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Abstract In this paper we present a systematic approach to
create smoothly varying images from a pair of photographs
to facilitate enhanced awareness of the depth structure of a
given scene. Since our system does not rely on sophisticated
display technologies such as stereoscopy or auto-stereoscopy
for depth awareness, it (a) is inexpensive and widely acces-
sible, (b) does not suffer from vergence - accommodation
fatigue, and (c) works entirely with monocular depth cues.
Our approach enhances the depth awareness by optimizing
across a number of features such as depth perception, opti-
cal flow, saliency, centrality, and disocclusion artifacts. We
report the results of user studies that examine the relationship
between depth perception, relative velocity, spatial perspec-
tive effects, and the positioning of the pivot point and use
themwhen generating kinetic-depth images. We also present
a novel depth re-mapping method guided by perceptual rela-
tionships based on the results of our user study. We validate
our system by presenting a user study that compares the out-
put quality of our proposed method against other existing
alternatives on a wide range of images.
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1 Introduction

The kinetic-depth effect (KDE) is the perception of the
three-dimensional structure of a scene resulting from a rotat-
ing motion. First defined by Wallach and O’Connell [53],
the kinetic-depth effect has been used widely. Images that
exhibit KDE are commonly found online. These images
are variously called Wiggle images, Piku-Piku, Flip images,
animated stereo, and GIF 3D. We prefer to use the term
Kinetic Depth Images (KDI), as they use the KDE to give the
perception of depth. In 2012, Gizmodo organized an online
competition to reward the KDI submission that best provided
a sense of depth [55]. Recently, the NewYork Public Library
published a collection of animated 3D images online [18].
Flickr has a large number of groups that discuss and post
animated 3D stereo images. Also, online community-based
galleries that focus on KDI can be found at the Start3D
website [8]. With the increasing availability of stereo and
lightfield cameras (such as the Lytro), the use of the KDE to
express depth on ordinary displays is rising rapidly.

Although the basic form of the KDE is trivial to imple-
ment for a virtual environment where the 3D geometry and
lighting are known, excessive motion and reduced depth
perception mar the visual experience unless proper care is
taken. In fact, accomplishing a high-quality KDE from a
pair of photographs is not trivial and has several interesting
nuances, as outlined in this paper, which should be useful for
any practitioner wishing to use this technique for facilitating
depth awareness. In this paper we describe an algorithm and
its accompanying system, for facilitating depth awareness
through KDE using only a pair of photographs or images.

The use of the KDE is a viable alternative to the use of
stereoscopic and autostereoscopic displays: (i) the KDE pro-
videsmonocular depth cues that allowus to experience depth,
even with one eye, which accommodates people who suffer
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from various monocular disorders, (ii) the depth is perceived
due to the rotation of the object and does not require any spe-
cial device (glasses or lenses) to view; this works with any
display and can be easily shared online, (iii) unlike stereo-
scopic and auto-stereoscopic displays, KDE animations do
not suffer from vergence-accommodation conflicts, and (iv)
depth perception achieved by the KDE can exceed that of
the binocular depth perception as the disparity provided by
binocular vision is limited compared to the angular rotation
that can be produced by KDE [12,35].

Although there are a large number of KDE-based images
online, most of them are manually created by the artist,
require tedious user input to create them, or suffer fromvisual
artifacts introduced by the automated systems used to create
them.Manual creation of these images may seem simple, but
it is difficult for average users to make their own high-quality
KDE-based images. A lot of KDI suffer from artifacts caused
by abrupt changes in motion, color, or intensity, as well as
alignment errors and excessive motion.

The following are our contributions to this paper:

1. Given a stereo image or an image/depth pair as an input,
we automatically optimize a KDE-based image sequence
by taking human depth perception, optical flow, saliency,
radial components, and disocclusion artifacts into con-
sideration;

2. We report the results of a user study that examines the
relationship between depth perception, relative velocity,
spatial perspective effects, and the positioningof the pivot
point and use them to generate KDI;

3. We present a novel depth re-mapping method guided by
image saliency and the perceptual relationship found in
our user study to reduce excessive motion in KDI.

2 Background

The kinetic depth effect (KDE) is defined as the percep-
tion of the three-dimensional structural form of an object
when viewing it in rotational motion [12,53]. As an observer
moves, the nearby objects are seen from different angles.
To experience KDE, the optical-flow-driven motion cue has
been found to be very important [14,43,46] and can be expe-
rienced from just two photographs taken fromdifferent views
[11,26]. Another effect that gives the perception of depth is
the stereo kinetic effect (SKE). Although SKE andKDE both
give the perception of depth, they are quite different. SKE
gives a perception of depth when viewing a 2D pattern as it
is rotated in the view plane (fronto-parallel) [41], whereas
in KDE the depth perception arises from rotating the object
along an axis. Motion parallax is another monocular depth
cue that is experienced through the relative motion of the
near and far objects [12]. Generally, KDE is associated with

the rotational viewing of objects whereas motion parallax is
associated with the translational viewing of objects. When
an observer fixates on an object and makes small rotational
or translational motions, both KDE and motion parallax are
similar [12].

3 Related work

Although a few tools are available online to generate theKDE
from image pairs, we found them to be largely ad-hoc tech-
niques with variable quality. We have not come across any
previous work in the technical literature that systematically
identifies the various competing constraints in building such
tools to achieve an aesthetically superior viewing result. We
next give an overview of the various online tools we have
come across on the Internet.

