow(A, pvt, npvt)

subroutine PivotInvRow(A, pvt, npvt)

subroutine PivotCol(A, pvt, npvt)

subroutine PivotInvCol(A, pvt, npvt)

where

type(Rmat), intent(inout) :: A

The Rmat to be pivoted

integer, intent(in) :: pvt(:)

The pivot array

integer, intent(in) :: npvt

The number of pivots.

In the names of these subroutines, Row indicates that the rows of A are interchanged, Col

that the columns of A are interchanged, and Inv that the inverse pivoting is performed.

5.6. The Print suite

Fortran 95 has the ability to print objects in any conceivable format, and it is expected

that most programmers will wish to custom code their output. However, in debugging

matran code, it is convenient to be able to print out Rmats and their arrays in a

standard format. The Print suit provides a generic subroutine to do this.

The subroutine to print a rectangular array has the calling sequence

call Print(A, m, n, w, d, e, lw, nbl)

30 MATRAN

where

real(wp), intent(in) :: A(:,:)

The array to be printed.

integer, intent(in) :: m

The number of rows to print.

integer, intent(in) :: n

The number of columns to print.

integer, intent(in) :: w

integer, intent(in) :: d

integer, optional, intent(in) :: e

This and the next two argument specify the format by which the elements

are to be printed. Speci�cally, the elements are printed in 1pe<w>.<d>e<e>

format. The exponent width �eld e is optional. Its default value is 3.

integer, optional, intent(in) :: lw

The width in characters of an output line. The default value is 80.

logical, optional, intent(in) :: nbl

If nbl (for no blank line) is present and true, it suppresses the printing of a

blank line above the array.

The subroutine to print a Rmat has the calling sequence.

call Print(A, w, d, note, e, lw)

where

type(Rmat), intent(in) :: A

The Rmat that is to be printed.

integer, intent(in) :: w

integer, intent(in) :: d

integer, optional, intent(in) :: e

This and the next two argument specify the format by which the elements

are to be printed. Speci�cally, the elements are printed in 1pe<w>.<d>e<e>

format. The exponent width �eld e is optional. Its default value is 3.

character(*), optional, intent(in) :: note

If present the string note is printed along with the array.

integer, optional, intent(in) :: lw

The width in characters of an output line. The default value is 80.

This print function also prints

MATRAN 31

A%nrow, A%ncol, A%narow, A%nacol, A%tag, A%adjustable, A%temporary

(Actually, Print tells a little white lie. If pointer A%temporary is associated it prints the

value of its target; if not, it prints zero.) Here is some sample output generated by

call Print(A, 9, 1, 'This is the Rmat A')

This is the Rmat A

4 5 4 5 GE T 0

1 2 3 4 5

1 2.0E+000 3.0E+000 4.0E+000 5.0E+000 6.0E+000

1 2 3 4 5

2 3.0E+000 4.0E+000 5.0E+000 6.0E+000 7.0E+000

1 2 3 4 5

3 4.0E+000 5.0E+000 6.0E+000 7.0E+000 8.0E+000

1 2 3 4 5

4 5.0E+000 6.0E+000 7.0E+000 8.0E+000 9.0E+000

5.7. The Rand suite

Matran provides routines to generate uniformly or normally distributed random Rmats.

There are two subroutine forms.

call RandX(A, m, n)

where X is either U or N. If X = U the elements of the matrix are independently uniformly

distributed in [0; 1). If X = N the elements of the matrix are independently normally

distributed (0; 1).

type(Rmat), intent(inout) :: A

The random Rmat generated by the subroutine.

integer, intent(in) :: m

integer, optional, intent(in) :: n

If m is not present, A is m x m. If m is present, A is m x n.

The functional forms are

DrandX(m, n) result(A)

where X is the suÆx U or N, as described above, and

type(Rmat), intent(inout) :: A

The random Rmat generated by the subroutine.

integer, intent(in) :: m

32 MATRAN

integer, optional, intent(in) :: n

If n is not present, A is m x m. If m is present, A is m x n.

The uniformly distributed random variables are obtained using the Fortran 95 in-

trinsic subroutine random_number, and the user is warned that the quality of the pseu-

dorandom numbers so generated are implementation dependent. Normally distributed

random numbers are computed by an algorithm of Leva [ACM Trans. Math. Software,

18 (1992) 454{455.]

To control the seed for both uniform and normal random matrices, use the intrinsic

subroutine random_seed.

