
Towards Standardized Benchmarks for
Dynamic Software Updating Systems

Edward K. Smith, Michael Hicks, Jeffrey S. Foster
University of Maryland, College Park
{tedks, mwh, jfoster}@cs.umd.edu

Abstract—Dynamic Software Updating (DSU) has been an
active topic of research for at least the last 30 years. However,
despite many recent advances, DSU has yet to see widespread
adoption and deployment in practice. In this paper, we review a
slice of the history of DSU research to study how DSU for C has
evolved over the last two decades. We examine the ways DSU
systems are evaluated in the research literature. We identify
several shortcomings of the evaluation criteria that have been
used, and propose key improvements. We believe that using
better evaluation criteria can guide DSU research to produce
systems that will be more practical, flexible, and usable.

I. INTRODUCTION

Research on dynamically updating running software has
been actively underway for at least the past 30 years. Numer-
ous dynamic software updating (DSU) systems have been
developed, targeting applications [1], [2], [3], [4], [5], [6],
[7], [8], [9] and operating systems [10], [11], [12], and rang-
ing from new compilers, to runtime frameworks, to libraries.
While these systems vary widely in their implementation,
they all allow programs to be upgraded at runtime with
minimal interruption to execution, while retaining valuable
state. Research systems have progressed significantly since
the beginnings of the field, and the pace of research in DSU
is accelerating. Recently, the first DSU startup, Ksplice [11],
was bought by industry titan Oracle, suggesting the potential
of the technology.

However, with the exception of Ksplice’s customers, DSU
is almost entirely unused in real-world systems. While DSU
variants are popular in Java development, these systems
are primarily used for debugging, and can support limited
subsets of updates [13], [14]. Also surprisingly, though many
DSU systems [4], [5], [11] have been released as free
software [15], the free software community has not adopted
any of these systems nor derived any more practical variants.
This situation raises the question of why adoption is not
more widespread.

We believe that to move beyond building systems that
only Ph.D. researchers in DSU can use, to building systems
that everyday programmers can use, the DSU research
community needs to rethink how it decides what properties
are desirable for a DSU system to have.

In this paper, we make two main contributions toward
this end. First, we survey two decades of research on

DSU for user-space C programs to help understand how
DSU research has reached its current state, and to recall
lessons learned over that time. (Section II) Second, we
examine the ways that DSU systems have been evaluated
in the research literature, and recommend improvements to
evaluation strategies to help lead toward more practical DSU
systems. Specifically, we propose the creation of a standard
benchmark suite, suggest further research into defining the
problems of update availability and flexibility, and call for
direct usability studies of DSU systems (Section III).

We focus our discussion on DSU systems for user-space C
programs due to space constraints, but our recommendations
apply to DSU for other languages (e.g., Java) as well.

II. HISTORY OF DSU

While dynamic software updating has existed conceptu-
ally since (at least) 1976 [1], DSU has only recently been
demonstrated on real-world systems. We begin our survey
of DSU for user-space programs in 1991, when the first
application of DSU to C was published.

A. The 1990’s

PODUS [3], [16], the Procedure Oriented Dynamic Up-
dating System, is the earliest system we have found that
supports updating C programs. It is implemented on SunOS,
and purports compatibility with other UNIX variants. The
authors demonstrate updating an example program written
in C. PODUS uses binary rewriting to effect updates. Binary
rewriting is widely used in later updating systems, and
involves writing to the code segment of a running program
to redirect old function calls to new versions.

To attempt to ensure update safety, PODUS only applies
an update once no functions to be updated are live on the
call stack. This restriction is sufficient (but not necessary) to
ensure updates are type-safe. That is, assuming both the old
and new programs are themselves type correct, dynamically
updating the first to the second will not introduce any type
errors. Limiting updates to inactive functions enforces what
we call activeness safety. Activeness safety has been adopted
by many DSU systems, for C and other languages.