The New York Public Library has an online tool, Stere-
ogranimator, that converts stereograms into animated 3D
images employing user input to align images [18]. The
tool allows users to manually rotate and translate stereo
images to align them and change animation speed to cre-
ate animated GIF images that switch between images. With
carefully acquired stereo images and with proper user input,
the output of this tool can produce good results. Other-
wise, the output may contain artifacts created by the abrupt
changes in motion, color, or intensity, or through alignment
errors.

Wiggle images follow the same principle and are cre-
ated by taking a pair of stereo images (or a sequence of
images) and flipping between them. With careful considera-
tion during the acquisition stage and a very precise manual
alignment during the animation generation stage, a reason-
ably good quality effect can be achieved. However, the
process is tedious and requires significant skill in photogra-
phy and image processing. Rather than relying on the number
and quality of input images, we use a judicious mix of com-
puter vision and rendering algorithms to create high-quality
animations needed to experience the KDE from a pair of
images.

Piku-Piku images from Start3D (www.start3d.com) pro-
vides an online tool for generating KDI. A user uploads an
image pair to the Start3D server, which then generates a
sequence of intermediate images and provides a hyperlink to
view the resulting images on its server [8]. To the best of our
knowledge, the underlying algorithm for generation of Piku-
Piku images, their processing, and their viewing has not been
published. A careful study of the animation created by Piku-
Piku images shows that the intermediate frames between an
input pair of stereo images are computed as a translation from
one input image to other. This method does not produce a
good results if the input set of stereo images does not happen
to fall on the path suited for the KDE. Blending artifacts are
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often seen and if the stereo images are not carefully acquired
(for example, if shear or slant is present in the stereo pair),
then the output is often of a poor quality.

Another similar tool is the Stereo Tracer created by Tri-
axes (www.triaxes.com). This uses an image-depth pair or
a stereo-image pair to generate intermediate views to create
animation for producing the KDE. To secure a good output
tedious manual adjustment is required. These adjustments
include (a) depth map adjustment, (b) image alignment, and
(c) manipulation of parameters that control parallax and the
plane of zero parallax.

Recently, LytroCamera announced a perspective shift fea-
ture on their camera application [32]. Based on user input,
they allow users to change the camera perspective computed
using the captured light-field data. To our knowledge, the
underlying algorithm has not been published.

Zheng et al. [59] presented a method that focuses on auto-
matically creating a cinematic effect that exhibits the parallax
effect. They reconstruct the scene from a series of images,
fill the occluded regions, and render the scene using a cam-
era path that attempts to maximize the parallax effect while
taking into account occluded regions. Rather than trying to
recreate cinematic effect, we try to maximize depth percep-
tion based on KDE while reducing motion-induced artifacts.
KDE uses rotational motion that is different from the cine-
matic effects presented by Zheng et al. [59].

None of the above approaches take into account depth
perception, image saliency, identification of the best rota-
tion axis, identification of good pivot points for fixation, or
depth re-mapping to generate high-quality KDE that we have

used in our approach. Another significant departure in our
approach has been the decoupling of the rendering camera
from the acquisition camera. This has allowed us signifi-
cantly greater freedom in using the standard angular camera
motion with substantially fewer visual artifacts as well as
using previously unexplored camera motions to achieve the
KDE.

4 Overview of our approach

The input to our system is a pair of images that can generate
an approximate depth map. Our approach also works with
an image and a depth-map pair of the scene available from
a camera coupled with a depth sensor such as the Microsoft
Kinect.

We will refer to the cameras used in taking the initial
images as input cameras and the cameras used for generating
the animation (to simulate the KDE) as rendering cameras.
Our system is able to generate this animation through a series
of steps as shown in Fig. 1. First, from the input stereo image
pair we compute the optical flow and a depth map. After
that, we compute parameters needed to generate a KDE by
taking into account depth, centrality, saliency, and optical
flow. Depth perceived by kinetic motion depends on the rel-
ative velocity. Using the result of the user study (that allows
us to map velocities to perceived depth which is explained
in Sect. 6) and image saliency, we re-map the depth and
create a depth mesh. This remapping reduces total motion
while enhancing the depth perception. Finally, we visualize

Fig. 1 We first compute the optical flow and the depth map from the
input images (generally a stereo pair). We then generate a triangulated
depth mesh using the re-mapped depth map which is guided by human
perception.We also create an energymap of the image using depth, cen-

trality, and image saliency. By using the depthmesh and the energymap,
we generate a high-quality animation to best experience the kinetic-
depth effect. Our system has been informed by and validated through
user studies
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the depthmesh using any desirable rendering cameramotions
(such as angular or conical-pendulum) to generate the anima-
tion needed to experience the KDE. Details of our approach
are described in the following sections.

5 Kinetic-depth effect parameters

WegenerateKDI by calculating proper values for pivot point,
rotation axis (shown in Fig. 2), magnitude of angular rota-
tion, and frequency. The pivot point is the look-at point of
the rendering cameras as they move about the rotation axis.
In this paper, we use two different types of camera motion
and each type uses the rotation axis in a slightly different
way. We discuss this further in Sect. 9. The pivot point
is also a position in the image through which the rotation
axis passes. This results in minimal optical flow near the
region around the pivot point when the final animation is
created.