6. Decompositions

6.1. Generalities

A matrix decomposition is a factorizations of a matrix into a product of two or more

matrices. Matran provides a number of standard decompositions. The factors of

each decomposition are generated by a generic subroutine, which puts the factors in a

de�ned type particular to the decomposition, which we will call the container of the

decomposition. Here is a list of the decompositions currently provided by matran.

Decomposition Container Constructor

LU with partial pivoting RmatLudpp Ludpp

Cholesky decomposition RmatChol Chol

QR decomposition RmatQR QR

QR decomposition with pivoting RmatQRP QRP

Spectral decomposition RmatSpec Spec

Singular value decomposition RmatSVD SVD

Eigendecomposition RmatEig Eig

In addition each decomposition has a generic sanitizer Clean to deallocate the storage

of decompositions constructed in subprograms.

The standard calling sequence for the constructors is

call <constructor>(<container>, <matrix>, <optional arguments>)

In order to interact with the lapack drivers that compute the decompositions, most

of the constructors have optional arguments, in addition to the container and matrix.

They fall into two classes.

First, some of the drivers have a parameter called info that returns information

about the status of the computation. If the status indicates an error, the constructor

causes an error message to be printed and terminates the run. However, if the optional

MATRAN 33

parameter info is present in the calling sequence of the constructor, the constructor

sets it to the value of returned by the driver and returns, thus giving the calling program

a chance act on the error ag.

Second, many of the drivers require that the user furnish additional work arrays.

Ordinarily, matran silently allocates and deallocates this storage. However, through

the optional parameters the user can furnish the working storage explicitly. This may

reduce storage management time when the constructor is called inside a loop.

The containers are all derived types|a di�erent one for each decomposition. But

they all have a common component companion that is used to control the reuse of a

decomposition. Speci�cally, consider the following loop

do

call Ludpp(lua, A)

<calculations involving lua>

if (<condition>) then

<modify A>

end

end do

Suppose that the if statement is only place in the loop where A is modi�ed. Then if

<condition> is not true the call to Ludpp is redundant|expensively redundant. To

cure this problem we can code as follows.

do

if (.not.lua%companion)&

call Ludpp(lua, A)

<calculations involving lua>

if (<condition>) then

<modify A>

lua%companion = .false.

end

end do

Thus companion is a ag that tells the program that a decomposition is associated with

a matrix of interest.

In using companion, it is important to keep in mind that it does not in itself suppress

the computation of the decomposition. It has absolutely no e�ect on Ludpp or any other

decomposition constructor. It is just a handy ag that enables the programmer to decide

whether or not to compute the decomposition in question.

The default value of companion is false. All decomposition constructors set companion

equal to true.

In the Solve suite we gave an example of the use of companion to force the recom-

putation of a decomposition. The same treatment has been applied to our introductory

example qrlsq in Figure 6.1. It is worth pondering a bit.

34 MATRAN

subroutine qrlsq(A, b, x, r, oldqra)

use MatranRealCore_m

use RmatQR_m

implicit none

type(Rmat), intent(in) :: A, b

type(Rmat), intent(out) :: x, r

type(RmatQr), optional, intent(inout), target :: oldqra

! Internal variables.

type(RmatQR), target :: newqra

type(RmatQR), pointer :: qra

!Protect temporaries.

call GuardTemp(A); call GuardTemp(b)

! Get the QR decomposition of A.

if (present(oldqra)) then

qra => oldqra

if (.not.qra%companion) call QR(qra, A)

else

qra => newqra

call QR(qra, A)

end if

! Solve the least squares problem.

x = qra%R.xiy.(qra%Q.xhy.b)

r = b - A*x

! Clean up.

if (.not.present(oldqra)) call Clean(qra)

call CleanTemp(A); call CleanTemp(b)

end subroutine qrlsq

Figure 6.1: QR least squares
�

MATRAN 35

6.2. The LU decomposition

Given an m�n matrix A, there is a permutation matrix P such that

PA = LU; (6.1)

where U is an upper triangular matrix and L is a lower triangular matrix with ones

on its diagonal and with its subdiagonal elements not greater than one in magnitude.