Possibly the most significant work on DSU in the 90’s is
Gupta’s On-line software version change using state transfer
between processes [2]. This system uses a novel mechanism



called state transfer to effect an update by transferring some
of the state of the running program to a specially prepared
variant of the subsequent version of that program, started
as a separate process. However, Gupta’s main contribution
is a formal notion of update validity. To summarize, an
update is valid if it transforms an existing program’s state
into a state that could be constructed by executing the new
version of a program from the start. In later work [17], Gupta
proves that update validity is undecidable in the general case.
This publication is the most cited DSU work of the 1990’s.
Update systems in the 2000’s typically included safety
guarantees approximating validity. Overall, the 1990’s were
a formative period for DSU research. While active, most
work in this decade was speculative rather than concrete.

B. The 2000’s

The second millennium saw the rise of an empirical focus
in DSU, as researchers began measuring performance and
other characteristics of implementations. We will consider
four systems from this decade: Opus, Ginseng, PoLUS, and
UpStare.

OPUS [18] is a DSU system that targets security patches,
rather than full program versions. As far as we are aware,
OPUS is the first dynamic updating system that was applied
to real-world C programs. It effects updates using binary
rewriting, similarly to PODUS.

Ginseng [4], [19] is a DSU system that implements, for
C, a mechanism formalized in earlier publications [20].
Ginseng was the first DSU system flexible enough to apply
dynamic updates derived from sequences of actual releases
of real-world programs. Unlike all previous update systems,
Ginseng permits updating active functions on the stack,
provided these functions pass a static type-safety analysis.
Updates are only permitted at update points designated by
the programmer in the source program, with the goal of
simplifying reasoning about the update [21]. Recent versions
support updating multi-threaded programs [19].

Following the literature [20], we refer to this safety
mechanism as con-freeness safety, so-called because the
static analysis ensures the code does not include concrete
references to values whose type is changed by an update.

Ginseng makes a program dynamically updatable via
source-to-source translation; thus, Ginseng is largely
architecture-independent. We refer to Ginseng’s code up-
dating mechanism as indirection insertion: Among other
changes, Ginseng’s translation phase changes function calls
to indirect through jump tables. Ginseng also wraps each
access to a structured type with a function call. Once an
update is triggered, these wrapper functions perform much
of the required transformation of the program’s data, in
place. Thus, Ginseng performs state transformation lazily. To
facilitate in-place state transformation, Ginseng adds “slop”
to C structs. This slop is overwritten when fields grow or
are added to types.

PoLUS [5] focuses on updating programs that have no
direct support for DSU, with special consideration for multi-
threaded programs. PoLUS is able to apply updates im-
mediately as they become available, unlike other systems
that wait for safety constraints to be satisfied. PoLUS does
not require any changes to programs to support updating.
PoLUS’s runtime system is implemented as a standalone
program. This program attaches to target programs using
ptrace and uses binary rewriting to effect an update. Since
old and new code may be running simultaneously, PoLUS
requires the developer to provide bi-directional coercion
functions, which are used whenever old or new code accesses
state from the other version. PoLUS’s runtime framework
forces the equivalent of a global lock on state access during
an update, since all access to state is mediated by the bi-
directional coercion functions. When all old-version threads
have begun executing new code, all state is transformed to
the new representation, and the old code is unloaded.

UpStare [6] uses a novel mechanism, stack reconstruc-
tion [22], to implement updates. This approach is similar to
Gupta’s state transfer, but effects the update within a single
process rather than transferring state between processes.
UpStare’s compiler inserts instrumentation that enables it
to unwind the stack to the lowest depth on update, and then
rewind it to an equivalent stack in the new version of the
program. UpStare inserts both update points and continu-
ation points to facilitate updating. Continuation points are
inserted before every function call and update point, and
update points at the beginning of every loop and function.
UpStare infers a mapping between continuation points that
allows it to rewind the appropriate point to continue program
execution.

UpStare collects all global variables into one struct, and
all parameters and locals for functions into one struct
per function. These structs are then updated according to
UpStare’s customizable rules for updating types.