To create an effective kinetic-depth experience, we need to
determine the magnitude of angular rotation and frequency.
Wallach andO’Connell [53] used an angle of 42◦ at the rate of
1.5 cycles/s. Epstein [13] used angles of 15◦ and higher in his
experiment and reported that 15◦ is sufficient to perceive the
KDE. His experiment used the projection of a shadow with
no visible shading and texture. Since we are using typical
natural stereo images with full texture, we have found that
rotation as small as 0.5◦ about the pivot point is sufficient.
This is consistent with human vision, where an average intra-
ocular distance is 6.25 cm, which gives about 4◦ separation
at a fixation point 1 meter away. For objects farther away
separation is much less. In our results, we perform rotations
between 0.5 to 2◦ around the pivot point. The frequency of
rotation used in our system is 2 cycles/s since this has been

Fig. 2 The pivot point and the rotation axis of the scene are shown in
both 3D space and the projection space

reported as the optimum temporal frequency by Nakayama
and Tyler [36], Caelli [3], and Rogers and Grams [44] .

Although we keep the rotation at the pivot point small,
objects that are close or far might exhibit much higher move-
ment, depending on the scene. According to Ujike et al. [50],
30◦ to 60◦/s on each axis produces the highest motion sick-
ness; roll produces more sickness than pitch and yaw. Taking
this into account, we keep the maximum rotation over the
entire scene low and keep the change in the vertical axis to a
minimum.

The positioning of the pivot point, frequency of rotation,
magnitude of angular rotation, and the scene depth range
all directly affect the velocity of the stimulus moving on
the screen. Gibson et al. [14] and Rogers and Grams [43]
have shown that depth perceived by kinetic motion depends
on the relative motion. Although some increase in relative
motion enhances the perception of depth, excess motion
causes motion sickness and reduces the ability to smoothly
track objects. Robinson et al. [42] showed that while track-
ing objects with velocity of 5◦/s , the human eye took about
0.22 s to reach the maximum velocity and about 0.48 s to
reach the target steady-state velocity. In our experiment, the
frequency of rotation is 2 or more cycles and, therefore,
to maximize KDE and at the same time reduce unwanted
motion-based artifacts, we keep motion below 5◦/s. Using
depth re-mapping based on results obtained in Sect. 6, we
minimize motion artifacts while maximizing the perception
of depth.

Severalmore variables are calculatedwhenweoptimizeKDI.
They are described below.

Relative distance: The relative distance between two ver-
tices v and w is defined by Rd(v,w) = ‖vd − wd‖2.
Velocity: The velocity of a vertex v is computed by tak-
ing camera parameters, rendering motion, and viewing setup
into consideration. So, we first compute positions of v in the
screen space at times t0 and t1. We call them v̀t0 and v̀t1 . To
do this, we use camera motion parameters to generate a KDE
and project them on computer screen. Next, the velocity of v

in screen space is computed by equation V̀v = v̀t1−v̀t0
t1−t0

. Then

the velocity V̀v is converted into angular velocity expressed

using view angle by equation Vv = V̀v
(
2∗tan−1(pixelSize∗.5)

viewing Distance

)
.

Relative velocity: Relative velocity between two vertices v
and w is defined by Rv(v,w) = Vv − Vw.

Disocclusion threshold: When viewing a depth mesh with
a moving camera, regions that were occluded from the input
camera used to create the depth mesh could become visi-
ble. As we draw a triangulated depth mesh, these deoccluded
regions are filled by the stretched triangles (also known as
rubber sheets) that span the depth discontinuity from the
edge of the foreground object to the background [7,33]. To
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minimize the disocclusion artifacts, the rendering camera
placement and movement to experience the kinetic-depth
effect should be constrained. However, even after perform-
ing the optimizations some disocclusion artifacts remain
due to the structure of the scene. To quantify amount of
perceptible disocclusion when KDI is generated, we cal-
culate disocclusion estimates between two vertices v and
w defined by Oocc(v,w) = ∥∥v̀t − ẁt

∥∥∞ ∗ Clab(vcol, wcol)

where the maximum screen space difference over the entire
KDE animation is multiplied by the function Clab which
computes color difference in CIE LAB color space. To deter-
mine disocclusion of the entire mesh OMeshOcc, we take
k largest Oocc and compute average as given by equation
OMeshOcc = 1

k

∑
k Oocc.

6 Experiment

We performed an experiment to determine the relation-
ship between velocities, positioning, and depth perception.
Numerous studies have been carried out to determine what
causes motion-based depth perception and its implications
on segmentation, depth ordering, and depth magnitude esti-
mation [12,14,26,36,37,43,44,52,56]. Most of them study
motion in isolation and focus only on relative velocities.
Since we generate a KDE based on stereo images, for us
the relationships between depth perception, spatial perspec-
tive, and the positioning of the pivot point in the scene is
very important. All of these factors influence our depth per-
ception generated byKDE. To our knowledge, there has been
no attempt thus far in examining the aggregate relationship
among these factors and KDE. Specifically, we examine the
combined effect on depth perception from the following fac-
tors: (a) the background and foreground of an object placed
at the pivot point move in opposite directions, while for an
object distant from the pivot point they move in the same
direction; (b) the average velocities of the objects placed at
the pivot point are much lower than for objects that are dis-
tant from the pivot point; (c) the relative velocity between
the foreground and the background of an object decreases
considerably when receding from both the view point and
the pivot point due to the perspective effect, and finally (d)
the pivot point has no motion.

We recruited volunteers from our campus and the local
community for the experiment. All volunteers had normal or
corrected-to-normal vision and were able to perceive KDE.
The experiment was performed by following the university
IRB guidelines and the participants were compensated nomi-
nally for their time and effort. The experiment was conducted
in a brightly lit lab using a Dell monitor 2407WFPH with
pixel pitch 0.270 mm. The distance between the participant’s
eye and the monitor was around 0.75 m, which is within the
OSHA recommended range [51]. We showed stimuli, which

Fig. 3 The image a shows the side view of the object being displayed
in the experiment rendered with lighting for illustration purposes. The
image b shows the stimulus shown to the participants. Without KDE
motion, the structure is seen as a flat collection of points

subtended around 20◦ ×20◦ visual angle, made of randomly
generated dots with various depths. When motion was not
present, the randomly generated dots were perceived as a flat
fronto-parallel plane (Fig. 3b).

