
Protocols, Algorithms & Mechanisms

1

ATP: AUTONOMOUS TRANSPORT PROTOCOL

Tamer Elsayed1, Mohamed Hussein1, Moustafa Youssef1, Tamer Nadeem1,
Adel Youssef1, and Liviu Iftode2

1 Department of Computer Science, University of Maryland, College Park, MD 20742, USA, {telsayed, mhussein, moustafa. nadeem, adel}@cs.umd.edu
2 Department of Computer Science, Rutgers University, Piscataway, NJ 08854, USA, iftode@cs.rutgers.edu

Abstract - In this paper we present the design of the
Autonomous Transport Protocol (ATP). The basic service
provided by the ATP is to maintain a reliable transport
connection between two endpoints, identified by content
identifiers, independent of their physical locations.
Autonomy allows dynamic endpoints relocation on different
hosts without disrupting the transport connection between
them. The ATP depends on the existence of an underlying
enhanced content-based network to achieve its goals. Data
is transferred by a combination of active and passive
operations, where the ATP layer of a node can decide
whether to actively push the data to the destination or to
passively wait for the destination endpoint to pull the data.
The decision to use either the active mode or the passive
mode can be taken by a local policy on the node running the
ATP.

Index Terms - Autonomous transport protocol, Content-
based networks, Instance-based networks, Mobility
management, Peer-to-peer systems, Transport protocols,
Ubiquitous computing

INTRODUCTION

As ubiquitous computing emerges; the users, not the end
hosts, should become the focus of the communication. To
achieve this goal, connections should be carried between the
users, independent of the hosts on which they are located.
Content-based networks (CBN) provide a mechanism to map
a content to a specific host of a peer-to-peer (P2P) network,
and to query the location of this content. Considering a
user’s endpoint as a content, a transport protocol over a CBN
uses the lookup service mechanism to locate the users’
endpoints. The challenge is how to maintain a reliable
connection between the users’ endpoints as they roam in the
environment moving from one host to another.

In this paper, we introduce the Autonomous Transport
Protocol (ATP) that allows dynamic endpoint relocation
without disrupting the connection between them. The ATP
has the following features:
• It does not enforce any naming scheme on the user

application. The application is responsible for uniquely
identifying the endpoint.

• The endpoints of a transport connection are defined as
contents in the content-based network. This decouples
the connection from the physical host where the user
endpoint is located, and hence ensures autonomy.

• Mobility of the endpoints is handled by dynamically
changing the mapping between the endpoints and the
hosts using the new instance-based network (IBN) in
which we enhanced the content-based network to
provide additional functionalities, as we will describe
later. The ATP layer is responsible for moving data
segments to the destination and the acknowledgments
back to the source regardless of their current location in
the network.

• Data is transferred by a combination of active and
passive operations, where the ATP layer of a node can
decide whether to actively push the data to the
destination or to passively wait for the destination
endpoint to pull the data. The decision to use either the
active mode or the passive mode can be taken by a local
policy on the node running the ATP.

Figure 1 shows the system architecture for an ATP

environment. The ATP protocol stack consists of four layers:
the underlying-network layer, the IBN layer, the ATP layer,
and the application layer.

Underlying Network

Application

Autonomous Trasnport
Protocol

Instance-Based Network

P2P Lockup Service

Content-Based Network

FIGURE 1

SYSTEM ARCHITECTURE

Example Scenario

Figure 2 shows an application scenario for the ATP. A set of
wireless nodes, represented by small black circles, is
distributed over a certain area. An observer Src generates
statistical data about the environment while it is moving
around. This data is transmitted reliably to an analyzer Dst.

The observer triggers the tracking application on the
nearest node, Node1 in Figure 2, to become active and to

Protocols, Algorithms & Mechanisms

2

transmit the collected data, through an ATP connection, to
the analyzer at Node3, as in the figure. During the observer
movement, it can become out of the vicinity of any tracking
node. For example, as in Figure 2, while the observer moves
from Node1 to Node2 (source migration), it is, temporally,
not in the vicinity of any tracking node. Once the observer
becomes out the vicinity of Node1, the tracking application,
on Node1, stops tracking, however, the ATP layer on Node1
continues handling the established connection by reliably
transmitting the remaining data to the analyzer. When the
observer becomes within the vicinity of Node2, it triggers the
tracking application on that node to transmit the collected
data to the analyzer using the already established ATP
connection. Meanwhile, the ATP layer on Node1 may still be
transmitting the rest of the data it has to the observer.