When an update is requested in a multi-threaded pro-
gram, the first thread to reach an update point acquires a
coordinator lock. Other threads then block on this lock.
UpStare wraps calls to lock and unlock so that the coordinator
thread can detect when every thread is either locked on
the coordinator lock, or an application lock held by a
thread locked on the coordinator lock. Once every thread
is blocked, UpStare initiates an update.

C. The 2010’s

While the decade is still young, the 2010’s have seen two
new DSU systems for C proposed at the time of this writing:
Ekiden [8] and its successor, Kitsune [9].

Ekiden is implemented entirely as a library. It exports an
API that developers can use to enable dynamic updating
in their program. At run time, when an update becomes
available, Ekiden forks a new process and begins executing
the new version, which receives serialized state from the old



version to initialize the new version. This is a more portable
implementation of Gupta’s state transfer idea [2].

Kitsune is implemented as a runtime framework, a source-
to-source translator, and a transformation code generator.
Programs are compiled to shared libraries after being passed
through Kitsune’s translator. These shared libraries are
loaded by Kitsune’s runtime framework and executed. At
update time, the runtime loads the shared library of the new
version and begins executing at main.

Ekiden and Kitsune conceptually share the same process
for updating state. In both, state to be updated is marked
by the developer, and in the new version, state is initialized
either as usual, or by using the value from the previous
version. Ekiden and Kitsune also both allow updates of any
form at any programmer-inserted update point. Type errors
cannot occur since no old code is ever executed following
an update.

Kitsune supports updating multi-threaded programs by
making an update point act as a thread barrier once an update
is requested. Ekiden does not support multi-threading.

III. EVALUATING DSU SYSTEMS

As we have seen, DSU for C has evolved tremendously
over the last 20 years. As a consequence, the research
literature includes a wide range of benchmarks and metrics
used to assess proposed systems. We believe that the time
has come to standardize some aspects of the assessment
process, to promote progress in the field.

Toward this end, we examine the programs to which
DSU has been applied, and also examine three categories of
metrics: performance, including the steady-state overhead of
the updating mechanism; flexibility, including what kinds of
updates are permitted; and usability, including the developer
effort required to apply the DSU system.

A. Target Programs

Figure 1 summarizes the programs that have been used
to evaluate PoLUS, Ginseng, UpStare, and Kitsune. OPUS
target programs are not considered; the changes supported by
OPUS are limited in scope to the small code changes typical
of security patches. For each target program, the figure lists
its lines of code, concurrency, and the range and number of
versions supported by each system.

The data shown in this figure suggests that to date, it is
quite difficult to compare different DSU systems, as there
is little overlap in the programs each system is applied to.
VSFTPD seems to be the only de facto standard program.
Further, while six of the eleven programs are multi-threaded,
Ginseng and Kitsune together account for most of the
evaluation of these programs (five of the six).

For the DSU field to move toward practicality, we need
more uniform benchmarks, including both the programs and
the conditions under which they are run. We propose that
the community develop a standard benchmark, composed

of free software [15] programs and a series of relevant
tests. The characteristics of a DSU benchmark remain to be
determined, but at least we believe the included programs
should be of various sizes; be both single- and multi-
threaded; have variable (and varying) amounts of in-flight
state; and exhibit changes of varying complexity.

In the remainder of this section we consider the metrics
that could be used to evaluate these benchmark programs.

B. Performance

Performance measures in the literature generally fall into
three categories: steady-state overhead, compilation over-
head, and update availability. A standard benchmark for
DSU should reliably measure all three.