The experiment was done to study the relationship
between relative velocity, depth perception, and the posi-
tioning of the pivot point. In this experiment, we rendered
objects with various depths using randomly generated dots.
The objectswere composed of a planewith a box either going
in or coming out as shown in Fig. 3. The variation of depth
between the front and the back of the object changes the rel-
ative velocities between them. The objects were placed at
various distances from the pivot point, which changes rota-
tional velocity. The objects close to the pivot point experience
less velocity. The positioning of the pivot point, scene depth,
and spatial perspective affects the relative velocity of pixels
on the projected screen. For the study, the relative velocity
between the foreground and the background was in the range
0.02◦–2.5◦ visual angle/s. In this study, 11 volunteers partic-
ipated.

Method: Each participant performed 40 trials with 3 s
intervals between trials. There was no restriction on time.
Participants were asked to estimate the size of the stimulus
using a slider. The specific instruction to them was Use the
slider to show us how much depth you perceive. The users
were then supposed tomove the slider from its origin to a dis-
tance that visually corresponded to the depth that they were
perceiving.

Result:We found that the estimation of the perceived depth
between subjects varied dramatically. This is consistent with
the previous study [12], where the researchers reported a
high variation in perceived depth. However, when depth val-
ues are normalized per subject, a distinct pattern emerged.
We computed the average of the normalized depth for all
subjects for each distance from the pivot point, as shown in
Fig. 4. The participants perceived increased depth between
relative velocities of 0.2◦–1.25◦ visual angle/s; for higher
relative velocities, the perceived depth remained constant.
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Fig. 4 The figure shows the mean and standard deviation of the nor-
malized depth perceived by subjects. When the objects are placed at
various distances from the pivot point, the perceived velocity of the
object changes. We show separate curves for each distance we tested
and list the midpoint velocity. Between relative velocities of 0.2◦ to
1.25◦ visual angle/s, participants perceived increased depth. For higher
relative velocities, the perceived depth remained constant

Thus, we consider 1.25 as the maximum desirable relative
velocity. This is taken into consideration while generating
the depth mesh. We performed a two-way analysis of vari-
ance (ANOVA) between the distance from the pivot point
and the relative velocity in the field of view (view angle).
The results of ANOVA for the distance from the pivot point
are [(F(3, 400) = 3.16, P = 0.0248], the relative velocity
are [(F(9, 400) = 108.94, P < 0.0001], and the interac-
tions between them are [(F(27, 400) = 0.96, P = 0.5208].
These values indicate that both the distance from the pivot
point and the relative velocity affect the perceived depth, but
there is no evidence of an interaction between the two. Please
look at the accompanying video for a visual explanation of
the results.

Perceptualmaps: Our experiment and previous studies have
shown that relative velocity is an important motion cue to
experience KDE [14,43,46]. By applying Gaussian filter to
smooth the results from this experiment, we compute a set
of curves that are used to map depth perception to relative
velocity and vice versa. We generated two sets of curves
to approximate the results from the experiment as shown in
Fig. 4. The first set of curves maps the relative velocities to
normalized depth perception (RV2NDPmap) and the second
set maps the users’ normalized depth perception to the rela-
tive velocities(NDP2RV map). The inverse of the RV2NDP
map is the NDP2RV map. The curves within each set show
how the relation between relative velocity and depth per-
ception changes as the midpoint velocity is changed. This
mapping gives an empirical relationship between the nor-
malized depth perception and the relative velocity.

7 Energy map computation

As the pivot point experiences minimal optical flow, it is
preferable to locate the pivot point at a salient region of the
scene. If the pivot point salient region has text or a face,
it becomes easier to read or identify it when the region is
not exhibiting high optical flow due to the rendering camera
movement. It is also preferable to have the pivot point in the
middle of the scene to minimize the optical flow at the scene
boundaries. If the pivot point is chosen at a scene boundary
(as an extreme example), the opposite end of the scene will
exhibit excessive motion that can create visual discomfort
and can also give rise to significant disocclusion artifacts.

To quantify and incorporate such considerations,we deter-
mine the placement of the pivot point by computing an energy
map. We seek a global minimum on the energy map to deter-
mine the kinetic-depth parameters:

E(x, y) = Ed(x, y) + Es(x, y) + Er(x, y), (1)

where (x, y) refers to the position of the pivot point in the
original image (projection space) and Er(x, y), Ed(x, y) and
Es(x, y) are the radial, depth, and saliency energy functions,
respectively. Each energy function component is further dis-
cussed below.

Depth energy: We use the depth energy to express a prefer-
ence for positioning the pivot point on regions that are close
to the middle of the depth map. This minimizes the visibility
of the occluded regions during the rendering camera move-
ments and also lowers the amount of motion when the final
animation is generated. We obtain the depth map of a given
image set by calculating its optical flowusing Sun et al.’s [48]
algorithm. Details about depth map calculation are described
in Sect. 8. After calculating the depth map we can calculate
the depth energy as Ed(x, y) = ‖Pd(x, y) − Dm‖2 , where
Pd(x, y) refers to the depth value of the pixel at (x, y) and
Dm is the median depth of the scene. The second image of
Fig. 5 shows the depth map used in Pd(x, y).