Src

2

1

Dst

3
4

3. Source Migration

2.
Des

tin
ati

on
 M

igr
ati

on

1. Connection Establishment

Node vicinity

FIGURE 2

A TYPICAL ATP APPLICATION SCENARIO

Similarly, the analyzer changes the monitoring node

from Node3 to Node4 (destination migration) as in Figure 2.
While the analyzer is moving from Node3 to Node4, the ATP
layer at Node3 continues handling the connection on behalf
of it. When the analyzer is setup on Node4, the connection is
updated to forward the data to the new physical location of
the analyzer. The ATP layers at Node3 and Node4 are
responsible for transferring the data segments received at
Node3, during the migration of the analyzer, to Node4. Due
to the presumed spatial locality of the observer’s movement,
transferring the data from Node3 to Node4 has lower
overhead than retransmitting the data from the observer. In
this scenario, the observer and the analyzer should not be
aware of the physical locations of each other and the
movement handling should be transparent to both of them.

Roadmap

This paper is organized as follows: in the following two
sections the two main layers in our architecture (the IBN
layer and the ATP layer) are explained. Next, our
implementation status is presented. Then, related work is
surveyed. Finally, our conclusion is provided.

INSTANCE-BASED NETWORK (IBN) LAYER

We define content-based network (CBN) as a network of
endpoint entities called contents where each content is
addressed or located by its name, properties or attributes,
independent of its physical location. The content could be a
user, an application service, a document, a network node, a
network connection or any other object. Unlike IP networks
where the IP address is not just an identifier but also a
locator, CBN addressing is decoupled from the location of
contents. Contents can actively communicate with each
other by sending or receiving messages, or performing a
lookup for other contents. Other content types, such as a
document, can be passively stored in the network.

The CBN layer extends the functionality provided by
the current peer-to-peer lookup services (such as CAN[1],
Chord [2], Pastry [3], and Tapestry [4]). Peer-to-peer lookup
services provide a mechanism to map a key to some node,
specified by the lookup service, in the network and allows
the user to query for these keys. The CBN, however, maps a
content to a specific node in the network and routes
messages to this node.

We have developed an enhanced content-based network
named as the instance-based network (IBN). The IBN has
the unique feature of allowing different instances of the
same content to be stored in the network (and hence the
name IBN).

A content of the IBN is addressed using a name X and
an instance identifier (i1,i2,... ,in), where i1, i2, ... , in are n
integer numbers. We use the notation X: i1,i2,... ,in to refer to
an instance of a content X. The semantics and dimensionality
(n) of the instance identifier is assigned by the user of the
IBN. These semantics include the ordering relation between
different instances. For example, in a file archiving system, a
file name can be represented as logfile:1,0,1 to represent the
version 1.01 of the file logfile. These semantics are assigned
by the file archiving system.

Routing in the proposed IBN is instance-based. A
message destined to content X: i1,i2,... ,in is routed to the
content with the same content name X and with the highest
published instance identifier that is less than or equal to
(i1,i2,... ,in). For example, if we have X:3, X:5, and X:8 as all
the published content instances with content name X; and a
message is sent with destination content X:7, this message is
routed to the content X:5.

AUTONOMOUS TRANSPORT PROTOCOL

A connection in the ATP is established between two
endpoints that are identified by their content ID’s. Endpoints
could migrate or temporarily disappear from the network
while data segments and acknowledgments continue to flow
between them. We assume that all connections are simplex.
Extension to the full-duplex case is straightforward.

Assume a source endpoint Src, attached to node Node1,
establishes an ATP connection with a destination endpoint

Protocols, Algorithms & Mechanisms

3

Dst that is attached to Node3 (Figure2). When Src migrates
to a new node Node2, the ATP layer in Node1 spawns an
agent that takes care of sending any data in the sending
buffer of Src and receiving acknowledgments. The ATP
layers on Node1 and Node2 cooperate to make the migration
transparent to Dst. Similarly, when Dst migrates to a new
node Node4, the ATP layer on Node3 spawns an agent that
acts on behalf of Dst to buffer any received data and to send
acknowledgments. The ATP layers on Node3 and Node4
cooperate to make the migration transparent to Src. The
migration step can be performed multiple times and there
can be multiple agents working for the same endpoint at any
time.