Steady-state overhead: Most DSU systems introduce
some overhead during normal program execution, and there
is a general sense in the community that such overhead
should be minimized. PoLUS introduces fairly small over-
head, limited to one jmp instruction per indirected function.
It also imposes the temporary overhead of calling the
bidirectional coercion functions while the state is being
updated. Ginseng introduces a larger overhead, due to its
use of indirection and support of lazy state transformation.
Makris et al. measured execution time overhead to be as
high as 150% in the best case for the KissFFT program [6]
(whose structure amplifies Ginseng’s overheads). UpStare
lies between PoLUS and Ginseng, inserting a large amount
of indirection on function calls, but much less on data
access. Further, Ginseng and UpStare’s program transfor-
mation provoke slowdowns by increasing branch prediction
difficulty and cache misses [6]. All steady-state overhead in
Kitsune comes from the requirement to compile programs to
relocatable shared objects, which may call functions through
a lookup table. This can be eliminated on some platforms
through linker flags. Ekiden has no steady-state overhead.

DSU systems may also induce memory overhead. How-
ever, memory overhead is rarely reported in the literature.
Ginseng reports up to 40% larger memory footprint, due to
its inserted “slop” space [4]. In the fastest-running case in
KissFFT, UpStare reports a memory increase of 53.7% [6].
Ekiden and Kitsune induce no steady-state memory over-
head, but potentially double memory requirements at update
time. PoLUS and OPUS do not report memory overhead.

Clearly there are many different tradeoffs to be made
in how much steady-state overhead is induced by a DSU
system. Thus, a benchmark must include workloads that are
sufficient to illuminate the differences. For example, bench-
mark programs must be run long enough for steady-state
overhead to be measurable, and should include workloads
representative of fielded systems.

Compilation Overhead: Most DSU systems involve a
compilation step, which can be costly. For example, Gin-
seng performs a static analysis which invokes an external
constraint solver. The authors reported that this analysis



Program LoC MT PoLUS Ginseng UpStare Kitsune
KissFFT 1,936 1.2.0 (1)

Memcached 4,181 × 1.2.2–1.2.5 (4) 1.2.2–1.2.4 (3)
vsftpd 12,202 2.0.0–2.0.4 (5) 1.1.0–2.0.3 (13) 1.1.0–2.0.6 (14) 1.1.0–2.0.6 (14)
Redis 13,387 × 2.0.0–2.0.4 (5)

IceCast 15,759 × 2.2.0–2.3.1 (5) 2.2.0–2.3.1 (5)
Space Tyrant 20,223 × 0.307–0.351 (7)

zebra 45,568 0.92a–0.95a (6)
openssh 58,104 3.2.3–3.6 (5) 3.5p1–4.2p1 (11)

Tor 76,090 0.2.1.18–0.2.1.30 (13)
apache 315,381 × 2.1.7–2.2.0 (4)

PostGreSQL 369,000 7.4.16–7.4.17 (1)

Figure 1. C programs used to evaluate DSU systems

dominated compilation time, which reached 100s in the
worst case (for OpenSSH). This overhead might not scale
to larger programs. Most systems do not report compilation
time, making comparison difficult.

Availability: Many DSU systems include technology to
improve update availability, typically measured as the time
required to apply an update. Some authors believe mini-
mizing this time is essential [6], [5], and make significant
usability sacrifices to do so. For example, the authors of Kit-
sune manually added just six update points to VSFTPD [9],
whereas UpStare automatically inserts 613 update points in
the same program [6]. Thus, the UpStare user must consider
many more update points when trying to decide if an update
is correct. Update availability can be improved at the cost of
steady-state overhead by shifting state transformation from
being performed eagerly at update time to being performed
lazily during subsequent execution.

Despite a strong focus in the literature on update avail-
ability, we have not seen a clear justification for why
update availability is important, beyond the trivial case
where an update never occurs. Update development time
is measured in terms of person-hours, -days, or -weeks;
it seems unlikely that differences on the order of seconds
or even tens of seconds in update deployment would be
critical. Additionally, many programs for which DSU would
be useful provide services over the Internet. Clients of
such programs already must cope with large communication
delays and intermittent service; such clients may have a
surprisingly large tolerance for pauses while updates are
applied. Preliminary results from Hayden et al [23] indicate
that even in multithreaded programs, programs with a small
number of manually selected update points reach quiescence
within reasonable bounds. Thus, unless a particular system
has a clear demand for it, we think focusing on maximizing
availability is likely a premature optimization.