Matran represents such a decomposition by the derived type

type RmatLudpp

type(Rmat) :: L ! The L-factor

type(Rmat) :: U ! The U-factor

integer, pointer :: pvt(:) ! The pivot arry

integer :: npvt ! The number of pivots.

logical :: companion ! True if the decomposition is

! that of a Rmat of interest.

end type RmatLudpp

The members L and U are Rmats with ags LT and UT respectively. The array pvt

encodes the permutation P in (6.1) as a sequence of interchanges. Speci�cally, the

vector Px can be computed by the following fragment.

do i=1,npvt

temp = x(i); x(i) = x(pvt(i)); x(pvt(i)) = temp

end do

For more see the Pivot suite.

The decomposition is computed by the generic subroutine Ludpp whose calling se-

quence is

call Ludpp(lu, A, info)

where

type(RmatLudpp), intent(inout), target :: lu

On return lu contains the LU decomposition of A.

type(Rmat), intent(in) :: A

The Rmat whose LU decomposition is to be computed.

integer, intent(out), optional :: info

If this optional argument is present, Ludpp returns the info parameter from

the lapack routine DGETRF. The normal return is info=0. If info>0, the

infoth diagonal of U is zero.

36 MATRAN

6.3. The Cholesky decomposition

Given a symmetric positive de�nite matrix A of order n there is an upper triangular

matrix R such that

A = RTR:

The matrix R is called the Cholesky factor of A.

The container for the decomposition is de�ned type RmatChol de�ned by

type RmatChol

type(Rmat) :: R ! The R-factor

logical :: companion ! True if the decomposition is

! associated with a Rmat of interest

end type RmatChol

where R represents the Cholesky factor. The use of companion is explained in x6.1.

The Cholesky decomposition of a Rmat of tag HP is computed by the generic sub-

routine Chol, whose calling sequence is

call Chol(chola, A, info)

where

type(RmatChol), intent(inout), target :: chola

On return chola contains the Cholesky decomposition of A.

type(Rmat), intent(in) :: A

The Rmat whose Cholesky decomposition is to be computed.

integer, optional, intent(out) :: info

If this optional argument is present, Chol returns the info parameter from

the lapack routine DPOTRF. The normal return is info=0. If info>0, the

leading submatrix of A of order info is inde�nite.

6.4. The QR decomposition

Let A be an m�n matrix with m � n. Then there is an orthogonal Q such that

QTA =

�
R

0

�
; (6.2)

where R is an n�n upper triangular matrix. We call (6.2) the QR decomposition of A.

If we partition

Q = (Q1 Q2);

where Q1 is m�n, then we can write

A = Q1R: (6.3)

MATRAN 37

This version of the decomposition is sometimes called the QR factorization. It cannot

do as many things as the full decomposition, but it requires much less memory when

m� n.

If m < n then we can write the decomposition in the form

A = QR (6.4)

where Q is orthogonal and R is an m�n upper triangular matrix.

The matran module RmatQR_m provides the means of computing the three de-

compositions (6.2), (6.3), and (6.4). The container is RmatQR, which has the following

de�nition.

type RmatQR

type(Rmat) :: Q ! The Q-factor

type(Rmat) :: R ! The R-factor

logical :: companion ! True if The decomposition is

! associated with a Rmat of interest

end type RmatQR

The decomposition is computed by the generic subroutine QR, whose calling sequence

is

call QR(qra, A, fullq, mywork)

where

type(RmatQR), intent(out), target :: qra

The QR decomposition of A.

type(Rmat), intent(in) :: A

The Rmat whose QR decomposition is to be computed.

logical, intent(in), optional :: fullq

If fullq is absent or present and false, QR computes the decomposition (6.3)

or (6.4), depending on the row and column dimensions of A. If fullq is

present and true, QR computes the decomposition (6.2) or (6.4), depending

on the row and column dimensions of A

real(wp), pointer, optional:: mywork(:)

The lapack subroutine DGEQRF requires an auxiliary work array, which is

ordinarily allocated and deallocated by QR. If mywork is present and contains

enough storage, it is used as the work array. If it is present but does not

contain enough storage, it is reallocated and used as the work array. This

storage is not deallocated, so that mywork can be reused when QR is called in

a loop.

38 MATRAN

6.5. The pivoted QR decomposition

Let A be an m�n matrix with m � n. Then there is an orthogonal matrix Q and a

permutation matrix P such that

QTAP =

�
R

0

�
; (6.5)

where R is an n�n upper triangular matrix. The matrix P is formed by a process of

column pivoting that results in a matrix R such that

r2
kk
� max

j>k

f
P

i�kjrij j
2
g:

This decomposition is called the pivoted QR decomposition or the QRP decomposition.