An ATP agent can take the decision to participate
actively in the connection by pushing data segments to the
destination or to wait passively for the destination to pull
them. In the former case, the node publishes (registers) itself
in the network as AS (Active Source), while in the latter
case, the node publishes itself as PS (Passive Source). The
default mode of the agents acting on behalf of the source is
the active mode. Agents acting on behalf of the destination
should buffer the received data until the destination appears
on a new node. Therefore, these agents stay in the passive
mode until the destination reappears and pulls the buffered
data.

Each agent has a unique name composed of the original
content ID plus the starting sequence number of the data it is
responsible for. For example, AS:4 denotes an agent for the
source endpoint in the active mode responsible for data
segments starting from sequence number 4.

In the following subsection, details of connection
establishment, operation of the ATP in the basic mode
(when no migration takes place), and a simple source
migration scenario are explained. Details of destination
migration and more complicated scenarios can be found in
[5].

Connection Establishment

The connection establishment uses 3-way handshaking
similar to the TCP handshaking. Initially both ends, Src and
Dst publish themselves in the network by publishing their
IDs as in Figure 3. The content ID is used as the address in
the communication. Once the connection is established, both
ends will have a spawned ATP agent (Ag1 and Ag3) and the
communication goes through them.

Basic Mode

In this mode, neither Src nor Dst migrates. Operation in this
mode is similar to the operation of the TCP over the IP
networks. Data segments (Data1; Data2; …) generated by
Src are sent by Ag1 with destination address D:0 using the
Send function as in Figure 3. A cumulative acknowledgment
from Ag3 for sequence number k (Ackk), where k ≥ 0, is sent
to AS:k which is routed to Node1 by the underlying IBN.

Source Migration

Figure 3 shows an example of the ATP operation when the
Src migrates from Node1 to Node2.

Src Dst

Node1
Node3

Publish (D:0)
Publish (AS:0)

1

2

3

Send (D:0, Data1)

Send (D:0, Data2)
Send (AS:1,Ack1)

Send (AS:2,Ack2)

Send (D:0,Data3)Src

Node2
Send (AS:3,Ack3)

Send (D:0,Data4)

Send (D:0,Data5)

Send (AS:4,Ack4)

Send (AS:5,Ack5)

Land ()
Publish (AS:4)

4

5

Data segment transmitted by Src

.

.

.
.
.
.

Migrate()

FIGURE 3

A SOURCE MIGRATION SCENARIO

Upon migration: Src informs Ag1 of its intention to

migrate by invoking the ATP function Migrate. Upon the
invocation of this function, Ag1 stores the current status of
the connection in the IBN. The status contains the last
sequence number buffered in the ATP layer on Node1.

During migration: The content AS:0 is still published
in the IBN and attached to Ag1 at Node1. Ag1 is responsible
for transmitting the remaining data in the sending buffer,
accepting acknowledgments from the destination, managing
the transmission window and retransmitting segments if
necessary.

Upon landing: When Src lands on Node2, it invokes the
ATP function Land which spawns a new ATP agent Ag2 that
is responsible for the connection on the new node. Ag2 starts
by restoring the status of the connection from the IBN. Ag2
publishes a new content in the IBN with ID AS:j, where j is
the sequence number obtained from the stored status (j = 4 in
Figure 3), and attaches this content to Node2.

After landing: Src starts sending data. A cumulative
acknowledgment from Ag3 for segment k is sent with
destination address AS:k. If k is less than j, the
acknowledgment is routed to Ag1 (using the instance-based
routing feature of the underlying IBN). Similarly, if k is
greater than or equal to j, the acknowledgment is routed to
Ag2. The multiple migrations case is a direct extension to the
single migration case [5].

Protocols, Algorithms & Mechanisms

4

IMPLEMENTATION

We have implemented a prototype of the ATP protocol over
Pastry [3] as a P2P overlay network layer. The prototype is
deployed over a set of independent nodes at University of
Maryland. A simple ATP-aware application was
implemented and was run on each node of the network.

Several design issues are still under investigation. Those
issues include mechanisms for: node switching between
active and passive modes, reclaiming network resources, and
fault tolerance.

RELATED WORK

Although the mobile IP protocol [6] provides a solution to
the host mobility between different networks, a user is
bound to a single host during the lifetime of a connection. In
[8], [9] a mobility solution at the TCP level, that allows the
connection to remain open as the host moves between
different networks, is provided. However, both solutions do
not allow the endpoint to change hosts.