The work necessary to construct a representative bench-
mark would help determine just how important update
availability is. For example, a benchmark could include
requirements, derived from the field, on update availability.

C. Flexibility

Many DSU systems have limitations on the set of allowed
updates either by design or by quirk of implementation.

Code changes: While most code changes are supported
in DSU systems, there are some corner cases that are not
always handled. For example, many systems [5], [6] cannot
update the main, because it is only called once.

Data changes: UpStare, Ekiden, and Kitsune support all
possible changes to types. Ginseng conceptually supports
all possible type changes, but in reality can only expand
structs until the added slop space has been filled. PoLUS also
conceptually supports all possible type changes, but assumes
that there is a bi-directional transformation function for all
possible types, which may not be the case in practice. For
example, consider an implementation of a set that is updated
to implement a bag. It is unclear what the correct behavior
of this program would be, if both old and new code were
executing and manipulating the same state.

While we suspect that flexibility in updates is essential in
practice, we lack convincing evidence of this. We believe
the community needs to conduct a wide-ranging study
of programs and their updates (beyond the small set of
programs in Figure 1) to determine how much flexibility is
needed. A standard benchmark suite should cover updates of
various scales to accurately measure a system’s flexibility.

D. Usability

While ease of use is an essential precursor to widespread
DSU adoption, we are not aware of any direct studies of
DSU system usability. Moreover, while DSU systems often
include anecdotal reports on usability, they are typically
based on the experience of the DSU system designer ap-
plying their tools, rather than an unbiased third-party.

Evaluations of DSU systems often use changed lines
of code as a proxy for developer effort. However, this
is problematic because some individual changes require a
great deal more consideration than others. For example,
Ginseng reports low numbers for changed lines of code [4].
However, many of these changes were to satisfy Ginseng’s
static analysis. Each change may correspond to great deal



of developer time spent comprehending the analysis, and
eventually arriving on a single-line change that satisfies
it. In contrast, many changes in Ekiden’s modifications to
VSFTPD come from annotating variables as updatable, which
is simple to comprehend. The time involved in single-line
changes between Ginseng and Ekiden are not equivalent, and
the same is true of other systems. We need better metrics to
facilitate direct comparisons between DSU systems.

Another barrier to DSU usability is the difficulty in
reasoning about the behavior of a program under an update.
We believe this is a function of how simple the behavior of
an update system is, and how clear the behavior is to the
developer. For example, we suspect that PoLUS and Ginseng
are difficult to reason about, because immediately after an
update, the program is in a complex state containing old and
new code and data. In contrast, we believe Ekiden, Kitsune,
and UpStare are easier to reason about, because following
an update in any of these systems, only ancillary code or
new version code is executed, and in a well-defined order.
However, while our opinions are supported by our anecdotal
experience, we do not know whether they are true.

We think the time is now ripe for direct usability studies
of DSU systems. These could range from controlled user
studies in the lab, during which participants are asked to
make a particular program work with a given DSU system;
to longitudinal studies in the field, in which researchers
observe participants experiences with DSU over the long
term. Such studies would provide invaluable insights into
the essential characteristics that make DSU systems usable
in practice, and could also shed light on other questions,
such as how much performance and flexibility is required
from a DSU system.

IV. CONCLUSION

Dynamic software updating systems have grown over the
last two decades from toy languages and systems to power-
ful frameworks capable of updating large, enterprise-grade
programs. We believe the time is ripe to move DSU research
into practice, and to achieve this end, our community needs
to focus on improving the way we evaluate performance,
flexibility, and usability.

One common phrase in the authors’ discussions while
we were building Ekiden was “taking over the world.”
Taking over the world could mean seeing DSU integrated
into existing update distribution systems. It could mean user
interfaces being updated to reflect DSU—picture Firefox,
upon downloading an update, giving the user the chance to
“Apply changes on the fly.” Ultimately, DSU could radically
improve software by enhancing stability and security. If we
believe what we write in our introductions about the cost
of downtime due to upgrades, we in the DSU community
should be committed to taking over the world!