Fig. 5 Energy components. Here we show a the original image, b the
depth map, c the saliency component, d the radial component, and e the
final computed energymap. In thesemaps, yellow regions are associated
with lower energy. We choose the pixel with the lowest energy to be the
pivot point
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Saliency energy: As mentioned earlier, we desire to posi-
tion the pivot point on a salient region of the scene. These
salient regions are different in color, orientation, and inten-
sity from their neighbors and can be found using the image
saliency algorithm proposed by Itti et al. [21]. The saliency
map represents high-saliency regionswith high values.When
calculating the saliency energy of the pivot point, we invert
the saliency values so that the most salient regions are repre-
sented with the lowest values. Our equation for calculating
the saliency energy is Es(x, y) = [1 − Ps(x, y)], where Ps
refers to the saliency value of the pixel. The third image in
Fig. 5 illustrates the saliency map used in Ps(x, y).

Radial energy: To express a preference for a centralized
pivot point, we use a radial energy function as one of the
energy components. Essentially, the closer the point is to
the center, the less radial energy is associated with it. The
radial energy is calculated as Er(x, y) = Pr(x, y), where Pr
refers to the radial value of the pixel defined by the Euclidean
distance between the point and the image center. The fourth
image in Fig. 5 shows an example of the radial map.

The radial component Pr(x, y) depends upon the dimen-
sions of the image, but the saliency component Ps(x, y) and
the depth component Pd(x, y) depend upon the scene. To
take these factors into account, we can add weights while
calculating the energy function. Assigning a higher saliency
weight will increase the importance of the salient regions,
whereas higher depth weight and radial weight will give
greater priority to the image center and lower the total
optical flow between frames. Figure 5 shows an example
of energy map calculation. We compute the energy of all
the pixels and find the position (x, y) that has the lowest
energy. Then the pivot point is defined by the coordinate
[(x, y, Pd(x, y)].

8 Mesh generation

We generate the depth mesh by first approximating the scene
depth, followedbyanoptimized compression forKDE.Then,
we perform re-mapping of the depth mesh by taking percep-
tion into account. Finally, we enhance the depth mesh so that
the motion is constrained to a desired range and disocclusion
artifacts are minimized.

8.1 Scene depth approximation

Generally the number of input images or photographs is
smaller than the desired number of views. Also, the para-
meters used by the rendering cameras are often different
from the input cameras. Due to these reasons, a number
of additional intermediate frames need to be generated.
There are numerous ways of generating intermediate frames,

such as basic interpolation between input images, flow-field
interpolation [61], image-based rendering [2,6], and struc-
ture approximation [1,5,15,17,31,34,38,45,58,60] to create
depth mesh.

In our approach, we use a depth-image-based rendering to
generate high-quality intermediate frames needed for achiev-
ing the KDE. This is computationally efficient and allows
sufficient flexibility in the choice of the rendering camera
parameters. For every pair of images, we first calculate the
depth map. Although there are numerous methods to com-
pute the depth map, we decided to approximate depth based
on the optical flow between the input image pair by using
the inverse relation defined as d = f t

o , where d is the
depth, f is the focal length, t is the distance between the
camera positions, and o is the optical flow magnitude of the
pixel. Since we do not know the camera parameters f and t ,
we recover depth up to a projective transformation. Optical
flow between images is a vector field. Objects at the zero
plane will have zero optical flow. Objects that are in front
and behind the zero plane will have optical flow vectors fac-
ing in the opposite directions. Taking either the maximum
or minimum optical flow and adding it to the entire vec-
tor field will shift the zero plane to either the closest or the
furthest depth. We then convert optical flow map to depth
map.

8.2 Optimized depth compression

Depth range on a raw depth map is usually very high and
contains a lot of artifacts. Directly using a raw depth map
will cause excessive motion that is visually disconcerting.
One naïve solution to this problem is to perform simple scal-
ing of the depth map to fit a certain range. However, this
will compress both important and unimportant regions of
the scene uniformly. Extensive amount of research has been
conducted in visual saliency and perceptual enhancements
[9,10,16,20,21,23,24,28,29,57]; however, use of motion
makes our situation unique. We want the salient regions of
the scene to occupy a larger share of the depth range while
compressing non-salient regions and artifacts. An analogous
problem arises in stereo viewing and relief mapping, where
disparity or depth compression is needed [22,27,30,40,54].
InKDI, compression requires global consistency of the scene
depth as the depth mesh is viewed from different angles; oth-
erwise, the depth inconsistencies will be perceived easily.
The disparity histogram and saliency map have been used by
Lang et al. [27] to compress disparity for stereo viewing. In
the slightly different problem of video retargeting, manual
constraints have been used to enforce feature preservation
while compressing the frames [25].

We perform depth compression based on the image
saliency and use cues from carefully chosen edges to enforce
feature preservation. Our approach for compressing depth is
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similar to that of Lang et al. [27]. We would like to account
for saliency in compressing depth. To compress depth, we
first divide the depth range of themesh evenly into k intervals
{r0, r1, ....rk−1}.Wewould like to have a greater compression
for depth intervals that are largely empty or have low-salience
vertices. To achieve this, we build a histogram over the depth
intervals, rx in which we use vertex counts weighted by their
respective saliencies (each vertex’s saliency is in the range
0 to 1). Next, we compute a compressed value sx for the
interval rx as follows:

sx = min

(
hx

g ∗ max(h0, h1, ....hk − 1)
, 1.0

)
, (2)

where sx is the size of the interval x after using saliency
compression, and g is a constant which gives extra rigidity
to salient depth intervals. In practice, we found that g =
0.4 gives a proper balance between compression and rigidity
of depth intervals. This non-linear mapping compresses the
intervals that are less salient.