If we partition

Q = (Q1 Q2);

where Q1 is m�n, then we can write

AP = Q1R: (6.6)

This version of the decomposition is sometimes called the pivoted QRP factorization of

A.

If m < n then we can write the decomposition in the form

AP = QR (6.7)

where Q is orthogonal and R is an m�n upper triangular matrix.

The matran module RmatQRP_m provides the means of computing the three de-

compositions (6.5), (6.6), and (6.7). The container is RmatQRP, which has the following

de�nition.

type RmatQRP

type(Rmat) :: Q ! The Q-factor

type(Rmat) :: R ! The R-factor

integer, pointer :: pvt(:) ! The pivot array

logical :: companion ! True if The decomposition is

! associated with a Rmat

! of interest

end type RmatQRP

The array pvt encodes the permutation P in as a sequence of interchanges. Specif-

ically the vector xTP can be computed by the following fragment.

MATRAN 39

do i=1,A.m

temp = x(i); x(i) = x(pvt(i)); x(pvt(i)) = temp

end do

The decomposition is computed by the generic subroutine QRP, whose calling se-

quence is

call QRP(qrpa, A, fullq, firstcols, mywork)

where

type(RmatQR), intent(out), target :: QR

The QR decomposition of A.

type(Rmat), intent(in) :: A

The Rmat whose QR decomposition is to be computed.

logical, intent(in), optional :: fullq

If fullq is absent or present and false, QR computes the decomposition (6.6)

or (6.7), depending on the row and column dimensions of A. If fullq is

present and true, QR computes the decomposition (6.5) or (6.7), depending

on the row and column dimensions of A

logical, intent(in), optional, target :: firstcols(:)

If present, the columns A(:; j) of A for which firstcols(j) is true are moved

to the beginning of A and frozen there during the pivoting process. The

length of firstcols may be less than A%ncol.

real(wp), pointer, optional:: mywork(:)

The lapack subroutine DGEQRP requires an auxiliary work array, which is

ordinarily allocated and deallocated by QRP. If mywork is present and contains

enough storage, it is used as the work array. If it is present but does not

contain enough storage, it is reallocated and used as the work array. This

storage is not deallocated, so that mywork can be reused when QRP is called

in a loop.

6.6. The spectral decomposition

Let A be a symmetric matrix of order n. Then there is an orthogonal matrix V such

that

A = V DV T (6.8)

where D = diag(Æ1; : : : ; Æn) with Æ1 � � � � � Æn. The scalars Æi are the eigenvalues of A

and the columns vi of V are the corresponding eigenvectors. The decomposition (6.8)

is called the spectral decomposition of A.

The matran module RmatSpec_m de�nes and computes the type RmatSpec, which

has the following de�nition.

40 MATRAN

type RmatSpec

type(Rdiag) :: D ! The matrix of eigenvalues.

type(Rmat) :: V ! The matrix of eigenvectors.

logical :: companion ! True if the decomposition is

! associated with a Rmat of interest

end type RmatSpec

The spectral decomposition is computed by the generic subroutine Spec, whose

calling sequence is

call Spec(S, A, wantv, info, mywork)

where

type(RmatSpec), intent(out) :: S

The spectral decomposition of A.

type(Rmat), intent(in) :: A

The symmetric Rmat whose spectral decomposition is to be computed.

logical, optional, intent(in) :: wantv

If wantv is present and true, compute both eigenvalues and eigenvectors.

Otherwise compute only eigenvalues.

integer, optional, intent(out) :: info

If present info returns the info parameter of the lapack routine DSYEV.

The normal return is info=0. If info>0, DSYEV failed to converge.

real(wp), pointer, optional :: mywork(:)

The lapack subroutine DSYEV requires an auxiliary work array, which is

ordinarily allocated and deallocated by Spec. If mywork is present and con-

tains enough storage, it is used as the work array. If it is present but does

not contain enough storage, it is reallocated and used as the work array. This

storage is not deallocated, so that mywork can be reused when Spec is called

in a loop.

6.7. The singular value decomposition

Let A be an m� n matrix with m � n. Then there are orthogonal matrices U and V

of order m and n such that

A = U

�
D

0

�
V T; (6.9)

where

D = diag(Æ1; : : : ; Æn)

with

Æ1 � � � � � Æn:

MATRAN 41

The decomposition (6.9) is called the singular value decomposition of A. The Æi are

called the singular values of A, and the columns of U and V are called the left and right

singular vectors of A

If we partition U = (U1 U2), where U1 has n columns, then we may write

A = U1DV T: (6.10)

The decomposition (6.10) is sometimes called the singular value factorization of A.