Acknowledgments: This research was supported by
the partnership between UMIACS and the Laboratory for
Telecommunications Sciences and NSF grant CCF-0910530.

REFERENCES

[1] R. S. Fabry, “How to design a system in which modules can
be changed on the fly,” in Proceedings of the 2nd international
conference on Software engineering, ser. ICSE ’76, 1976.

[2] D. Gupta and P. Jalote, “On-line software version change
using state transfer between processes,” Software Practice and
Experience, vol. 23, no. 9.

[3] M. E. Segal, O. Frieder, O. Frieder, and M. E. Sega, “On
dynamically updating a computer program: From concept to
prototype,” Journal of Systems and Software, vol. 14, 1991.

[4] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol, “Practical
dynamic software updating for C,” in PLDI, 2006.

[5] H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew, “Polus: A
powerful live updating system,” in ICSE, 2007, pp. 271–281.

[6] K. Makris and R. Bazzi, “Immediate multi-threaded dynamic
software updates using stack reconstruction,” in USENIX
ATC, 2009.

[7] S. Subramanian, M. Hicks, and K. S. McKinley, “Dynamic
software updates: A VM-centric approach,” in Proceedings of
the ACM Conference on Programming Language Design and
Implementation (PLDI), Jun. 2009.

[8] C. M. Hayden, E. K. Smith, M. Hicks, and J. S. Foster,
“State transfer for clear and efficient runtime upgrades,” in
HotSWUp, 2011.

[9] C. M. Hayden, E. K. Smith, M. Denchev, M. Hicks, and J. S.
Foster, “Kitsune: Efficient, general-purpose dynamic software
updating for C,” Tech. Rep. UMD CS-TR-5008, 2012.

[10] K. Makris and K. D. Ryu, “Dynamic and Adaptive Updates of
Non-Quiescent Subsystems in Commodity Operating System
Kernels,” in EuroSys 2007, March 2007.

[11] J. Arnold and M. F. Kaashoek, “Ksplice: automatic rebootless
kernel updates,” in EuroSys, 2009.

[12] “The K42 Project,” http://www.research.ibm.com/K42/.
[13] “Jrebel,” ”http://zeroturnaround.com/jrebel/”.
[14] A. R. Gregersen and B. N. Jørgensen, “Dynamic update of

java applications – balancing change flexibility vs program-
ming transparency,” J. Softw. Maint. Evol., vol. 21, no. 2.

[15] R. M. Stallman, “What is free software?” https://www.gnu.
org/philosophy/free-sw.html.

[16] M. Segal and O. Frieder, “On-the-fly program modification:
systems for dynamic updating,” Software, IEEE, vol. 10,
no. 2, Mar 1993.

[17] D. Gupta, P. Jalote, and G. Barua, “A formal framework for
on-line software version change,” IEEE TSE, vol. 22, no. 2,
1996.

[18] G. Altekar, I. Bagrak, P. Burstein, and A. Schultz, “Opus:
online patches and updates for security,” in USENIX Security,
2005.

[19] I. Neamtiu and M. Hicks, “Safe and timely dynamic updates
for multi-threaded programs,” in PLDI, Jun. 2009.

[20] G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu,
“Mutatis Mutandis: Safe and flexible dynamic software up-
dating,” ACM Trans. Program. Lang. Syst., vol. 29, no. 4,
2007.

[21] M. Hicks and S. Nettles, “Dynamic software updating,” ACM
Trans. Program. Lang. Syst., vol. 27, no. 6, 2005.

[22] R. A. Bazzi, K. Makris, P. Nayeri, and J. Shen, “Dynamic
Software Updates: The State Mapping Problem,” in The
2nd ACM Workshop on Hot Topics in Software Upgrades
(HotSWUp ’09), 2009.

[23] C. M. Hayden, K. Saur, M. Hicks, and J. S. Foster, “A study
of dynamic software update quiescence in multi-threaded
programs,” 2012.