Only using saliency to compress the depth map will
cause features, such as lines and curves, to change. This is
because depth intervals are compressed non-linearly. Some
constraints have to be placed to preserve features. We use
information of carefully chosen edges to enforce loose fea-
ture preservation. We first calculate edges in the image using
Canny edge detection [4]. If needed,more sophisticated edge
detectors canbe easily integrated.Wefilter edges that are very
short in length to remove noise. After that, we perform addi-
tional filtering to remove edges that lie at the border region
of objects at various depths. This is done by removing edges
with very high gradient on their depth values. This step is
important because the depthmap contains errors/artifacts and
the depth approximation close to the depth boundaries is less
reliable. Edges that are left after filtering will be longer and
will have more reliable depth values. These edges are used
for feature preservation. We find the depth interval associ-
atedwith each of these filtered edges and uniformly distribute

depth among them as s∗
x =

∑ j
n=i sn
j−i , where s∗

x is the new size
of the depth interval x after using saliency compression with
feature preservation; i and j are the depth interval associ-
ated with the two endpoints of a filtered edge and x ∈ [i, j].
Finally, using the compressed depth, we create compressed
depth mesh MComp.

8.3 Perceptual re-mapping

Mesh re-mapping: We generate the re-mapped depth mesh
by taking depth perception into account. Since we would like
the viewers to perceive depth that is close to the 3D structure
we present, we use the relative depth (separation) computed
from the compressed depth mesh MComp as an input for the
NDP2RV map (from Sect. 6) to generate a relative velocity

map needed to perceive the desired depth. This step is done
for each vertex v in MComp. For each v, let Vn be the set of
its four connected neighbors such that Vn ⊆ MComp. We cre-
ated four vertex-neighbor pairs (v,w) where w is in the set
Vn. Then for each pair (v,w), we compute the relative depth
Rd(v,w) between them. The relative depth is scaled so that it
is within the maximum depth range allowed in the scene. At
first, maximum depth range is initialized to the depth range
that results in a relative velocity that is equal to the maxi-
mum desirable relative velocity which is explained in Sect. 6.
The scaled depth is then used as an input for the NDP2RV
map to get the relative velocity Vp(v,w) between the pair.
We call Vp(v,w) a perceptual relative velocity because it is
based on the perceptual relationships explained earlier. The
Vp(v,w) between a vertex pair is necessary to perceive the
relative depth Rd(v,w) between them. In other words, to
perceive a depth that is equal to Rd(v,w) between a vertex
pair, we need the relative velocity between them to be equal
to Vp(v,w).

Using the perceptual relative velocities between vertices,
we can compute their separation (we call this perceptual sepa-
ration Sp(v,w)). Wemove one of the vertices in (v,w) along
the line of the view point and find separation Sp(v,w) that
results in the desired Vp(v,w). The relative velocity between
a pair of vertices is computed by projecting each vertex on
the display screen using a standard projection matrix, then
calculating the instantaneous velocity (described in Sect. 5)
for each vertex, and finally finding the difference between
the velocities. This process is accelerated by a binary search
algorithm. Since this step is performed by only using local
data on the distances between neighbors (v,w), an extra
step to make a globally consistent mesh is required. This
is done by minimizing a 1D problem. We first discretize
depth of the scene into 255 bins. Then for each (v,w), we
find associated discretized depths dv and dw based on their
depth in MComp. We then add a link between dv and dw
that specifies the Sp(v,w). This process can be pictured as a
spring mesh where the links added will act like a spring and
the discretized depths are the locations where the springs
are attached. Since the Sp(v,w) is locally consistent, some
links will try to contract the distance between the discretized
depths while some will try to expand them. We define *
d(v,w) =| dv − dw |. For all (v,w), we find d(v,w)

that minimizes
∑∥∥d(v,w) − Sp(v,w)

∥∥
2 to perceptually

re-map the depth mesh MP to make it more globally con-
sistent.

8.4 Depth mesh enhancement

In Sects. 8.2 and 8.3,we have carried out local depth enhance-
ment using local per-pixel neighborhoods. However, this can
cause the range of the motion for the entire image to be too
low or high. In this section we carry out a global optimization
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for a more pleasant viewing experience. Depending on the
rendering parameters and the depth range of the scene, depth
mesh can be compacted or expanded to allow enhanced depth
perception. Also, depth has to be adjusted to reduce disocclu-
sion artifacts. In Sect. 6 we mention that when using KDE,
we have a limited perception of depth, which is highly depen-
dent on the relative velocity. The relative velocity of objects
depends on the relative distance between them, the placement
of the pivot point, and the camera movement. However, there
is a tradeoff between the amount of motion in the scene due
to relative velocity and perception of depth. The results of
Sect. 6 give us the maximum desirable relative velocity, tak-
ing into account the tradeoff. Using the maximum desirable
relative velocity, perceptual depthmesh, and placement of the
pivot, we find the maximum depth range Dmax allowed in the
scene. In otherwords, givenperceptual depthmesh andplace-
ment of the pivot, we find depth range Dmax which results in a
relative velocity equivalent to themaximumdesirable relative
velocity between the front and back extremes of the mesh.
This is done by searching for the depth range that results
in the desirable relative velocity. This process is accelerated
by a binary search algorithm. Then we define the minimum
depth range allowed in the scene Dmin = Dmax ∗ 0.5.