If m < n the singular value decomposition assumes the form

A = U(D 0)V T; (6.11)

where D is now of order m. Partitioning V = (V1 V2), where V1 has m columns, we can

write

A = UDV T
1 (6.12)

The module RmatSdv_m computes one of the decompositions (6.9), (6.10), (6.11), or

(6.12). The decomposition is contained in the derived type RmatSvd.

type RmatSVD

type(Rdiag) :: D ! The singular values

type(Rmat) :: U ! The right singular vectors

type(Rmat) :: V ! The left singular vectors

logical :: companion ! True if the decomposition is

! associated with a Rmat

! of interest

end type RmatSVD

The decomposition is computed by the generic subroutine SVD, whose calling se-

quence is

call SVD(svdcmp, A, wantu, wantv, full, info, mywork)

where

type(RmatSVD), intent(out), target :: svd

The singular value decomposition of A

type(Rmat), intent(in) :: A

The Rmat whose singular value decomposition is to be computed.

logical, optional, intent(in) :: wantu

If present and true compute compute the left singular vectors.

logical, optional, intent(in) :: wantv

If present and true compute compute the right singular vectors.

42 MATRAN

logical, intent(in), optional :: full

If present and true, compute the full complement of singular vectors requested

by wantu or wantv. Otherwise compute the factorizations (6.10) or (6.12).

integer, optional, intent(out) :: info

If present info returns the info parameter of the lapack routine DGESVD.

The normal return is info=0. If info>0, DGESVD failed to converge.

real(wp), pointer, optional:: mywork(:)

The lapack subroutine DGESVD requires an auxiliary work array, which is

ordinarily allocated and deallocated by SVD. If mywork is present and contains

enough storage, it is used as the work array. If it is present but does not

contain enough storage, it is reallocated and used as the work array. This

storage is not deallocated, so that mywork can be reused when SVD is called

in a loop.

6.8. The real Schur decomposition

Let A be of order n. Then there is an orthogonal matrix U such that

A = UTUT;

where T is block upper triangular with 1�1 and 2�2 blocks on its diagonal. The 1�1

blocks are the real eigenvalues of A. The 2�2 blocks contain the complex eigenvalues

of A. Such a decomposition is called a real Schur decomposition of A. The 2�2 blocks

can be standardized to have the form

�
r b

c r

�
;

where bc < 0. It is easily veri�ed that the real part of the eigenvalues of this block is r

while the imaginary parts are �
p
jbj
p
jcj.8

The matran module RealSchur_m contains the wherewithal to compute a stan-

dardized real Schur decomposition of a Rmat A. The container is

8This formula is preferable to its mathematical equivalent �
p

jbcj, which is subject to exponent

exceptions.

MATRAN 43

type RmatRealSchur

type(Rmat) :: T ! The block upper triangular matrix

! of the decomposition.

type(Rmat) :: U ! The orthogonal matrix of the

! decomposition.

complex(wp), pointer :: D(:) ! D containes the eigenvalues of T

! in the order the appear on the

! diagonal of T.

logical :: companion ! True if the decomposition is

! associated with a Rmat of

! interest.

The real Schur decomposition is computed by the subroutine RealSchur, whose

calling sequence is

call Schur(S, A, wantu, info, mywork)

where

type(RmatRealSchur), intent(out) :: S

The real Schur decomposition of A.

type(Rmat), intent(in) :: A

The Rmat whose real Schur decomposition is to be computed.

logical, optional, intent(in) :: wantu

If present and true, compute U and T. Otherwise compute only T.

integer, optional, intent(out)

If present info returns the info parameter of the lapack routine DGEES.

The normal return is info=0. If info>0, DGEES failed to converge.

real(wp), pointer, optional:: mywork(:)

The lapack subroutine DGEES requires an auxiliary work array, which is

ordinarily allocated and deallocated by RealSchur. If mywork is present and

contains enough storage, it is used as the work array. If it is present but does

not contain enough storage, it is reallocated and used as the work array. This

storage is not deallocated, so that mywork can be reused when RealSchur is

called in a loop.

The order in which eigenvalues appear on the diagonal of T cannot be predicted.