Similar work to the proposed IBN is the Internet
Indirection Infrastructure (I3) [6] which builds an indirection
layer, over the Chord peer-to-peer system, that allows a key
to be mapped to a specific node in the network. Our IBN is
unique in allowing different instances of the same content
and in using instance-based routing.

Authors in [10] propose a mobility infrastructure, based
on I3 that offers a rendezvous-based communication
abstraction. Although their system is similar to ours, there
are significant differences between them. Since their system
relies on TCP, it inherits its problems regarding mobility.
The I3 system is explicitly based on the IP routing between
the rendezvous point and the target while our proposed
protocol does not assume a specific underlying
infrastructure. The Mobile Tapestry system [11] offers a
similar system to the I3-based system. The main difference
between a mobile system built on I3 and Mobile Tapestry is
that, while the former provides a single level of indirection
as a rendezvous point for redirecting packets, Mobile
Tapestry provides multiple points of indirection. This system
has the same shortcomings as the I3-based system.

The system in [12] provides a seamless service platform
in which endpoints can migrate between different nodes. The
system is based on seamless-proxies that form a network
between themselves and work as a middleware between the
application and the transport layer. Our system differs from
this system in that their system is IP-based. Also, for each
possible application their system requires an application
specific module to handle endpoint migration.

CONCLUSION

In this paper, we presented the design of the Autonomous
Transport Protocol (ATP) that provides a reliable
communication between two endpoints regardless of their
physical location in the network. We presented an instance-

based network (IBN) that provides the ability of having
different instances of the same content and the flexibility to
map a content to a particular node.

The ATP allows the endpoints to migrate between
different hosts transparently to each other. End points spawn
ATP instances (agents) as they migrate between network
nodes. These agents become responsible for the connection
at the corresponding nodes. ATP uses the underlying IBN to
route data segments and acknowledgments to the correct
agent. Data is transferred by a combination of active and
passive operations, where the ATP layer of a node can
decide whether to actively push the data to the destination or
to passively wait for the destination endpoint to pull the data.

The ATP is essential to applications requiring reliable
communication with endpoints migration. We believe that
the ATP is important for ubiquitous computing to become a
reality.

REFERENCES
[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A

Scalable Content-Addressable Network,” in Proceedings of ACM
SIGCOMM 2001, 2001.

[2] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan, “Chord: A Scalable Peer-to-peer Lookup Service
for Internet Applications,” in Proceedings of ACM SIGCOMM 2001,
San Diego, September 2001.

[3] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed Object
Location and Routing for Large-Scale Peer-to-Peer Systems,” in
Proceedings of IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), Heidelberg, Germany, November
2001, pp. 329–350.

[4] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An
Infrastructure for Fault-tolerant Wide-area Location and Routing,”
Tech. Rep. UCB/CSD-01-1141, UC Berkeley, April 2001.

[5] T. Elsayed, M. Hussein, M. Youssef, T. Nadeem, A. Youssef, and L.
Iftode, “ATP: Autonomous Transport Protocol,” Tech. Rep.
UMIACSTR-2003-52 and CS-TR-4483, University of Maryland, May
2003.

[6] C. Perkins, “IP Mobility Support,” RFC 2002, October 1996.

[7] I. Stoica, D. Adkins, S. Zhaung, S. Shenker, and S. Surana, “Internet
Indirection Infrastructure,” in Proceedings of ACM SIGCOMM 2002,
Pittsburgh, PA, August 2002, pp. 73–86.

[8] B. Zhang, B. Zhang, and I. Wu, “ETCP: Extended TCP for Mobile IP
Support,” Internet Draft, 1998.

[9] A. C. Snoeren and H. Balakrishnan, “TCP Connection Migration,”
Internet Draft, November 2000.

[10] S. Zhuang, K. Lai, I. Stoica, R. Katz, and S. Shenker, “Host Mobility
Using an Internet Indirection Infrastructure,” in Proceedings of
MobiSys 2003, 2003.

[11] B. Y. Zhao, A. D. Joseph, and J. D. Kubiatowicz, “Supporting Rapid
Mobility via Locality in an Overlay Network,” Tech. Rep. UCB/CSD-
02-1216, UC Berkeley, November 2002.

[12] K. Takasugi, M. Nakamura, S. Tanaka, and M. Kubota, “Seamless
Service Platform for Following a User s Movement in a Dynamic
Network Environment,” in Proceedings of the First IEEE International
Conference on Pervasive Computing and Communications (PerCom
03), March 2003.