Once we find the depth range allowed, we focus our atten-
tion on finding the depth range that minimizes disocclusion
artifacts. In between vertices, we estimate disocclusion by
computing relative separation in pixel units between neigh-
boring vertices of the depthmeshwhen the cameramovement
needed forKDI is performed.However, when colors between
the vertices are the same, disocclusion is not visible and we
can ignore disocclusion between these vertices. To approxi-
mate the disocclusion of an entire scene OMeshOcc, we take
the mean of k-highest disocclusion estimates between ver-
tices whose color is perceptually different as described in
Sect 5. When the depth range is small, disocclusion artifacts
as well as the perception of depth is reduced. So, to find a
proper balance, we compute the depth range by

DFinal =

⎧⎪⎨
⎪⎩

DMin, if (DOpt ≤ DMin)

DMax, if (DOpt ≥ DMax)

DOpt, otherwise,

(3)

where DOpt is the depth range that has k-highest disocclusion
estimates that are less than a user-specified threshold (here
we use threshold value of 2). If the difference between DFinal

and the depth range ofMP is small, we simply scale the depth
range of MP to match DFinal. However, if the depth range is
large, we modify the maximum depth range allowed in the
scene and start the perceptual re-mapping process again. In
Fig. 6, we show a comparison between the raw depth and
the depth used to generate final depth mesh after applying all
the optimizations stated here.

Fig. 6 a The original image, the image set b is associated with the
raw depth, and the image set c shows the depth used to generate final
depth mesh after depth compression and perceptual enhancements. The
depths in b and c are normalized. In each set we are showing the depth
values and the optical flow after the camera motion to depict the value
of depth remapping

Fig. 7 An illustration using input image (a) and optimized depth map
(b) of the different types of camera movements : the angular motion (c)
where the camera swivels on a plane perpendicular to the rotation axis
while looking at the pivot point, and the conical pendulum motion (d)
where the camera rotates along a conical surface while looking at the
pivot point. Rotation axis is always vertical for the angular motion and
is perpendicular to the view-plane for the conical pendulum motion

9 Rendering camera motion

We make use of the pivot point and the rotation axis calcu-
lated earlier to compute the rendering camera motion in two
ways: angular motion and conical pendulum motion.

Angular motion to experience the KDE involves rotating
the camera on a plane perpendicular to the rotation axis
while looking at the pivot point as illustrated in Fig. 7c. The
angular motion is close to most of the wiggle stereo images
found online. However, rather than just flipping between two
images and only relying on the sequence of images that were
captured by the camera, we generate the intermediate views
by rotating the rendering camera positions along an arc sub-
tending a fixed angle at the salient pivot position. Figure 8
shows our results using the angular motion.
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Fig. 8 Representation of the angular camera motion

Conical pendulum motion involves rotating the camera
along a circle on a plane parallel to the view-plane, as the
vector from the camera to the look-at pivot point traces out
a cone. Figure 7d illustrates the conical pendulum motion
performed by the camera.

10 Rendering and interaction

The depth mesh, along with the camera motion described
earlier, is used for rendering the scene. The depth mesh is
kept static while the rendering camera moves to generate the
KDE. Since we compute the depth mesh, our method allows
us to add virtual objects or different layers into the scene
at user-specified depth locations. We can, therefore, use the
same camera parameters to render additional geometry at the
desired locations while also rendering the depth mesh. This
makes the kinetic-depth motion consistent for both the depth
mesh as well as the additionally-added geometry. Currently,
we do not attempt to make lighting and shading seamless
and consistent between the virtual object and the scene, but
it would be an interesting exercise to attempt to achieve it by
estimating the lighting parameters or by using methods such
as Poisson image editing [39].

Although we compute the pivot point and the rotation axis
automatically as a default, our system also allows the user
to change these features as desired. This allows the user to
customize the output of the kinetic-depth movement accord-
ing to their needs. As mentioned earlier, the area around the
pivot point has less motion. If there is more than one region
that has low energy in a scene, being able to move the pivot
point to various locations is critical.

11 Results and discussion

We have implemented our system in C++ andMatlab. For all
of our experiments, we use aWindows 7 64-bit machine with
an Intel Core i5 2.67 GHz processor, an NVIDIA GeForce
470 GTX GPU, and 8 GB of RAM. We calculate image
saliency using the graph-based visual saliency algorithm of
Harel et al. [16] implemented in MatLab and use Sun em et
al.’s [48] code for optical flow calculations. The rendering
of KDI is done at interactive frame rates; however, the cre-

ation takes time. The optical flow and saliency approximation
algorithms takesmajority of the computation timeduring cre-
ation. On average, one megapixel image takes about 4 min.
However these pre-processing steps are not currently opti-
mized for speed.

11.1 Subjective evaluation

In order to evaluate the perceptual quality of the generated
KDI images, we conducted a user studywith 11 subjects who
also participated in the earlier user study. Each subject per-
formed four different tests to compare between: (1) Wiggle
3D and our proposed method, (2) the naïve method and our
proposed method, (3) Piku-Piku and our proposed method,
and (4) angular and conical cameramotion.We presented ten
examples for each test selected randomly from a larger col-
lection of examples. Each example showed two images side
by side. Subjects were asked which image they preferred by
taking into account perceived depth and motion. The specific
question to the subjects wasDo you prefer the left image, the
right image, or have no preference for either?. The subjects
did not knowwhich imageswere generated usingourmethod.