Thus it may be necessary to reorder the blocks. The subroutine ReorderSchur. moves

diagonal a block up or down the diagonal of T by pairwise exchanges. Its calling

sequence is

ReorderSchur(S, i1, i2, info)

44 MATRAN

where

type(RealSchur), intent(inout) :: S

The real Schur decomposition whose blocks are to be reordered. On return

the blocks will be reordered as described below. The contents of S%U (if

present) and S%D will be changed appropriately, so that S is still a standard-

ized real Schur decomposition of the original matrix.

integer, intent(inout) :: i1, i2

The block beginning in row i1 is moved by pairwise exchanges of blocks to

the row i2. If S%D(i1) is the second of a pair of complex eigenvalues, i1 is

decremented by 1. On return i2 points to the �rst row of the block in its �nal

position, which may di�er from its original value by �1. The parameters i1

and i2 may take any values from 1 to n.

integer, optional, intent(out)

If present, the info parameter from the lapack routine DTREXC is returned.

A nonzero value indicates an error.

Reordering is a numerical procedure, and it can alter the blocks of T . In particular,

block containing two complex eigenvalues can split into two blocks containing real eigen-

values (mostly when the imaginary parts are very small). However, two real eigenvalues

can never merge to form a complex block.

6.9. The eigendecomposition

Let A be a nondefective matrix. Then there is a (generally complex) matrix X such

that

X�1AX = D � diag(Æ1; : : : ; Æn): (6.13)

The numbers Æi are called the eigenvalues of A and the columns xi of X are the corre-

sponding eigenvectors, which satisfy

Axi = Æixi:

If Y H = X�1, then the columns yi of Y satisfy

yHi A = Æiy
H
i :

The yi are called the left eigenvectors of A.

The module RmatEig_m provides the means to compute the decomposition (6.13).

The container is

MATRAN 45

type RmatEig

complex(wp), pointer :: D(:) ! The eigenvalues

complex(wp), pointer :: X(:,:) ! The right eigenvectors

complex(wp), pointer :: Y(:,:) ! The left eigenvectors

logical :: companion ! True if the decomposition

! is associated with a Rmat

! of interest

end type RmatEig

Note that this decomposition is di�erent from the others| the results are not returned

in matrix types. This is because at this point we have not de�ned a complex matrix

type. Later a container CmatEig will remedy this de�ciency. However, the type RmatEig

may still be useful to those who do not want to bear the burden of incorporating the

complex types into their programs.

The decomposition (6.13) is computed by the generic routine Eig, whose calling

sequence is the following.

Eig(eiga, A, wantx, wanty, info, xwork, ywork, wwork)

where

type(RmatEig), intent(out) :: eiga

The eigendecomposition of A

type(Rmat), intent(in) :: A

The Rmat whose eigendecomposition is to be computed.

logical, optional, intent(in) :: wantx

If present and true, compute right eigenvectors.

logical, optional, intent(in) :: wanty

If present and true, compute left eigenvectors.

integer, optional, intent(out) :: info

If present info returns the info parameter of the lapack routine DGEEV.

The normal return is info=0. If info>0, DGEEF failed to converge.

real(wp), pointer, optional :: rv(:,:), lv(:,:), mywork(:)

The LAPACK Routine DGEEV requires an auxiliary work arrays, which are

ordinarily allocated and deallocated by EIG. If any of these three arrays is

present present it is used, perhaps after a reallocation. This storage is not

deallocated, so that the arrays can be reused when EIG is called in a loop.

7. The real core

At present Matran is a small package, and one can explicitly use only the modules

one desires. As it grows, however, it will be desirable to de�ne a core of modules that

46 MATRAN

module MatranRealCore_m

! Root module

use MatranUtil_m

! The two matrix objects

use Rmat_m; use Rdiag_m

! Matrix operations

use RmatTranspose_m; use RmatSum_m; use RmatProduct_m

use RmatSolve_m : use RmatJoin_m; use RmatBorder_m

use RmatSubmatrix_m

use RdiagSum_m; use RdiagProduct_m; use RdiagSolve_m

! Matrix Miscelania

use RdiagDiag_m; use RmatEye_m; use RmatNorm_m;

use RmatPivot_m; use RmatPrint_m; use RmatRand_m

! Decompositions

use RmatLudpp_m; use RmatChol_m

end module RealCore_m

Figure 7.1: The Matran real core

�

represents most of the needs of a typical program. The module in Figure 7.1 is an

attempt at a beginning. What it leaves out is more signi�cant than what it includes.

The modules RmatInv_m and RmatNorm2_m are excluded because their use can be a

source of unnecessary computation. All the major decompositions, excepting the LU

and Cholesky decompositions, have been left out, on the grounds most programs need

only a small selection of decompositions. The LU and Cholesky decomposition are

included because they are used by RmatSolve_m.

MATRAN 47

Of course there is nothing to prevent the matran user with special needs from

de�ning a di�erent list of modules. Only, please, do not call it RealCore_m.

8. Computing Arnoldi decompositions

In this section we give a more extended example of matran's capabilities. Let A be a

matrix of order n. An Arnoldi decomposition of A of order m is a relation of the form

AUm�1 = UmBm;m�1; (8.1)

where Um is an orthonormal matrix with m columns, Um�1 consists of the �rst m�1

columns of Um and B is an m�(m�1) upper Hessenberg matrix. As the order of an

Arnoldi decomposition increases, the matrices Bm�1;m�1, consisting of the �rst m�1

rows of Bm;m�1 generally contain increasingly accurate approximations to the extreme

eigenvalues of A. Approximate eigenvectors can also be extracted from Um�1, by a

process known as the Rayleigh{Ritz method.

If we denote by Uk the matrix consisting of the �rst k columns of Um and Bk;k�1

the leading (k+1)�k submatrix of Bm;m�1, then

AUk�1 = UkBk;k�1 (8.2)

is also an Arnoldi decomposition of A. This suggests that we compute (8.1) by forming

a sequence of Arnoldi decompositions each computed from the previous one. Here is

the algorithm for passing from the decomposition (8.2) to the next.

1. uk+1 = Auk
2. r = UT

k
uk+1

3. uk+1 = uk+1 � Ukr

4. � = kuk+1k2
5. uk+1 = uk+1=�

6. Uk+1 = (Uk uk+1)

7. Bk+1;k =

�
Bk;k�1 r

0 �

�
(8.3)

The process must be started with a vector u1. In our example u1 will be a normalized

random vector.

Steps 3{5 in this algorithm orthogonalize Auk against Uk and normalize it, a process

known as Gram{Schmidt orthogonalization. Unfortunately, the process can fail, and we

use a more complicated process called Gram{Schmidt with reorthogonalization.

The following code shows implements the Arnoldi process. It consists of a main

program Arnoldi and three subroutines:

48 MATRAN

ArnStep

Implements the algorithm (8.3).

gsro

Performs Gram{Schmidt with reorthogonalization.

Amult

Multiplies a vector by A. In this case A = diag(1; 0:95; 0:952 ; : : : ; 0:95n�1).

For convenience these routines are made local to the program Arnoldi.

program Arnoldi

use MatranRealCore_m

use RmatEig_m

implicit none

! Let U_m = (u_1,...,u_m) be orthonormal and let B_{m,m-1}

! be an mx(m-1) upper Hessenberg matrix. If

!

! (*) AU_{m-1} = U_mB_{m,m-1},

!

! then (*) is called an Arnoldi decomposition of A. An Arnoldi

! decomposition can be built up sequentially by starting with a

! normalized vector u_1. Given U_{k-1}, u_{k} is generated by

! orthonormalizing Au_{k-1} against the columns of U_{k-1}. The

! orthogonalizing coefficients form the k-th column of B_{k,k-1}.

! The eigevalues of B_{k-1,k-1} often contain increasingly accurate

! approximations to the extreme eigenvalue of A.

!

! This program compute an Arnoldi decomposition starting from a

! normalized random vector. It also computes the dominant eigenvalue

! of B_{k-1,k-1} to show its convergence. It uses the subroutine

! ArnStep to advance the decomposition. ArnStep in turn uses Amult

! to multiply a vector by the matrix in question and gsro

! (Gram-Schmidt with reorthogonalization) to perform the

! reorthogonalization.

type(Rmat) :: U, B

type(RmatEig) :: eigb

integer :: bigeigloc(1), k, n, m

MATRAN 49

! Get the order n of A and the number of

! Arnoldi vectors to compute.

print *, 'Input n and m'

read *, n, m

! Initialize storage for U and B

U = (/n,0, n,m/)

B = (/0,0, m+1,m/)

! Compute the Arnoldi decomposition.

call random_seed() ! Initialize the random number generator.

do k=0,m-1

! Advance the decomposition.

call ArnStep(U, B)