Naïve vs. our method: The naïve method uses a scaled
depth mesh (the magnitude of raw depth range scaled to the
same range as our method) with the pivot point selected at
the middle of the scene. The same camera motion in ren-
dering was used for both the naïve method and our method.
Out of 110 examples, subjects selected the naïve method 21
times, our method 83 times, and had no preference 6 times.
In Fig. 9b, we show the user preference per subject. We per-
formed ANOVA with [(F(1, 20) = 53.24; P < 0.0001]
which shows that the difference is significant.

Wiggle 3D vs. our method: Generally, wiggle 3D images
are created by an artist by manually aligning the most salient

Fig. 9 The results of the subjective evaluation. Here we show the aver-
age user preference
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region of the images. To generate Wiggle 3D image, most
salient regionof the images is calculatedusing image saliency
algorithm proposed by Itti et al. [21]. Then the zero plane
position is selected to coincide with the most salient part of
the scene usually located around the central region of the
scene. Out of 110 examples, subjects selected Wiggle 3D
images 17 times, our method 84 times, and had no preference
9 times. In Fig. 9a, we show the user preference results per
subject. We performed ANOVA to analyze the difference
between user selection of Wiggle 3D and our method. We
got [(F(1, 20) = 34.21; P < 0.0001], which indicates that
the difference is significant.

Piku-Piku vs. our method: Here we compared our method
with Piku-Piku images from Start3D. Out of 110 exam-
ples, subjects selected Piku-Piku images 8 times, our method
87 times, and had no preference 15 times. In Fig. 9c,
we show the selection results according to each type of
camera motion per subject. We performed ANOVA with
(F(1, 20) = 55.04; P < 0.0001) which indicates that the
difference is significant.

Angular vs. conical motion: We have compared images
generated by two camera motions to find which method
subjects preferred. Out of 110 examples, subjects selected
angularmotion 51 times, conicalmotion 52 times, and had no
preference 7 times. In Fig. 9d, we show the selection results
for each type of camera motion per subject. We performed
ANOVA with [(F(1, 20) = 0.02; P = 0.8987], which indi-
cates that the difference is not significant.

Discussion: We took a detailed look at the examples where
the subjects chose other alternativemethods over ourmethod.
In most of these examples, we found that the depth range
was low and the salient objects were already in the middle of
the scene. In these examples, all of these methods generated
comparable output. Also, both our method and Piku-Piku
images rely on the computed depth maps. Any error in depth
maps will affect the final output.

Wiggle3D and Piku-Piku images are highly dependent on
the input pair of stereo images to generate the final rendering.
They either switch or generate intermediate frames between
the input images. Based on the angle of the input camera,
the images may contain scaling or shearing. The perception
of depth is reduced when noise, scaling, or shearing appears
in the animated images. This can be easily observed when
watching the animation. However, these subtle artifacts are
difficult to show using the vector plot, so we would like to
request that the reviewers look at the accompanying video.

11.2 Limitations of our approach

Although the use of the KDE to help understand the three-
dimensional structure of a scene is valuable, it also has some
disadvantages. First, adding motion could be visually dis-

tracting and has the potential to induce motion-sickness.
Although this can be considerably reduced by making the
camera motion small and smooth and by depth re-mapping,
it cannot be completely eliminated. Second, the depth per-
ceived by the KDE is not the same as the depth perceived
by binocular disparity. In fact, Durgin et al. [12] have shown
in their experiments that depth judgments based on binocu-
lar disparity are more accurate compared to depth judgments
based on the KDE or motion parallax. However, binocular
disparity perceived using stereoscopic displays has its own
disadvantages such as the vergence and accommodation con-
flicts, and visual fatigue [19,47]. To reduce the visual fatigue
in stereo displays, various techniques that compress the depth
are also used [19], and they too are likely to reduce the accu-
racy of the depth judgments. Third, our algorithm relies on
computing approximated depth maps from a set of stereo
images. When the depth map calculation has a significant
error, the quality of our animation could also suffer. Thus,
both ways of looking at 3D scenes have their own advan-
tages and disadvantages. However, the use of the KDE is
simpler and does not require any special devices.

12 Conclusions and future Work

Wehavepresented amethod to automatically create smoothly
animated images necessary to experience the KDE. Given a
stereo image pair or an image-depth map pair as input, we
have presented an approach to automatically generate anima-
tion that exhibits the KDE. Our approach allows decoupling
of the input cameras from the rendering cameras to give
us greater flexibility in defining multiple rendering camera
motions.We have used two different ways of performing ren-
dering cameramotions (angular and conic pendulummotion)
to view the resulting scene that minimize visual artifacts by
taking into account depth perception, image saliency, occlu-
sions, depth differences, and user-specified pivot points. We
have reported the results of user studies that examine the rela-
tionship between depth perception, relative velocity, spatial
perspective effect, and positioning of the pivot point when
generatingKDI.Wehave presented a novel depth re-mapping
method guided by perceptual relations based on the results
of our user study. And finally, we have presented a subjec-
tive evaluation of our method by comparing it against other
existing alternatives on a wide range of images.

At present, we have optimized one variable at a time
to do depth enhancement. A single optimization across all
the pixels is likely to lead to superior results and would be
worth exploring. Another future direction is to explore the
usage of KDE on modern 3D games to enhance the per-
ception of the 3D structures. KDI may very well become
a popular 3D previewing tool for scientific visualization
applications where depth awareness is important (such as
stereo microscopy) and for consumer-entertainment applica-
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tions including technology-mediated social community sites.
Another important group that could benefit from KDI are the
people that have lost sight in one eye. Toyoura et al. [49]
estimate that number to be around 300 million.
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