! Compute and print the largest eigenvalue of

! the Rayleigh quotient B(1:k-1,1:k-1)

if (k>0) then

call Eig(eigb, Sbm(B, 1,k, 1,k))

bigeigloc = maxloc(abs(eigb%D(1:k)))

print '(e23.15, e9.1)', eigb%D(bigeigloc(1))

end if

end do

! Check the defining relations of the final

! Arnoldi decomposition.

print *, ' '

print *, NormF(.xhx.U - Reye(m)), &

NormF(Amult(Col(U, 1,m-1)) - U*B)

contains

subroutine ArnStep(U, B)

type(Rmat), intent(inout) :: U, B

50 MATRAN

! ArnStep takes expands an Arnoldi decomposition ! of order k to

! one of order k+1. If k=0, ArnStep initializes the

! decomposition to a random vector.

type(Rmat) :: x, xp, r

real(wp) rho

integer k

n = U%nrow

k = U%ncol

! Get a starting vector for the Krylov sequence.

if (k==0) then

U = RrandN(n,1)

U = U/NormF(U)

call ReshapeAry(B, 1, 0)

return

end if

! Compute Au_k, orthogonalize it, and fold the results

! into U and B.

x = Amult(col(U,k))

call gsro(U, x, xp, r, rho)

call BorderE(U, xp)

call BorderSE(B, .rm.(/1,k-1/), r, .rm.rho)

call Clean(x)

call Clean(xp)

call Clean(r)

end subroutine ArnStep

subroutine gsro(Q, x, xp, r, rho)

type(Rmat), intent(in) :: Q, x

type(Rmat), intent(out) :: xp, r

real(wp), intent(out) :: rho

! gsro orthogonalizes a column vector x against the the columns of

MATRAN 51

! the orthonormal matrix Q to produce a normalized vector xp that

! is orthogonal to Q to working accuracy. Moreover, the relation

!

! x = Q*r + rho*xp

!

! is satisfied to working accuracy. The method used is

! Gram-Schmidt with reorthogonalization.

real(wp), parameter :: run = 2.2d-16 ! Rounding unit.

real(wp) :: nu, sig, tau

type(Rmat) :: s

call GuardTemp(Q)

call GuardTemp(x)

nu = NormF(x)

r = .rm.(/Q%ncol,1/)

!Special action for null Q

if (Q%ncol == 0) then

xp = x/nu

rho = nu

go to 99999

end if

sig = nu

xp = x

do

! Orthogonalize.

s = Q.xhy.xp

r = r + s

xp = xp - Q*s

tau = NormF(xp)

! Finished if reduction in norm is not too great.

if (tau > 0.5*sig) exit

! If the current norm of xp has not dropped

! below the 0.1 times the rounding unit relative

! to original norm of xp, continue orthogonalizing.

52 MATRAN

! Otherwise replace xp by a small random vector.

if (tau > 0.1*nu*run) then

sig = tau

else

nu = 0.1*nu*run

sig = nu

call RandN(xp, xp%nrow, 1)

xp = sig*(xp/normf(xp))

end if

end do

! Normalize and return.

rho = NormF(xp)

xp = xp/rho

99999&

call CleanTemp(Q)

call CleanTemp(x)

call Clean(s)

end subroutine gsro

function Amult(x) result(y)

type(rmat) :: y

type(rmat), intent(in) :: x

! Amult computes the product y = Ax, where

! A = diag(1, .95, .95^2, ..., .95^{n-1}.

integer :: i

real(wp) :: s

call GuardTemp(x)

y%a => null()

y%temporary => null()

call Clean(y)

y = x

s = 1.0

do i=1,y%nrow

y%a(i,1:y%ncol) = s*y%a(i,1:y%ncol)

MATRAN 53

s = 0.95*s

end do

call CleanTemp(x)

end function Amult

end program Arnoldi

54 MATRAN

9. Appendix: The Sun Fortran 95 6.2 Compiler

When the result of a function is a de�ned type, the Sun Fortran 95 6.2 Compiler may

not initialize it properly. The following code (implementing an aspect of .dm.) shows

the necessary �x.

! RmFromAry overloads .dm. to produce C = ary.

function RmFromAry(ary) result(C)

type(Rmat) :: C

real(wp), intent(in) :: ary(:,:)

C%a => null() ! Nullify the C%a and C%temporary

C%temporary => null() ! and call Clean to initialize

call Clean(C) ! the other components.

C = ary

call SetTemp(C)

end function RmFromAry

Since I developed matran on a Sun system, all code has been thoroughly sun-

screened. The �x will be removed as soon as Sun �xes the problem.

